Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame^] | 1 | /* |
| 2 | * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver |
| 3 | * |
| 4 | * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved. |
| 5 | * Copyright (C) 2010 ST-Ericsson SA |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or modify |
| 8 | * it under the terms of the GNU General Public License version 2 as |
| 9 | * published by the Free Software Foundation. |
| 10 | */ |
| 11 | #include <linux/module.h> |
| 12 | #include <linux/moduleparam.h> |
| 13 | #include <linux/init.h> |
| 14 | #include <linux/ioport.h> |
| 15 | #include <linux/device.h> |
| 16 | #include <linux/io.h> |
| 17 | #include <linux/interrupt.h> |
| 18 | #include <linux/kernel.h> |
| 19 | #include <linux/slab.h> |
| 20 | #include <linux/delay.h> |
| 21 | #include <linux/err.h> |
| 22 | #include <linux/highmem.h> |
| 23 | #include <linux/log2.h> |
| 24 | #include <linux/mmc/pm.h> |
| 25 | #include <linux/mmc/host.h> |
| 26 | #include <linux/mmc/card.h> |
| 27 | #include <linux/mmc/slot-gpio.h> |
| 28 | #include <linux/amba/bus.h> |
| 29 | #include <linux/clk.h> |
| 30 | #include <linux/scatterlist.h> |
| 31 | #include <linux/gpio.h> |
| 32 | #include <linux/of_gpio.h> |
| 33 | #include <linux/regulator/consumer.h> |
| 34 | #include <linux/dmaengine.h> |
| 35 | #include <linux/dma-mapping.h> |
| 36 | #include <linux/amba/mmci.h> |
| 37 | #include <linux/pm_runtime.h> |
| 38 | #include <linux/types.h> |
| 39 | #include <linux/pinctrl/consumer.h> |
| 40 | |
| 41 | #include <asm/div64.h> |
| 42 | #include <asm/io.h> |
| 43 | #include <asm/sizes.h> |
| 44 | |
| 45 | #include "mmci.h" |
| 46 | #include "mmci_qcom_dml.h" |
| 47 | |
| 48 | #define DRIVER_NAME "mmci-pl18x" |
| 49 | |
| 50 | static unsigned int fmax = 515633; |
| 51 | |
| 52 | /** |
| 53 | * struct variant_data - MMCI variant-specific quirks |
| 54 | * @clkreg: default value for MCICLOCK register |
| 55 | * @clkreg_enable: enable value for MMCICLOCK register |
| 56 | * @clkreg_8bit_bus_enable: enable value for 8 bit bus |
| 57 | * @clkreg_neg_edge_enable: enable value for inverted data/cmd output |
| 58 | * @datalength_bits: number of bits in the MMCIDATALENGTH register |
| 59 | * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY |
| 60 | * is asserted (likewise for RX) |
| 61 | * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY |
| 62 | * is asserted (likewise for RX) |
| 63 | * @data_cmd_enable: enable value for data commands. |
| 64 | * @st_sdio: enable ST specific SDIO logic |
| 65 | * @st_clkdiv: true if using a ST-specific clock divider algorithm |
| 66 | * @datactrl_mask_ddrmode: ddr mode mask in datactrl register. |
| 67 | * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register |
| 68 | * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl |
| 69 | * register |
| 70 | * @datactrl_mask_sdio: SDIO enable mask in datactrl register |
| 71 | * @pwrreg_powerup: power up value for MMCIPOWER register |
| 72 | * @f_max: maximum clk frequency supported by the controller. |
| 73 | * @signal_direction: input/out direction of bus signals can be indicated |
| 74 | * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock |
| 75 | * @busy_detect: true if busy detection on dat0 is supported |
| 76 | * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply |
| 77 | * @explicit_mclk_control: enable explicit mclk control in driver. |
| 78 | * @qcom_fifo: enables qcom specific fifo pio read logic. |
| 79 | * @qcom_dml: enables qcom specific dma glue for dma transfers. |
| 80 | * @reversed_irq_handling: handle data irq before cmd irq. |
| 81 | */ |
| 82 | struct variant_data { |
| 83 | unsigned int clkreg; |
| 84 | unsigned int clkreg_enable; |
| 85 | unsigned int clkreg_8bit_bus_enable; |
| 86 | unsigned int clkreg_neg_edge_enable; |
| 87 | unsigned int datalength_bits; |
| 88 | unsigned int fifosize; |
| 89 | unsigned int fifohalfsize; |
| 90 | unsigned int data_cmd_enable; |
| 91 | unsigned int datactrl_mask_ddrmode; |
| 92 | unsigned int datactrl_mask_sdio; |
| 93 | bool st_sdio; |
| 94 | bool st_clkdiv; |
| 95 | bool blksz_datactrl16; |
| 96 | bool blksz_datactrl4; |
| 97 | u32 pwrreg_powerup; |
| 98 | u32 f_max; |
| 99 | bool signal_direction; |
| 100 | bool pwrreg_clkgate; |
| 101 | bool busy_detect; |
| 102 | bool pwrreg_nopower; |
| 103 | bool explicit_mclk_control; |
| 104 | bool qcom_fifo; |
| 105 | bool qcom_dml; |
| 106 | bool reversed_irq_handling; |
| 107 | }; |
| 108 | |
| 109 | static struct variant_data variant_arm = { |
| 110 | .fifosize = 16 * 4, |
| 111 | .fifohalfsize = 8 * 4, |
| 112 | .datalength_bits = 16, |
| 113 | .pwrreg_powerup = MCI_PWR_UP, |
| 114 | .f_max = 100000000, |
| 115 | .reversed_irq_handling = true, |
| 116 | }; |
| 117 | |
| 118 | static struct variant_data variant_arm_extended_fifo = { |
| 119 | .fifosize = 128 * 4, |
| 120 | .fifohalfsize = 64 * 4, |
| 121 | .datalength_bits = 16, |
| 122 | .pwrreg_powerup = MCI_PWR_UP, |
| 123 | .f_max = 100000000, |
| 124 | }; |
| 125 | |
| 126 | static struct variant_data variant_arm_extended_fifo_hwfc = { |
| 127 | .fifosize = 128 * 4, |
| 128 | .fifohalfsize = 64 * 4, |
| 129 | .clkreg_enable = MCI_ARM_HWFCEN, |
| 130 | .datalength_bits = 16, |
| 131 | .pwrreg_powerup = MCI_PWR_UP, |
| 132 | .f_max = 100000000, |
| 133 | }; |
| 134 | |
| 135 | static struct variant_data variant_u300 = { |
| 136 | .fifosize = 16 * 4, |
| 137 | .fifohalfsize = 8 * 4, |
| 138 | .clkreg_enable = MCI_ST_U300_HWFCEN, |
| 139 | .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS, |
| 140 | .datalength_bits = 16, |
| 141 | .datactrl_mask_sdio = MCI_ST_DPSM_SDIOEN, |
| 142 | .st_sdio = true, |
| 143 | .pwrreg_powerup = MCI_PWR_ON, |
| 144 | .f_max = 100000000, |
| 145 | .signal_direction = true, |
| 146 | .pwrreg_clkgate = true, |
| 147 | .pwrreg_nopower = true, |
| 148 | }; |
| 149 | |
| 150 | static struct variant_data variant_nomadik = { |
| 151 | .fifosize = 16 * 4, |
| 152 | .fifohalfsize = 8 * 4, |
| 153 | .clkreg = MCI_CLK_ENABLE, |
| 154 | .datalength_bits = 24, |
| 155 | .datactrl_mask_sdio = MCI_ST_DPSM_SDIOEN, |
| 156 | .st_sdio = true, |
| 157 | .st_clkdiv = true, |
| 158 | .pwrreg_powerup = MCI_PWR_ON, |
| 159 | .f_max = 100000000, |
| 160 | .signal_direction = true, |
| 161 | .pwrreg_clkgate = true, |
| 162 | .pwrreg_nopower = true, |
| 163 | }; |
| 164 | |
| 165 | static struct variant_data variant_ux500 = { |
| 166 | .fifosize = 30 * 4, |
| 167 | .fifohalfsize = 8 * 4, |
| 168 | .clkreg = MCI_CLK_ENABLE, |
| 169 | .clkreg_enable = MCI_ST_UX500_HWFCEN, |
| 170 | .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS, |
| 171 | .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE, |
| 172 | .datalength_bits = 24, |
| 173 | .datactrl_mask_sdio = MCI_ST_DPSM_SDIOEN, |
| 174 | .st_sdio = true, |
| 175 | .st_clkdiv = true, |
| 176 | .pwrreg_powerup = MCI_PWR_ON, |
| 177 | .f_max = 100000000, |
| 178 | .signal_direction = true, |
| 179 | .pwrreg_clkgate = true, |
| 180 | .busy_detect = true, |
| 181 | .pwrreg_nopower = true, |
| 182 | }; |
| 183 | |
| 184 | static struct variant_data variant_ux500v2 = { |
| 185 | .fifosize = 30 * 4, |
| 186 | .fifohalfsize = 8 * 4, |
| 187 | .clkreg = MCI_CLK_ENABLE, |
| 188 | .clkreg_enable = MCI_ST_UX500_HWFCEN, |
| 189 | .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS, |
| 190 | .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE, |
| 191 | .datactrl_mask_ddrmode = MCI_ST_DPSM_DDRMODE, |
| 192 | .datalength_bits = 24, |
| 193 | .datactrl_mask_sdio = MCI_ST_DPSM_SDIOEN, |
| 194 | .st_sdio = true, |
| 195 | .st_clkdiv = true, |
| 196 | .blksz_datactrl16 = true, |
| 197 | .pwrreg_powerup = MCI_PWR_ON, |
| 198 | .f_max = 100000000, |
| 199 | .signal_direction = true, |
| 200 | .pwrreg_clkgate = true, |
| 201 | .busy_detect = true, |
| 202 | .pwrreg_nopower = true, |
| 203 | }; |
| 204 | |
| 205 | static struct variant_data variant_qcom = { |
| 206 | .fifosize = 16 * 4, |
| 207 | .fifohalfsize = 8 * 4, |
| 208 | .clkreg = MCI_CLK_ENABLE, |
| 209 | .clkreg_enable = MCI_QCOM_CLK_FLOWENA | |
| 210 | MCI_QCOM_CLK_SELECT_IN_FBCLK, |
| 211 | .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8, |
| 212 | .datactrl_mask_ddrmode = MCI_QCOM_CLK_SELECT_IN_DDR_MODE, |
