blob: acece3299756e997b15020a100ad14def283c020 [file] [log] [blame]
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001/*
2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/moduleparam.h>
13#include <linux/init.h>
14#include <linux/ioport.h>
15#include <linux/device.h>
16#include <linux/io.h>
17#include <linux/interrupt.h>
18#include <linux/kernel.h>
19#include <linux/slab.h>
20#include <linux/delay.h>
21#include <linux/err.h>
22#include <linux/highmem.h>
23#include <linux/log2.h>
24#include <linux/mmc/pm.h>
25#include <linux/mmc/host.h>
26#include <linux/mmc/card.h>
27#include <linux/mmc/slot-gpio.h>
28#include <linux/amba/bus.h>
29#include <linux/clk.h>
30#include <linux/scatterlist.h>
31#include <linux/gpio.h>
32#include <linux/of_gpio.h>
33#include <linux/regulator/consumer.h>
34#include <linux/dmaengine.h>
35#include <linux/dma-mapping.h>
36#include <linux/amba/mmci.h>
37#include <linux/pm_runtime.h>
38#include <linux/types.h>
39#include <linux/pinctrl/consumer.h>
40
41#include <asm/div64.h>
42#include <asm/io.h>
43#include <asm/sizes.h>
44
45#include "mmci.h"
46#include "mmci_qcom_dml.h"
47
48#define DRIVER_NAME "mmci-pl18x"
49
50static unsigned int fmax = 515633;
51
52/**
53 * struct variant_data - MMCI variant-specific quirks
54 * @clkreg: default value for MCICLOCK register
55 * @clkreg_enable: enable value for MMCICLOCK register
56 * @clkreg_8bit_bus_enable: enable value for 8 bit bus
57 * @clkreg_neg_edge_enable: enable value for inverted data/cmd output
58 * @datalength_bits: number of bits in the MMCIDATALENGTH register
59 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
60 * is asserted (likewise for RX)
61 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
62 * is asserted (likewise for RX)
63 * @data_cmd_enable: enable value for data commands.
64 * @st_sdio: enable ST specific SDIO logic
65 * @st_clkdiv: true if using a ST-specific clock divider algorithm
66 * @datactrl_mask_ddrmode: ddr mode mask in datactrl register.
67 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
68 * @blksz_datactrl4: true if Block size is at b4..b16 position in datactrl
69 * register
70 * @datactrl_mask_sdio: SDIO enable mask in datactrl register
71 * @pwrreg_powerup: power up value for MMCIPOWER register
72 * @f_max: maximum clk frequency supported by the controller.
73 * @signal_direction: input/out direction of bus signals can be indicated
74 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
75 * @busy_detect: true if busy detection on dat0 is supported
76 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
77 * @explicit_mclk_control: enable explicit mclk control in driver.
78 * @qcom_fifo: enables qcom specific fifo pio read logic.
79 * @qcom_dml: enables qcom specific dma glue for dma transfers.
80 * @reversed_irq_handling: handle data irq before cmd irq.
81 */
82struct variant_data {
83 unsigned int clkreg;
84 unsigned int clkreg_enable;
85 unsigned int clkreg_8bit_bus_enable;
86 unsigned int clkreg_neg_edge_enable;
87 unsigned int datalength_bits;
88 unsigned int fifosize;
89 unsigned int fifohalfsize;
90 unsigned int data_cmd_enable;
91 unsigned int datactrl_mask_ddrmode;
92 unsigned int datactrl_mask_sdio;
93 bool st_sdio;
94 bool st_clkdiv;
95 bool blksz_datactrl16;
96 bool blksz_datactrl4;
97 u32 pwrreg_powerup;
98 u32 f_max;
99 bool signal_direction;
100 bool pwrreg_clkgate;
101 bool busy_detect;
102 bool pwrreg_nopower;
103 bool explicit_mclk_control;
104 bool qcom_fifo;
105 bool qcom_dml;
106 bool reversed_irq_handling;
107};
108
109static struct variant_data variant_arm = {
110 .fifosize = 16 * 4,
111 .fifohalfsize = 8 * 4,
112 .datalength_bits = 16,
113 .pwrreg_powerup = MCI_PWR_UP,
114 .f_max = 100000000,
115 .reversed_irq_handling = true,
116};
117
118static struct variant_data variant_arm_extended_fifo = {
119 .fifosize = 128 * 4,
120 .fifohalfsize = 64 * 4,
121 .datalength_bits = 16,
122 .pwrreg_powerup = MCI_PWR_UP,
123 .f_max = 100000000,
124};
125
126static struct variant_data variant_arm_extended_fifo_hwfc = {
127 .fifosize = 128 * 4,
128 .fifohalfsize = 64 * 4,
129 .clkreg_enable = MCI_ARM_HWFCEN,
130 .datalength_bits = 16,
131 .pwrreg_powerup = MCI_PWR_UP,
132 .f_max = 100000000,
133};
134
135static struct variant_data variant_u300 = {
136 .fifosize = 16 * 4,
137 .fifohalfsize = 8 * 4,
138 .clkreg_enable = MCI_ST_U300_HWFCEN,
139 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
140 .datalength_bits = 16,
141 .datactrl_mask_sdio = MCI_ST_DPSM_SDIOEN,
142 .st_sdio = true,
143 .pwrreg_powerup = MCI_PWR_ON,
144 .f_max = 100000000,
145 .signal_direction = true,
146 .pwrreg_clkgate = true,
147 .pwrreg_nopower = true,
148};
149
150static struct variant_data variant_nomadik = {
151 .fifosize = 16 * 4,
152 .fifohalfsize = 8 * 4,
153 .clkreg = MCI_CLK_ENABLE,
154 .datalength_bits = 24,
155 .datactrl_mask_sdio = MCI_ST_DPSM_SDIOEN,
156 .st_sdio = true,
157 .st_clkdiv = true,
158 .pwrreg_powerup = MCI_PWR_ON,
159 .f_max = 100000000,
160 .signal_direction = true,
161 .pwrreg_clkgate = true,
162 .pwrreg_nopower = true,
163};
164
165static struct variant_data variant_ux500 = {
166 .fifosize = 30 * 4,
167 .fifohalfsize = 8 * 4,
168 .clkreg = MCI_CLK_ENABLE,
169 .clkreg_enable = MCI_ST_UX500_HWFCEN,
170 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
171 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
172 .datalength_bits = 24,
173 .datactrl_mask_sdio = MCI_ST_DPSM_SDIOEN,
174 .st_sdio = true,
175 .st_clkdiv = true,
176 .pwrreg_powerup = MCI_PWR_ON,
177 .f_max = 100000000,
178 .signal_direction = true,
179 .pwrreg_clkgate = true,
180 .busy_detect = true,
181 .pwrreg_nopower = true,
182};
183
184static struct variant_data variant_ux500v2 = {
185 .fifosize = 30 * 4,
186 .fifohalfsize = 8 * 4,
187 .clkreg = MCI_CLK_ENABLE,
188 .clkreg_enable = MCI_ST_UX500_HWFCEN,
189 .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
190 .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
191 .datactrl_mask_ddrmode = MCI_ST_DPSM_DDRMODE,
192 .datalength_bits = 24,
193 .datactrl_mask_sdio = MCI_ST_DPSM_SDIOEN,
194 .st_sdio = true,
195 .st_clkdiv = true,
196 .blksz_datactrl16 = true,
197 .pwrreg_powerup = MCI_PWR_ON,
198 .f_max = 100000000,
199 .signal_direction = true,
200 .pwrreg_clkgate = true,
201 .busy_detect = true,
202 .pwrreg_nopower = true,
203};
204
205static struct variant_data variant_qcom = {
