Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame^] | 1 | /* |
| 2 | * Driver for NAND MLC Controller in LPC32xx |
| 3 | * |
| 4 | * Author: Roland Stigge <stigge@antcom.de> |
| 5 | * |
| 6 | * Copyright © 2011 WORK Microwave GmbH |
| 7 | * Copyright © 2011, 2012 Roland Stigge |
| 8 | * |
| 9 | * This program is free software; you can redistribute it and/or modify |
| 10 | * it under the terms of the GNU General Public License as published by |
| 11 | * the Free Software Foundation; either version 2 of the License, or |
| 12 | * (at your option) any later version. |
| 13 | * |
| 14 | * This program is distributed in the hope that it will be useful, |
| 15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 17 | * GNU General Public License for more details. |
| 18 | * |
| 19 | * |
| 20 | * NAND Flash Controller Operation: |
| 21 | * - Read: Auto Decode |
| 22 | * - Write: Auto Encode |
| 23 | * - Tested Page Sizes: 2048, 4096 |
| 24 | */ |
| 25 | |
| 26 | #include <linux/slab.h> |
| 27 | #include <linux/module.h> |
| 28 | #include <linux/platform_device.h> |
| 29 | #include <linux/mtd/mtd.h> |
| 30 | #include <linux/mtd/nand.h> |
| 31 | #include <linux/mtd/partitions.h> |
| 32 | #include <linux/clk.h> |
| 33 | #include <linux/err.h> |
| 34 | #include <linux/delay.h> |
| 35 | #include <linux/completion.h> |
| 36 | #include <linux/interrupt.h> |
| 37 | #include <linux/of.h> |
| 38 | #include <linux/of_mtd.h> |
| 39 | #include <linux/of_gpio.h> |
| 40 | #include <linux/mtd/lpc32xx_mlc.h> |
| 41 | #include <linux/io.h> |
| 42 | #include <linux/mm.h> |
| 43 | #include <linux/dma-mapping.h> |
| 44 | #include <linux/dmaengine.h> |
| 45 | #include <linux/mtd/nand_ecc.h> |
| 46 | |
| 47 | #define DRV_NAME "lpc32xx_mlc" |
| 48 | |
| 49 | /********************************************************************** |
| 50 | * MLC NAND controller register offsets |
| 51 | **********************************************************************/ |
| 52 | |
| 53 | #define MLC_BUFF(x) (x + 0x00000) |
| 54 | #define MLC_DATA(x) (x + 0x08000) |
| 55 | #define MLC_CMD(x) (x + 0x10000) |
| 56 | #define MLC_ADDR(x) (x + 0x10004) |
| 57 | #define MLC_ECC_ENC_REG(x) (x + 0x10008) |
| 58 | #define MLC_ECC_DEC_REG(x) (x + 0x1000C) |
| 59 | #define MLC_ECC_AUTO_ENC_REG(x) (x + 0x10010) |
| 60 | #define MLC_ECC_AUTO_DEC_REG(x) (x + 0x10014) |
| 61 | #define MLC_RPR(x) (x + 0x10018) |
| 62 | #define MLC_WPR(x) (x + 0x1001C) |
| 63 | #define MLC_RUBP(x) (x + 0x10020) |
| 64 | #define MLC_ROBP(x) (x + 0x10024) |
| 65 | #define MLC_SW_WP_ADD_LOW(x) (x + 0x10028) |
| 66 | #define MLC_SW_WP_ADD_HIG(x) (x + 0x1002C) |
| 67 | #define MLC_ICR(x) (x + 0x10030) |
| 68 | #define MLC_TIME_REG(x) (x + 0x10034) |
| 69 | #define MLC_IRQ_MR(x) (x + 0x10038) |
| 70 | #define MLC_IRQ_SR(x) (x + 0x1003C) |
| 71 | #define MLC_LOCK_PR(x) (x + 0x10044) |
| 72 | #define MLC_ISR(x) (x + 0x10048) |
| 73 | #define MLC_CEH(x) (x + 0x1004C) |
| 74 | |
| 75 | /********************************************************************** |
| 76 | * MLC_CMD bit definitions |
| 77 | **********************************************************************/ |
| 78 | #define MLCCMD_RESET 0xFF |
| 79 | |
| 80 | /********************************************************************** |
| 81 | * MLC_ICR bit definitions |
| 82 | **********************************************************************/ |
| 83 | #define MLCICR_WPROT (1 << 3) |
| 84 | #define MLCICR_LARGEBLOCK (1 << 2) |
| 85 | #define MLCICR_LONGADDR (1 << 1) |
| 86 | #define MLCICR_16BIT (1 << 0) /* unsupported by LPC32x0! */ |
| 87 | |
| 88 | /********************************************************************** |
| 89 | * MLC_TIME_REG bit definitions |
| 90 | **********************************************************************/ |
| 91 | #define MLCTIMEREG_TCEA_DELAY(n) (((n) & 0x03) << 24) |
| 92 | #define MLCTIMEREG_BUSY_DELAY(n) (((n) & 0x1F) << 19) |
| 93 | #define MLCTIMEREG_NAND_TA(n) (((n) & 0x07) << 16) |
| 94 | #define MLCTIMEREG_RD_HIGH(n) (((n) & 0x0F) << 12) |
