blob: acd1460cf7871c4ef4cffb0f0e196f41083aae36 [file] [log] [blame]
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001/*
2 * Copyright 2011 Freescale Semiconductor, Inc
3 *
4 * Freescale Integrated Flash Controller
5 *
6 * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22#include <linux/module.h>
23#include <linux/kernel.h>
24#include <linux/compiler.h>
25#include <linux/sched.h>
26#include <linux/spinlock.h>
27#include <linux/types.h>
28#include <linux/slab.h>
29#include <linux/io.h>
30#include <linux/of.h>
31#include <linux/of_device.h>
32#include <linux/platform_device.h>
33#include <linux/fsl_ifc.h>
34#include <asm/prom.h>
35
36struct fsl_ifc_ctrl *fsl_ifc_ctrl_dev;
37EXPORT_SYMBOL(fsl_ifc_ctrl_dev);
38
39/*
40 * convert_ifc_address - convert the base address
41 * @addr_base: base address of the memory bank
42 */
43unsigned int convert_ifc_address(phys_addr_t addr_base)
44{
45 return addr_base & CSPR_BA;
46}
47EXPORT_SYMBOL(convert_ifc_address);
48
49/*
50 * fsl_ifc_find - find IFC bank
51 * @addr_base: base address of the memory bank
52 *
53 * This function walks IFC banks comparing "Base address" field of the CSPR
54 * registers with the supplied addr_base argument. When bases match this
55 * function returns bank number (starting with 0), otherwise it returns
56 * appropriate errno value.
57 */
58int fsl_ifc_find(phys_addr_t addr_base)
59{
60 int i = 0;
61
62 if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->regs)
63 return -ENODEV;
64
65 for (i = 0; i < fsl_ifc_ctrl_dev->banks; i++) {
66 u32 cspr = ifc_in32(&fsl_ifc_ctrl_dev->regs->cspr_cs[i].cspr);
67 if (cspr & CSPR_V && (cspr & CSPR_BA) ==
68 convert_ifc_address(addr_base))
69 return i;
70 }
71
72 return -ENOENT;
73}
74EXPORT_SYMBOL(fsl_ifc_find);
75
76static int fsl_ifc_ctrl_init(struct fsl_ifc_ctrl *ctrl)
77{
78 struct fsl_ifc_regs __iomem *ifc = ctrl->regs;
79
80 /*
81 * Clear all the common status and event registers
82 */
83 if (ifc_in32(&ifc->cm_evter_stat) & IFC_CM_EVTER_STAT_CSER)
84 ifc_out32(IFC_CM_EVTER_STAT_CSER, &ifc->cm_evter_stat);
85
86 /* enable all error and events */
87 ifc_out32(IFC_CM_EVTER_EN_CSEREN, &ifc->cm_evter_en);
88
89 /* enable all error and event interrupts */
90 ifc_out32(IFC_CM_EVTER_INTR_EN_CSERIREN, &ifc->cm_evter_intr_en);
91 ifc_out32(0x0, &ifc->cm_erattr0);
92 ifc_out32(0x0, &ifc->cm_erattr1);
93
94 return 0;
95}
96
97static int fsl_ifc_ctrl_remove(struct platform_device *dev)
98{
99 struct fsl_ifc_ctrl *ctrl = dev_get_drvdata(&dev->dev);
100
101 free_irq(ctrl->nand_irq, ctrl);
102 free_irq(ctrl->irq, ctrl);
103
104 irq_dispose_mapping(ctrl->nand_irq);
105 irq_dispose_mapping(ctrl->irq);
106
107 iounmap(ctrl->regs);
108
109 dev_set_drvdata(&dev->dev, NULL);
110 kfree(ctrl);
111
112 return 0;
113}
114
115/*
116 * NAND events are split between an operational interrupt which only
117 * receives OPC, and an error interrupt that receives everything else,
118 * including non-NAND errors. Whichever interrupt gets to it first
119 * records the status and wakes the wait queue.