206 .fifosize = 16 * 4,
207 .fifohalfsize = 8 * 4,
208 .clkreg = MCI_CLK_ENABLE,
209 .clkreg_enable = MCI_QCOM_CLK_FLOWENA |
210 MCI_QCOM_CLK_SELECT_IN_FBCLK,
211 .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
212 .datactrl_mask_ddrmode = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
213 .data_cmd_enable = MCI_QCOM_CSPM_DATCMD,
214 .blksz_datactrl4 = true,
215 .datalength_bits = 24,
216 .pwrreg_powerup = MCI_PWR_UP,
217 .f_max = 208000000,
218 .explicit_mclk_control = true,
219 .qcom_fifo = true,
220 .qcom_dml = true,
221};
222
223static int mmci_card_busy(struct mmc_host *mmc)
224{
225 struct mmci_host *host = mmc_priv(mmc);
226 unsigned long flags;
227 int busy = 0;
228
229 pm_runtime_get_sync(mmc_dev(mmc));
230
231 spin_lock_irqsave(&host->lock, flags);
232 if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY)
233 busy = 1;
234 spin_unlock_irqrestore(&host->lock, flags);
235
236 pm_runtime_mark_last_busy(mmc_dev(mmc));
237 pm_runtime_put_autosuspend(mmc_dev(mmc));
238
239 return busy;
240}
241
242/*
243 * Validate mmc prerequisites
244 */
245static int mmci_validate_data(struct mmci_host *host,
246 struct mmc_data *data)
247{
248 if (!data)
249 return 0;
250
251 if (!is_power_of_2(data->blksz)) {
252 dev_err(mmc_dev(host->mmc),
253 "unsupported block size (%d bytes)\n", data->blksz);
254 return -EINVAL;
255 }
256
257 return 0;
258}
259
260static void mmci_reg_delay(struct mmci_host *host)
261{
262 /*
263 * According to the spec, at least three feedback clock cycles
264 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
265 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
266 * Worst delay time during card init is at 100 kHz => 30 us.
267 * Worst delay time when up and running is at 25 MHz => 120 ns.
268 */
269 if (host->cclk < 25000000)
270 udelay(30);
271 else
272 ndelay(120);
273}
274
275/*
276 * This must be called with host->lock held
277 */
278static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
279{
280 if (host->clk_reg != clk) {
281 host->clk_reg = clk;
282 writel(clk, host->base + MMCICLOCK);
283 }
284}
285
286/*
287 * This must be called with host->lock held
288 */
289static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
290{
291 if (host->pwr_reg != pwr) {
292 host->pwr_reg = pwr;
293 writel(pwr, host->base + MMCIPOWER);
294 }
295}
296
297/*
298 * This must be called with host->lock held
299 */
300static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
301{
302 /* Keep ST Micro busy mode if enabled */
303 datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE;
304
305 if (host->datactrl_reg != datactrl) {
306 host->datactrl_reg = datactrl;
307 writel(datactrl, host->base + MMCIDATACTRL);
308 }
309}
310
311/*
312 * This must be called with host->lock held
313 */
314static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
315{
316 struct variant_data *variant = host->variant;
317 u32 clk = variant->clkreg;
318
319 /* Make sure cclk reflects the current calculated clock */
320 host->cclk = 0;
321
322 if (desired) {
323 if (variant->explicit_mclk_control) {
324 host->cclk = host->mclk;
325 } else if (desired >= host->mclk) {
326 clk = MCI_CLK_BYPASS;
327 if (variant->st_clkdiv)
328 clk |= MCI_ST_UX500_NEG_EDGE;
329 host->cclk = host->mclk;
330 } else if (variant->st_clkdiv) {
331 /*
332 * DB8500 TRM says f = mclk / (clkdiv + 2)
333 * => clkdiv = (mclk / f) - 2
334 * Round the divider up so we don't exceed the max
335 * frequency
336 */
337 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
338 if (clk >= 256)
339 clk = 255;
340 host->cclk = host->mclk / (clk + 2);
341 } else {
342 /*
343 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
344 * => clkdiv = mclk / (2 * f) - 1
345 */
346 clk = host->mclk / (2 * desired) - 1;
347 if (clk >= 256)
348 clk = 255;
349 host->cclk = host->mclk / (2 * (clk + 1));
350 }
351
352 clk |= variant->clkreg_enable;
353 clk |= MCI_CLK_ENABLE;
354 /* This hasn't proven to be worthwhile */
355 /* clk |= MCI_CLK_PWRSAVE; */
356 }
357
358 /* Set actual clock for debug */
359 host->mmc->actual_clock = host->cclk;
360
361 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
362 clk |= MCI_4BIT_BUS;
363 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
364 clk |= variant->clkreg_8bit_bus_enable;
365
366 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
367 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
368 clk |= variant->clkreg_neg_edge_enable;
369
370 mmci_write_clkreg(host, clk);
371}
372
373static void
374mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
375{
376 writel(0, host->base + MMCICOMMAND);
377
378 BUG_ON(host->data);
379
380 host->mrq = NULL;
381 host->cmd = NULL;
382
383 mmc_request_done(host->mmc, mrq);
384
385 pm_runtime_mark_last_busy(mmc_dev(host->mmc));
386 pm_runtime_put_autosuspend(mmc_dev(host->mmc));
387}
388
389static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
390{
391 void __iomem *base = host->base;
392
393 if (host->singleirq) {
394 unsigned int mask0 = readl(base + MMCIMASK0);
395
396 mask0 &= ~MCI_IRQ1MASK;
397 mask0 |= mask;
398
399 writel(mask0, base + MMCIMASK0);
400 }
401
402 writel(mask, base + MMCIMASK1);
403}
404
405static void mmci_stop_data(struct mmci_host *host)
406{
407 mmci_write_datactrlreg(host, 0);
408 mmci_set_mask1(host, 0);
409 host->data = NULL;
410}
411
412static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
413{
414 unsigned int flags = SG_MITER_ATOMIC;
415
416 if (data->flags & MMC_DATA_READ)
417 flags |= SG_MITER_TO_SG;
418 else
419 flags |= SG_MITER_FROM_SG;
420
421 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
422}
423
424/*
425 * All the DMA operation mode stuff goes inside this ifdef.
426 * This assumes that you have a generic DMA device interface,
427 * no custom DMA interfaces are supported.
428 */
429#ifdef CONFIG_DMA_ENGINE
430static void mmci_dma_setup(struct mmci_host *host)
431{
432 const char *rxname, *txname;
433 struct variant_data *variant = host->variant;
434
435 host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
436 host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
437
438 /* initialize pre request cookie */
439 host->next_data.cookie = 1;
440
441 /*
442 * If only an RX channel is specified, the driver will
443 * attempt to use it bidirectionally, however if it is
444 * is specified but cannot be located, DMA will be disabled.