| 95 | #define MLCTIMEREG_RD_LOW(n) (((n) & 0x0F) << 8) |
| 96 | #define MLCTIMEREG_WR_HIGH(n) (((n) & 0x0F) << 4) |
| 97 | #define MLCTIMEREG_WR_LOW(n) (((n) & 0x0F) << 0) |
| 98 | |
| 99 | /********************************************************************** |
| 100 | * MLC_IRQ_MR and MLC_IRQ_SR bit definitions |
| 101 | **********************************************************************/ |
| 102 | #define MLCIRQ_NAND_READY (1 << 5) |
| 103 | #define MLCIRQ_CONTROLLER_READY (1 << 4) |
| 104 | #define MLCIRQ_DECODE_FAILURE (1 << 3) |
| 105 | #define MLCIRQ_DECODE_ERROR (1 << 2) |
| 106 | #define MLCIRQ_ECC_READY (1 << 1) |
| 107 | #define MLCIRQ_WRPROT_FAULT (1 << 0) |
| 108 | |
| 109 | /********************************************************************** |
| 110 | * MLC_LOCK_PR bit definitions |
| 111 | **********************************************************************/ |
| 112 | #define MLCLOCKPR_MAGIC 0xA25E |
| 113 | |
| 114 | /********************************************************************** |
| 115 | * MLC_ISR bit definitions |
| 116 | **********************************************************************/ |
| 117 | #define MLCISR_DECODER_FAILURE (1 << 6) |
| 118 | #define MLCISR_ERRORS ((1 << 4) | (1 << 5)) |
| 119 | #define MLCISR_ERRORS_DETECTED (1 << 3) |
| 120 | #define MLCISR_ECC_READY (1 << 2) |
| 121 | #define MLCISR_CONTROLLER_READY (1 << 1) |
| 122 | #define MLCISR_NAND_READY (1 << 0) |
| 123 | |
| 124 | /********************************************************************** |
| 125 | * MLC_CEH bit definitions |
| 126 | **********************************************************************/ |
| 127 | #define MLCCEH_NORMAL (1 << 0) |
| 128 | |
| 129 | struct lpc32xx_nand_cfg_mlc { |
| 130 | uint32_t tcea_delay; |
| 131 | uint32_t busy_delay; |
| 132 | uint32_t nand_ta; |
| 133 | uint32_t rd_high; |
| 134 | uint32_t rd_low; |
| 135 | uint32_t wr_high; |
| 136 | uint32_t wr_low; |
| 137 | int wp_gpio; |
| 138 | struct mtd_partition *parts; |
| 139 | unsigned num_parts; |
| 140 | }; |
| 141 | |
| 142 | static struct nand_ecclayout lpc32xx_nand_oob = { |
| 143 | .eccbytes = 40, |
| 144 | .eccpos = { 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, |
| 145 | 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, |
| 146 | 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, |
| 147 | 54, 55, 56, 57, 58, 59, 60, 61, 62, 63 }, |
| 148 | .oobfree = { |
| 149 | { .offset = 0, |
| 150 | .length = 6, }, |
| 151 | { .offset = 16, |
| 152 | .length = 6, }, |
| 153 | { .offset = 32, |
| 154 | .length = 6, }, |
| 155 | { .offset = 48, |
| 156 | .length = 6, }, |
| 157 | }, |
| 158 | }; |
| 159 | |
| 160 | static struct nand_bbt_descr lpc32xx_nand_bbt = { |
| 161 | .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB | |
| 162 | NAND_BBT_WRITE, |
| 163 | .pages = { 524224, 0, 0, 0, 0, 0, 0, 0 }, |
| 164 | }; |
| 165 | |
| 166 | static struct nand_bbt_descr lpc32xx_nand_bbt_mirror = { |
| 167 | .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB | |
| 168 | NAND_BBT_WRITE, |
| 169 | .pages = { 524160, 0, 0, 0, 0, 0, 0, 0 }, |
| 170 | }; |
| 171 | |
| 172 | struct lpc32xx_nand_host { |
| 173 | struct nand_chip nand_chip; |
| 174 | struct lpc32xx_mlc_platform_data *pdata; |
| 175 | struct clk *clk; |
| 176 | struct mtd_info mtd; |
| 177 | void __iomem *io_base; |
| 178 | int irq; |
| 179 | struct lpc32xx_nand_cfg_mlc *ncfg; |
| 180 | struct completion comp_nand; |
| 181 | struct completion comp_controller; |
| 182 | uint32_t llptr; |
| 183 | /* |
| 184 | * Physical addresses of ECC buffer, DMA data buffers, OOB data buffer |
| 185 | */ |
| 186 | dma_addr_t oob_buf_phy; |
| 187 | /* |
| 188 | * Virtual addresses of ECC buffer, DMA data buffers, OOB data buffer |
| 189 | */ |
| 190 | uint8_t *oob_buf; |
| 191 | /* Physical address of DMA base address */ |
| 192 | dma_addr_t io_base_phy; |
| 193 | |
| 194 | struct completion comp_dma; |
| 195 | struct dma_chan *dma_chan; |
| 196 | struct dma_slave_config dma_slave_config; |
| 197 | struct scatterlist sgl; |
| 198 | uint8_t *dma_buf; |