120 */
121static DEFINE_SPINLOCK(nand_irq_lock);
122
123static u32 check_nand_stat(struct fsl_ifc_ctrl *ctrl)
124{
125 struct fsl_ifc_regs __iomem *ifc = ctrl->regs;
126 unsigned long flags;
127 u32 stat;
128
129 spin_lock_irqsave(&nand_irq_lock, flags);
130
131 stat = ifc_in32(&ifc->ifc_nand.nand_evter_stat);
132 if (stat) {
133 ifc_out32(stat, &ifc->ifc_nand.nand_evter_stat);
134 ctrl->nand_stat = stat;
135 wake_up(&ctrl->nand_wait);
136 }
137
138 spin_unlock_irqrestore(&nand_irq_lock, flags);
139
140 return stat;
141}
142
143static irqreturn_t fsl_ifc_nand_irq(int irqno, void *data)
144{
145 struct fsl_ifc_ctrl *ctrl = data;
146
147 if (check_nand_stat(ctrl))
148 return IRQ_HANDLED;
149
150 return IRQ_NONE;
151}
152
153/*
154 * NOTE: This interrupt is used to report ifc events of various kinds,
155 * such as transaction errors on the chipselects.
156 */
157static irqreturn_t fsl_ifc_ctrl_irq(int irqno, void *data)
158{
159 struct fsl_ifc_ctrl *ctrl = data;
160 struct fsl_ifc_regs __iomem *ifc = ctrl->regs;
161 u32 err_axiid, err_srcid, status, cs_err, err_addr;
162 irqreturn_t ret = IRQ_NONE;
163
164 /* read for chip select error */
165 cs_err = ifc_in32(&ifc->cm_evter_stat);
166 if (cs_err) {
167 dev_err(ctrl->dev, "transaction sent to IFC is not mapped to"
168 "any memory bank 0x%08X\n", cs_err);
169 /* clear the chip select error */
170 ifc_out32(IFC_CM_EVTER_STAT_CSER, &ifc->cm_evter_stat);
171
172 /* read error attribute registers print the error information */
173 status = ifc_in32(&ifc->cm_erattr0);
174 err_addr = ifc_in32(&ifc->cm_erattr1);
175
176 if (status & IFC_CM_ERATTR0_ERTYP_READ)
177 dev_err(ctrl->dev, "Read transaction error"
178 "CM_ERATTR0 0x%08X\n", status);
179 else
180 dev_err(ctrl->dev, "Write transaction error"
181 "CM_ERATTR0 0x%08X\n", status);
182
183 err_axiid = (status & IFC_CM_ERATTR0_ERAID) >>
184 IFC_CM_ERATTR0_ERAID_SHIFT;
185 dev_err(ctrl->dev, "AXI ID of the error"
186 "transaction 0x%08X\n", err_axiid);
187
188 err_srcid = (status & IFC_CM_ERATTR0_ESRCID) >>
189 IFC_CM_ERATTR0_ESRCID_SHIFT;
190 dev_err(ctrl->dev, "SRC ID of the error"
191 "transaction 0x%08X\n", err_srcid);
192
193 dev_err(ctrl->dev, "Transaction Address corresponding to error"
194 "ERADDR 0x%08X\n", err_addr);
195
196 ret = IRQ_HANDLED;
197 }
198
199 if (check_nand_stat(ctrl))
200 ret = IRQ_HANDLED;
201
202 return ret;
203}
204
205/*
206 * fsl_ifc_ctrl_probe
207 *
208 * called by device layer when it finds a device matching
209 * one our driver can handled. This code allocates all of
210 * the resources needed for the controller only. The
211 * resources for the NAND banks themselves are allocated
212 * in the chip probe function.