445 */
446 if (host->dma_rx_channel && !host->dma_tx_channel)
447 host->dma_tx_channel = host->dma_rx_channel;
448
449 if (host->dma_rx_channel)
450 rxname = dma_chan_name(host->dma_rx_channel);
451 else
452 rxname = "none";
453
454 if (host->dma_tx_channel)
455 txname = dma_chan_name(host->dma_tx_channel);
456 else
457 txname = "none";
458
459 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
460 rxname, txname);
461
462 /*
463 * Limit the maximum segment size in any SG entry according to
464 * the parameters of the DMA engine device.
465 */
466 if (host->dma_tx_channel) {
467 struct device *dev = host->dma_tx_channel->device->dev;
468 unsigned int max_seg_size = dma_get_max_seg_size(dev);
469
470 if (max_seg_size < host->mmc->max_seg_size)
471 host->mmc->max_seg_size = max_seg_size;
472 }
473 if (host->dma_rx_channel) {
474 struct device *dev = host->dma_rx_channel->device->dev;
475 unsigned int max_seg_size = dma_get_max_seg_size(dev);
476
477 if (max_seg_size < host->mmc->max_seg_size)
478 host->mmc->max_seg_size = max_seg_size;
479 }
480
481 if (variant->qcom_dml && host->dma_rx_channel && host->dma_tx_channel)
482 if (dml_hw_init(host, host->mmc->parent->of_node))
483 variant->qcom_dml = false;
484}
485
486/*
487 * This is used in or so inline it
488 * so it can be discarded.
489 */
490static inline void mmci_dma_release(struct mmci_host *host)
491{
492 if (host->dma_rx_channel)
493 dma_release_channel(host->dma_rx_channel);
494 if (host->dma_tx_channel)
495 dma_release_channel(host->dma_tx_channel);
496 host->dma_rx_channel = host->dma_tx_channel = NULL;
497}
498
499static void mmci_dma_data_error(struct mmci_host *host)
500{
501 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
502 dmaengine_terminate_all(host->dma_current);
503 host->dma_current = NULL;
504 host->dma_desc_current = NULL;
505 host->data->host_cookie = 0;
506}
507
508static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
509{
510 struct dma_chan *chan;
511 enum dma_data_direction dir;
512
513 if (data->flags & MMC_DATA_READ) {
514 dir = DMA_FROM_DEVICE;
515 chan = host->dma_rx_channel;
516 } else {
517 dir = DMA_TO_DEVICE;
518 chan = host->dma_tx_channel;
519 }
520
521 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
522}
523
524static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
525{
526 u32 status;
527 int i;
528
529 /* Wait up to 1ms for the DMA to complete */
530 for (i = 0; ; i++) {
531 status = readl(host->base + MMCISTATUS);
532 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
533 break;
534 udelay(10);
535 }
536
537 /*
538 * Check to see whether we still have some data left in the FIFO -
539 * this catches DMA controllers which are unable to monitor the
540 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
541 * contiguous buffers. On TX, we'll get a FIFO underrun error.
542 */
543 if (status & MCI_RXDATAAVLBLMASK) {
544 mmci_dma_data_error(host);
545 if (!data->error)
546 data->error = -EIO;
547 }
548
549 if (!data->host_cookie)
550 mmci_dma_unmap(host, data);
551
552 /*
553 * Use of DMA with scatter-gather is impossible.
554 * Give up with DMA and switch back to PIO mode.
555 */
556 if (status & MCI_RXDATAAVLBLMASK) {
557 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
558 mmci_dma_release(host);
559 }
560
561 host->dma_current = NULL;
562 host->dma_desc_current = NULL;
563}
564
565/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
566static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
567 struct dma_chan **dma_chan,
568 struct dma_async_tx_descriptor **dma_desc)
569{
570 struct variant_data *variant = host->variant;
571 struct dma_slave_config conf = {
572 .src_addr = host->phybase + MMCIFIFO,
573 .dst_addr = host->phybase + MMCIFIFO,
574 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
575 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
576 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
577 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
578 .device_fc = false,
579 };
580 struct dma_chan *chan;
581 struct dma_device *device;
582 struct dma_async_tx_descriptor *desc;
583 enum dma_data_direction buffer_dirn;
584 int nr_sg;
585 unsigned long flags = DMA_CTRL_ACK;
586
587 if (data->flags & MMC_DATA_READ) {
588 conf.direction = DMA_DEV_TO_MEM;
589 buffer_dirn = DMA_FROM_DEVICE;
590 chan = host->dma_rx_channel;
591 } else {
592 conf.direction = DMA_MEM_TO_DEV;
593 buffer_dirn = DMA_TO_DEVICE;
594 chan = host->dma_tx_channel;
595 }
596
597 /* If there's no DMA channel, fall back to PIO */
598 if (!chan)
599 return -EINVAL;
600
601 /* If less than or equal to the fifo size, don't bother with DMA */
602 if (data->blksz * data->blocks <= variant->fifosize)
603 return -EINVAL;
604
605 device = chan->device;
606 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
607 if (nr_sg == 0)
608 return -EINVAL;
609
610 if (host->variant->qcom_dml)
611 flags |= DMA_PREP_INTERRUPT;
612
613 dmaengine_slave_config(chan, &conf);
614 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
615 conf.direction, flags);
616 if (!desc)
617 goto unmap_exit;
618
619 *dma_chan = chan;
620 *dma_desc = desc;
621
622 return 0;
623
624 unmap_exit:
625 dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
626 return -ENOMEM;
627}
628
629static inline int mmci_dma_prep_data(struct mmci_host *host,
630 struct mmc_data *data)
631{
632 /* Check if next job is already prepared. */
633 if (host->dma_current && host->dma_desc_current)
634 return 0;
635
636 /* No job were prepared thus do it now. */
637 return __mmci_dma_prep_data(host, data, &host->dma_current,
638 &host->dma_desc_current);
639}
640
641static inline int mmci_dma_prep_next(struct mmci_host *host,
642 struct mmc_data *data)
643{
644 struct mmci_host_next *nd = &host->next_data;
645 return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
646}
647
648static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
649{
650 int ret;
651 struct mmc_data *data = host->data;
652
653 ret = mmci_dma_prep_data(host, host->data);
654 if (ret)
655 return ret;
656
657 /* Okay, go for it. */
658 dev_vdbg(mmc_dev(host->mmc),
659 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
660 data->sg_len, data->blksz, data->blocks, data->flags);
661 dmaengine_submit(host->dma_desc_current);
662 dma_async_issue_pending(host->dma_current);
663
664 if (host->variant->qcom_dml)
665 dml_start_xfer(host, data);
666
667 datactrl |= MCI_DPSM_DMAENABLE;
668
669 /* Trigger the DMA transfer */
670 mmci_write_datactrlreg(host, datactrl);
671
672 /*
673 * Let the MMCI say when the data is ended and it's time
674 * to fire next DMA request. When that happens, MMCI will
675 * call mmci_data_end()
676 */
677 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
678 host->base + MMCIMASK0);
679 return 0;
680}
681