| 213 | .data_cmd_enable = MCI_QCOM_CSPM_DATCMD, |
| 214 | .blksz_datactrl4 = true, |
| 215 | .datalength_bits = 24, |
| 216 | .pwrreg_powerup = MCI_PWR_UP, |
| 217 | .f_max = 208000000, |
| 218 | .explicit_mclk_control = true, |
| 219 | .qcom_fifo = true, |
| 220 | .qcom_dml = true, |
| 221 | }; |
| 222 | |
| 223 | static int mmci_card_busy(struct mmc_host *mmc) |
| 224 | { |
| 225 | struct mmci_host *host = mmc_priv(mmc); |
| 226 | unsigned long flags; |
| 227 | int busy = 0; |
| 228 | |
| 229 | pm_runtime_get_sync(mmc_dev(mmc)); |
| 230 | |
| 231 | spin_lock_irqsave(&host->lock, flags); |
| 232 | if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY) |
| 233 | busy = 1; |
| 234 | spin_unlock_irqrestore(&host->lock, flags); |
| 235 | |
| 236 | pm_runtime_mark_last_busy(mmc_dev(mmc)); |
| 237 | pm_runtime_put_autosuspend(mmc_dev(mmc)); |
| 238 | |
| 239 | return busy; |
| 240 | } |
| 241 | |
| 242 | /* |
| 243 | * Validate mmc prerequisites |
| 244 | */ |
| 245 | static int mmci_validate_data(struct mmci_host *host, |
| 246 | struct mmc_data *data) |
| 247 | { |
| 248 | if (!data) |
| 249 | return 0; |
| 250 | |
| 251 | if (!is_power_of_2(data->blksz)) { |
| 252 | dev_err(mmc_dev(host->mmc), |
| 253 | "unsupported block size (%d bytes)\n", data->blksz); |
| 254 | return -EINVAL; |
| 255 | } |
| 256 | |
| 257 | return 0; |
| 258 | } |
| 259 | |
| 260 | static void mmci_reg_delay(struct mmci_host *host) |
| 261 | { |
| 262 | /* |
| 263 | * According to the spec, at least three feedback clock cycles |
| 264 | * of max 52 MHz must pass between two writes to the MMCICLOCK reg. |
| 265 | * Three MCLK clock cycles must pass between two MMCIPOWER reg writes. |
| 266 | * Worst delay time during card init is at 100 kHz => 30 us. |
| 267 | * Worst delay time when up and running is at 25 MHz => 120 ns. |
| 268 | */ |
| 269 | if (host->cclk < 25000000) |
| 270 | udelay(30); |
| 271 | else |
| 272 | ndelay(120); |
| 273 | } |
| 274 | |
| 275 | /* |
| 276 | * This must be called with host->lock held |
| 277 | */ |
| 278 | static void mmci_write_clkreg(struct mmci_host *host, u32 clk) |
| 279 | { |
| 280 | if (host->clk_reg != clk) { |
| 281 | host->clk_reg = clk; |
| 282 | writel(clk, host->base + MMCICLOCK); |
| 283 | } |
| 284 | } |
| 285 | |
| 286 | /* |
| 287 | * This must be called with host->lock held |
| 288 | */ |
| 289 | static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr) |
| 290 | { |
| 291 | if (host->pwr_reg != pwr) { |
| 292 | host->pwr_reg = pwr; |
| 293 | writel(pwr, host->base + MMCIPOWER); |
| 294 | } |
| 295 | } |
| 296 | |
| 297 | /* |
| 298 | * This must be called with host->lock held |
| 299 | */ |
| 300 | static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl) |
| 301 | { |
| 302 | /* Keep ST Micro busy mode if enabled */ |
| 303 | datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE; |
| 304 | |
| 305 | if (host->datactrl_reg != datactrl) { |
| 306 | host->datactrl_reg = datactrl; |
| 307 | writel(datactrl, host->base + MMCIDATACTRL); |
| 308 | } |
| 309 | } |
| 310 | |
| 311 | /* |
| 312 | * This must be called with host->lock held |
| 313 | */ |
| 314 | static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired) |
| 315 | { |
| 316 | struct variant_data *variant = host->variant; |
| 317 | u32 clk = variant->clkreg; |
| 318 | |
| 319 | /* Make sure cclk reflects the current calculated clock */ |
| 320 | host->cclk = 0; |
| 321 | |
| 322 | if (desired) { |
| 323 | if (variant->explicit_mclk_control) { |
| 324 | host->cclk = host->mclk; |
| 325 | } else if (desired >= host->mclk) { |
| 326 | clk = MCI_CLK_BYPASS; |
| 327 | if (variant->st_clkdiv) |
| 328 | clk |= MCI_ST_UX500_NEG_EDGE; |
| 329 | host->cclk = host->mclk; |
| 330 | } else if (variant->st_clkdiv) { |
| 331 | /* |
| 332 | * DB8500 TRM says f = mclk / (clkdiv + 2) |
| 333 | * => clkdiv = (mclk / f) - 2 |
| 334 | * Round the divider up so we don't exceed the max |
| 335 | * frequency |
| 336 | */ |
| 337 | clk = DIV_ROUND_UP(host->mclk, desired) - 2; |
| 338 | if (clk >= 256) |
| 339 | clk = 255; |
| 340 | host->cclk = host->mclk / (clk + 2); |
| 341 | } else { |
| 342 | /* |
| 343 | * PL180 TRM says f = mclk / (2 * (clkdiv + 1)) |
| 344 | * => clkdiv = mclk / (2 * f) - 1 |
| 345 | */ |
| 346 | clk = host->mclk / (2 * desired) - 1; |
| 347 | if (clk >= 256) |
| 348 | clk = 255; |
| 349 | host->cclk = host->mclk / (2 * (clk + 1)); |
| 350 | } |
| 351 | |
| 352 | clk |= variant->clkreg_enable; |
| 353 | clk |= MCI_CLK_ENABLE; |
| 354 | /* This hasn't proven to be worthwhile */ |
| 355 | /* clk |= MCI_CLK_PWRSAVE; */ |
| 356 | } |
| 357 | |
| 358 | /* Set actual clock for debug */ |
| 359 | host->mmc->actual_clock = host->cclk; |
| 360 | |
| 361 | if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4) |
| 362 | clk |= MCI_4BIT_BUS; |
| 363 | if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8) |
| 364 | clk |= variant->clkreg_8bit_bus_enable; |
| 365 | |
| 366 | if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 || |
| 367 | host->mmc->ios.timing == MMC_TIMING_MMC_DDR52) |
| 368 | clk |= variant->clkreg_neg_edge_enable; |
| 369 | |
| 370 | mmci_write_clkreg(host, clk); |
| 371 | } |
| 372 | |
| 373 | static void |
| 374 | mmci_request_end(struct mmci_host *host, struct mmc_request *mrq) |
| 375 | { |
| 376 | writel(0, host->base + MMCICOMMAND); |
| 377 | |
| 378 | BUG_ON(host->data); |
| 379 | |
| 380 | host->mrq = NULL; |
| 381 | host->cmd = NULL; |
| 382 | |
| 383 | mmc_request_done(host->mmc, mrq); |
| 384 | |
| 385 | pm_runtime_mark_last_busy(mmc_dev(host->mmc)); |
| 386 | pm_runtime_put_autosuspend(mmc_dev(host->mmc)); |
| 387 | } |
| 388 | |
| 389 | static void mmci_set_mask1(struct mmci_host *host, unsigned int mask) |
| 390 | { |
| 391 | void __iomem *base = host->base; |
| 392 | |
| 393 | if (host->singleirq) { |
| 394 | unsigned int mask0 = readl(base + MMCIMASK0); |
| 395 | |
| 396 | mask0 &= ~MCI_IRQ1MASK; |
| 397 | mask0 |= mask; |
| 398 | |
| 399 | writel(mask0, base + MMCIMASK0); |
| 400 | } |
| 401 | |
| 402 | writel(mask, base + MMCIMASK1); |
| 403 | } |
| 404 | |
| 405 | static void mmci_stop_data(struct mmci_host *host) |
| 406 | { |
| 407 | mmci_write_datactrlreg(host, 0); |
| 408 | mmci_set_mask1(host, 0); |
| 409 | host->data = NULL; |
| 410 | } |
| 411 | |
| 412 | static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data) |
| 413 | { |
| 414 | unsigned int flags = SG_MITER_ATOMIC; |
| 415 | |
| 416 | if (data->flags & MMC_DATA_READ) |
| 417 | flags |= SG_MITER_TO_SG; |
| 418 | else |
| 419 | flags |= SG_MITER_FROM_SG; |
| 420 | |
| 421 | sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags); |
| 422 | } |
| 423 | |
| 424 | /* |
| 425 | * All the DMA operation mode stuff goes inside this ifdef. |
| 426 | * This assumes that you have a generic DMA device interface, |
| 427 | * no custom DMA interfaces are supported. |
| 428 | */ |
| 429 | #ifdef CONFIG_DMA_ENGINE |
| 430 | static void mmci_dma_setup(struct mmci_host *host) |
| 431 | { |
| 432 | const char *rxname, *txname; |
| 433 | struct variant_data *variant = host->variant; |
| 434 | |
| 435 | host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx"); |
| 436 | host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx"); |
| 437 | |
| 438 | /* initialize pre request cookie */ |
| 439 | host->next_data.cookie = 1; |
| 440 | |
| 441 | /* |
| 442 | * If only an RX channel is specified, the driver will |
| 443 | * attempt to use it bidirectionally, however if it is |
| 444 | * is specified but cannot be located, DMA will be disabled. |
| 445 | */ |
| 446 | if (host->dma_rx_channel && !host->dma_tx_channel) |
| 447 | host->dma_tx_channel = host->dma_rx_channel; |
| 448 | |
| 449 | if (host->dma_rx_channel) |
| 450 | rxname = dma_chan_name(host->dma_rx_channel); |
| 451 | else |
| 452 | rxname = "none"; |
| 453 | |
| 454 | if (host->dma_tx_channel) |
| 455 | txname = dma_chan_name(host->dma_tx_channel); |
| 456 | else |
| 457 | txname = "none"; |
| 458 | |
| 459 | dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n", |
| 460 | rxname, txname); |
| 461 | |
| 462 | /* |
| 463 | * Limit the maximum segment size in any SG entry according to |
