blob: 4f3d4eb17da0de7989a8a0f88c147442388bb1be [file] [log] [blame]
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001/*
2 * NXP LPC32XX NAND SLC driver
3 *
4 * Authors:
5 * Kevin Wells <kevin.wells@nxp.com>
6 * Roland Stigge <stigge@antcom.de>
7 *
8 * Copyright © 2011 NXP Semiconductors
9 * Copyright © 2012 Roland Stigge
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 */
21
22#include <linux/slab.h>
23#include <linux/module.h>
24#include <linux/platform_device.h>
25#include <linux/mtd/mtd.h>
26#include <linux/mtd/nand.h>
27#include <linux/mtd/partitions.h>
28#include <linux/clk.h>
29#include <linux/err.h>
30#include <linux/delay.h>
31#include <linux/io.h>
32#include <linux/mm.h>
33#include <linux/dma-mapping.h>
34#include <linux/dmaengine.h>
35#include <linux/mtd/nand_ecc.h>
36#include <linux/gpio.h>
37#include <linux/of.h>
38#include <linux/of_mtd.h>
39#include <linux/of_gpio.h>
40#include <linux/mtd/lpc32xx_slc.h>
41
42#define LPC32XX_MODNAME "lpc32xx-nand"
43
44/**********************************************************************
45* SLC NAND controller register offsets
46**********************************************************************/
47
48#define SLC_DATA(x) (x + 0x000)
49#define SLC_ADDR(x) (x + 0x004)
50#define SLC_CMD(x) (x + 0x008)
51#define SLC_STOP(x) (x + 0x00C)
52#define SLC_CTRL(x) (x + 0x010)
53#define SLC_CFG(x) (x + 0x014)
54#define SLC_STAT(x) (x + 0x018)
55#define SLC_INT_STAT(x) (x + 0x01C)
56#define SLC_IEN(x) (x + 0x020)
57#define SLC_ISR(x) (x + 0x024)
58#define SLC_ICR(x) (x + 0x028)
59#define SLC_TAC(x) (x + 0x02C)
60#define SLC_TC(x) (x + 0x030)
61#define SLC_ECC(x) (x + 0x034)
62#define SLC_DMA_DATA(x) (x + 0x038)
63
64/**********************************************************************
65* slc_ctrl register definitions
66**********************************************************************/
67#define SLCCTRL_SW_RESET (1 << 2) /* Reset the NAND controller bit */
68#define SLCCTRL_ECC_CLEAR (1 << 1) /* Reset ECC bit */
69#define SLCCTRL_DMA_START (1 << 0) /* Start DMA channel bit */
70
71/**********************************************************************
72* slc_cfg register definitions
73**********************************************************************/
74#define SLCCFG_CE_LOW (1 << 5) /* Force CE low bit */
75#define SLCCFG_DMA_ECC (1 << 4) /* Enable DMA ECC bit */
76#define SLCCFG_ECC_EN (1 << 3) /* ECC enable bit */
77#define SLCCFG_DMA_BURST (1 << 2) /* DMA burst bit */
78#define SLCCFG_DMA_DIR (1 << 1) /* DMA write(0)/read(1) bit */
79#define SLCCFG_WIDTH (1 << 0) /* External device width, 0=8bit */
80
81/**********************************************************************
82* slc_stat register definitions
83**********************************************************************/
84#define SLCSTAT_DMA_FIFO (1 << 2) /* DMA FIFO has data bit */
85#define SLCSTAT_SLC_FIFO (1 << 1) /* SLC FIFO has data bit */
86#define SLCSTAT_NAND_READY (1 << 0) /* NAND device is ready bit */
87
88/**********************************************************************
89* slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions
90**********************************************************************/
91#define SLCSTAT_INT_TC (1 << 1) /* Transfer count bit */
92#define SLCSTAT_INT_RDY_EN (1 << 0) /* Ready interrupt bit */
93
94/**********************************************************************
95* slc_tac register definitions
96**********************************************************************/
97/* Computation of clock cycles on basis of controller and device clock rates */