| 199 | uint8_t *dummy_buf; |
| 200 | int mlcsubpages; /* number of 512bytes-subpages */ |
| 201 | }; |
| 202 | |
| 203 | /* |
| 204 | * Activate/Deactivate DMA Operation: |
| 205 | * |
| 206 | * Using the PL080 DMA Controller for transferring the 512 byte subpages |
| 207 | * instead of doing readl() / writel() in a loop slows it down significantly. |
| 208 | * Measurements via getnstimeofday() upon 512 byte subpage reads reveal: |
| 209 | * |
| 210 | * - readl() of 128 x 32 bits in a loop: ~20us |
| 211 | * - DMA read of 512 bytes (32 bit, 4...128 words bursts): ~60us |
| 212 | * - DMA read of 512 bytes (32 bit, no bursts): ~100us |
| 213 | * |
| 214 | * This applies to the transfer itself. In the DMA case: only the |
| 215 | * wait_for_completion() (DMA setup _not_ included). |
| 216 | * |
| 217 | * Note that the 512 bytes subpage transfer is done directly from/to a |
| 218 | * FIFO/buffer inside the NAND controller. Most of the time (~400-800us for a |
| 219 | * 2048 bytes page) is spent waiting for the NAND IRQ, anyway. (The NAND |
| 220 | * controller transferring data between its internal buffer to/from the NAND |
| 221 | * chip.) |
| 222 | * |
| 223 | * Therefore, using the PL080 DMA is disabled by default, for now. |
| 224 | * |
| 225 | */ |
| 226 | static int use_dma; |
| 227 | |
| 228 | static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host) |
| 229 | { |
| 230 | uint32_t clkrate, tmp; |
| 231 | |
| 232 | /* Reset MLC controller */ |
| 233 | writel(MLCCMD_RESET, MLC_CMD(host->io_base)); |
| 234 | udelay(1000); |
| 235 | |
| 236 | /* Get base clock for MLC block */ |
| 237 | clkrate = clk_get_rate(host->clk); |
| 238 | if (clkrate == 0) |
| 239 | clkrate = 104000000; |
| 240 | |
| 241 | /* Unlock MLC_ICR |
| 242 | * (among others, will be locked again automatically) */ |
| 243 | writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base)); |
| 244 | |
| 245 | /* Configure MLC Controller: Large Block, 5 Byte Address */ |
| 246 | tmp = MLCICR_LARGEBLOCK | MLCICR_LONGADDR; |
| 247 | writel(tmp, MLC_ICR(host->io_base)); |
| 248 | |
| 249 | /* Unlock MLC_TIME_REG |
| 250 | * (among others, will be locked again automatically) */ |
| 251 | writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base)); |
| 252 | |
| 253 | /* Compute clock setup values, see LPC and NAND manual */ |
| 254 | tmp = 0; |
| 255 | tmp |= MLCTIMEREG_TCEA_DELAY(clkrate / host->ncfg->tcea_delay + 1); |
| 256 | tmp |= MLCTIMEREG_BUSY_DELAY(clkrate / host->ncfg->busy_delay + 1); |
| 257 | tmp |= MLCTIMEREG_NAND_TA(clkrate / host->ncfg->nand_ta + 1); |
| 258 | tmp |= MLCTIMEREG_RD_HIGH(clkrate / host->ncfg->rd_high + 1); |
| 259 | tmp |= MLCTIMEREG_RD_LOW(clkrate / host->ncfg->rd_low); |
| 260 | tmp |= MLCTIMEREG_WR_HIGH(clkrate / host->ncfg->wr_high + 1); |
| 261 | tmp |= MLCTIMEREG_WR_LOW(clkrate / host->ncfg->wr_low); |
| 262 | writel(tmp, MLC_TIME_REG(host->io_base)); |
| 263 | |
| 264 | /* Enable IRQ for CONTROLLER_READY and NAND_READY */ |
| 265 | writeb(MLCIRQ_CONTROLLER_READY | MLCIRQ_NAND_READY, |
| 266 | MLC_IRQ_MR(host->io_base)); |
| 267 | |
| 268 | /* Normal nCE operation: nCE controlled by controller */ |
| 269 | writel(MLCCEH_NORMAL, MLC_CEH(host->io_base)); |
| 270 | } |
| 271 | |
| 272 | /* |
| 273 | * Hardware specific access to control lines |
| 274 | */ |
| 275 | static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, |
| 276 | unsigned int ctrl) |
| 277 | { |
| 278 | struct nand_chip *nand_chip = mtd->priv; |
| 279 | struct lpc32xx_nand_host *host = nand_chip->priv; |
| 280 | |
| 281 | if (cmd != NAND_CMD_NONE) { |
| 282 | if (ctrl & NAND_CLE) |
| 283 | writel(cmd, MLC_CMD(host->io_base)); |
| 284 | else |
| 285 | writel(cmd, MLC_ADDR(host->io_base)); |
| 286 | } |
| 287 | } |
| 288 | |
| 289 | /* |
| 290 | * Read Device Ready (NAND device _and_ controller ready) |
| 291 | */ |
| 292 | static int lpc32xx_nand_device_ready(struct mtd_info *mtd) |
| 293 | { |
| 294 | struct nand_chip *nand_chip = mtd->priv; |
| 295 | struct lpc32xx_nand_host *host = nand_chip->priv; |