| 464 | * the parameters of the DMA engine device. |
| 465 | */ |
| 466 | if (host->dma_tx_channel) { |
| 467 | struct device *dev = host->dma_tx_channel->device->dev; |
| 468 | unsigned int max_seg_size = dma_get_max_seg_size(dev); |
| 469 | |
| 470 | if (max_seg_size < host->mmc->max_seg_size) |
| 471 | host->mmc->max_seg_size = max_seg_size; |
| 472 | } |
| 473 | if (host->dma_rx_channel) { |
| 474 | struct device *dev = host->dma_rx_channel->device->dev; |
| 475 | unsigned int max_seg_size = dma_get_max_seg_size(dev); |
| 476 | |
| 477 | if (max_seg_size < host->mmc->max_seg_size) |
| 478 | host->mmc->max_seg_size = max_seg_size; |
| 479 | } |
| 480 | |
| 481 | if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel) |
| 482 | if (dml_hw_init(host, host->mmc->parent->of_node)) |
| 483 | variant->qcom_dml = false; |
| 484 | } |
| 485 | |
| 486 | /* |
| 487 | * This is used in or so inline it |
| 488 | * so it can be discarded. |
| 489 | */ |
| 490 | static inline void mmci_dma_release(struct mmci_host *host) |
| 491 | { |
| 492 | if (host->dma_rx_channel) |
| 493 | dma_release_channel(host->dma_rx_channel); |
| 494 | if (host->dma_tx_channel) |
| 495 | dma_release_channel(host->dma_tx_channel); |
| 496 | host->dma_rx_channel = host->dma_tx_channel = NULL; |
| 497 | } |
| 498 | |
| 499 | static void mmci_dma_data_error(struct mmci_host *host) |
| 500 | { |
| 501 | dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n"); |
| 502 | dmaengine_terminate_all(host->dma_current); |
| 503 | host->dma_current = NULL; |
| 504 | host->dma_desc_current = NULL; |
| 505 | host->data->host_cookie = 0; |
| 506 | } |
| 507 | |
| 508 | static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data) |
| 509 | { |
| 510 | struct dma_chan *chan; |
| 511 | enum dma_data_direction dir; |
| 512 | |
| 513 | if (data->flags & MMC_DATA_READ) { |
| 514 | dir = DMA_FROM_DEVICE; |
| 515 | chan = host->dma_rx_channel; |
| 516 | } else { |
| 517 | dir = DMA_TO_DEVICE; |
| 518 | chan = host->dma_tx_channel; |
| 519 | } |
| 520 | |
| 521 | dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir); |
| 522 | } |
| 523 | |
| 524 | static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data) |
| 525 | { |
| 526 | u32 status; |
| 527 | int i; |
| 528 | |
| 529 | /* Wait up to 1ms for the DMA to complete */ |
| 530 | for (i = 0; ; i++) { |
| 531 | status = readl(host->base + MMCISTATUS); |
| 532 | if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100) |
| 533 | break; |
| 534 | udelay(10); |
| 535 | } |
| 536 | |
| 537 | /* |
| 538 | * Check to see whether we still have some data left in the FIFO - |
| 539 | * this catches DMA controllers which are unable to monitor the |
| 540 | * DMALBREQ and DMALSREQ signals while allowing us to DMA to non- |
| 541 | * contiguous buffers. On TX, we'll get a FIFO underrun error. |
| 542 | */ |
| 543 | if (status & MCI_RXDATAAVLBLMASK) { |
| 544 | mmci_dma_data_error(host); |
| 545 | if (!data->error) |
| 546 | data->error = -EIO; |
| 547 | } |
| 548 | |
| 549 | if (!data->host_cookie) |
| 550 | mmci_dma_unmap(host, data); |
| 551 | |
| 552 | /* |
| 553 | * Use of DMA with scatter-gather is impossible. |
| 554 | * Give up with DMA and switch back to PIO mode. |
| 555 | */ |
| 556 | if (status & MCI_RXDATAAVLBLMASK) { |
| 557 | dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n"); |
| 558 | mmci_dma_release(host); |
| 559 | } |
| 560 | |
| 561 | host->dma_current = NULL; |
| 562 | host->dma_desc_current = NULL; |
| 563 | } |
| 564 | |
| 565 | /* prepares DMA channel and DMA descriptor, returns non-zero on failure */ |
| 566 | static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data, |
| 567 | struct dma_chan **dma_chan, |
| 568 | struct dma_async_tx_descriptor **dma_desc) |
| 569 | { |
| 570 | struct variant_data *variant = host->variant; |
| 571 | struct dma_slave_config conf = { |
| 572 | .src_addr = host->phybase + MMCIFIFO, |
| 573 | .dst_addr = host->phybase + MMCIFIFO, |
| 574 | .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, |
| 575 | .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, |
| 576 | .src_maxburst = variant->fifohalfsize >> 2, /* # of words */ |
| 577 | .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */ |
| 578 | .device_fc = false, |
| 579 | }; |
| 580 | struct dma_chan *chan; |
| 581 | struct dma_device *device; |
| 582 | struct dma_async_tx_descriptor *desc; |
| 583 | enum dma_data_direction buffer_dirn; |
| 584 | int nr_sg; |
| 585 | unsigned long flags = DMA_CTRL_ACK; |
| 586 | |
| 587 | if (data->flags & MMC_DATA_READ) { |
| 588 | conf.direction = DMA_DEV_TO_MEM; |
| 589 | buffer_dirn = DMA_FROM_DEVICE; |
| 590 | chan = host->dma_rx_channel; |
| 591 | } else { |
| 592 | conf.direction = DMA_MEM_TO_DEV; |
| 593 | buffer_dirn = DMA_TO_DEVICE; |
| 594 | chan = host->dma_tx_channel; |
| 595 | } |
| 596 | |
| 597 | /* If there's no DMA channel, fall back to PIO */ |
| 598 | if (!chan) |
| 599 | return -EINVAL; |
| 600 | |
| 601 | /* If less than or equal to the fifo size, don't bother with DMA */ |
| 602 | if (data->blksz * data->blocks <= variant->fifosize) |
| 603 | return -EINVAL; |
| 604 | |
| 605 | device = chan->device; |
| 606 | nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn); |
| 607 | if (nr_sg == 0) |
| 608 | return -EINVAL; |
| 609 | |
| 610 | if (host->variant->qcom_dml) |
| 611 | flags |= DMA_PREP_INTERRUPT; |
| 612 | |
| 613 | dmaengine_slave_config(chan, &conf); |
| 614 | desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg, |
| 615 | conf.direction, flags); |
| 616 | if (!desc) |
| 617 | goto unmap_exit; |
| 618 | |
| 619 | *dma_chan = chan; |
| 620 | *dma_desc = desc; |
| 621 | |
| 622 | return 0; |
| 623 | |
| 624 | unmap_exit: |
| 625 | dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn); |
| 626 | return -ENOMEM; |
| 627 | } |
| 628 | |
| 629 | static inline int mmci_dma_prep_data(struct mmci_host *host, |
| 630 | struct mmc_data *data) |
| 631 | { |
| 632 | /* Check if next job is already prepared. */ |
| 633 | if (host->dma_current && host->dma_desc_current) |
| 634 | return 0; |
| 635 | |
| 636 | /* No job were prepared thus do it now. */ |
| 637 | return __mmci_dma_prep_data(host, data, &host->dma_current, |
| 638 | &host->dma_desc_current); |
| 639 | } |
| 640 | |
| 641 | static inline int mmci_dma_prep_next(struct mmci_host *host, |
| 642 | struct mmc_data *data) |
| 643 | { |
| 644 | struct mmci_host_next *nd = &host->next_data; |
| 645 | return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc); |
| 646 | } |
| 647 | |
| 648 | static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl) |
| 649 | { |
| 650 | int ret; |
| 651 | struct mmc_data *data = host->data; |
| 652 | |
| 653 | ret = mmci_dma_prep_data(host, host->data); |
| 654 | if (ret) |
| 655 | return ret; |
| 656 | |
| 657 | /* Okay, go for it. */ |
| 658 | dev_vdbg(mmc_dev(host->mmc), |
| 659 | "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n", |
| 660 | data->sg_len, data->blksz, data->blocks, data->flags); |
| 661 | dmaengine_submit(host->dma_desc_current); |
| 662 | dma_async_issue_pending(host->dma_current); |
| 663 | |
| 664 | if (host->variant->qcom_dml) |
| 665 | dml_start_xfer(host, data); |
| 666 | |
| 667 | datactrl |= MCI_DPSM_DMAENABLE; |
| 668 | |
| 669 | /* Trigger the DMA transfer */ |
| 670 | mmci_write_datactrlreg(host, datactrl); |
| 671 | |
| 672 | /* |
| 673 | * Let the MMCI say when the data is ended and it's time |
| 674 | * to fire next DMA request. When that happens, MMCI will |
| 675 | * call mmci_data_end() |
| 676 | */ |
| 677 | writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK, |
| 678 | host->base + MMCIMASK0); |
| 679 | return 0; |
| 680 | } |
| 681 | |
| 682 | static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data) |
| 683 | { |
| 684 | struct mmci_host_next *next = &host->next_data; |
| 685 | |
| 686 | WARN_ON(data->host_cookie && data->host_cookie != next->cookie); |
| 687 | WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan)); |
| 688 | |
| 689 | host->dma_desc_current = next->dma_desc; |
| 690 | host->dma_current = next->dma_chan; |
| 691 | next->dma_desc = NULL; |
| 692 | next->dma_chan = NULL; |
| 693 | } |
| 694 | |