98#define SLCTAC_CLOCKS(c, n, s) (min_t(u32, DIV_ROUND_UP(c, n) - 1, 0xF) << s)
99
100/* Clock setting for RDY write sample wait time in 2*n clocks */
101#define SLCTAC_WDR(n) (((n) & 0xF) << 28)
102/* Write pulse width in clock cycles, 1 to 16 clocks */
103#define SLCTAC_WWIDTH(c, n) (SLCTAC_CLOCKS(c, n, 24))
104/* Write hold time of control and data signals, 1 to 16 clocks */
105#define SLCTAC_WHOLD(c, n) (SLCTAC_CLOCKS(c, n, 20))
106/* Write setup time of control and data signals, 1 to 16 clocks */
107#define SLCTAC_WSETUP(c, n) (SLCTAC_CLOCKS(c, n, 16))
108/* Clock setting for RDY read sample wait time in 2*n clocks */
109#define SLCTAC_RDR(n) (((n) & 0xF) << 12)
110/* Read pulse width in clock cycles, 1 to 16 clocks */
111#define SLCTAC_RWIDTH(c, n) (SLCTAC_CLOCKS(c, n, 8))
112/* Read hold time of control and data signals, 1 to 16 clocks */
113#define SLCTAC_RHOLD(c, n) (SLCTAC_CLOCKS(c, n, 4))
114/* Read setup time of control and data signals, 1 to 16 clocks */
115#define SLCTAC_RSETUP(c, n) (SLCTAC_CLOCKS(c, n, 0))
116
117/**********************************************************************
118* slc_ecc register definitions
119**********************************************************************/
120/* ECC line party fetch macro */
121#define SLCECC_TO_LINEPAR(n) (((n) >> 6) & 0x7FFF)
122#define SLCECC_TO_COLPAR(n) ((n) & 0x3F)
123
124/*
125 * DMA requires storage space for the DMA local buffer and the hardware ECC
126 * storage area. The DMA local buffer is only used if DMA mapping fails
127 * during runtime.
128 */
129#define LPC32XX_DMA_DATA_SIZE 4096
130#define LPC32XX_ECC_SAVE_SIZE ((4096 / 256) * 4)
131
132/* Number of bytes used for ECC stored in NAND per 256 bytes */
133#define LPC32XX_SLC_DEV_ECC_BYTES 3
134
135/*
136 * If the NAND base clock frequency can't be fetched, this frequency will be
137 * used instead as the base. This rate is used to setup the timing registers
138 * used for NAND accesses.
139 */
140#define LPC32XX_DEF_BUS_RATE 133250000
141
142/* Milliseconds for DMA FIFO timeout (unlikely anyway) */
143#define LPC32XX_DMA_TIMEOUT 100
144
145/*
146 * NAND ECC Layout for small page NAND devices
147 * Note: For large and huge page devices, the default layouts are used
148 */
149static struct nand_ecclayout lpc32xx_nand_oob_16 = {
150 .eccbytes = 6,
151 .eccpos = {10, 11, 12, 13, 14, 15},
152 .oobfree = {
153 { .offset = 0, .length = 4 },
154 { .offset = 6, .length = 4 },
155 },
156};
157
158static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
159static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
160
161/*
162 * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6
163 * Note: Large page devices used the default layout
164 */
165static struct nand_bbt_descr bbt_smallpage_main_descr = {
166 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
167 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
168 .offs = 0,
169 .len = 4,
170 .veroffs = 6,
171 .maxblocks = 4,
172 .pattern = bbt_pattern
173};
174
175static struct nand_bbt_descr bbt_smallpage_mirror_descr = {
176 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
177 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
178 .offs = 0,
179 .len = 4,
180 .veroffs = 6,
181 .maxblocks = 4,
182 .pattern = mirror_pattern
183};
184
185/*
186 * NAND platform configuration structure
187 */
188struct lpc32xx_nand_cfg_slc {
189 uint32_t wdr_clks;
190 uint32_t wwidth;
191 uint32_t whold;
192 uint32_t wsetup;
193 uint32_t rdr_clks;
194 uint32_t rwidth;
195 uint32_t rhold;
196 uint32_t rsetup;
197 bool use_bbt;