| 296 | |
| 297 | if ((readb(MLC_ISR(host->io_base)) & |
| 298 | (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) == |
| 299 | (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) |
| 300 | return 1; |
| 301 | |
| 302 | return 0; |
| 303 | } |
| 304 | |
| 305 | static irqreturn_t lpc3xxx_nand_irq(int irq, struct lpc32xx_nand_host *host) |
| 306 | { |
| 307 | uint8_t sr; |
| 308 | |
| 309 | /* Clear interrupt flag by reading status */ |
| 310 | sr = readb(MLC_IRQ_SR(host->io_base)); |
| 311 | if (sr & MLCIRQ_NAND_READY) |
| 312 | complete(&host->comp_nand); |
| 313 | if (sr & MLCIRQ_CONTROLLER_READY) |
| 314 | complete(&host->comp_controller); |
| 315 | |
| 316 | return IRQ_HANDLED; |
| 317 | } |
| 318 | |
| 319 | static int lpc32xx_waitfunc_nand(struct mtd_info *mtd, struct nand_chip *chip) |
| 320 | { |
| 321 | struct lpc32xx_nand_host *host = chip->priv; |
| 322 | |
| 323 | if (readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY) |
| 324 | goto exit; |
| 325 | |
| 326 | wait_for_completion(&host->comp_nand); |
| 327 | |
| 328 | while (!(readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)) { |
| 329 | /* Seems to be delayed sometimes by controller */ |
| 330 | dev_dbg(&mtd->dev, "Warning: NAND not ready.\n"); |
| 331 | cpu_relax(); |
| 332 | } |
| 333 | |
| 334 | exit: |
| 335 | return NAND_STATUS_READY; |
| 336 | } |
| 337 | |
| 338 | static int lpc32xx_waitfunc_controller(struct mtd_info *mtd, |
| 339 | struct nand_chip *chip) |
| 340 | { |
| 341 | struct lpc32xx_nand_host *host = chip->priv; |
| 342 | |
| 343 | if (readb(MLC_ISR(host->io_base)) & MLCISR_CONTROLLER_READY) |
| 344 | goto exit; |
| 345 | |
| 346 | wait_for_completion(&host->comp_controller); |
| 347 | |
| 348 | while (!(readb(MLC_ISR(host->io_base)) & |
| 349 | MLCISR_CONTROLLER_READY)) { |
| 350 | dev_dbg(&mtd->dev, "Warning: Controller not ready.\n"); |
| 351 | cpu_relax(); |
| 352 | } |
| 353 | |
| 354 | exit: |
| 355 | return NAND_STATUS_READY; |
| 356 | } |
| 357 | |
| 358 | static int lpc32xx_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) |
| 359 | { |
| 360 | lpc32xx_waitfunc_nand(mtd, chip); |
| 361 | lpc32xx_waitfunc_controller(mtd, chip); |
| 362 | |
| 363 | return NAND_STATUS_READY; |
| 364 | } |
| 365 | |
| 366 | /* |
| 367 | * Enable NAND write protect |
| 368 | */ |
| 369 | static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host) |
| 370 | { |
| 371 | if (gpio_is_valid(host->ncfg->wp_gpio)) |
| 372 | gpio_set_value(host->ncfg->wp_gpio, 0); |
| 373 | } |
| 374 | |
| 375 | /* |
| 376 | * Disable NAND write protect |
| 377 | */ |
| 378 | static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host) |
| 379 | { |
| 380 | if (gpio_is_valid(host->ncfg->wp_gpio)) |
| 381 | gpio_set_value(host->ncfg->wp_gpio, 1); |
| 382 | } |
| 383 | |
| 384 | static void lpc32xx_dma_complete_func(void *completion) |
| 385 | { |
| 386 | complete(completion); |
| 387 | } |
| 388 | |
| 389 | static int lpc32xx_xmit_dma(struct mtd_info *mtd, void *mem, int len, |
| 390 | enum dma_transfer_direction dir) |
| 391 | { |
| 392 | struct nand_chip *chip = mtd->priv; |
| 393 | struct lpc32xx_nand_host *host = chip->priv; |
| 394 | struct dma_async_tx_descriptor *desc; |
| 395 | int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; |
| 396 | int res; |
| 397 | |
| 398 | sg_init_one(&host->sgl, mem, len); |
| 399 | |
| 400 | res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1, |
| 401 | DMA_BIDIRECTIONAL); |
| 402 | if (res != 1) { |
| 403 | dev_err(mtd->dev.parent, "Failed to map sg list\n"); |
| 404 | return -ENXIO; |
| 405 | } |
| 406 | desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir, |
| 407 | flags); |
| 408 | if (!desc) { |
| 409 | dev_err(mtd->dev.parent, "Failed to prepare slave sg\n"); |
| 410 | goto out1; |
| 411 | } |
| 412 | |
| 413 | init_completion(&host->comp_dma); |
| 414 | desc->callback = lpc32xx_dma_complete_func; |
| 415 | desc->callback_param = &host->comp_dma; |
| 416 | |
| 417 | dmaengine_submit(desc); |
| 418 | dma_async_issue_pending(host->dma_chan); |