| 695 | static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq, |
| 696 | bool is_first_req) |
| 697 | { |
| 698 | struct mmci_host *host = mmc_priv(mmc); |
| 699 | struct mmc_data *data = mrq->data; |
| 700 | struct mmci_host_next *nd = &host->next_data; |
| 701 | |
| 702 | if (!data) |
| 703 | return; |
| 704 | |
| 705 | BUG_ON(data->host_cookie); |
| 706 | |
| 707 | if (mmci_validate_data(host, data)) |
| 708 | return; |
| 709 | |
| 710 | if (!mmci_dma_prep_next(host, data)) |
| 711 | data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie; |
| 712 | } |
| 713 | |
| 714 | static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq, |
| 715 | int err) |
| 716 | { |
| 717 | struct mmci_host *host = mmc_priv(mmc); |
| 718 | struct mmc_data *data = mrq->data; |
| 719 | |
| 720 | if (!data || !data->host_cookie) |
| 721 | return; |
| 722 | |
| 723 | mmci_dma_unmap(host, data); |
| 724 | |
| 725 | if (err) { |
| 726 | struct mmci_host_next *next = &host->next_data; |
| 727 | struct dma_chan *chan; |
| 728 | if (data->flags & MMC_DATA_READ) |
| 729 | chan = host->dma_rx_channel; |
| 730 | else |
| 731 | chan = host->dma_tx_channel; |
| 732 | dmaengine_terminate_all(chan); |
| 733 | |
| 734 | if (host->dma_desc_current == next->dma_desc) |
| 735 | host->dma_desc_current = NULL; |
| 736 | |
| 737 | if (host->dma_current == next->dma_chan) |
| 738 | host->dma_current = NULL; |
| 739 | |
| 740 | next->dma_desc = NULL; |
| 741 | next->dma_chan = NULL; |
| 742 | data->host_cookie = 0; |
| 743 | } |
| 744 | } |
| 745 | |
| 746 | #else |
| 747 | /* Blank functions if the DMA engine is not available */ |
| 748 | static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data) |
| 749 | { |
| 750 | } |
| 751 | static inline void mmci_dma_setup(struct mmci_host *host) |
| 752 | { |
| 753 | } |
| 754 | |
| 755 | static inline void mmci_dma_release(struct mmci_host *host) |
| 756 | { |
| 757 | } |
| 758 | |
| 759 | static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data) |
| 760 | { |
| 761 | } |
| 762 | |
| 763 | static inline void mmci_dma_finalize(struct mmci_host *host, |
| 764 | struct mmc_data *data) |
| 765 | { |
| 766 | } |
| 767 | |
| 768 | static inline void mmci_dma_data_error(struct mmci_host *host) |
| 769 | { |
| 770 | } |
| 771 | |
| 772 | static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl) |
| 773 | { |
| 774 | return -ENOSYS; |
| 775 | } |
| 776 | |
| 777 | #define mmci_pre_request NULL |
| 778 | #define mmci_post_request NULL |
| 779 | |
| 780 | #endif |
| 781 | |
| 782 | static void mmci_start_data(struct mmci_host *host, struct mmc_data *data) |
| 783 | { |
| 784 | struct variant_data *variant = host->variant; |
| 785 | unsigned int datactrl, timeout, irqmask; |
| 786 | unsigned long long clks; |
| 787 | void __iomem *base; |
| 788 | int blksz_bits; |
| 789 | |
| 790 | dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n", |
| 791 | data->blksz, data->blocks, data->flags); |
| 792 | |
| 793 | host->data = data; |
| 794 | host->size = data->blksz * data->blocks; |
| 795 | data->bytes_xfered = 0; |
| 796 | |
| 797 | clks = (unsigned long long)data->timeout_ns * host->cclk; |
| 798 | do_div(clks, NSEC_PER_SEC); |
| 799 | |
| 800 | timeout = data->timeout_clks + (unsigned int)clks; |
| 801 | |
| 802 | base = host->base; |
| 803 | writel(timeout, base + MMCIDATATIMER); |
| 804 | writel(host->size, base + MMCIDATALENGTH); |
| 805 | |
| 806 | blksz_bits = ffs(data->blksz) - 1; |
| 807 | BUG_ON(1 << blksz_bits != data->blksz); |
| 808 | |
| 809 | if (variant->blksz_datactrl16) |
| 810 | datactrl = MCI_DPSM_ENABLE | (data->blksz << 16); |
| 811 | else if (variant->blksz_datactrl4) |
| 812 | datactrl = MCI_DPSM_ENABLE | (data->blksz << 4); |
| 813 | else |
| 814 | datactrl = MCI_DPSM_ENABLE | blksz_bits << 4; |
| 815 | |
| 816 | if (data->flags & MMC_DATA_READ) |
| 817 | datactrl |= MCI_DPSM_DIRECTION; |
| 818 | |
| 819 | if (host->mmc->card && mmc_card_sdio(host->mmc->card)) { |
| 820 | u32 clk; |
| 821 | |
| 822 | datactrl |= variant->datactrl_mask_sdio; |
| 823 | |
| 824 | /* |
| 825 | * The ST Micro variant for SDIO small write transfers |
| 826 | * needs to have clock H/W flow control disabled, |
| 827 | * otherwise the transfer will not start. The threshold |
| 828 | * depends on the rate of MCLK. |
| 829 | */ |
| 830 | if (variant->st_sdio && data->flags & MMC_DATA_WRITE && |
| 831 | (host->size < 8 || |
| 832 | (host->size <= 8 && host->mclk > 50000000))) |
| 833 | clk = host->clk_reg & ~variant->clkreg_enable; |
| 834 | else |
| 835 | clk = host->clk_reg | variant->clkreg_enable; |
| 836 | |
| 837 | mmci_write_clkreg(host, clk); |
| 838 | } |
| 839 | |
| 840 | if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 || |
| 841 | host->mmc->ios.timing == MMC_TIMING_MMC_DDR52) |
| 842 | datactrl |= variant->datactrl_mask_ddrmode; |
| 843 | |
| 844 | /* |
| 845 | * Attempt to use DMA operation mode, if this |
| 846 | * should fail, fall back to PIO mode |
| 847 | */ |
| 848 | if (!mmci_dma_start_data(host, datactrl)) |
| 849 | return; |
| 850 | |
| 851 | /* IRQ mode, map the SG list for CPU reading/writing */ |
| 852 | mmci_init_sg(host, data); |
| 853 | |
| 854 | if (data->flags & MMC_DATA_READ) { |
| 855 | irqmask = MCI_RXFIFOHALFFULLMASK; |
| 856 | |
| 857 | /* |
| 858 | * If we have less than the fifo 'half-full' threshold to |
| 859 | * transfer, trigger a PIO interrupt as soon as any data |
| 860 | * is available. |
| 861 | */ |
| 862 | if (host->size < variant->fifohalfsize) |
| 863 | irqmask |= MCI_RXDATAAVLBLMASK; |
| 864 | } else { |
| 865 | /* |
| 866 | * We don't actually need to include "FIFO empty" here |
| 867 | * since its implicit in "FIFO half empty". |
| 868 | */ |
| 869 | irqmask = MCI_TXFIFOHALFEMPTYMASK; |
| 870 | } |
| 871 | |
| 872 | mmci_write_datactrlreg(host, datactrl); |
| 873 | writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0); |
| 874 | mmci_set_mask1(host, irqmask); |
| 875 | } |
| 876 | |
| 877 | static void |
| 878 | mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c) |
| 879 | { |
| 880 | void __iomem *base = host->base; |
| 881 | |
| 882 | dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n", |
| 883 | cmd->opcode, cmd->arg, cmd->flags); |
| 884 | |
| 885 | if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) { |
| 886 | writel(0, base + MMCICOMMAND); |
| 887 | mmci_reg_delay(host); |
| 888 | } |
| 889 | |
| 890 | c |= cmd->opcode | MCI_CPSM_ENABLE; |
| 891 | if (cmd->flags & MMC_RSP_PRESENT) { |
| 892 | if (cmd->flags & MMC_RSP_136) |
| 893 | c |= MCI_CPSM_LONGRSP; |
| 894 | c |= MCI_CPSM_RESPONSE; |
| 895 | } |
| 896 | if (/*interrupt*/0) |
| 897 | c |= MCI_CPSM_INTERRUPT; |
| 898 | |
| 899 | if (mmc_cmd_type(cmd) == MMC_CMD_ADTC) |
| 900 | c |= host->variant->data_cmd_enable; |
| 901 | |
| 902 | host->cmd = cmd; |
| 903 | |
| 904 | writel(cmd->arg, base + MMCIARGUMENT); |
| 905 | writel(c, base + MMCICOMMAND); |
| 906 | } |
| 907 | |
| 908 | static void |
| 909 | mmci_data_irq(struct mmci_host *host, struct mmc_data *data, |
| 910 | unsigned int status) |
| 911 | { |
| 912 | /* Make sure we have data to handle */ |
| 913 | if (!data) |
| 914 | return; |
| 915 | |
| 916 | /* First check for errors */ |
| 917 | if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR| |
| 918 | MCI_TXUNDERRUN|MCI_RXOVERRUN)) { |
| 919 | u32 remain, success; |
| 920 | |
| 921 | /* Terminate the DMA transfer */ |
| 922 | if (dma_inprogress(host)) { |
| 923 | mmci_dma_data_error(host); |
| 924 | mmci_dma_unmap(host, data); |
| 925 | } |
| 926 | |
| 927 | /* |
| 928 | * Calculate how far we are into the transfer. Note that |
| 929 | * the data counter gives the number of bytes transferred |
| 930 | * on the MMC bus, not on the host side. On reads, this |
| 931 | * can be as much as a FIFO-worth of data ahead. This |
| 932 | * matters for FIFO overruns only. |
| 933 | */ |
| 934 | remain = readl(host->base + MMCIDATACNT); |
| 935 | success = data->blksz * data->blocks - remain; |
| 936 | |
| 937 | dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n", |
| 938 | status, success); |
| 939 | if (status & MCI_DATACRCFAIL) { |
| 940 | /* Last block was not successful */ |
| 941 | success -= 1; |