682static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
683{
684 struct mmci_host_next *next = &host->next_data;
685
686 WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
687 WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
688
689 host->dma_desc_current = next->dma_desc;
690 host->dma_current = next->dma_chan;
691 next->dma_desc = NULL;
692 next->dma_chan = NULL;
693}
694
695static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
696 bool is_first_req)
697{
698 struct mmci_host *host = mmc_priv(mmc);
699 struct mmc_data *data = mrq->data;
700 struct mmci_host_next *nd = &host->next_data;
701
702 if (!data)
703 return;
704
705 BUG_ON(data->host_cookie);
706
707 if (mmci_validate_data(host, data))
708 return;
709
710 if (!mmci_dma_prep_next(host, data))
711 data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
712}
713
714static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
715 int err)
716{
717 struct mmci_host *host = mmc_priv(mmc);
718 struct mmc_data *data = mrq->data;
719
720 if (!data || !data->host_cookie)
721 return;
722
723 mmci_dma_unmap(host, data);
724
725 if (err) {
726 struct mmci_host_next *next = &host->next_data;
727 struct dma_chan *chan;
728 if (data->flags & MMC_DATA_READ)
729 chan = host->dma_rx_channel;
730 else
731 chan = host->dma_tx_channel;
732 dmaengine_terminate_all(chan);
733
734 if (host->dma_desc_current == next->dma_desc)
735 host->dma_desc_current = NULL;
736
737 if (host->dma_current == next->dma_chan)
738 host->dma_current = NULL;
739
740 next->dma_desc = NULL;
741 next->dma_chan = NULL;
742 data->host_cookie = 0;
743 }
744}
745
746#else
747/* Blank functions if the DMA engine is not available */
748static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
749{
750}
751static inline void mmci_dma_setup(struct mmci_host *host)
752{
753}
754
755static inline void mmci_dma_release(struct mmci_host *host)
756{
757}
758
759static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
760{
761}
762
763static inline void mmci_dma_finalize(struct mmci_host *host,
764 struct mmc_data *data)
765{
766}
767
768static inline void mmci_dma_data_error(struct mmci_host *host)
769{
770}
771
772static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
773{
774 return -ENOSYS;
775}
776
777#define mmci_pre_request NULL
778#define mmci_post_request NULL
779
780#endif
781
782static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
783{
784 struct variant_data *variant = host->variant;
785 unsigned int datactrl, timeout, irqmask;
786 unsigned long long clks;
787 void __iomem *base;
788 int blksz_bits;
789
790 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
791 data->blksz, data->blocks, data->flags);
792
793 host->data = data;
794 host->size = data->blksz * data->blocks;
795 data->bytes_xfered = 0;
796
797 clks = (unsigned long long)data->timeout_ns * host->cclk;
798 do_div(clks, NSEC_PER_SEC);
799
800 timeout = data->timeout_clks + (unsigned int)clks;
801
802 base = host->base;
803 writel(timeout, base + MMCIDATATIMER);
804 writel(host->size, base + MMCIDATALENGTH);
805
806 blksz_bits = ffs(data->blksz) - 1;
807 BUG_ON(1 << blksz_bits != data->blksz);
808
809 if (variant->blksz_datactrl16)
810 datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
811 else if (variant->blksz_datactrl4)
812 datactrl = MCI_DPSM_ENABLE | (data->blksz << 4);
813 else
814 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
815
816 if (data->flags & MMC_DATA_READ)
817 datactrl |= MCI_DPSM_DIRECTION;
818
819 if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
820 u32 clk;
821
822 datactrl |= variant->datactrl_mask_sdio;
823
824 /*
825 * The ST Micro variant for SDIO small write transfers
826 * needs to have clock H/W flow control disabled,
827 * otherwise the transfer will not start. The threshold
828 * depends on the rate of MCLK.
829 */
830 if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
831 (host->size < 8 ||
832 (host->size <= 8 && host->mclk > 50000000)))
833 clk = host->clk_reg & ~variant->clkreg_enable;
834 else
835 clk = host->clk_reg | variant->clkreg_enable;
836
837 mmci_write_clkreg(host, clk);
838 }
839
840 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
841 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
842 datactrl |= variant->datactrl_mask_ddrmode;
843
844 /*
845 * Attempt to use DMA operation mode, if this
846 * should fail, fall back to PIO mode
847 */
848 if (!mmci_dma_start_data(host, datactrl))
849 return;
850
851 /* IRQ mode, map the SG list for CPU reading/writing */
852 mmci_init_sg(host, data);
853
854 if (data->flags & MMC_DATA_READ) {
855 irqmask = MCI_RXFIFOHALFFULLMASK;
856
857 /*
858 * If we have less than the fifo 'half-full' threshold to
859 * transfer, trigger a PIO interrupt as soon as any data
860 * is available.
861 */
862 if (host->size < variant->fifohalfsize)
863 irqmask |= MCI_RXDATAAVLBLMASK;
864 } else {
865 /*
866 * We don't actually need to include "FIFO empty" here
867 * since its implicit in "FIFO half empty".
868 */
869 irqmask = MCI_TXFIFOHALFEMPTYMASK;
870 }
871
872 mmci_write_datactrlreg(host, datactrl);
873 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
874 mmci_set_mask1(host, irqmask);
875}
876
877static void
878mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
879{
880 void __iomem *base = host->base;
881
882 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
883 cmd->opcode, cmd->arg, cmd->flags);
884
885 if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
886 writel(0, base + MMCICOMMAND);
887 mmci_reg_delay(host);
888 }
889
890 c |= cmd->opcode | MCI_CPSM_ENABLE;
891 if (cmd->flags & MMC_RSP_PRESENT) {
892 if (cmd->flags & MMC_RSP_136)
893 c |= MCI_CPSM_LONGRSP;
894 c |= MCI_CPSM_RESPONSE;
895 }
896 if (/*interrupt*/0)
897 c |= MCI_CPSM_INTERRUPT;
898
899 if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
900 c |= host->variant->data_cmd_enable;
901
902 host->cmd = cmd;
903
904 writel(cmd->arg, base + MMCIARGUMENT);
905 writel(c, base + MMCICOMMAND);
906}
907
908static void
909mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
910 unsigned int status)
911{
912 /* Make sure we have data to handle */
913 if (!data)
914 return;
915
916 /* First check for errors */
917 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
918 MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
919 u32 remain, success;
920
921 /* Terminate the DMA transfer */
922 if (dma_inprogress(host)) {
923 mmci_dma_data_error(host);
924 mmci_dma_unmap(host, data);
925 }
926
927 /*
928 * Calculate how far we are into the transfer. Note that
929 * the data counter gives the number of bytes transferred
930 * on the MMC bus, not on the host side. On reads, this
931 * can be as much as a FIFO-worth of data ahead. This
932 * matters for FIFO overruns only.
933 */
934 remain = readl(host->base + MMCIDATACNT);
935 success = data->blksz * data->blocks - remain;
936
937 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
938 status, success);
939 if (status & MCI_DATACRCFAIL) {
940 /* Last block was not successful */
941 success -= 1;
942 data->error = -EILSEQ;
943 } else if (status & MCI_DATATIMEOUT) {
944 data->error = -ETIMEDOUT;
945 } else if (status & MCI_STARTBITERR) {
946 data->error = -ECOMM;
947 } else if (status & MCI_TXUNDERRUN) {
948 data->error = -EIO;
949 } else if (status & MCI_RXOVERRUN) {
950 if (success > host->variant->fifosize)
951 success -= host->variant->fifosize;
952 else
953 success = 0;
954 data->error = -EIO;
955 }
956 data->bytes_xfered = round_down(success, data->blksz);
957 }
958
959 if (status & MCI_DATABLOCKEND)
960 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
961
962 if (status & MCI_DATAEND || data->error) {
963 if (dma_inprogress(host))
964 mmci_dma_finalize(host, data);
965 mmci_stop_data(host);
966
967 if (!data->error)
968 /* The error clause is handled above, success! */
969 data->bytes_xfered = data->blksz * data->blocks;
970
971 if (!data->stop || host->mrq->sbc) {
972 mmci_request_end(host, data->mrq);
973 } else {
974 mmci_start_command(host, data->stop, 0);
975 }
976 }
977}
978
979static void
980mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
981 unsigned int status)
982{
983 void __iomem *base = host->base;
984 bool sbc, busy_resp;
985
986 if (!cmd)
987 return;
988
989 sbc = (cmd == host->mrq->sbc);
990 busy_resp = host->variant->busy_detect && (cmd->flags & MMC_RSP_BUSY);
991
992 if (!((status|host->busy_status) & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|
993 MCI_CMDSENT|MCI_CMDRESPEND)))
994 return;
995
996 /* Check if we need to wait for busy completion. */
997 if (host->busy_status && (status & MCI_ST_CARDBUSY))
998 return;
999
1000 /* Enable busy completion if needed and supported. */
1001 if (!host->busy_status && busy_resp &&
1002 !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1003 (readl(base + MMCISTATUS) & MCI_ST_CARDBUSY)) {
1004 writel(readl(base + MMCIMASK0) | MCI_ST_BUSYEND,
1005 base + MMCIMASK0);
1006 host->busy_status = status & (MCI_CMDSENT|MCI_CMDRESPEND);
1007 return;
1008 }
1009
1010 /* At busy completion, mask the IRQ and complete the request. */
1011 if (host->busy_status) {
1012 writel(readl(base + MMCIMASK0) & ~MCI_ST_BUSYEND,
1013 base + MMCIMASK0);
1014 host->busy_status = 0;
1015 }
1016
1017 host->cmd = NULL;
1018
1019 if (status & MCI_CMDTIMEOUT) {
1020 cmd->error = -ETIMEDOUT;
1021 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1022 cmd->error = -EILSEQ;
1023 } else {
1024 cmd->resp[0] = readl(base + MMCIRESPONSE0);
1025 cmd->resp[1] = readl(base + MMCIRESPONSE1);
1026 cmd->resp[2] = readl(base + MMCIRESPONSE2);
1027 cmd->resp[3] = readl(base + MMCIRESPONSE3);
1028 }
1029
1030 if ((!sbc && !cmd->data) || cmd->error) {
1031 if (host->data) {
1032 /* Terminate the DMA transfer */
1033 if (dma_inprogress(host)) {
1034 mmci_dma_data_error(host);
1035 mmci_dma_unmap(host, host->data);
1036 }
1037 mmci_stop_data(host);
1038 }
1039 mmci_request_end(host, host->mrq);
1040 } else if (sbc) {
1041 mmci_start_command(host, host->mrq->cmd, 0);
1042 } else if (!(cmd->data->flags & MMC_DATA_READ)) {
1043 mmci_start_data(host, cmd->data);
1044 }
1045}
1046
1047static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1048{
1049 return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1050}
1051
1052static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1053{
1054 /*
1055 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1056 * from the fifo range should be used
1057 */
1058 if (status & MCI_RXFIFOHALFFULL)
1059 return host->variant->fifohalfsize;
1060 else if (status & MCI_RXDATAAVLBL)
1061 return 4;
1062
1063 return 0;
1064}
1065
1066static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1067{
1068 void __iomem *base = host->base;
1069 char *ptr = buffer;
1070 u32 status = readl(host->base + MMCISTATUS);
1071 int host_remain = host->size;
1072
1073 do {
1074 int count = host->get_rx_fifocnt(host, status, host_remain);
1075
1076 if (count > remain)
1077 count = remain;
1078
1079 if (count <= 0)
1080 break;
1081
1082 /*
1083 * SDIO especially may want to send something that is
1084 * not divisible by 4 (as opposed to card sectors
1085 * etc). Therefore make sure to always read the last bytes
1086 * while only doing full 32-bit reads towards the FIFO.
1087 */
1088 if (unlikely(count & 0x3)) {
1089 if (count < 4) {
1090 unsigned char buf[4];
1091 ioread32_rep(base + MMCIFIFO, buf, 1);
1092 memcpy(ptr, buf, count);
1093 } else {
1094 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1095 count &= ~0x3;
1096 }
1097 } else {
1098 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1099 }
1100
1101 ptr += count;
1102 remain -= count;
1103 host_remain -= count;
1104
1105 if (remain == 0)
1106 break;
1107
1108 status = readl(base + MMCISTATUS);
1109 } while (status & MCI_RXDATAAVLBL);
1110
1111 return ptr - buffer;
1112}
1113
1114static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1115{
1116 struct variant_data *variant = host->variant;
1117 void __iomem *base = host->base;
1118 char *ptr = buffer;
1119
1120 do {
1121 unsigned int count, maxcnt;
1122
1123 maxcnt = status & MCI_TXFIFOEMPTY ?
1124 variant->fifosize : variant->fifohalfsize;
1125 count = min(remain, maxcnt);
1126
1127 /*
1128 * SDIO especially may want to send something that is
1129 * not divisible by 4 (as opposed to card sectors
1130 * etc), and the FIFO only accept full 32-bit writes.
1131 * So compensate by adding +3 on the count, a single
1132 * byte become a 32bit write, 7 bytes will be two
1133 * 32bit writes etc.
1134 */
1135 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1136
1137 ptr += count;
1138 remain -= count;
1139
1140 if (remain == 0)
1141 break;
1142
1143 status = readl(base + MMCISTATUS);
1144 } while (status & MCI_TXFIFOHALFEMPTY);
1145
1146 return ptr - buffer;
1147}
1148
1149/*
1150 * PIO data transfer IRQ handler.
1151 */
1152static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1153{
1154 struct mmci_host *host = dev_id;
1155 struct sg_mapping_iter *sg_miter = &host->sg_miter;
1156 struct variant_data *variant = host->variant;
1157 void __iomem *base = host->base;
1158 unsigned long flags;
1159 u32 status;
1160
1161 status = readl(base + MMCISTATUS);
1162
1163 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1164
1165 local_irq_save(flags);
1166
1167 do {
1168 unsigned int remain, len;
1169 char *buffer;
1170
1171 /*
1172 * For write, we only need to test the half-empty flag
1173 * here - if the FIFO is completely empty, then by
1174 * definition it is more than half empty.
1175 *
1176 * For read, check for data available.
1177 */
1178 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1179 break;
1180
1181 if (!sg_miter_next(sg_miter))
1182 break;
1183
1184 buffer = sg_miter->addr;
1185 remain = sg_miter->length;
1186
1187 len = 0;
1188 if (status & MCI_RXACTIVE)
1189 len = mmci_pio_read(host, buffer, remain);
1190 if (status & MCI_TXACTIVE)
1191 len = mmci_pio_write(host, buffer, remain, status);
1192
1193 sg_miter->consumed = len;
1194
1195 host->size -= len;
1196 remain -= len;
1197
1198 if (remain)
1199 break;
1200
1201 status = readl(base + MMCISTATUS);
1202 } while (1);
1203
1204 sg_miter_stop(sg_miter);
1205
1206 local_irq_restore(flags);
1207
1208 /*
1209 * If we have less than the fifo 'half-full' threshold to transfer,
1210 * trigger a PIO interrupt as soon as any data is available.