213*/
214static int fsl_ifc_ctrl_probe(struct platform_device *dev)
215{
216 int ret = 0;
217 int version, banks;
218
219 dev_info(&dev->dev, "Freescale Integrated Flash Controller\n");
220
221 fsl_ifc_ctrl_dev = kzalloc(sizeof(*fsl_ifc_ctrl_dev), GFP_KERNEL);
222 if (!fsl_ifc_ctrl_dev)
223 return -ENOMEM;
224
225 dev_set_drvdata(&dev->dev, fsl_ifc_ctrl_dev);
226
227 /* IOMAP the entire IFC region */
228 fsl_ifc_ctrl_dev->regs = of_iomap(dev->dev.of_node, 0);
229 if (!fsl_ifc_ctrl_dev->regs) {
230 dev_err(&dev->dev, "failed to get memory region\n");
231 ret = -ENODEV;
232 goto err;
233 }
234
235 version = ifc_in32(&fsl_ifc_ctrl_dev->regs->ifc_rev) &
236 FSL_IFC_VERSION_MASK;
237 banks = (version == FSL_IFC_VERSION_1_0_0) ? 4 : 8;
238 dev_info(&dev->dev, "IFC version %d.%d, %d banks\n",
239 version >> 24, (version >> 16) & 0xf, banks);
240
241 fsl_ifc_ctrl_dev->version = version;
242 fsl_ifc_ctrl_dev->banks = banks;
243
244 if (of_property_read_bool(dev->dev.of_node, "little-endian")) {
245 fsl_ifc_ctrl_dev->little_endian = true;
246 dev_dbg(&dev->dev, "IFC REGISTERS are LITTLE endian\n");
247 } else {
248 fsl_ifc_ctrl_dev->little_endian = false;
249 dev_dbg(&dev->dev, "IFC REGISTERS are BIG endian\n");
250 }
251
252 version = ioread32be(&fsl_ifc_ctrl_dev->regs->ifc_rev) &
253 FSL_IFC_VERSION_MASK;
254 banks = (version == FSL_IFC_VERSION_1_0_0) ? 4 : 8;
255 dev_info(&dev->dev, "IFC version %d.%d, %d banks\n",
256 version >> 24, (version >> 16) & 0xf, banks);
257
258 fsl_ifc_ctrl_dev->version = version;
259 fsl_ifc_ctrl_dev->banks = banks;
260
261 /* get the Controller level irq */
262 fsl_ifc_ctrl_dev->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
263 if (fsl_ifc_ctrl_dev->irq == NO_IRQ) {
264 dev_err(&dev->dev, "failed to get irq resource "
265 "for IFC\n");
266 ret = -ENODEV;
267 goto err;
268 }
269
270 /* get the nand machine irq */
271 fsl_ifc_ctrl_dev->nand_irq =
272 irq_of_parse_and_map(dev->dev.of_node, 1);
273
274 fsl_ifc_ctrl_dev->dev = &dev->dev;
275
276 ret = fsl_ifc_ctrl_init(fsl_ifc_ctrl_dev);
277 if (ret < 0)
278 goto err;
279
280 init_waitqueue_head(&fsl_ifc_ctrl_dev->nand_wait);
281
282 ret = request_irq(fsl_ifc_ctrl_dev->irq, fsl_ifc_ctrl_irq, IRQF_SHARED,
283 "fsl-ifc", fsl_ifc_ctrl_dev);
284 if (ret != 0) {
285 dev_err(&dev->dev, "failed to install irq (%d)\n",
286 fsl_ifc_ctrl_dev->irq);
287 goto err_irq;
288 }
289
290 if (fsl_ifc_ctrl_dev->nand_irq) {
291 ret = request_irq(fsl_ifc_ctrl_dev->nand_irq, fsl_ifc_nand_irq,
292 0, "fsl-ifc-nand", fsl_ifc_ctrl_dev);
293 if (ret != 0) {
294 dev_err(&dev->dev, "failed to install irq (%d)\n",
295 fsl_ifc_ctrl_dev->nand_irq);
296 goto err_nandirq;
297 }
298 }
299
300 return 0;
301
302err_nandirq:
303 free_irq(fsl_ifc_ctrl_dev->nand_irq, fsl_ifc_ctrl_dev);
304 irq_dispose_mapping(fsl_ifc_ctrl_dev->nand_irq);
305err_irq:
306 free_irq(fsl_ifc_ctrl_dev->irq, fsl_ifc_ctrl_dev);
307 irq_dispose_mapping(fsl_ifc_ctrl_dev->irq);
308err:
309 return ret;
310}
311
312static const struct of_device_id fsl_ifc_match[] = {
313 {
314 .compatible = "fsl,ifc",
315 },
316 {},
317};
318
319static struct platform_driver fsl_ifc_ctrl_driver = {
320 .driver = {
321 .name = "fsl-ifc",
322 .of_match_table = fsl_ifc_match,
323 },
324 .probe = fsl_ifc_ctrl_probe,
325 .remove = fsl_ifc_ctrl_remove,
326};
327
328static int __init fsl_ifc_init(void)
329{
330 return platform_driver_register(&fsl_ifc_ctrl_driver);
331}
332subsys_initcall(fsl_ifc_init);
333
334MODULE_LICENSE("GPL");
335MODULE_AUTHOR("Freescale Semiconductor");
336MODULE_DESCRIPTION("Freescale Integrated Flash Controller driver");