| 419 | |
| 420 | wait_for_completion_timeout(&host->comp_dma, msecs_to_jiffies(1000)); |
| 421 | |
| 422 | dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, |
| 423 | DMA_BIDIRECTIONAL); |
| 424 | return 0; |
| 425 | out1: |
| 426 | dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, |
| 427 | DMA_BIDIRECTIONAL); |
| 428 | return -ENXIO; |
| 429 | } |
| 430 | |
| 431 | static int lpc32xx_read_page(struct mtd_info *mtd, struct nand_chip *chip, |
| 432 | uint8_t *buf, int oob_required, int page) |
| 433 | { |
| 434 | struct lpc32xx_nand_host *host = chip->priv; |
| 435 | int i, j; |
| 436 | uint8_t *oobbuf = chip->oob_poi; |
| 437 | uint32_t mlc_isr; |
| 438 | int res; |
| 439 | uint8_t *dma_buf; |
| 440 | bool dma_mapped; |
| 441 | |
| 442 | if ((void *)buf <= high_memory) { |
| 443 | dma_buf = buf; |
| 444 | dma_mapped = true; |
| 445 | } else { |
| 446 | dma_buf = host->dma_buf; |
| 447 | dma_mapped = false; |
| 448 | } |
| 449 | |
| 450 | /* Writing Command and Address */ |
| 451 | chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); |
| 452 | |
| 453 | /* For all sub-pages */ |
| 454 | for (i = 0; i < host->mlcsubpages; i++) { |
| 455 | /* Start Auto Decode Command */ |
| 456 | writeb(0x00, MLC_ECC_AUTO_DEC_REG(host->io_base)); |
| 457 | |
| 458 | /* Wait for Controller Ready */ |
| 459 | lpc32xx_waitfunc_controller(mtd, chip); |
| 460 | |
| 461 | /* Check ECC Error status */ |
| 462 | mlc_isr = readl(MLC_ISR(host->io_base)); |
| 463 | if (mlc_isr & MLCISR_DECODER_FAILURE) { |
| 464 | mtd->ecc_stats.failed++; |
| 465 | dev_warn(&mtd->dev, "%s: DECODER_FAILURE\n", __func__); |
| 466 | } else if (mlc_isr & MLCISR_ERRORS_DETECTED) { |
| 467 | mtd->ecc_stats.corrected += ((mlc_isr >> 4) & 0x3) + 1; |
| 468 | } |
| 469 | |
| 470 | /* Read 512 + 16 Bytes */ |
| 471 | if (use_dma) { |
| 472 | res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512, |
| 473 | DMA_DEV_TO_MEM); |
| 474 | if (res) |
| 475 | return res; |
| 476 | } else { |
| 477 | for (j = 0; j < (512 >> 2); j++) { |
| 478 | *((uint32_t *)(buf)) = |
| 479 | readl(MLC_BUFF(host->io_base)); |
| 480 | buf += 4; |
| 481 | } |
| 482 | } |
| 483 | for (j = 0; j < (16 >> 2); j++) { |
| 484 | *((uint32_t *)(oobbuf)) = |
| 485 | readl(MLC_BUFF(host->io_base)); |
| 486 | oobbuf += 4; |
| 487 | } |
| 488 | } |
| 489 | |
| 490 | if (use_dma && !dma_mapped) |
| 491 | memcpy(buf, dma_buf, mtd->writesize); |
| 492 | |
| 493 | return 0; |
| 494 | } |
| 495 | |
| 496 | static int lpc32xx_write_page_lowlevel(struct mtd_info *mtd, |
| 497 | struct nand_chip *chip, |
| 498 | const uint8_t *buf, int oob_required, |
| 499 | int page) |
| 500 | { |
| 501 | struct lpc32xx_nand_host *host = chip->priv; |
| 502 | const uint8_t *oobbuf = chip->oob_poi; |
| 503 | uint8_t *dma_buf = (uint8_t *)buf; |
| 504 | int res; |
| 505 | int i, j; |
| 506 | |
| 507 | if (use_dma && (void *)buf >= high_memory) { |
| 508 | dma_buf = host->dma_buf; |
| 509 | memcpy(dma_buf, buf, mtd->writesize); |
| 510 | } |
| 511 | |
| 512 | for (i = 0; i < host->mlcsubpages; i++) { |
| 513 | /* Start Encode */ |
| 514 | writeb(0x00, MLC_ECC_ENC_REG(host->io_base)); |
| 515 | |
| 516 | /* Write 512 + 6 Bytes to Buffer */ |
| 517 | if (use_dma) { |
| 518 | res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512, |
| 519 | DMA_MEM_TO_DEV); |
| 520 | if (res) |
| 521 | return res; |
| 522 | } else { |
| 523 | for (j = 0; j < (512 >> 2); j++) { |
| 524 | writel(*((uint32_t *)(buf)), |
| 525 | MLC_BUFF(host->io_base)); |
| 526 | buf += 4; |
| 527 | } |
| 528 | } |
| 529 | writel(*((uint32_t *)(oobbuf)), MLC_BUFF(host->io_base)); |
| 530 | oobbuf += 4; |
| 531 | writew(*((uint16_t *)(oobbuf)), MLC_BUFF(host->io_base)); |
| 532 | oobbuf += 12; |
| 533 | |
| 534 | /* Auto Encode w/ Bit 8 = 0 (see LPC MLC Controller manual) */ |
| 535 | writeb(0x00, MLC_ECC_AUTO_ENC_REG(host->io_base)); |
| 536 | |
| 537 | /* Wait for Controller Ready */ |
| 538 | lpc32xx_waitfunc_controller(mtd, chip); |
| 539 | } |
| 540 | return 0; |
| 541 | } |
| 542 | |