198 int wp_gpio;
199 struct mtd_partition *parts;
200 unsigned num_parts;
201};
202
203struct lpc32xx_nand_host {
204 struct nand_chip nand_chip;
205 struct lpc32xx_slc_platform_data *pdata;
206 struct clk *clk;
207 struct mtd_info mtd;
208 void __iomem *io_base;
209 struct lpc32xx_nand_cfg_slc *ncfg;
210
211 struct completion comp;
212 struct dma_chan *dma_chan;
213 uint32_t dma_buf_len;
214 struct dma_slave_config dma_slave_config;
215 struct scatterlist sgl;
216
217 /*
218 * DMA and CPU addresses of ECC work area and data buffer
219 */
220 uint32_t *ecc_buf;
221 uint8_t *data_buf;
222 dma_addr_t io_base_dma;
223};
224
225static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
226{
227 uint32_t clkrate, tmp;
228
229 /* Reset SLC controller */
230 writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base));
231 udelay(1000);
232
233 /* Basic setup */
234 writel(0, SLC_CFG(host->io_base));
235 writel(0, SLC_IEN(host->io_base));
236 writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN),
237 SLC_ICR(host->io_base));
238
239 /* Get base clock for SLC block */
240 clkrate = clk_get_rate(host->clk);
241 if (clkrate == 0)
242 clkrate = LPC32XX_DEF_BUS_RATE;
243
244 /* Compute clock setup values */
245 tmp = SLCTAC_WDR(host->ncfg->wdr_clks) |
246 SLCTAC_WWIDTH(clkrate, host->ncfg->wwidth) |
247 SLCTAC_WHOLD(clkrate, host->ncfg->whold) |
248 SLCTAC_WSETUP(clkrate, host->ncfg->wsetup) |
249 SLCTAC_RDR(host->ncfg->rdr_clks) |
250 SLCTAC_RWIDTH(clkrate, host->ncfg->rwidth) |
251 SLCTAC_RHOLD(clkrate, host->ncfg->rhold) |
252 SLCTAC_RSETUP(clkrate, host->ncfg->rsetup);
253 writel(tmp, SLC_TAC(host->io_base));
254}
255
256/*
257 * Hardware specific access to control lines
258 */
259static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
260 unsigned int ctrl)
261{
262 uint32_t tmp;
263 struct nand_chip *chip = mtd->priv;
264 struct lpc32xx_nand_host *host = chip->priv;
265
266 /* Does CE state need to be changed? */
267 tmp = readl(SLC_CFG(host->io_base));
268 if (ctrl & NAND_NCE)
269 tmp |= SLCCFG_CE_LOW;
270 else
271 tmp &= ~SLCCFG_CE_LOW;
272 writel(tmp, SLC_CFG(host->io_base));
273
274 if (cmd != NAND_CMD_NONE) {
275 if (ctrl & NAND_CLE)
276 writel(cmd, SLC_CMD(host->io_base));
277 else
278 writel(cmd, SLC_ADDR(host->io_base));
279 }
280}
281
282/*
283 * Read the Device Ready pin
284 */
285static int lpc32xx_nand_device_ready(struct mtd_info *mtd)
286{
287 struct nand_chip *chip = mtd->priv;
288 struct lpc32xx_nand_host *host = chip->priv;
289 int rdy = 0;
290
291 if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0)
292 rdy = 1;
293
294 return rdy;
295}
296
297/*
298 * Enable NAND write protect
299 */
300static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
301{
302 if (gpio_is_valid(host->ncfg->wp_gpio))
303 gpio_set_value(host->ncfg->wp_gpio, 0);
304}
305
306/*
307 * Disable NAND write protect
308 */
309static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
310{
311 if (gpio_is_valid(host->ncfg->wp_gpio))
312 gpio_set_value(host->ncfg->wp_gpio, 1);
313}
314
315/*
316 * Prepares SLC for transfers with H/W ECC enabled
317 */
318static void lpc32xx_nand_ecc_enable(struct mtd_info *mtd, int mode)
319{
320 /* Hardware ECC is enabled automatically in hardware as needed */
321}
322
323/*
324 * Calculates the ECC for the data
325 */
326static int lpc32xx_nand_ecc_calculate(struct mtd_info *mtd,
327 const unsigned char *buf,
328 unsigned char *code)
329{
330 /*
331 * ECC is calculated automatically in hardware during syndrome read
332 * and write operations, so it doesn't need to be calculated here.