| 942 | data->error = -EILSEQ; |
| 943 | } else if (status & MCI_DATATIMEOUT) { |
| 944 | data->error = -ETIMEDOUT; |
| 945 | } else if (status & MCI_STARTBITERR) { |
| 946 | data->error = -ECOMM; |
| 947 | } else if (status & MCI_TXUNDERRUN) { |
| 948 | data->error = -EIO; |
| 949 | } else if (status & MCI_RXOVERRUN) { |
| 950 | if (success > host->variant->fifosize) |
| 951 | success -= host->variant->fifosize; |
| 952 | else |
| 953 | success = 0; |
| 954 | data->error = -EIO; |
| 955 | } |
| 956 | data->bytes_xfered = round_down(success, data->blksz); |
| 957 | } |
| 958 | |
| 959 | if (status & MCI_DATABLOCKEND) |
| 960 | dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n"); |
| 961 | |
| 962 | if (status & MCI_DATAEND || data->error) { |
| 963 | if (dma_inprogress(host)) |
| 964 | mmci_dma_finalize(host, data); |
| 965 | mmci_stop_data(host); |
| 966 | |
| 967 | if (!data->error) |
| 968 | /* The error clause is handled above, success! */ |
| 969 | data->bytes_xfered = data->blksz * data->blocks; |
| 970 | |
| 971 | if (!data->stop || host->mrq->sbc) { |
| 972 | mmci_request_end(host, data->mrq); |
| 973 | } else { |
| 974 | mmci_start_command(host, data->stop, 0); |
| 975 | } |
| 976 | } |
| 977 | } |
| 978 | |
| 979 | static void |
| 980 | mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd, |
| 981 | unsigned int status) |
| 982 | { |
| 983 | void __iomem *base = host->base; |
| 984 | bool sbc, busy_resp; |
| 985 | |
| 986 | if (!cmd) |
| 987 | return; |
| 988 | |
| 989 | sbc = (cmd == host->mrq->sbc); |
| 990 | busy_resp = host->variant->busy_detect && (cmd->flags & MMC_RSP_BUSY); |
| 991 | |
| 992 | if (!((status|host->busy_status) & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT| |
| 993 | MCI_CMDSENT|MCI_CMDRESPEND))) |
| 994 | return; |
| 995 | |
| 996 | /* Check if we need to wait for busy completion. */ |
| 997 | if (host->busy_status && (status & MCI_ST_CARDBUSY)) |
| 998 | return; |
| 999 | |
| 1000 | /* Enable busy completion if needed and supported. */ |
| 1001 | if (!host->busy_status && busy_resp && |
| 1002 | !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) && |
| 1003 | (readl(base + MMCISTATUS) & MCI_ST_CARDBUSY)) { |
| 1004 | writel(readl(base + MMCIMASK0) | MCI_ST_BUSYEND, |
| 1005 | base + MMCIMASK0); |
| 1006 | host->busy_status = status & (MCI_CMDSENT|MCI_CMDRESPEND); |
| 1007 | return; |
| 1008 | } |
| 1009 | |
| 1010 | /* At busy completion, mask the IRQ and complete the request. */ |
| 1011 | if (host->busy_status) { |
| 1012 | writel(readl(base + MMCIMASK0) & ~MCI_ST_BUSYEND, |
| 1013 | base + MMCIMASK0); |
| 1014 | host->busy_status = 0; |
| 1015 | } |
| 1016 | |
| 1017 | host->cmd = NULL; |
| 1018 | |
| 1019 | if (status & MCI_CMDTIMEOUT) { |
| 1020 | cmd->error = -ETIMEDOUT; |
| 1021 | } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) { |
| 1022 | cmd->error = -EILSEQ; |
| 1023 | } else { |
| 1024 | cmd->resp[0] = readl(base + MMCIRESPONSE0); |
| 1025 | cmd->resp[1] = readl(base + MMCIRESPONSE1); |
| 1026 | cmd->resp[2] = readl(base + MMCIRESPONSE2); |
| 1027 | cmd->resp[3] = readl(base + MMCIRESPONSE3); |
| 1028 | } |
| 1029 | |
| 1030 | if ((!sbc && !cmd->data) || cmd->error) { |
| 1031 | if (host->data) { |
| 1032 | /* Terminate the DMA transfer */ |
| 1033 | if (dma_inprogress(host)) { |
| 1034 | mmci_dma_data_error(host); |
| 1035 | mmci_dma_unmap(host, host->data); |
| 1036 | } |
| 1037 | mmci_stop_data(host); |
| 1038 | } |
| 1039 | mmci_request_end(host, host->mrq); |
| 1040 | } else if (sbc) { |
| 1041 | mmci_start_command(host, host->mrq->cmd, 0); |
| 1042 | } else if (!(cmd->data->flags & MMC_DATA_READ)) { |
| 1043 | mmci_start_data(host, cmd->data); |
| 1044 | } |
| 1045 | } |
| 1046 | |
| 1047 | static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain) |
| 1048 | { |
| 1049 | return remain - (readl(host->base + MMCIFIFOCNT) << 2); |
| 1050 | } |
| 1051 | |
| 1052 | static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r) |
| 1053 | { |
| 1054 | /* |
| 1055 | * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses |
| 1056 | * from the fifo range should be used |
| 1057 | */ |
| 1058 | if (status & MCI_RXFIFOHALFFULL) |
| 1059 | return host->variant->fifohalfsize; |
| 1060 | else if (status & MCI_RXDATAAVLBL) |
| 1061 | return 4; |
| 1062 | |
| 1063 | return 0; |
| 1064 | } |
| 1065 | |
| 1066 | static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain) |
| 1067 | { |
| 1068 | void __iomem *base = host->base; |
| 1069 | char *ptr = buffer; |
| 1070 | u32 status = readl(host->base + MMCISTATUS); |
| 1071 | int host_remain = host->size; |
| 1072 | |
| 1073 | do { |
| 1074 | int count = host->get_rx_fifocnt(host, status, host_remain); |
| 1075 | |
| 1076 | if (count > remain) |
| 1077 | count = remain; |
| 1078 | |
| 1079 | if (count <= 0) |
| 1080 | break; |
| 1081 | |
| 1082 | /* |
| 1083 | * SDIO especially may want to send something that is |
| 1084 | * not divisible by 4 (as opposed to card sectors |
| 1085 | * etc). Therefore make sure to always read the last bytes |
| 1086 | * while only doing full 32-bit reads towards the FIFO. |
| 1087 | */ |
| 1088 | if (unlikely(count & 0x3)) { |
| 1089 | if (count < 4) { |
| 1090 | unsigned char buf[4]; |
| 1091 | ioread32_rep(base + MMCIFIFO, buf, 1); |
| 1092 | memcpy(ptr, buf, count); |
| 1093 | } else { |
| 1094 | ioread32_rep(base + MMCIFIFO, ptr, count >> 2); |
| 1095 | count &= ~0x3; |
| 1096 | } |
| 1097 | } else { |
| 1098 | ioread32_rep(base + MMCIFIFO, ptr, count >> 2); |
| 1099 | } |
| 1100 | |
| 1101 | ptr += count; |
| 1102 | remain -= count; |
| 1103 | host_remain -= count; |
| 1104 | |
| 1105 | if (remain == 0) |
| 1106 | break; |
| 1107 | |
| 1108 | status = readl(base + MMCISTATUS); |
| 1109 | } while (status & MCI_RXDATAAVLBL); |
| 1110 | |
| 1111 | return ptr - buffer; |
| 1112 | } |
| 1113 | |
| 1114 | static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status) |
| 1115 | { |
| 1116 | struct variant_data *variant = host->variant; |
| 1117 | void __iomem *base = host->base; |
| 1118 | char *ptr = buffer; |
| 1119 | |
| 1120 | do { |
| 1121 | unsigned int count, maxcnt; |
| 1122 | |
| 1123 | maxcnt = status & MCI_TXFIFOEMPTY ? |
| 1124 | variant->fifosize : variant->fifohalfsize; |
| 1125 | count = min(remain, maxcnt); |
| 1126 | |
| 1127 | /* |
| 1128 | * SDIO especially may want to send something that is |
| 1129 | * not divisible by 4 (as opposed to card sectors |
| 1130 | * etc), and the FIFO only accept full 32-bit writes. |
| 1131 | * So compensate by adding +3 on the count, a single |
| 1132 | * byte become a 32bit write, 7 bytes will be two |
| 1133 | * 32bit writes etc. |
| 1134 | */ |
| 1135 | iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2); |
| 1136 | |
| 1137 | ptr += count; |
| 1138 | remain -= count; |
| 1139 | |
| 1140 | if (remain == 0) |
| 1141 | break; |
| 1142 | |
| 1143 | status = readl(base + MMCISTATUS); |
| 1144 | } while (status & MCI_TXFIFOHALFEMPTY); |
| 1145 | |
| 1146 | return ptr - buffer; |
| 1147 | } |
| 1148 | |
| 1149 | /* |
| 1150 | * PIO data transfer IRQ handler. |
| 1151 | */ |
| 1152 | static irqreturn_t mmci_pio_irq(int irq, void *dev_id) |
| 1153 | { |
| 1154 | struct mmci_host *host = dev_id; |
| 1155 | struct sg_mapping_iter *sg_miter = &host->sg_miter; |
| 1156 | struct variant_data *variant = host->variant; |
| 1157 | void __iomem *base = host->base; |
| 1158 | unsigned long flags; |
| 1159 | u32 status; |
| 1160 | |
| 1161 | status = readl(base + MMCISTATUS); |
| 1162 | |
| 1163 | dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status); |
| 1164 | |
| 1165 | local_irq_save(flags); |
| 1166 | |
| 1167 | do { |
| 1168 | unsigned int remain, len; |
| 1169 | char *buffer; |
| 1170 | |
| 1171 | /* |
| 1172 | * For write, we only need to test the half-empty flag |
| 1173 | * here - if the FIFO is completely empty, then by |
| 1174 | * definition it is more than half empty. |
| 1175 | * |
| 1176 | * For read, check for data available. |
| 1177 | */ |
| 1178 | if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL))) |
| 1179 | break; |
| 1180 | |
| 1181 | if (!sg_miter_next(sg_miter)) |
| 1182 | break; |
| 1183 | |
| 1184 | buffer = sg_miter->addr; |