| 543 | static int lpc32xx_read_oob(struct mtd_info *mtd, struct nand_chip *chip, |
| 544 | int page) |
| 545 | { |
| 546 | struct lpc32xx_nand_host *host = chip->priv; |
| 547 | |
| 548 | /* Read whole page - necessary with MLC controller! */ |
| 549 | lpc32xx_read_page(mtd, chip, host->dummy_buf, 1, page); |
| 550 | |
| 551 | return 0; |
| 552 | } |
| 553 | |
| 554 | static int lpc32xx_write_oob(struct mtd_info *mtd, struct nand_chip *chip, |
| 555 | int page) |
| 556 | { |
| 557 | /* None, write_oob conflicts with the automatic LPC MLC ECC decoder! */ |
| 558 | return 0; |
| 559 | } |
| 560 | |
| 561 | /* Prepares MLC for transfers with H/W ECC enabled: always enabled anyway */ |
| 562 | static void lpc32xx_ecc_enable(struct mtd_info *mtd, int mode) |
| 563 | { |
| 564 | /* Always enabled! */ |
| 565 | } |
| 566 | |
| 567 | static int lpc32xx_dma_setup(struct lpc32xx_nand_host *host) |
| 568 | { |
| 569 | struct mtd_info *mtd = &host->mtd; |
| 570 | dma_cap_mask_t mask; |
| 571 | |
| 572 | if (!host->pdata || !host->pdata->dma_filter) { |
| 573 | dev_err(mtd->dev.parent, "no DMA platform data\n"); |
| 574 | return -ENOENT; |
| 575 | } |
| 576 | |
| 577 | dma_cap_zero(mask); |
| 578 | dma_cap_set(DMA_SLAVE, mask); |
| 579 | host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter, |
| 580 | "nand-mlc"); |
| 581 | if (!host->dma_chan) { |
| 582 | dev_err(mtd->dev.parent, "Failed to request DMA channel\n"); |
| 583 | return -EBUSY; |
| 584 | } |
| 585 | |
| 586 | /* |
| 587 | * Set direction to a sensible value even if the dmaengine driver |
| 588 | * should ignore it. With the default (DMA_MEM_TO_MEM), the amba-pl08x |
| 589 | * driver criticizes it as "alien transfer direction". |
| 590 | */ |
| 591 | host->dma_slave_config.direction = DMA_DEV_TO_MEM; |
| 592 | host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| 593 | host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| 594 | host->dma_slave_config.src_maxburst = 128; |
| 595 | host->dma_slave_config.dst_maxburst = 128; |
| 596 | /* DMA controller does flow control: */ |
| 597 | host->dma_slave_config.device_fc = false; |
| 598 | host->dma_slave_config.src_addr = MLC_BUFF(host->io_base_phy); |
| 599 | host->dma_slave_config.dst_addr = MLC_BUFF(host->io_base_phy); |
| 600 | if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) { |
| 601 | dev_err(mtd->dev.parent, "Failed to setup DMA slave\n"); |
| 602 | goto out1; |
| 603 | } |
| 604 | |
| 605 | return 0; |
| 606 | out1: |
| 607 | dma_release_channel(host->dma_chan); |
| 608 | return -ENXIO; |
| 609 | } |
| 610 | |
| 611 | static struct lpc32xx_nand_cfg_mlc *lpc32xx_parse_dt(struct device *dev) |
| 612 | { |
| 613 | struct lpc32xx_nand_cfg_mlc *ncfg; |
| 614 | struct device_node *np = dev->of_node; |
| 615 | |
| 616 | ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL); |
| 617 | if (!ncfg) |
| 618 | return NULL; |
| 619 | |
| 620 | of_property_read_u32(np, "nxp,tcea-delay", &ncfg->tcea_delay); |
| 621 | of_property_read_u32(np, "nxp,busy-delay", &ncfg->busy_delay); |
| 622 | of_property_read_u32(np, "nxp,nand-ta", &ncfg->nand_ta); |
| 623 | of_property_read_u32(np, "nxp,rd-high", &ncfg->rd_high); |
| 624 | of_property_read_u32(np, "nxp,rd-low", &ncfg->rd_low); |
| 625 | of_property_read_u32(np, "nxp,wr-high", &ncfg->wr_high); |
| 626 | of_property_read_u32(np, "nxp,wr-low", &ncfg->wr_low); |
| 627 | |
| 628 | if (!ncfg->tcea_delay || !ncfg->busy_delay || !ncfg->nand_ta || |
| 629 | !ncfg->rd_high || !ncfg->rd_low || !ncfg->wr_high || |
| 630 | !ncfg->wr_low) { |
| 631 | dev_err(dev, "chip parameters not specified correctly\n"); |
| 632 | return NULL; |
| 633 | } |
| 634 | |
| 635 | ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0); |
| 636 | |
| 637 | return ncfg; |
| 638 | } |
| 639 | |
| 640 | /* |
| 641 | * Probe for NAND controller |
| 642 | */ |
| 643 | static int lpc32xx_nand_probe(struct platform_device *pdev) |
| 644 | { |
| 645 | struct lpc32xx_nand_host *host; |
| 646 | struct mtd_info *mtd; |
| 647 | struct nand_chip *nand_chip; |