333 */
334 return 0;
335}
336
337/*
338 * Read a single byte from NAND device
339 */
340static uint8_t lpc32xx_nand_read_byte(struct mtd_info *mtd)
341{
342 struct nand_chip *chip = mtd->priv;
343 struct lpc32xx_nand_host *host = chip->priv;
344
345 return (uint8_t)readl(SLC_DATA(host->io_base));
346}
347
348/*
349 * Simple device read without ECC
350 */
351static void lpc32xx_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
352{
353 struct nand_chip *chip = mtd->priv;
354 struct lpc32xx_nand_host *host = chip->priv;
355
356 /* Direct device read with no ECC */
357 while (len-- > 0)
358 *buf++ = (uint8_t)readl(SLC_DATA(host->io_base));
359}
360
361/*
362 * Simple device write without ECC
363 */
364static void lpc32xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
365{
366 struct nand_chip *chip = mtd->priv;
367 struct lpc32xx_nand_host *host = chip->priv;
368
369 /* Direct device write with no ECC */
370 while (len-- > 0)
371 writel((uint32_t)*buf++, SLC_DATA(host->io_base));
372}
373
374/*
375 * Read the OOB data from the device without ECC using FIFO method
376 */
377static int lpc32xx_nand_read_oob_syndrome(struct mtd_info *mtd,
378 struct nand_chip *chip, int page)
379{
380 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
381 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
382
383 return 0;
384}
385
386/*
387 * Write the OOB data to the device without ECC using FIFO method
388 */
389static int lpc32xx_nand_write_oob_syndrome(struct mtd_info *mtd,
390 struct nand_chip *chip, int page)
391{
392 int status;
393
394 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
395 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
396
397 /* Send command to program the OOB data */
398 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
399
400 status = chip->waitfunc(mtd, chip);
401
402 return status & NAND_STATUS_FAIL ? -EIO : 0;
403}
404
405/*
406 * Fills in the ECC fields in the OOB buffer with the hardware generated ECC
407 */
408static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count)
409{
410 int i;
411
412 for (i = 0; i < (count * 3); i += 3) {
413 uint32_t ce = ecc[i / 3];
414 ce = ~(ce << 2) & 0xFFFFFF;
415 spare[i + 2] = (uint8_t)(ce & 0xFF);
416 ce >>= 8;
417 spare[i + 1] = (uint8_t)(ce & 0xFF);
418 ce >>= 8;
419 spare[i] = (uint8_t)(ce & 0xFF);
420 }
421}
422
423static void lpc32xx_dma_complete_func(void *completion)
424{
425 complete(completion);
426}
427
428static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma,
429 void *mem, int len, enum dma_transfer_direction dir)
430{
431 struct nand_chip *chip = mtd->priv;
432 struct lpc32xx_nand_host *host = chip->priv;
433 struct dma_async_tx_descriptor *desc;
434 int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
435 int res;
436
437 host->dma_slave_config.direction = dir;
438 host->dma_slave_config.src_addr = dma;
439 host->dma_slave_config.dst_addr = dma;
440 host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
441 host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
442 host->dma_slave_config.src_maxburst = 4;
443 host->dma_slave_config.dst_maxburst = 4;
444 /* DMA controller does flow control: */
445 host->dma_slave_config.device_fc = false;
446 if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
447 dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
448 return -ENXIO;
449 }
450
451 sg_init_one(&host->sgl, mem, len);
452
453 res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
454 DMA_BIDIRECTIONAL);
455 if (res != 1) {
456 dev_err(mtd->dev.parent, "Failed to map sg list\n");
457 return -ENXIO;
458 }
459 desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
460 flags);
461 if (!desc) {
462 dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
463 goto out1;
464 }
465
466 init_completion(&host->comp);
467 desc->callback = lpc32xx_dma_complete_func;
468 desc->callback_param = &host->comp;
469
470 dmaengine_submit(desc);
471 dma_async_issue_pending(host->dma_chan);
472
473 wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000));
474
475 dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
476 DMA_BIDIRECTIONAL);
477
478 return 0;