| 1185 | remain = sg_miter->length; |
| 1186 | |
| 1187 | len = 0; |
| 1188 | if (status & MCI_RXACTIVE) |
| 1189 | len = mmci_pio_read(host, buffer, remain); |
| 1190 | if (status & MCI_TXACTIVE) |
| 1191 | len = mmci_pio_write(host, buffer, remain, status); |
| 1192 | |
| 1193 | sg_miter->consumed = len; |
| 1194 | |
| 1195 | host->size -= len; |
| 1196 | remain -= len; |
| 1197 | |
| 1198 | if (remain) |
| 1199 | break; |
| 1200 | |
| 1201 | status = readl(base + MMCISTATUS); |
| 1202 | } while (1); |
| 1203 | |
| 1204 | sg_miter_stop(sg_miter); |
| 1205 | |
| 1206 | local_irq_restore(flags); |
| 1207 | |
| 1208 | /* |
| 1209 | * If we have less than the fifo 'half-full' threshold to transfer, |
| 1210 | * trigger a PIO interrupt as soon as any data is available. |
| 1211 | */ |
| 1212 | if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize) |
| 1213 | mmci_set_mask1(host, MCI_RXDATAAVLBLMASK); |
| 1214 | |
| 1215 | /* |
| 1216 | * If we run out of data, disable the data IRQs; this |
| 1217 | * prevents a race where the FIFO becomes empty before |
| 1218 | * the chip itself has disabled the data path, and |
| 1219 | * stops us racing with our data end IRQ. |
| 1220 | */ |
| 1221 | if (host->size == 0) { |
| 1222 | mmci_set_mask1(host, 0); |
| 1223 | writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0); |
| 1224 | } |
| 1225 | |
| 1226 | return IRQ_HANDLED; |
| 1227 | } |
| 1228 | |
| 1229 | /* |
| 1230 | * Handle completion of command and data transfers. |
| 1231 | */ |
| 1232 | static irqreturn_t mmci_irq(int irq, void *dev_id) |
| 1233 | { |
| 1234 | struct mmci_host *host = dev_id; |
| 1235 | u32 status; |
| 1236 | int ret = 0; |
| 1237 | |
| 1238 | spin_lock(&host->lock); |
| 1239 | |
| 1240 | do { |
| 1241 | status = readl(host->base + MMCISTATUS); |
| 1242 | |
| 1243 | if (host->singleirq) { |
| 1244 | if (status & readl(host->base + MMCIMASK1)) |
| 1245 | mmci_pio_irq(irq, dev_id); |
| 1246 | |
| 1247 | status &= ~MCI_IRQ1MASK; |
| 1248 | } |
| 1249 | |
| 1250 | /* |
| 1251 | * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's |
| 1252 | * enabled) since the HW seems to be triggering the IRQ on both |
| 1253 | * edges while monitoring DAT0 for busy completion. |
| 1254 | */ |
| 1255 | status &= readl(host->base + MMCIMASK0); |
| 1256 | writel(status, host->base + MMCICLEAR); |
| 1257 | |
| 1258 | dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status); |
| 1259 | |
| 1260 | if (host->variant->reversed_irq_handling) { |
| 1261 | mmci_data_irq(host, host->data, status); |
| 1262 | mmci_cmd_irq(host, host->cmd, status); |
| 1263 | } else { |
| 1264 | mmci_cmd_irq(host, host->cmd, status); |
| 1265 | mmci_data_irq(host, host->data, status); |
| 1266 | } |
| 1267 | |
| 1268 | /* Don't poll for busy completion in irq context. */ |
| 1269 | if (host->busy_status) |
| 1270 | status &= ~MCI_ST_CARDBUSY; |
| 1271 | |
| 1272 | ret = 1; |
| 1273 | } while (status); |
| 1274 | |
| 1275 | spin_unlock(&host->lock); |
| 1276 | |
| 1277 | return IRQ_RETVAL(ret); |
| 1278 | } |
| 1279 | |
| 1280 | static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq) |
| 1281 | { |
| 1282 | struct mmci_host *host = mmc_priv(mmc); |
| 1283 | unsigned long flags; |
| 1284 | |
| 1285 | WARN_ON(host->mrq != NULL); |
| 1286 | |
| 1287 | mrq->cmd->error = mmci_validate_data(host, mrq->data); |
| 1288 | if (mrq->cmd->error) { |
| 1289 | mmc_request_done(mmc, mrq); |
| 1290 | return; |
| 1291 | } |
| 1292 | |
| 1293 | pm_runtime_get_sync(mmc_dev(mmc)); |
| 1294 | |
| 1295 | spin_lock_irqsave(&host->lock, flags); |
| 1296 | |
| 1297 | host->mrq = mrq; |
| 1298 | |
| 1299 | if (mrq->data) |
| 1300 | mmci_get_next_data(host, mrq->data); |
| 1301 | |
| 1302 | if (mrq->data && mrq->data->flags & MMC_DATA_READ) |
| 1303 | mmci_start_data(host, mrq->data); |
| 1304 | |
| 1305 | if (mrq->sbc) |
| 1306 | mmci_start_command(host, mrq->sbc, 0); |
| 1307 | else |
| 1308 | mmci_start_command(host, mrq->cmd, 0); |
| 1309 | |
| 1310 | spin_unlock_irqrestore(&host->lock, flags); |
| 1311 | } |
| 1312 | |
| 1313 | static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) |
| 1314 | { |
| 1315 | struct mmci_host *host = mmc_priv(mmc); |
| 1316 | struct variant_data *variant = host->variant; |
| 1317 | u32 pwr = 0; |
| 1318 | unsigned long flags; |
| 1319 | int ret; |
| 1320 | |
| 1321 | pm_runtime_get_sync(mmc_dev(mmc)); |
| 1322 | |
| 1323 | if (host->plat->ios_handler && |
| 1324 | host->plat->ios_handler(mmc_dev(mmc), ios)) |
| 1325 | dev_err(mmc_dev(mmc), "platform ios_handler failed\n"); |
| 1326 | |
| 1327 | switch (ios->power_mode) { |
| 1328 | case MMC_POWER_OFF: |
| 1329 | if (!IS_ERR(mmc->supply.vmmc)) |
| 1330 | mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); |
| 1331 | |
| 1332 | if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) { |
| 1333 | regulator_disable(mmc->supply.vqmmc); |
| 1334 | host->vqmmc_enabled = false; |
| 1335 | } |
| 1336 | |
| 1337 | break; |
| 1338 | case MMC_POWER_UP: |
| 1339 | if (!IS_ERR(mmc->supply.vmmc)) |
| 1340 | mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd); |
| 1341 | |
| 1342 | /* |
| 1343 | * The ST Micro variant doesn't have the PL180s MCI_PWR_UP |
| 1344 | * and instead uses MCI_PWR_ON so apply whatever value is |
| 1345 | * configured in the variant data. |
| 1346 | */ |
| 1347 | pwr |= variant->pwrreg_powerup; |
| 1348 | |
| 1349 | break; |
| 1350 | case MMC_POWER_ON: |
| 1351 | if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) { |
| 1352 | ret = regulator_enable(mmc->supply.vqmmc); |
| 1353 | if (ret < 0) |
| 1354 | dev_err(mmc_dev(mmc), |
| 1355 | "failed to enable vqmmc regulator\n"); |
| 1356 | else |
| 1357 | host->vqmmc_enabled = true; |
| 1358 | } |
| 1359 | |
| 1360 | pwr |= MCI_PWR_ON; |
| 1361 | break; |
| 1362 | } |
| 1363 | |
| 1364 | if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) { |
| 1365 | /* |
| 1366 | * The ST Micro variant has some additional bits |
| 1367 | * indicating signal direction for the signals in |
| 1368 | * the SD/MMC bus and feedback-clock usage. |
| 1369 | */ |
| 1370 | pwr |= host->pwr_reg_add; |
| 1371 | |
| 1372 | if (ios->bus_width == MMC_BUS_WIDTH_4) |
| 1373 | pwr &= ~MCI_ST_DATA74DIREN; |
| 1374 | else if (ios->bus_width == MMC_BUS_WIDTH_1) |
| 1375 | pwr &= (~MCI_ST_DATA74DIREN & |
| 1376 | ~MCI_ST_DATA31DIREN & |
| 1377 | ~MCI_ST_DATA2DIREN); |
| 1378 | } |
| 1379 | |
| 1380 | if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) { |
| 1381 | if (host->hw_designer != AMBA_VENDOR_ST) |
| 1382 | pwr |= MCI_ROD; |
| 1383 | else { |
| 1384 | /* |
| 1385 | * The ST Micro variant use the ROD bit for something |
| 1386 | * else and only has OD (Open Drain). |
| 1387 | */ |
| 1388 | pwr |= MCI_OD; |
| 1389 | } |
| 1390 | } |
| 1391 | |
| 1392 | /* |
| 1393 | * If clock = 0 and the variant requires the MMCIPOWER to be used for |
| 1394 | * gating the clock, the MCI_PWR_ON bit is cleared. |
| 1395 | */ |
| 1396 | if (!ios->clock && variant->pwrreg_clkgate) |
| 1397 | pwr &= ~MCI_PWR_ON; |
| 1398 | |
| 1399 | if (host->variant->explicit_mclk_control && |
| 1400 | ios->clock != host->clock_cache) { |
| 1401 | ret = clk_set_rate(host->clk, ios->clock); |
| 1402 | if (ret < 0) |
| 1403 | dev_err(mmc_dev(host->mmc), |
| 1404 | "Error setting clock rate (%d)\n", ret); |
| 1405 | else |
| 1406 | host->mclk = clk_get_rate(host->clk); |
| 1407 | } |
| 1408 | host->clock_cache = ios->clock; |
| 1409 | |
| 1410 | spin_lock_irqsave(&host->lock, flags); |
| 1411 | |
| 1412 | mmci_set_clkreg(host, ios->clock); |
| 1413 | mmci_write_pwrreg(host, pwr); |
| 1414 | mmci_reg_delay(host); |
| 1415 | |
| 1416 | spin_unlock_irqrestore(&host->lock, flags); |
| 1417 | |
| 1418 | pm_runtime_mark_last_busy(mmc_dev(mmc)); |
| 1419 | pm_runtime_put_autosuspend(mmc_dev(mmc)); |
| 1420 | } |
| 1421 | |
| 1422 | static int mmci_get_cd(struct mmc_host *mmc) |
| 1423 | { |
| 1424 | struct mmci_host *host = mmc_priv(mmc); |
| 1425 | struct mmci_platform_data *plat = host->plat; |
| 1426 | unsigned int status = mmc_gpio_get_cd(mmc); |
| 1427 | |
| 1428 | if (status == -ENOSYS) { |
| 1429 | if (!plat->status) |
| 1430 | return 1; /* Assume always present */ |
| 1431 | |
| 1432 | status = plat->status(mmc_dev(host->mmc)); |
| 1433 | } |
| 1434 | return status; |
| 1435 | } |
| 1436 | |
| 1437 | static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios) |
| 1438 | { |
| 1439 | int ret = 0; |
| 1440 | |
| 1441 | if (!IS_ERR(mmc->supply.vqmmc)) { |
| 1442 | |
| 1443 | pm_runtime_get_sync(mmc_dev(mmc)); |
| 1444 | |
| 1445 | switch (ios->signal_voltage) { |
| 1446 | case MMC_SIGNAL_VOLTAGE_330: |
| 1447 | ret = regulator_set_voltage(mmc->supply.vqmmc, |
| 1448 | 2700000, 3600000); |
| 1449 | break; |
| 1450 | case MMC_SIGNAL_VOLTAGE_180: |
| 1451 | ret = regulator_set_voltage(mmc->supply.vqmmc, |
| 1452 | 1700000, 1950000); |
| 1453 | break; |
| 1454 | case MMC_SIGNAL_VOLTAGE_120: |
| 1455 | ret = regulator_set_voltage(mmc->supply.vqmmc, |
| 1456 | 1100000, 1300000); |
| 1457 | break; |
| 1458 | } |
| 1459 | |
| 1460 | if (ret) |
| 1461 | dev_warn(mmc_dev(mmc), "Voltage switch failed\n"); |
| 1462 | |
| 1463 | pm_runtime_mark_last_busy(mmc_dev(mmc)); |
| 1464 | pm_runtime_put_autosuspend(mmc_dev(mmc)); |
| 1465 | } |
| 1466 | |
| 1467 | return ret; |
| 1468 | } |
| 1469 | |
| 1470 | static struct mmc_host_ops mmci_ops = { |
| 1471 | .request = mmci_request, |
| 1472 | .pre_req = mmci_pre_request, |
| 1473 | .post_req = mmci_post_request, |
| 1474 | .set_ios = mmci_set_ios, |
| 1475 | .get_ro = mmc_gpio_get_ro, |
| 1476 | .get_cd = mmci_get_cd, |
| 1477 | .start_signal_voltage_switch = mmci_sig_volt_switch, |
| 1478 | }; |
| 1479 | |
| 1480 | static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc) |
| 1481 | { |
| 1482 | struct mmci_host *host = mmc_priv(mmc); |
| 1483 | int ret = mmc_of_parse(mmc); |
| 1484 | |
| 1485 | if (ret) |
| 1486 | return ret; |
| 1487 | |
| 1488 | if (of_get_property(np, "st,sig-dir-dat0", NULL)) |
| 1489 | host->pwr_reg_add |= MCI_ST_DATA0DIREN; |
| 1490 | if (of_get_property(np, "st,sig-dir-dat2", NULL)) |
| 1491 | host->pwr_reg_add |= MCI_ST_DATA2DIREN; |
| 1492 | if (of_get_property(np, "st,sig-dir-dat31", NULL)) |
| 1493 | host->pwr_reg_add |= MCI_ST_DATA31DIREN; |
| 1494 | if (of_get_property(np, "st,sig-dir-dat74", NULL)) |
| 1495 | host->pwr_reg_add |= MCI_ST_DATA74DIREN; |
| 1496 | if (of_get_property(np, "st,sig-dir-cmd", NULL)) |
| 1497 | host->pwr_reg_add |= MCI_ST_CMDDIREN; |
| 1498 | if (of_get_property(np, "st,sig-pin-fbclk", NULL)) |
| 1499 | host->pwr_reg_add |= MCI_ST_FBCLKEN; |
| 1500 | |
| 1501 | if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL)) |
| 1502 | mmc->caps |= MMC_CAP_MMC_HIGHSPEED; |
| 1503 | if (of_get_property(np, "mmc-cap-sd-highspeed", NULL)) |
| 1504 | mmc->caps |= MMC_CAP_SD_HIGHSPEED; |
| 1505 | |
| 1506 | return 0; |
| 1507 | } |
| 1508 | |
| 1509 | static int mmci_probe(struct amba_device *dev, |
| 1510 | const struct amba_id *id) |
| 1511 | { |
| 1512 | struct mmci_platform_data *plat = dev->dev.platform_data; |
| 1513 | struct device_node *np = dev->dev.of_node; |
| 1514 | struct variant_data *variant = id->data; |
| 1515 | struct mmci_host *host; |
| 1516 | struct mmc_host *mmc; |
| 1517 | int ret; |
| 1518 | |
| 1519 | /* Must have platform data or Device Tree. */ |
| 1520 | if (!plat && !np) { |
| 1521 | dev_err(&dev->dev, "No plat data or DT found\n"); |
| 1522 | return -EINVAL; |
| 1523 | } |
| 1524 | |
| 1525 | if (!plat) { |
| 1526 | plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL); |
| 1527 | if (!plat) |
| 1528 | return -ENOMEM; |
| 1529 | } |
| 1530 | |
| 1531 | mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev); |
| 1532 | if (!mmc) |
| 1533 | return -ENOMEM; |
| 1534 | |
| 1535 | ret = mmci_of_parse(np, mmc); |
| 1536 | if (ret) |
| 1537 | goto host_free; |
| 1538 | |
| 1539 | host = mmc_priv(mmc); |
| 1540 | host->mmc = mmc; |
| 1541 | |
| 1542 | host->hw_designer = amba_manf(dev); |
| 1543 | host->hw_revision = amba_rev(dev); |
| 1544 | dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer); |
| 1545 | dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision); |
| 1546 | |
| 1547 | host->clk = devm_clk_get(&dev->dev, NULL); |
| 1548 | if (IS_ERR(host->clk)) { |
| 1549 | ret = PTR_ERR(host->clk); |
| 1550 | goto host_free; |
| 1551 | } |
| 1552 | |
| 1553 | ret = clk_prepare_enable(host->clk); |
| 1554 | if (ret) |
| 1555 | goto host_free; |
| 1556 | |
| 1557 | if (variant->qcom_fifo) |
| 1558 | host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt; |
| 1559 | else |
| 1560 | host->get_rx_fifocnt = mmci_get_rx_fifocnt; |
| 1561 | |
| 1562 | host->plat = plat; |
| 1563 | host->variant = variant; |
| 1564 | host->mclk = clk_get_rate(host->clk); |
| 1565 | /* |
| 1566 | * According to the spec, mclk is max 100 MHz, |
| 1567 | * so we try to adjust the clock down to this, |
| 1568 | * (if possible). |
| 1569 | */ |
| 1570 | if (host->mclk > variant->f_max) { |
| 1571 | ret = clk_set_rate(host->clk, variant->f_max); |
| 1572 | if (ret < 0) |
| 1573 | goto clk_disable; |
| 1574 | host->mclk = clk_get_rate(host->clk); |
| 1575 | dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n", |
| 1576 | host->mclk); |
| 1577 | } |
| 1578 | |
| 1579 | host->phybase = dev->res.start; |
| 1580 | host->base = devm_ioremap_resource(&dev->dev, &dev->res); |
| 1581 | if (IS_ERR(host->base)) { |
| 1582 | ret = PTR_ERR(host->base); |
| 1583 | goto clk_disable; |
| 1584 | } |
| 1585 | |
| 1586 | /* |
| 1587 | * The ARM and ST versions of the block have slightly different |
| 1588 | * clock divider equations which means that the minimum divider |
| 1589 | * differs too. |
| 1590 | * on Qualcomm like controllers get the nearest minimum clock to 100Khz |
| 1591 | */ |
| 1592 | if (variant->st_clkdiv) |
| 1593 | mmc->f_min = DIV_ROUND_UP(host->mclk, 257); |
| 1594 | else if (variant->explicit_mclk_control) |
| 1595 | mmc->f_min = clk_round_rate(host->clk, 100000); |
| 1596 | else |
| 1597 | mmc->f_min = DIV_ROUND_UP(host->mclk, 512); |
| 1598 | /* |
| 1599 | * If no maximum operating frequency is supplied, fall back to use |
| 1600 | * the module parameter, which has a (low) default value in case it |
| 1601 | * is not specified. Either value must not exceed the clock rate into |
| 1602 | * the block, of course. |
| 1603 | */ |
| 1604 | if (mmc->f_max) |
| 1605 | mmc->f_max = variant->explicit_mclk_control ? |
| 1606 | min(variant->f_max, mmc->f_max) : |
| 1607 | min(host->mclk, mmc->f_max); |
| 1608 | else |
| 1609 | mmc->f_max = variant->explicit_mclk_control ? |
| 1610 | fmax : min(host->mclk, fmax); |
| 1611 | |
| 1612 | |
| 1613 | dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max); |
| 1614 | |
| 1615 | /* Get regulators and the supported OCR mask */ |
| 1616 | ret = mmc_regulator_get_supply(mmc); |
| 1617 | if (ret == -EPROBE_DEFER) |
| 1618 | goto clk_disable; |
| 1619 | |
| 1620 | if (!mmc->ocr_avail) |
| 1621 | mmc->ocr_avail = plat->ocr_mask; |
| 1622 | else if (plat->ocr_mask) |
| 1623 | dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n"); |
| 1624 | |
| 1625 | /* DT takes precedence over platform data. */ |
| 1626 | if (!np) { |
| 1627 | if (!plat->cd_invert) |
| 1628 | mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH; |
| 1629 | mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH; |
| 1630 | } |
| 1631 | |
| 1632 | /* We support these capabilities. */ |
| 1633 | mmc->caps |= MMC_CAP_CMD23; |
| 1634 | |
| 1635 | if (variant->busy_detect) { |
| 1636 | mmci_ops.card_busy = mmci_card_busy; |
| 1637 | mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE); |
| 1638 | mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY; |
| 1639 | mmc->max_busy_timeout = 0; |
| 1640 | } |
| 1641 | |
| 1642 | mmc->ops = &mmci_ops; |
| 1643 | |
| 1644 | /* We support these PM capabilities. */ |
| 1645 | mmc->pm_caps |= MMC_PM_KEEP_POWER; |
| 1646 | |
| 1647 | /* |
| 1648 | * We can do SGIO |
| 1649 | */ |
| 1650 | mmc->max_segs = NR_SG; |
| 1651 | |
| 1652 | /* |
| 1653 | * Since only a certain number of bits are valid in the data length |
| 1654 | * register, we must ensure that we don't exceed 2^num-1 bytes in a |
| 1655 | * single request. |
| 1656 | */ |
| 1657 | mmc->max_req_size = (1 << variant->datalength_bits) - 1; |
| 1658 | |
| 1659 | /* |
| 1660 | * Set the maximum segment size. Since we aren't doing DMA |
| 1661 | * (yet) we are only limited by the data length register. |
| 1662 | */ |
| 1663 | mmc->max_seg_size = mmc->max_req_size; |
| 1664 | |
| 1665 | /* |
| 1666 | * Block size can be up to 2048 bytes, but must be a power of two. |
| 1667 | */ |
| 1668 | mmc->max_blk_size = 1 << 11; |
| 1669 | |
| 1670 | /* |
| 1671 | * Limit the number of blocks transferred so that we don't overflow |
| 1672 | * the maximum request size. |
| 1673 | */ |
| 1674 | mmc->max_blk_count = mmc->max_req_size >> 11; |
| 1675 | |
| 1676 | spin_lock_init(&host->lock); |
| 1677 | |
| 1678 | writel(0, host->base + MMCIMASK0); |
| 1679 | writel(0, host->base + MMCIMASK1); |
| 1680 | writel(0xfff, host->base + MMCICLEAR); |
| 1681 | |
| 1682 | /* |
| 1683 | * If: |
| 1684 | * - not using DT but using a descriptor table, or |
| 1685 | * - using a table of descriptors ALONGSIDE DT, or |
| 1686 | * look up these descriptors named "cd" and "wp" right here, fail |
| 1687 | * silently of these do not exist and proceed to try platform data |
| 1688 | */ |
| 1689 | if (!np) { |
| 1690 | ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL); |
| 1691 | if (ret < 0) { |
| 1692 | if (ret == -EPROBE_DEFER) |
| 1693 | goto clk_disable; |
| 1694 | else if (gpio_is_valid(plat->gpio_cd)) { |
| 1695 | ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0); |
| 1696 | if (ret) |
| 1697 | goto clk_disable; |
| 1698 | } |
| 1699 | } |
| 1700 | |
| 1701 | ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL); |
| 1702 | if (ret < 0) { |
| 1703 | if (ret == -EPROBE_DEFER) |
| 1704 | goto clk_disable; |
| 1705 | else if (gpio_is_valid(plat->gpio_wp)) { |
| 1706 | ret = mmc_gpio_request_ro(mmc, plat->gpio_wp); |
| 1707 | if (ret) |
| 1708 | goto clk_disable; |
| 1709 | } |
| 1710 | } |
| 1711 | } |
| 1712 | |
| 1713 | ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED, |
| 1714 | DRIVER_NAME " (cmd)", host); |
| 1715 | if (ret) |
| 1716 | goto clk_disable; |
| 1717 | |
| 1718 | if (!dev->irq[1]) |
| 1719 | host->singleirq = true; |
| 1720 | else { |
| 1721 | ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq, |
| 1722 | IRQF_SHARED, DRIVER_NAME " (pio)", host); |
| 1723 | if (ret) |
| 1724 | goto clk_disable; |
| 1725 | } |
| 1726 | |
| 1727 | writel(MCI_IRQENABLE, host->base + MMCIMASK0); |
| 1728 | |
| 1729 | amba_set_drvdata(dev, mmc); |
| 1730 | |
| 1731 | dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n", |
| 1732 | mmc_hostname(mmc), amba_part(dev), amba_manf(dev), |
| 1733 | amba_rev(dev), (unsigned long long)dev->res.start, |
| 1734 | dev->irq[0], dev->irq[1]); |
| 1735 | |
| 1736 | mmci_dma_setup(host); |
| 1737 | |
| 1738 | pm_runtime_set_autosuspend_delay(&dev->dev, 50); |
| 1739 | pm_runtime_use_autosuspend(&dev->dev); |
| 1740 | |
| 1741 | mmc_add_host(mmc); |
| 1742 | |
| 1743 | pm_runtime_put(&dev->dev); |
| 1744 | return 0; |
| 1745 | |
| 1746 | clk_disable: |
| 1747 | clk_disable_unprepare(host->clk); |
| 1748 | host_free: |
| 1749 | mmc_free_host(mmc); |
| 1750 | return ret; |
| 1751 | } |
| 1752 | |
| 1753 | static int mmci_remove(struct amba_device *dev) |
| 1754 | { |
| 1755 | struct mmc_host *mmc = amba_get_drvdata(dev); |
| 1756 | |
| 1757 | if (mmc) { |
| 1758 | struct mmci_host *host = mmc_priv(mmc); |
| 1759 | |
| 1760 | /* |
| 1761 | * Undo pm_runtime_put() in probe. We use the _sync |
| 1762 | * version here so that we can access the primecell. |
| 1763 | */ |
| 1764 | pm_runtime_get_sync(&dev->dev); |
| 1765 | |
| 1766 | mmc_remove_host(mmc); |
| 1767 | |
| 1768 | writel(0, host->base + MMCIMASK0); |
| 1769 | writel(0, host->base + MMCIMASK1); |
| 1770 | |
| 1771 | writel(0, host->base + MMCICOMMAND); |
| 1772 | writel(0, host->base + MMCIDATACTRL); |
| 1773 | |
| 1774 | mmci_dma_release(host); |
| 1775 | clk_disable_unprepare(host->clk); |
| 1776 | mmc_free_host(mmc); |
| 1777 | } |
| 1778 | |
| 1779 | return 0; |
| 1780 | } |
| 1781 | |
| 1782 | #ifdef CONFIG_PM |
| 1783 | static void mmci_save(struct mmci_host *host) |
| 1784 | { |
| 1785 | unsigned long flags; |
| 1786 | |
| 1787 | spin_lock_irqsave(&host->lock, flags); |
| 1788 | |
| 1789 | writel(0, host->base + MMCIMASK0); |
| 1790 | if (host->variant->pwrreg_nopower) { |
| 1791 | writel(0, host->base + MMCIDATACTRL); |
| 1792 | writel(0, host->base + MMCIPOWER); |
| 1793 | writel(0, host->base + MMCICLOCK); |
| 1794 | } |
| 1795 | mmci_reg_delay(host); |
| 1796 | |
| 1797 | spin_unlock_irqrestore(&host->lock, flags); |
| 1798 | } |
| 1799 | |
| 1800 | static void mmci_restore(struct mmci_host *host) |
| 1801 | { |
| 1802 | unsigned long flags; |
| 1803 | |
| 1804 | spin_lock_irqsave(&host->lock, flags); |
| 1805 | |
| 1806 | if (host->variant->pwrreg_nopower) { |
| 1807 | writel(host->clk_reg, host->base + MMCICLOCK); |
| 1808 | writel(host->datactrl_reg, host->base + MMCIDATACTRL); |
| 1809 | writel(host->pwr_reg, host->base + MMCIPOWER); |
| 1810 | } |
| 1811 | writel(MCI_IRQENABLE, host->base + MMCIMASK0); |
| 1812 | mmci_reg_delay(host); |
| 1813 | |
| 1814 | spin_unlock_irqrestore(&host->lock, flags); |
| 1815 | } |
| 1816 | |
| 1817 | static int mmci_runtime_suspend(struct device *dev) |
| 1818 | { |
| 1819 | struct amba_device *adev = to_amba_device(dev); |
| 1820 | struct mmc_host *mmc = amba_get_drvdata(adev); |
| 1821 | |
| 1822 | if (mmc) { |
| 1823 | struct mmci_host *host = mmc_priv(mmc); |
| 1824 | pinctrl_pm_select_sleep_state(dev); |
| 1825 | mmci_save(host); |
| 1826 | clk_disable_unprepare(host->clk); |
| 1827 | } |
| 1828 | |
| 1829 | return 0; |
| 1830 | } |
| 1831 | |
| 1832 | static int mmci_runtime_resume(struct device *dev) |
| 1833 | { |
| 1834 | struct amba_device *adev = to_amba_device(dev); |
| 1835 | struct mmc_host *mmc = amba_get_drvdata(adev); |
| 1836 | |
| 1837 | if (mmc) { |
| 1838 | struct mmci_host *host = mmc_priv(mmc); |
| 1839 | clk_prepare_enable(host->clk); |
| 1840 | mmci_restore(host); |
| 1841 | pinctrl_pm_select_default_state(dev); |
| 1842 | } |
| 1843 | |
| 1844 | return 0; |
| 1845 | } |
| 1846 | #endif |
| 1847 | |
| 1848 | static const struct dev_pm_ops mmci_dev_pm_ops = { |
| 1849 | SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, |
| 1850 | pm_runtime_force_resume) |
| 1851 | SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL) |
| 1852 | }; |
| 1853 | |
| 1854 | static struct amba_id mmci_ids[] = { |
| 1855 | { |
| 1856 | .id = 0x00041180, |
| 1857 | .mask = 0xff0fffff, |
| 1858 | .data = &variant_arm, |
| 1859 | }, |
| 1860 | { |
| 1861 | .id = 0x01041180, |
| 1862 | .mask = 0xff0fffff, |
| 1863 | .data = &variant_arm_extended_fifo, |
| 1864 | }, |
| 1865 | { |
| 1866 | .id = 0x02041180, |
| 1867 | .mask = 0xff0fffff, |
| 1868 | .data = &variant_arm_extended_fifo_hwfc, |
| 1869 | }, |
| 1870 | { |
| 1871 | .id = 0x00041181, |
| 1872 | .mask = 0x000fffff, |
| 1873 | .data = &variant_arm, |
| 1874 | }, |
| 1875 | /* ST Micro variants */ |
| 1876 | { |
| 1877 | .id = 0x00180180, |
| 1878 | .mask = 0x00ffffff, |
| 1879 | .data = &variant_u300, |
| 1880 | }, |
| 1881 | { |
| 1882 | .id = 0x10180180, |
| 1883 | .mask = 0xf0ffffff, |
| 1884 | .data = &variant_nomadik, |
| 1885 | }, |
| 1886 | { |
| 1887 | .id = 0x00280180, |
| 1888 | .mask = 0x00ffffff, |
| 1889 | .data = &variant_nomadik, |
| 1890 | }, |
| 1891 | { |
| 1892 | .id = 0x00480180, |
| 1893 | .mask = 0xf0ffffff, |
| 1894 | .data = &variant_ux500, |
| 1895 | }, |
| 1896 | { |
| 1897 | .id = 0x10480180, |
| 1898 | .mask = 0xf0ffffff, |
| 1899 | .data = &variant_ux500v2, |
| 1900 | }, |
| 1901 | /* Qualcomm variants */ |
| 1902 | { |
| 1903 | .id = 0x00051180, |
| 1904 | .mask = 0x000fffff, |
| 1905 | .data = &variant_qcom, |
| 1906 | }, |
| 1907 | { 0, 0 }, |
| 1908 | }; |
| 1909 | |
| 1910 | MODULE_DEVICE_TABLE(amba, mmci_ids); |
| 1911 | |
| 1912 | static struct amba_driver mmci_driver = { |
| 1913 | .drv = { |
| 1914 | .name = DRIVER_NAME, |
| 1915 | .pm = &mmci_dev_pm_ops, |
| 1916 | }, |
| 1917 | .probe = mmci_probe, |
| 1918 | .remove = mmci_remove, |
| 1919 | .id_table = mmci_ids, |
| 1920 | }; |
| 1921 | |
| 1922 | module_amba_driver(mmci_driver); |
| 1923 | |
| 1924 | module_param(fmax, uint, 0444); |
| 1925 | |
| 1926 | MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver"); |
| 1927 | MODULE_LICENSE("GPL"); |