| 648 | struct resource *rc; |
| 649 | int res; |
| 650 | struct mtd_part_parser_data ppdata = {}; |
| 651 | |
| 652 | /* Allocate memory for the device structure (and zero it) */ |
| 653 | host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); |
| 654 | if (!host) |
| 655 | return -ENOMEM; |
| 656 | |
| 657 | rc = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| 658 | host->io_base = devm_ioremap_resource(&pdev->dev, rc); |
| 659 | if (IS_ERR(host->io_base)) |
| 660 | return PTR_ERR(host->io_base); |
| 661 | |
| 662 | host->io_base_phy = rc->start; |
| 663 | |
| 664 | mtd = &host->mtd; |
| 665 | nand_chip = &host->nand_chip; |
| 666 | if (pdev->dev.of_node) |
| 667 | host->ncfg = lpc32xx_parse_dt(&pdev->dev); |
| 668 | if (!host->ncfg) { |
| 669 | dev_err(&pdev->dev, |
| 670 | "Missing or bad NAND config from device tree\n"); |
| 671 | return -ENOENT; |
| 672 | } |
| 673 | if (host->ncfg->wp_gpio == -EPROBE_DEFER) |
| 674 | return -EPROBE_DEFER; |
| 675 | if (gpio_is_valid(host->ncfg->wp_gpio) && |
| 676 | gpio_request(host->ncfg->wp_gpio, "NAND WP")) { |
| 677 | dev_err(&pdev->dev, "GPIO not available\n"); |
| 678 | return -EBUSY; |
| 679 | } |
| 680 | lpc32xx_wp_disable(host); |
| 681 | |
| 682 | host->pdata = dev_get_platdata(&pdev->dev); |
| 683 | |
| 684 | nand_chip->priv = host; /* link the private data structures */ |
| 685 | mtd->priv = nand_chip; |
| 686 | mtd->dev.parent = &pdev->dev; |
| 687 | |
| 688 | /* Get NAND clock */ |
| 689 | host->clk = clk_get(&pdev->dev, NULL); |
| 690 | if (IS_ERR(host->clk)) { |
| 691 | dev_err(&pdev->dev, "Clock initialization failure\n"); |
| 692 | res = -ENOENT; |
| 693 | goto err_exit1; |
| 694 | } |
| 695 | clk_prepare_enable(host->clk); |
| 696 | |
| 697 | nand_chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl; |
| 698 | nand_chip->dev_ready = lpc32xx_nand_device_ready; |
| 699 | nand_chip->chip_delay = 25; /* us */ |
| 700 | nand_chip->IO_ADDR_R = MLC_DATA(host->io_base); |
| 701 | nand_chip->IO_ADDR_W = MLC_DATA(host->io_base); |
| 702 | |
| 703 | /* Init NAND controller */ |
| 704 | lpc32xx_nand_setup(host); |
| 705 | |
| 706 | platform_set_drvdata(pdev, host); |
| 707 | |
| 708 | /* Initialize function pointers */ |
| 709 | nand_chip->ecc.hwctl = lpc32xx_ecc_enable; |
| 710 | nand_chip->ecc.read_page_raw = lpc32xx_read_page; |
| 711 | nand_chip->ecc.read_page = lpc32xx_read_page; |
| 712 | nand_chip->ecc.write_page_raw = lpc32xx_write_page_lowlevel; |
| 713 | nand_chip->ecc.write_page = lpc32xx_write_page_lowlevel; |
| 714 | nand_chip->ecc.write_oob = lpc32xx_write_oob; |
| 715 | nand_chip->ecc.read_oob = lpc32xx_read_oob; |
| 716 | nand_chip->ecc.strength = 4; |
| 717 | nand_chip->waitfunc = lpc32xx_waitfunc; |
| 718 | |
| 719 | nand_chip->options = NAND_NO_SUBPAGE_WRITE; |
| 720 | nand_chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB; |
| 721 | nand_chip->bbt_td = &lpc32xx_nand_bbt; |
| 722 | nand_chip->bbt_md = &lpc32xx_nand_bbt_mirror; |
| 723 | |
| 724 | if (use_dma) { |
| 725 | res = lpc32xx_dma_setup(host); |
| 726 | if (res) { |
| 727 | res = -EIO; |
| 728 | goto err_exit2; |
| 729 | } |
| 730 | } |
| 731 | |
| 732 | /* |
| 733 | * Scan to find existance of the device and |
| 734 | * Get the type of NAND device SMALL block or LARGE block |
| 735 | */ |
| 736 | if (nand_scan_ident(mtd, 1, NULL)) { |
| 737 | res = -ENXIO; |
| 738 | goto err_exit3; |
| 739 | } |
| 740 | |
| 741 | host->dma_buf = devm_kzalloc(&pdev->dev, mtd->writesize, GFP_KERNEL); |
| 742 | if (!host->dma_buf) { |
| 743 | res = -ENOMEM; |
| 744 | goto err_exit3; |
| 745 | } |
| 746 | |
| 747 | host->dummy_buf = devm_kzalloc(&pdev->dev, mtd->writesize, GFP_KERNEL); |
| 748 | if (!host->dummy_buf) { |
| 749 | res = -ENOMEM; |
| 750 | goto err_exit3; |
| 751 | } |
| 752 | |
| 753 | nand_chip->ecc.mode = NAND_ECC_HW; |
| 754 | nand_chip->ecc.size = mtd->writesize; |
| 755 | nand_chip->ecc.layout = &lpc32xx_nand_oob; |
| 756 | host->mlcsubpages = mtd->writesize / 512; |
| 757 | |
| 758 | /* initially clear interrupt status */ |
| 759 | readb(MLC_IRQ_SR(host->io_base)); |