479out1:
480 dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
481 DMA_BIDIRECTIONAL);
482 return -ENXIO;
483}
484
485/*
486 * DMA read/write transfers with ECC support
487 */
488static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages,
489 int read)
490{
491 struct nand_chip *chip = mtd->priv;
492 struct lpc32xx_nand_host *host = chip->priv;
493 int i, status = 0;
494 unsigned long timeout;
495 int res;
496 enum dma_transfer_direction dir =
497 read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
498 uint8_t *dma_buf;
499 bool dma_mapped;
500
501 if ((void *)buf <= high_memory) {
502 dma_buf = buf;
503 dma_mapped = true;
504 } else {
505 dma_buf = host->data_buf;
506 dma_mapped = false;
507 if (!read)
508 memcpy(host->data_buf, buf, mtd->writesize);
509 }
510
511 if (read) {
512 writel(readl(SLC_CFG(host->io_base)) |
513 SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
514 SLCCFG_DMA_BURST, SLC_CFG(host->io_base));
515 } else {
516 writel((readl(SLC_CFG(host->io_base)) |
517 SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) &
518 ~SLCCFG_DMA_DIR,
519 SLC_CFG(host->io_base));
520 }
521
522 /* Clear initial ECC */
523 writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base));
524
525 /* Transfer size is data area only */
526 writel(mtd->writesize, SLC_TC(host->io_base));
527
528 /* Start transfer in the NAND controller */
529 writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START,
530 SLC_CTRL(host->io_base));
531
532 for (i = 0; i < chip->ecc.steps; i++) {
533 /* Data */
534 res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma),
535 dma_buf + i * chip->ecc.size,
536 mtd->writesize / chip->ecc.steps, dir);
537 if (res)
538 return res;
539
540 /* Always _read_ ECC */
541 if (i == chip->ecc.steps - 1)
542 break;
543 if (!read) /* ECC availability delayed on write */
544 udelay(10);
545 res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma),
546 &host->ecc_buf[i], 4, DMA_DEV_TO_MEM);
547 if (res)
548 return res;
549 }
550
551 /*
552 * According to NXP, the DMA can be finished here, but the NAND
553 * controller may still have buffered data. After porting to using the
554 * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty)
555 * appears to be always true, according to tests. Keeping the check for
556 * safety reasons for now.
557 */
558 if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) {
559 dev_warn(mtd->dev.parent, "FIFO not empty!\n");
560 timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT);
561 while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) &&
562 time_before(jiffies, timeout))
563 cpu_relax();
564 if (!time_before(jiffies, timeout)) {
565 dev_err(mtd->dev.parent, "FIFO held data too long\n");
566 status = -EIO;
567 }
568 }
569
570 /* Read last calculated ECC value */
571 if (!read)
572 udelay(10);
573 host->ecc_buf[chip->ecc.steps - 1] =
574 readl(SLC_ECC(host->io_base));
575
576 /* Flush DMA */
577 dmaengine_terminate_all(host->dma_chan);
578
579 if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO ||
580 readl(SLC_TC(host->io_base))) {
581 /* Something is left in the FIFO, something is wrong */
582 dev_err(mtd->dev.parent, "DMA FIFO failure\n");
583 status = -EIO;
584 }
585
586 /* Stop DMA & HW ECC */
587 writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START,
588 SLC_CTRL(host->io_base));
589 writel(readl(SLC_CFG(host->io_base)) &
590 ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
591 SLCCFG_DMA_BURST), SLC_CFG(host->io_base));
592
593 if (!dma_mapped && read)
594 memcpy(buf, host->data_buf, mtd->writesize);
595
596 return status;
597}
598
599/*
600 * Read the data and OOB data from the device, use ECC correction with the
601 * data, disable ECC for the OOB data
602 */
603static int lpc32xx_nand_read_page_syndrome(struct mtd_info *mtd,
604 struct nand_chip *chip, uint8_t *buf,
605 int oob_required, int page)
606{
607 struct lpc32xx_nand_host *host = chip->priv;
608 int stat, i, status;
609 uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE];
610
611 /* Issue read command */
612 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
613