1211 */
1212 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1213 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1214
1215 /*
1216 * If we run out of data, disable the data IRQs; this
1217 * prevents a race where the FIFO becomes empty before
1218 * the chip itself has disabled the data path, and
1219 * stops us racing with our data end IRQ.
1220 */
1221 if (host->size == 0) {
1222 mmci_set_mask1(host, 0);
1223 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1224 }
1225
1226 return IRQ_HANDLED;
1227}
1228
1229/*
1230 * Handle completion of command and data transfers.
1231 */
1232static irqreturn_t mmci_irq(int irq, void *dev_id)
1233{
1234 struct mmci_host *host = dev_id;
1235 u32 status;
1236 int ret = 0;
1237
1238 spin_lock(&host->lock);
1239
1240 do {
1241 status = readl(host->base + MMCISTATUS);
1242
1243 if (host->singleirq) {
1244 if (status & readl(host->base + MMCIMASK1))
1245 mmci_pio_irq(irq, dev_id);
1246
1247 status &= ~MCI_IRQ1MASK;
1248 }
1249
1250 /*
1251 * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's
1252 * enabled) since the HW seems to be triggering the IRQ on both
1253 * edges while monitoring DAT0 for busy completion.
1254 */
1255 status &= readl(host->base + MMCIMASK0);
1256 writel(status, host->base + MMCICLEAR);
1257
1258 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1259
1260 if (host->variant->reversed_irq_handling) {
1261 mmci_data_irq(host, host->data, status);
1262 mmci_cmd_irq(host, host->cmd, status);
1263 } else {
1264 mmci_cmd_irq(host, host->cmd, status);
1265 mmci_data_irq(host, host->data, status);
1266 }
1267
1268 /* Don't poll for busy completion in irq context. */
1269 if (host->busy_status)
1270 status &= ~MCI_ST_CARDBUSY;
1271
1272 ret = 1;
1273 } while (status);
1274
1275 spin_unlock(&host->lock);
1276
1277 return IRQ_RETVAL(ret);
1278}
1279
1280static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1281{
1282 struct mmci_host *host = mmc_priv(mmc);
1283 unsigned long flags;
1284
1285 WARN_ON(host->mrq != NULL);
1286
1287 mrq->cmd->error = mmci_validate_data(host, mrq->data);
1288 if (mrq->cmd->error) {
1289 mmc_request_done(mmc, mrq);
1290 return;
1291 }
1292
1293 pm_runtime_get_sync(mmc_dev(mmc));
1294
1295 spin_lock_irqsave(&host->lock, flags);
1296
1297 host->mrq = mrq;
1298
1299 if (mrq->data)
1300 mmci_get_next_data(host, mrq->data);
1301
1302 if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1303 mmci_start_data(host, mrq->data);
1304
1305 if (mrq->sbc)
1306 mmci_start_command(host, mrq->sbc, 0);
1307 else
1308 mmci_start_command(host, mrq->cmd, 0);
1309
1310 spin_unlock_irqrestore(&host->lock, flags);
1311}
1312
1313static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1314{
1315 struct mmci_host *host = mmc_priv(mmc);
1316 struct variant_data *variant = host->variant;
1317 u32 pwr = 0;
1318 unsigned long flags;
1319 int ret;
1320
1321 pm_runtime_get_sync(mmc_dev(mmc));
1322
1323 if (host->plat->ios_handler &&
1324 host->plat->ios_handler(mmc_dev(mmc), ios))
1325 dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1326
1327 switch (ios->power_mode) {
1328 case MMC_POWER_OFF:
1329 if (!IS_ERR(mmc->supply.vmmc))
1330 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1331
1332 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1333 regulator_disable(mmc->supply.vqmmc);
1334 host->vqmmc_enabled = false;
1335 }
1336
1337 break;
1338 case MMC_POWER_UP:
1339 if (!IS_ERR(mmc->supply.vmmc))
1340 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1341
1342 /*
1343 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1344 * and instead uses MCI_PWR_ON so apply whatever value is
1345 * configured in the variant data.
1346 */
1347 pwr |= variant->pwrreg_powerup;
1348
1349 break;
1350 case MMC_POWER_ON:
1351 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1352 ret = regulator_enable(mmc->supply.vqmmc);
1353 if (ret < 0)
1354 dev_err(mmc_dev(mmc),
1355 "failed to enable vqmmc regulator\n");
1356 else
1357 host->vqmmc_enabled = true;
1358 }
1359
1360 pwr |= MCI_PWR_ON;
1361 break;
1362 }
1363
1364 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1365 /*
1366 * The ST Micro variant has some additional bits
1367 * indicating signal direction for the signals in
1368 * the SD/MMC bus and feedback-clock usage.
1369 */
1370 pwr |= host->pwr_reg_add;
1371
1372 if (ios->bus_width == MMC_BUS_WIDTH_4)
1373 pwr &= ~MCI_ST_DATA74DIREN;
1374 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1375 pwr &= (~MCI_ST_DATA74DIREN &
1376 ~MCI_ST_DATA31DIREN &
1377 ~MCI_ST_DATA2DIREN);
1378 }
1379
1380 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1381 if (host->hw_designer != AMBA_VENDOR_ST)
1382 pwr |= MCI_ROD;
1383 else {
1384 /*
1385 * The ST Micro variant use the ROD bit for something
1386 * else and only has OD (Open Drain).
1387 */
1388 pwr |= MCI_OD;
1389 }
1390 }
1391
1392 /*
1393 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1394 * gating the clock, the MCI_PWR_ON bit is cleared.
1395 */
1396 if (!ios->clock && variant->pwrreg_clkgate)
1397 pwr &= ~MCI_PWR_ON;
1398
1399 if (host->variant->explicit_mclk_control &&
1400 ios->clock != host->clock_cache) {
1401 ret = clk_set_rate(host->clk, ios->clock);
1402 if (ret < 0)
1403 dev_err(mmc_dev(host->mmc),
1404 "Error setting clock rate (%d)\n", ret);
1405 else
1406 host->mclk = clk_get_rate(host->clk);
1407 }
1408 host->clock_cache = ios->clock;
1409
1410 spin_lock_irqsave(&host->lock, flags);
1411
1412 mmci_set_clkreg(host, ios->clock);
1413 mmci_write_pwrreg(host, pwr);
1414 mmci_reg_delay(host);
1415
1416 spin_unlock_irqrestore(&host->lock, flags);
1417
1418 pm_runtime_mark_last_busy(mmc_dev(mmc));
1419 pm_runtime_put_autosuspend(mmc_dev(mmc));
1420}
1421
1422static int mmci_get_cd(struct mmc_host *mmc)
1423{
1424 struct mmci_host *host = mmc_priv(mmc);
1425 struct mmci_platform_data *plat = host->plat;
1426 unsigned int status = mmc_gpio_get_cd(mmc);
1427
1428 if (status == -ENOSYS) {
1429 if (!plat->status)
1430 return 1; /* Assume always present */
1431
1432 status = plat->status(mmc_dev(host->mmc));
1433 }
1434 return status;
1435}
1436
1437static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1438{
1439 int ret = 0;
1440
1441 if (!IS_ERR(mmc->supply.vqmmc)) {
1442
1443 pm_runtime_get_sync(mmc_dev(mmc));
1444
1445 switch (ios->signal_voltage) {
1446 case MMC_SIGNAL_VOLTAGE_330:
1447 ret = regulator_set_voltage(mmc->supply.vqmmc,
1448 2700000, 3600000);
1449 break;
1450 case MMC_SIGNAL_VOLTAGE_180:
1451 ret = regulator_set_voltage(mmc->supply.vqmmc,
1452 1700000, 1950000);
1453 break;
1454 case MMC_SIGNAL_VOLTAGE_120:
1455 ret = regulator_set_voltage(mmc->supply.vqmmc,
1456 1100000, 1300000);
1457 break;
1458 }
1459
1460 if (ret)
1461 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1462
1463 pm_runtime_mark_last_busy(mmc_dev(mmc));
1464 pm_runtime_put_autosuspend(mmc_dev(mmc));
1465 }
1466
1467 return ret;
1468}
1469
1470static struct mmc_host_ops mmci_ops = {
1471 .request = mmci_request,
1472 .pre_req = mmci_pre_request,
1473 .post_req = mmci_post_request,
1474 .set_ios = mmci_set_ios,
1475 .get_ro = mmc_gpio_get_ro,
1476 .get_cd = mmci_get_cd,
1477 .start_signal_voltage_switch = mmci_sig_volt_switch,
1478};
1479
1480static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1481{
1482 struct mmci_host *host = mmc_priv(mmc);
1483 int ret = mmc_of_parse(mmc);
1484
1485 if (ret)
1486 return ret;
1487
1488 if (of_get_property(np, "st,sig-dir-dat0", NULL))
1489 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1490 if (of_get_property(np, "st,sig-dir-dat2", NULL))
1491 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1492 if (of_get_property(np, "st,sig-dir-dat31", NULL))
1493 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1494 if (of_get_property(np, "st,sig-dir-dat74", NULL))
1495 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1496 if (of_get_property(np, "st,sig-dir-cmd", NULL))
1497 host->pwr_reg_add |= MCI_ST_CMDDIREN;
1498 if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1499 host->pwr_reg_add |= MCI_ST_FBCLKEN;
1500
1501 if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1502 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1503 if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1504 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1505
1506 return 0;
1507}
1508
1509static int mmci_probe(struct amba_device *dev,
1510 const struct amba_id *id)
1511{
1512 struct mmci_platform_data *plat = dev->dev.platform_data;
1513 struct device_node *np = dev->dev.of_node;
1514 struct variant_data *variant = id->data;
1515 struct mmci_host *host;
1516 struct mmc_host *mmc;
1517 int ret;
1518
1519 /* Must have platform data or Device Tree. */
1520 if (!plat && !np) {
1521 dev_err(&dev->dev, "No plat data or DT found\n");
1522 return -EINVAL;
1523 }
1524
1525 if (!plat) {
1526 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1527 if (!plat)
1528 return -ENOMEM;
1529 }
1530
1531 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1532 if (!mmc)
1533 return -ENOMEM;
1534
1535 ret = mmci_of_parse(np, mmc);
1536 if (ret)
1537 goto host_free;
1538
1539 host = mmc_priv(mmc);
1540 host->mmc = mmc;
1541
1542 host->hw_designer = amba_manf(dev);
1543 host->hw_revision = amba_rev(dev);
1544 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1545 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1546
1547 host->clk = devm_clk_get(&dev->dev, NULL);
1548 if (IS_ERR(host->clk)) {
1549 ret = PTR_ERR(host->clk);
1550 goto host_free;
1551 }
1552
1553 ret = clk_prepare_enable(host->clk);
1554 if (ret)
1555 goto host_free;
1556
1557 if (variant->qcom_fifo)
1558 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1559 else
1560 host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1561
1562 host->plat = plat;
1563 host->variant = variant;
1564 host->mclk = clk_get_rate(host->clk);
1565 /*
1566 * According to the spec, mclk is max 100 MHz,
1567 * so we try to adjust the clock down to this,
1568 * (if possible).
1569 */
1570 if (host->mclk > variant->f_max) {
1571 ret = clk_set_rate(host->clk, variant->f_max);
1572 if (ret < 0)
1573 goto clk_disable;
1574 host->mclk = clk_get_rate(host->clk);
1575 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1576 host->mclk);
1577 }
1578
1579 host->phybase = dev->res.start;
1580 host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1581 if (IS_ERR(host->base)) {
1582 ret = PTR_ERR(host->base);
1583 goto clk_disable;
1584 }
1585
1586 /*
1587 * The ARM and ST versions of the block have slightly different
1588 * clock divider equations which means that the minimum divider
1589 * differs too.
1590 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1591 */
1592 if (variant->st_clkdiv)
1593 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1594 else if (variant->explicit_mclk_control)
1595 mmc->f_min = clk_round_rate(host->clk, 100000);
1596 else
1597 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1598 /*
1599 * If no maximum operating frequency is supplied, fall back to use
1600 * the module parameter, which has a (low) default value in case it
1601 * is not specified. Either value must not exceed the clock rate into
1602 * the block, of course.
1603 */
1604 if (mmc->f_max)
1605 mmc->f_max = variant->explicit_mclk_control ?
1606 min(variant->f_max, mmc->f_max) :
1607 min(host->mclk, mmc->f_max);
1608 else
1609 mmc->f_max = variant->explicit_mclk_control ?
1610 fmax : min(host->mclk, fmax);
1611
1612
1613 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1614
1615 /* Get regulators and the supported OCR mask */
1616 ret = mmc_regulator_get_supply(mmc);
1617 if (ret == -EPROBE_DEFER)
1618 goto clk_disable;
1619
1620 if (!mmc->ocr_avail)
1621 mmc->ocr_avail = plat->ocr_mask;
1622 else if (plat->ocr_mask)
1623 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1624
1625 /* DT takes precedence over platform data. */
1626 if (!np) {
1627 if (!plat->cd_invert)
1628 mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1629 mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1630 }
1631
1632 /* We support these capabilities. */
1633 mmc->caps |= MMC_CAP_CMD23;
1634
1635 if (variant->busy_detect) {
1636 mmci_ops.card_busy = mmci_card_busy;
1637 mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE);
1638 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1639 mmc->max_busy_timeout = 0;
1640 }
1641
1642 mmc->ops = &mmci_ops;
1643
1644 /* We support these PM capabilities. */
1645 mmc->pm_caps |= MMC_PM_KEEP_POWER;
1646
1647 /*
1648 * We can do SGIO
1649 */
1650 mmc->max_segs = NR_SG;
1651
1652 /*
1653 * Since only a certain number of bits are valid in the data length
1654 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1655 * single request.
1656 */
1657 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1658
1659 /*
1660 * Set the maximum segment size. Since we aren't doing DMA
1661 * (yet) we are only limited by the data length register.
1662 */
1663 mmc->max_seg_size = mmc->max_req_size;
1664
1665 /*
1666 * Block size can be up to 2048 bytes, but must be a power of two.
1667 */
1668 mmc->max_blk_size = 1 << 11;
1669
1670 /*
1671 * Limit the number of blocks transferred so that we don't overflow
1672 * the maximum request size.
1673 */
1674 mmc->max_blk_count = mmc->max_req_size >> 11;
1675
1676 spin_lock_init(&host->lock);
1677
1678 writel(0, host->base + MMCIMASK0);
1679 writel(0, host->base + MMCIMASK1);
1680 writel(0xfff, host->base + MMCICLEAR);
1681
1682 /*
1683 * If:
1684 * - not using DT but using a descriptor table, or
1685 * - using a table of descriptors ALONGSIDE DT, or
1686 * look up these descriptors named "cd" and "wp" right here, fail
1687 * silently of these do not exist and proceed to try platform data
1688 */
1689 if (!np) {
1690 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
1691 if (ret < 0) {
1692 if (ret == -EPROBE_DEFER)
1693 goto clk_disable;
1694 else if (gpio_is_valid(plat->gpio_cd)) {
1695 ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1696 if (ret)
1697 goto clk_disable;
1698 }
1699 }
1700
1701 ret = mmc_gpiod_request_ro(mmc, "wp", 0, false, 0, NULL);
1702 if (ret < 0) {
1703 if (ret == -EPROBE_DEFER)
1704 goto clk_disable;
1705 else if (gpio_is_valid(plat->gpio_wp)) {
1706 ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1707 if (ret)
1708 goto clk_disable;
1709 }
1710 }
1711 }
1712
1713 ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1714 DRIVER_NAME " (cmd)", host);
1715 if (ret)
1716 goto clk_disable;
1717
1718 if (!dev->irq[1])
1719 host->singleirq = true;
1720 else {
1721 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1722 IRQF_SHARED, DRIVER_NAME " (pio)", host);
1723 if (ret)
1724 goto clk_disable;
1725 }
1726
1727 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1728
1729 amba_set_drvdata(dev, mmc);
1730
1731 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1732 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1733 amba_rev(dev), (unsigned long long)dev->res.start,
1734 dev->irq[0], dev->irq[1]);
1735
1736 mmci_dma_setup(host);
1737
1738 pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1739 pm_runtime_use_autosuspend(&dev->dev);
1740
1741 mmc_add_host(mmc);
1742
1743 pm_runtime_put(&dev->dev);
1744 return 0;
1745
1746 clk_disable:
1747 clk_disable_unprepare(host->clk);
1748 host_free:
1749 mmc_free_host(mmc);
1750 return ret;
1751}
1752
1753static int mmci_remove(struct amba_device *dev)
1754{
1755 struct mmc_host *mmc = amba_get_drvdata(dev);
1756
1757 if (mmc) {
1758 struct mmci_host *host = mmc_priv(mmc);
1759
1760 /*
1761 * Undo pm_runtime_put() in probe. We use the _sync
1762 * version here so that we can access the primecell.
1763 */
1764 pm_runtime_get_sync(&dev->dev);
1765
1766 mmc_remove_host(mmc);
1767
1768 writel(0, host->base + MMCIMASK0);
1769 writel(0, host->base + MMCIMASK1);
1770
1771 writel(0, host->base + MMCICOMMAND);
1772 writel(0, host->base + MMCIDATACTRL);
1773
1774 mmci_dma_release(host);
1775 clk_disable_unprepare(host->clk);
1776 mmc_free_host(mmc);
1777 }
1778
1779 return 0;
1780}
1781
1782#ifdef CONFIG_PM
1783static void mmci_save(struct mmci_host *host)
1784{
1785 unsigned long flags;
1786
1787 spin_lock_irqsave(&host->lock, flags);
1788
1789 writel(0, host->base + MMCIMASK0);
1790 if (host->variant->pwrreg_nopower) {
1791 writel(0, host->base + MMCIDATACTRL);
1792 writel(0, host->base + MMCIPOWER);
1793 writel(0, host->base + MMCICLOCK);
1794 }
1795 mmci_reg_delay(host);
1796
1797 spin_unlock_irqrestore(&host->lock, flags);
1798}
1799
1800static void mmci_restore(struct mmci_host *host)
1801{
1802 unsigned long flags;
1803
1804 spin_lock_irqsave(&host->lock, flags);
1805
1806 if (host->variant->pwrreg_nopower) {
1807 writel(host->clk_reg, host->base + MMCICLOCK);
1808 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1809 writel(host->pwr_reg, host->base + MMCIPOWER);
1810 }
1811 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1812 mmci_reg_delay(host);
1813
1814 spin_unlock_irqrestore(&host->lock, flags);
1815}
1816
1817static int mmci_runtime_suspend(struct device *dev)
1818{
1819 struct amba_device *adev = to_amba_device(dev);
1820 struct mmc_host *mmc = amba_get_drvdata(adev);
1821
1822 if (mmc) {
1823 struct mmci_host *host = mmc_priv(mmc);
1824 pinctrl_pm_select_sleep_state(dev);
1825 mmci_save(host);
1826 clk_disable_unprepare(host->clk);
1827 }
1828
1829 return 0;
1830}
1831
1832static int mmci_runtime_resume(struct device *dev)
1833{
1834 struct amba_device *adev = to_amba_device(dev);
1835 struct mmc_host *mmc = amba_get_drvdata(adev);
1836
1837 if (mmc) {
1838 struct mmci_host *host = mmc_priv(mmc);
1839 clk_prepare_enable(host->clk);
1840 mmci_restore(host);
1841 pinctrl_pm_select_default_state(dev);
1842 }
1843
1844 return 0;
1845}
1846#endif
1847
1848static const struct dev_pm_ops mmci_dev_pm_ops = {
1849 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1850 pm_runtime_force_resume)
1851 SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1852};
1853
1854static struct amba_id mmci_ids[] = {
1855 {
1856 .id = 0x00041180,
1857 .mask = 0xff0fffff,
1858 .data = &variant_arm,
1859 },
1860 {
1861 .id = 0x01041180,
1862 .mask = 0xff0fffff,
1863 .data = &variant_arm_extended_fifo,
1864 },
1865 {
1866 .id = 0x02041180,
1867 .mask = 0xff0fffff,
1868 .data = &variant_arm_extended_fifo_hwfc,
1869 },
1870 {
1871 .id = 0x00041181,
1872 .mask = 0x000fffff,
1873 .data = &variant_arm,
1874 },
1875 /* ST Micro variants */
1876 {
1877 .id = 0x00180180,
1878 .mask = 0x00ffffff,
1879 .data = &variant_u300,
1880 },
1881 {
1882 .id = 0x10180180,
1883 .mask = 0xf0ffffff,
1884 .data = &variant_nomadik,
1885 },
1886 {
1887 .id = 0x00280180,
1888 .mask = 0x00ffffff,
1889 .data = &variant_nomadik,
1890 },
1891 {
1892 .id = 0x00480180,
1893 .mask = 0xf0ffffff,
1894 .data = &variant_ux500,
1895 },
1896 {
1897 .id = 0x10480180,
1898 .mask = 0xf0ffffff,
1899 .data = &variant_ux500v2,
1900 },
1901 /* Qualcomm variants */
1902 {
1903 .id = 0x00051180,
1904 .mask = 0x000fffff,
1905 .data = &variant_qcom,
1906 },
1907 { 0, 0 },
1908};
1909
1910MODULE_DEVICE_TABLE(amba, mmci_ids);
1911
1912static struct amba_driver mmci_driver = {
1913 .drv = {
1914 .name = DRIVER_NAME,
1915 .pm = &mmci_dev_pm_ops,
1916 },
1917 .probe = mmci_probe,
1918 .remove = mmci_remove,
1919 .id_table = mmci_ids,
1920};
1921
1922module_amba_driver(mmci_driver);
1923
1924module_param(fmax, uint, 0444);
1925
1926MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1927MODULE_LICENSE("GPL");