| 760 | |
| 761 | init_completion(&host->comp_nand); |
| 762 | init_completion(&host->comp_controller); |
| 763 | |
| 764 | host->irq = platform_get_irq(pdev, 0); |
| 765 | if ((host->irq < 0) || (host->irq >= NR_IRQS)) { |
| 766 | dev_err(&pdev->dev, "failed to get platform irq\n"); |
| 767 | res = -EINVAL; |
| 768 | goto err_exit3; |
| 769 | } |
| 770 | |
| 771 | if (request_irq(host->irq, (irq_handler_t)&lpc3xxx_nand_irq, |
| 772 | IRQF_TRIGGER_HIGH, DRV_NAME, host)) { |
| 773 | dev_err(&pdev->dev, "Error requesting NAND IRQ\n"); |
| 774 | res = -ENXIO; |
| 775 | goto err_exit3; |
| 776 | } |
| 777 | |
| 778 | /* |
| 779 | * Fills out all the uninitialized function pointers with the defaults |
| 780 | * And scans for a bad block table if appropriate. |
| 781 | */ |
| 782 | if (nand_scan_tail(mtd)) { |
| 783 | res = -ENXIO; |
| 784 | goto err_exit4; |
| 785 | } |
| 786 | |
| 787 | mtd->name = DRV_NAME; |
| 788 | |
| 789 | ppdata.of_node = pdev->dev.of_node; |
| 790 | res = mtd_device_parse_register(mtd, NULL, &ppdata, host->ncfg->parts, |
| 791 | host->ncfg->num_parts); |
| 792 | if (!res) |
| 793 | return res; |
| 794 | |
| 795 | nand_release(mtd); |
| 796 | |
| 797 | err_exit4: |
| 798 | free_irq(host->irq, host); |
| 799 | err_exit3: |
| 800 | if (use_dma) |
| 801 | dma_release_channel(host->dma_chan); |
| 802 | err_exit2: |
| 803 | clk_disable_unprepare(host->clk); |
| 804 | clk_put(host->clk); |
| 805 | err_exit1: |
| 806 | lpc32xx_wp_enable(host); |
| 807 | gpio_free(host->ncfg->wp_gpio); |
| 808 | |
| 809 | return res; |
| 810 | } |
| 811 | |
| 812 | /* |
| 813 | * Remove NAND device |
| 814 | */ |
| 815 | static int lpc32xx_nand_remove(struct platform_device *pdev) |
| 816 | { |
| 817 | struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); |
| 818 | struct mtd_info *mtd = &host->mtd; |
| 819 | |
| 820 | nand_release(mtd); |
| 821 | free_irq(host->irq, host); |
| 822 | if (use_dma) |
| 823 | dma_release_channel(host->dma_chan); |
| 824 | |
| 825 | clk_disable_unprepare(host->clk); |
| 826 | clk_put(host->clk); |
| 827 | |
| 828 | lpc32xx_wp_enable(host); |
| 829 | gpio_free(host->ncfg->wp_gpio); |
| 830 | |
| 831 | return 0; |
| 832 | } |
| 833 | |
| 834 | #ifdef CONFIG_PM |
| 835 | static int lpc32xx_nand_resume(struct platform_device *pdev) |
| 836 | { |
| 837 | struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); |
| 838 | |
| 839 | /* Re-enable NAND clock */ |
| 840 | clk_prepare_enable(host->clk); |
| 841 | |
| 842 | /* Fresh init of NAND controller */ |
| 843 | lpc32xx_nand_setup(host); |
| 844 | |
| 845 | /* Disable write protect */ |
| 846 | lpc32xx_wp_disable(host); |
| 847 | |
| 848 | return 0; |
| 849 | } |
| 850 | |
| 851 | static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm) |
| 852 | { |
| 853 | struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); |
| 854 | |
| 855 | /* Enable write protect for safety */ |
| 856 | lpc32xx_wp_enable(host); |
| 857 | |
| 858 | /* Disable clock */ |
| 859 | clk_disable_unprepare(host->clk); |
| 860 | return 0; |
| 861 | } |
| 862 | |
| 863 | #else |
| 864 | #define lpc32xx_nand_resume NULL |
| 865 | #define lpc32xx_nand_suspend NULL |
| 866 | #endif |
| 867 | |
| 868 | static const struct of_device_id lpc32xx_nand_match[] = { |
| 869 | { .compatible = "nxp,lpc3220-mlc" }, |
| 870 | { /* sentinel */ }, |
| 871 | }; |
| 872 | MODULE_DEVICE_TABLE(of, lpc32xx_nand_match); |
| 873 | |
| 874 | static struct platform_driver lpc32xx_nand_driver = { |
| 875 | .probe = lpc32xx_nand_probe, |
| 876 | .remove = lpc32xx_nand_remove, |
| 877 | .resume = lpc32xx_nand_resume, |
| 878 | .suspend = lpc32xx_nand_suspend, |
| 879 | .driver = { |
| 880 | .name = DRV_NAME, |
| 881 | .of_match_table = lpc32xx_nand_match, |
| 882 | }, |
| 883 | }; |
| 884 | |
| 885 | module_platform_driver(lpc32xx_nand_driver); |
| 886 | |
| 887 | MODULE_LICENSE("GPL"); |
| 888 | MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>"); |
| 889 | MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX MLC controller"); |