614 /* Read data and oob, calculate ECC */
615 status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1);
616
617 /* Get OOB data */
618 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
619
620 /* Convert to stored ECC format */
621 lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps);
622
623 /* Pointer to ECC data retrieved from NAND spare area */
624 oobecc = chip->oob_poi + chip->ecc.layout->eccpos[0];
625
626 for (i = 0; i < chip->ecc.steps; i++) {
627 stat = chip->ecc.correct(mtd, buf, oobecc,
628 &tmpecc[i * chip->ecc.bytes]);
629 if (stat < 0)
630 mtd->ecc_stats.failed++;
631 else
632 mtd->ecc_stats.corrected += stat;
633
634 buf += chip->ecc.size;
635 oobecc += chip->ecc.bytes;
636 }
637
638 return status;
639}
640
641/*
642 * Read the data and OOB data from the device, no ECC correction with the
643 * data or OOB data
644 */
645static int lpc32xx_nand_read_page_raw_syndrome(struct mtd_info *mtd,
646 struct nand_chip *chip,
647 uint8_t *buf, int oob_required,
648 int page)
649{
650 /* Issue read command */
651 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
652
653 /* Raw reads can just use the FIFO interface */
654 chip->read_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
655 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
656
657 return 0;
658}
659
660/*
661 * Write the data and OOB data to the device, use ECC with the data,
662 * disable ECC for the OOB data
663 */
664static int lpc32xx_nand_write_page_syndrome(struct mtd_info *mtd,
665 struct nand_chip *chip,
666 const uint8_t *buf,
667 int oob_required, int page)
668{
669 struct lpc32xx_nand_host *host = chip->priv;
670 uint8_t *pb = chip->oob_poi + chip->ecc.layout->eccpos[0];
671 int error;
672
673 /* Write data, calculate ECC on outbound data */
674 error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0);
675 if (error)
676 return error;
677
678 /*
679 * The calculated ECC needs some manual work done to it before
680 * committing it to NAND. Process the calculated ECC and place
681 * the resultant values directly into the OOB buffer. */
682 lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps);
683
684 /* Write ECC data to device */
685 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
686 return 0;
687}
688
689/*
690 * Write the data and OOB data to the device, no ECC correction with the
691 * data or OOB data
692 */
693static int lpc32xx_nand_write_page_raw_syndrome(struct mtd_info *mtd,
694 struct nand_chip *chip,
695 const uint8_t *buf,
696 int oob_required, int page)
697{
698 /* Raw writes can just use the FIFO interface */
699 chip->write_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
700 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
701 return 0;
702}
703
704static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host)
705{
706 struct mtd_info *mtd = &host->mtd;
707 dma_cap_mask_t mask;
708
709 if (!host->pdata || !host->pdata->dma_filter) {
710 dev_err(mtd->dev.parent, "no DMA platform data\n");
711 return -ENOENT;
712 }
713
714 dma_cap_zero(mask);
715 dma_cap_set(DMA_SLAVE, mask);
716 host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
717 "nand-slc");
718 if (!host->dma_chan) {
719 dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
720 return -EBUSY;
721 }
722
723 return 0;
724}
725
726static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev)
727{
728 struct lpc32xx_nand_cfg_slc *ncfg;
729 struct device_node *np = dev->of_node;
730
731 ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
732 if (!ncfg)
733 return NULL;
734
735 of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks);
736 of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth);
737 of_property_read_u32(np, "nxp,whold", &ncfg->whold);
738 of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup);
739 of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks);
740 of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth);
741 of_property_read_u32(np, "nxp,rhold", &ncfg->rhold);
742 of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup);
743
744 if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold ||
745 !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth ||
746 !ncfg->rhold || !ncfg->rsetup) {
747 dev_err(dev, "chip parameters not specified correctly\n");
748 return NULL;
749 }
750
751 ncfg->use_bbt = of_get_nand_on_flash_bbt(np);
752 ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
753
754 return ncfg;
755}
756
757/*
758 * Probe for NAND controller
759 */
760static int lpc32xx_nand_probe(struct platform_device *pdev)
761{
762 struct lpc32xx_nand_host *host;
763 struct mtd_info *mtd;
764 struct nand_chip *chip;
765 struct resource *rc;
766 struct mtd_part_parser_data ppdata = {};
767 int res;
768
769 rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
770 if (rc == NULL) {
771 dev_err(&pdev->dev, "No memory resource found for device\n");
772 return -EBUSY;
773 }
774
775 /* Allocate memory for the device structure (and zero it) */
776 host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
777 if (!host)
778 return -ENOMEM;
779 host->io_base_dma = rc->start;
780
781 host->io_base = devm_ioremap_resource(&pdev->dev, rc);
782 if (IS_ERR(host->io_base))
783 return PTR_ERR(host->io_base);
784
785 if (pdev->dev.of_node)
786 host->ncfg = lpc32xx_parse_dt(&pdev->dev);
787 if (!host->ncfg) {
788 dev_err(&pdev->dev,
789 "Missing or bad NAND config from device tree\n");
790 return -ENOENT;
791 }
792 if (host->ncfg->wp_gpio == -EPROBE_DEFER)
793 return -EPROBE_DEFER;
794 if (gpio_is_valid(host->ncfg->wp_gpio) && devm_gpio_request(&pdev->dev,
795 host->ncfg->wp_gpio, "NAND WP")) {
796 dev_err(&pdev->dev, "GPIO not available\n");
797 return -EBUSY;
798 }
799 lpc32xx_wp_disable(host);
800
801 host->pdata = dev_get_platdata(&pdev->dev);
802
803 mtd = &host->mtd;
804 chip = &host->nand_chip;
805 chip->priv = host;
806 mtd->priv = chip;
807 mtd->owner = THIS_MODULE;
808 mtd->dev.parent = &pdev->dev;
809
810 /* Get NAND clock */
811 host->clk = devm_clk_get(&pdev->dev, NULL);
812 if (IS_ERR(host->clk)) {
813 dev_err(&pdev->dev, "Clock failure\n");
814 res = -ENOENT;
815 goto err_exit1;
816 }
817 clk_prepare_enable(host->clk);
818
819 /* Set NAND IO addresses and command/ready functions */
820 chip->IO_ADDR_R = SLC_DATA(host->io_base);
821 chip->IO_ADDR_W = SLC_DATA(host->io_base);
822 chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
823 chip->dev_ready = lpc32xx_nand_device_ready;
824 chip->chip_delay = 20; /* 20us command delay time */
825
826 /* Init NAND controller */
827 lpc32xx_nand_setup(host);
828
829 platform_set_drvdata(pdev, host);
830
831 /* NAND callbacks for LPC32xx SLC hardware */
832 chip->ecc.mode = NAND_ECC_HW_SYNDROME;
833 chip->read_byte = lpc32xx_nand_read_byte;
834 chip->read_buf = lpc32xx_nand_read_buf;
835 chip->write_buf = lpc32xx_nand_write_buf;
836 chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome;
837 chip->ecc.read_page = lpc32xx_nand_read_page_syndrome;
838 chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome;
839 chip->ecc.write_page = lpc32xx_nand_write_page_syndrome;
840 chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome;
841 chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome;
842 chip->ecc.calculate = lpc32xx_nand_ecc_calculate;
843 chip->ecc.correct = nand_correct_data;
844 chip->ecc.strength = 1;
845 chip->ecc.hwctl = lpc32xx_nand_ecc_enable;
846
847 /*
848 * Allocate a large enough buffer for a single huge page plus
849 * extra space for the spare area and ECC storage area
850 */
851 host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE;
852 host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len,
853 GFP_KERNEL);
854 if (host->data_buf == NULL) {
855 res = -ENOMEM;
856 goto err_exit2;
857 }
858
859 res = lpc32xx_nand_dma_setup(host);
860 if (res) {
861 res = -EIO;
862 goto err_exit2;
863 }
864
865 /* Find NAND device */
866 if (nand_scan_ident(mtd, 1, NULL)) {
867 res = -ENXIO;
868 goto err_exit3;
869 }
870
871 /* OOB and ECC CPU and DMA work areas */
872 host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE);
873
874 /*
875 * Small page FLASH has a unique OOB layout, but large and huge
876 * page FLASH use the standard layout. Small page FLASH uses a
877 * custom BBT marker layout.
878 */
879 if (mtd->writesize <= 512)
880 chip->ecc.layout = &lpc32xx_nand_oob_16;
881
882 /* These sizes remain the same regardless of page size */
883 chip->ecc.size = 256;
884 chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES;
885 chip->ecc.prepad = chip->ecc.postpad = 0;
886
887 /* Avoid extra scan if using BBT, setup BBT support */
888 if (host->ncfg->use_bbt) {
889 chip->bbt_options |= NAND_BBT_USE_FLASH;
890
891 /*
892 * Use a custom BBT marker setup for small page FLASH that
893 * won't interfere with the ECC layout. Large and huge page
894 * FLASH use the standard layout.
895 */
896 if (mtd->writesize <= 512) {
897 chip->bbt_td = &bbt_smallpage_main_descr;
898 chip->bbt_md = &bbt_smallpage_mirror_descr;
899 }
900 }
901
902 /*
903 * Fills out all the uninitialized function pointers with the defaults
904 */
905 if (nand_scan_tail(mtd)) {
906 res = -ENXIO;
907 goto err_exit3;
908 }
909
910 mtd->name = "nxp_lpc3220_slc";
911 ppdata.of_node = pdev->dev.of_node;
912 res = mtd_device_parse_register(mtd, NULL, &ppdata, host->ncfg->parts,
913 host->ncfg->num_parts);
914 if (!res)
915 return res;
916
917 nand_release(mtd);
918
919err_exit3:
920 dma_release_channel(host->dma_chan);
921err_exit2:
922 clk_disable_unprepare(host->clk);
923err_exit1:
924 lpc32xx_wp_enable(host);
925
926 return res;
927}
928
929/*
930 * Remove NAND device.
931 */
932static int lpc32xx_nand_remove(struct platform_device *pdev)
933{
934 uint32_t tmp;
935 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
936 struct mtd_info *mtd = &host->mtd;
937
938 nand_release(mtd);
939 dma_release_channel(host->dma_chan);
940
941 /* Force CE high */
942 tmp = readl(SLC_CTRL(host->io_base));
943 tmp &= ~SLCCFG_CE_LOW;
944 writel(tmp, SLC_CTRL(host->io_base));
945
946 clk_disable_unprepare(host->clk);
947 lpc32xx_wp_enable(host);
948
949 return 0;
950}
951
952#ifdef CONFIG_PM
953static int lpc32xx_nand_resume(struct platform_device *pdev)
954{
955 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
956
957 /* Re-enable NAND clock */
958 clk_prepare_enable(host->clk);
959
960 /* Fresh init of NAND controller */
961 lpc32xx_nand_setup(host);
962
963 /* Disable write protect */
964 lpc32xx_wp_disable(host);
965
966 return 0;
967}
968
969static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
970{
971 uint32_t tmp;
972 struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
973
974 /* Force CE high */
975 tmp = readl(SLC_CTRL(host->io_base));
976 tmp &= ~SLCCFG_CE_LOW;
977 writel(tmp, SLC_CTRL(host->io_base));
978
979 /* Enable write protect for safety */
980 lpc32xx_wp_enable(host);
981
982 /* Disable clock */
983 clk_disable_unprepare(host->clk);
984
985 return 0;
986}
987
988#else
989#define lpc32xx_nand_resume NULL
990#define lpc32xx_nand_suspend NULL
991#endif
992
993static const struct of_device_id lpc32xx_nand_match[] = {
994 { .compatible = "nxp,lpc3220-slc" },
995 { /* sentinel */ },
996};
997MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
998
999static struct platform_driver lpc32xx_nand_driver = {
1000 .probe = lpc32xx_nand_probe,
1001 .remove = lpc32xx_nand_remove,
1002 .resume = lpc32xx_nand_resume,
1003 .suspend = lpc32xx_nand_suspend,
1004 .driver = {
1005 .name = LPC32XX_MODNAME,
1006 .of_match_table = lpc32xx_nand_match,
1007 },
1008};
1009
1010module_platform_driver(lpc32xx_nand_driver);
1011
1012MODULE_LICENSE("GPL");
1013MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
1014MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
1015MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller");