Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame^] | 1 | /* |
| 2 | * NAND flash simulator. |
| 3 | * |
| 4 | * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org> |
| 5 | * |
| 6 | * Copyright (C) 2004 Nokia Corporation |
| 7 | * |
| 8 | * Note: NS means "NAND Simulator". |
| 9 | * Note: Input means input TO flash chip, output means output FROM chip. |
| 10 | * |
| 11 | * This program is free software; you can redistribute it and/or modify it |
| 12 | * under the terms of the GNU General Public License as published by the |
| 13 | * Free Software Foundation; either version 2, or (at your option) any later |
| 14 | * version. |
| 15 | * |
| 16 | * This program is distributed in the hope that it will be useful, but |
| 17 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
| 19 | * Public License for more details. |
| 20 | * |
| 21 | * You should have received a copy of the GNU General Public License |
| 22 | * along with this program; if not, write to the Free Software |
| 23 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA |
| 24 | */ |
| 25 | |
| 26 | #include <linux/init.h> |
| 27 | #include <linux/types.h> |
| 28 | #include <linux/module.h> |
| 29 | #include <linux/moduleparam.h> |
| 30 | #include <linux/vmalloc.h> |
| 31 | #include <linux/math64.h> |
| 32 | #include <linux/slab.h> |
| 33 | #include <linux/errno.h> |
| 34 | #include <linux/string.h> |
| 35 | #include <linux/mtd/mtd.h> |
| 36 | #include <linux/mtd/nand.h> |
| 37 | #include <linux/mtd/nand_bch.h> |
| 38 | #include <linux/mtd/partitions.h> |
| 39 | #include <linux/delay.h> |
| 40 | #include <linux/list.h> |
| 41 | #include <linux/random.h> |
| 42 | #include <linux/sched.h> |
| 43 | #include <linux/fs.h> |
| 44 | #include <linux/pagemap.h> |
| 45 | #include <linux/seq_file.h> |
| 46 | #include <linux/debugfs.h> |
| 47 | |
| 48 | /* Default simulator parameters values */ |
| 49 | #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \ |
| 50 | !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \ |
| 51 | !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \ |
| 52 | !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE) |
| 53 | #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98 |
| 54 | #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39 |
| 55 | #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */ |
| 56 | #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */ |
| 57 | #endif |
| 58 | |
| 59 | #ifndef CONFIG_NANDSIM_ACCESS_DELAY |
| 60 | #define CONFIG_NANDSIM_ACCESS_DELAY 25 |
| 61 | #endif |
| 62 | #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY |
| 63 | #define CONFIG_NANDSIM_PROGRAMM_DELAY 200 |
| 64 | #endif |
| 65 | #ifndef CONFIG_NANDSIM_ERASE_DELAY |
| 66 | #define CONFIG_NANDSIM_ERASE_DELAY 2 |
| 67 | #endif |
| 68 | #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE |
| 69 | #define CONFIG_NANDSIM_OUTPUT_CYCLE 40 |
| 70 | #endif |
| 71 | #ifndef CONFIG_NANDSIM_INPUT_CYCLE |
| 72 | #define CONFIG_NANDSIM_INPUT_CYCLE 50 |
| 73 | #endif |
| 74 | #ifndef CONFIG_NANDSIM_BUS_WIDTH |
| 75 | #define CONFIG_NANDSIM_BUS_WIDTH 8 |
| 76 | #endif |
| 77 | #ifndef CONFIG_NANDSIM_DO_DELAYS |
| 78 | #define CONFIG_NANDSIM_DO_DELAYS 0 |
| 79 | #endif |
| 80 | #ifndef CONFIG_NANDSIM_LOG |
| 81 | #define CONFIG_NANDSIM_LOG 0 |
| 82 | #endif |
| 83 | #ifndef CONFIG_NANDSIM_DBG |
| 84 | #define CONFIG_NANDSIM_DBG 0 |
| 85 | #endif |
| 86 | #ifndef CONFIG_NANDSIM_MAX_PARTS |
| 87 | #define CONFIG_NANDSIM_MAX_PARTS 32 |
| 88 | #endif |
| 89 | |
| 90 | static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY; |
| 91 | static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY; |
| 92 | static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY; |
| 93 | static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE; |
| 94 | static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE; |
| 95 | static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH; |
| 96 | static uint do_delays = CONFIG_NANDSIM_DO_DELAYS; |
| 97 | static uint log = CONFIG_NANDSIM_LOG; |
| 98 | static uint dbg = CONFIG_NANDSIM_DBG; |
| 99 | static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS]; |
| 100 | static unsigned int parts_num; |
| 101 | static char *badblocks = NULL; |
| 102 | static char *weakblocks = NULL; |
| 103 | static char *weakpages = NULL; |
| 104 | static unsigned int bitflips = 0; |
| 105 | static char *gravepages = NULL; |
| 106 | static unsigned int overridesize = 0; |
| 107 | static char *cache_file = NULL; |
| 108 | static unsigned int bbt; |
| 109 | static unsigned int bch; |
| 110 | static u_char id_bytes[8] = { |
| 111 | [0] = CONFIG_NANDSIM_FIRST_ID_BYTE, |
| 112 | [1] = CONFIG_NANDSIM_SECOND_ID_BYTE, |
| 113 | [2] = CONFIG_NANDSIM_THIRD_ID_BYTE, |
| 114 | [3] = CONFIG_NANDSIM_FOURTH_ID_BYTE, |
| 115 | [4 ... 7] = 0xFF, |
| 116 | }; |
| 117 | |
| 118 | module_param_array(id_bytes, byte, NULL, 0400); |
| 119 | module_param_named(first_id_byte, id_bytes[0], byte, 0400); |
| 120 | module_param_named(second_id_byte, id_bytes[1], byte, 0400); |
| 121 | module_param_named(third_id_byte, id_bytes[2], byte, 0400); |
| 122 | module_param_named(fourth_id_byte, id_bytes[3], byte, 0400); |
| 123 | module_param(access_delay, uint, 0400); |
| 124 | module_param(programm_delay, uint, 0400); |
| 125 | module_param(erase_delay, uint, 0400); |
| 126 | module_param(output_cycle, uint, 0400); |
| 127 | module_param(input_cycle, uint, 0400); |
| 128 | module_param(bus_width, uint, 0400); |
| 129 | module_param(do_delays, uint, 0400); |
| 130 | module_param(log, uint, 0400); |
| 131 | module_param(dbg, uint, 0400); |
| 132 | module_param_array(parts, ulong, &parts_num, 0400); |
| 133 | module_param(badblocks, charp, 0400); |
| 134 | module_param(weakblocks, charp, 0400); |
| 135 | module_param(weakpages, charp, 0400); |
| 136 | module_param(bitflips, uint, 0400); |
| 137 | module_param(gravepages, charp, 0400); |
| 138 | module_param(overridesize, uint, 0400); |
| 139 | module_param(cache_file, charp, 0400); |
| 140 | module_param(bbt, uint, 0400); |
| 141 | module_param(bch, uint, 0400); |
| 142 | |
| 143 | MODULE_PARM_DESC(id_bytes, "The ID bytes returned by NAND Flash 'read ID' command"); |
| 144 | MODULE_PARM_DESC(first_id_byte, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID) (obsolete)"); |
| 145 | MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID) (obsolete)"); |
| 146 | MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command (obsolete)"); |
| 147 | MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command (obsolete)"); |
| 148 | MODULE_PARM_DESC(access_delay, "Initial page access delay (microseconds)"); |
| 149 | MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds"); |
| 150 | MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)"); |
| 151 | MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanoseconds)"); |
| 152 | MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanoseconds)"); |
| 153 | MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)"); |
| 154 | MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero"); |
| 155 | MODULE_PARM_DESC(log, "Perform logging if not zero"); |
| 156 | MODULE_PARM_DESC(dbg, "Output debug information if not zero"); |
| 157 | MODULE_PARM_DESC(parts, "Partition sizes (in erase blocks) separated by commas"); |
| 158 | /* Page and erase block positions for the following parameters are independent of any partitions */ |
| 159 | MODULE_PARM_DESC(badblocks, "Erase blocks that are initially marked bad, separated by commas"); |
| 160 | MODULE_PARM_DESC(weakblocks, "Weak erase blocks [: remaining erase cycles (defaults to 3)]" |
| 161 | " separated by commas e.g. 113:2 means eb 113" |
| 162 | " can be erased only twice before failing"); |
| 163 | MODULE_PARM_DESC(weakpages, "Weak pages [: maximum writes (defaults to 3)]" |
| 164 | " separated by commas e.g. 1401:2 means page 1401" |
| 165 | " can be written only twice before failing"); |
| 166 | MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (zero by default)"); |
| 167 | MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]" |
| 168 | " separated by commas e.g. 1401:2 means page 1401" |
| 169 | " can be read only twice before failing"); |
| 170 | MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the ID bytes. " |
| 171 | "The size is specified in erase blocks and as the exponent of a power of two" |
| 172 | " e.g. 5 means a size of 32 erase blocks"); |
| 173 | MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of memory"); |
| 174 | MODULE_PARM_DESC(bbt, "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area"); |
| 175 | MODULE_PARM_DESC(bch, "Enable BCH ecc and set how many bits should " |
| 176 | "be correctable in 512-byte blocks"); |
| 177 | |
| 178 | /* The largest possible page size */ |
| 179 | #define NS_LARGEST_PAGE_SIZE 4096 |
| 180 | |
| 181 | /* The prefix for simulator output */ |
| 182 | #define NS_OUTPUT_PREFIX "[nandsim]" |
| 183 | |
| 184 | /* Simulator's output macros (logging, debugging, warning, error) */ |
| 185 | #define NS_LOG(args...) \ |
| 186 | do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0) |
| 187 | #define NS_DBG(args...) \ |
| 188 | do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0) |
| 189 | #define NS_WARN(args...) \ |
| 190 | do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0) |
| 191 | #define NS_ERR(args...) \ |
| 192 | do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0) |
| 193 | #define NS_INFO(args...) \ |
| 194 | do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0) |
| 195 | |
| 196 | /* Busy-wait delay macros (microseconds, milliseconds) */ |
| 197 | #define NS_UDELAY(us) \ |
| 198 | do { if (do_delays) udelay(us); } while(0) |
| 199 | #define NS_MDELAY(us) \ |
| 200 | do { if (do_delays) mdelay(us); } while(0) |
| 201 | |
| 202 | /* Is the nandsim structure initialized ? */ |
| 203 | #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0) |
| 204 | |
| 205 | /* Good operation completion status */ |
| 206 | #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0))) |
| 207 | |
| 208 | /* Operation failed completion status */ |
| 209 | #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns)) |
| 210 | |
| 211 | /* Calculate the page offset in flash RAM image by (row, column) address */ |
| 212 | #define NS_RAW_OFFSET(ns) \ |
| 213 | (((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column) |
| 214 | |
| 215 | /* Calculate the OOB offset in flash RAM image by (row, column) address */ |
| 216 | #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz) |
| 217 | |
| 218 | /* After a command is input, the simulator goes to one of the following states */ |
| 219 | #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */ |
| 220 | #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */ |
| 221 | #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */ |
| 222 | #define STATE_CMD_PAGEPROG 0x00000004 /* start page program */ |
| 223 | #define STATE_CMD_READOOB 0x00000005 /* read OOB area */ |
| 224 | #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */ |
| 225 | #define STATE_CMD_STATUS 0x00000007 /* read status */ |
| 226 | #define STATE_CMD_SEQIN 0x00000009 /* sequential data input */ |
| 227 | #define STATE_CMD_READID 0x0000000A /* read ID */ |
| 228 | #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */ |
| 229 | #define STATE_CMD_RESET 0x0000000C /* reset */ |
| 230 | #define STATE_CMD_RNDOUT 0x0000000D /* random output command */ |
| 231 | #define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */ |
| 232 | #define STATE_CMD_MASK 0x0000000F /* command states mask */ |
| 233 | |
| 234 | /* After an address is input, the simulator goes to one of these states */ |
| 235 | #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */ |
| 236 | #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */ |
| 237 | #define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */ |
| 238 | #define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */ |
| 239 | #define STATE_ADDR_MASK 0x00000070 /* address states mask */ |
| 240 | |
| 241 | /* During data input/output the simulator is in these states */ |
| 242 | #define STATE_DATAIN 0x00000100 /* waiting for data input */ |
| 243 | #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */ |
| 244 | |
| 245 | #define STATE_DATAOUT 0x00001000 /* waiting for page data output */ |
| 246 | #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */ |
| 247 | #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */ |
| 248 | #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */ |
| 249 | |
| 250 | /* Previous operation is done, ready to accept new requests */ |
| 251 | #define STATE_READY 0x00000000 |
| 252 | |
| 253 | /* This state is used to mark that the next state isn't known yet */ |
| 254 | #define STATE_UNKNOWN 0x10000000 |
| 255 | |
| 256 | /* Simulator's actions bit masks */ |
| 257 | #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */ |
| 258 | #define ACTION_PRGPAGE 0x00200000 /* program the internal buffer to flash */ |
| 259 | #define ACTION_SECERASE 0x00300000 /* erase sector */ |
| 260 | #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */ |
| 261 | #define ACTION_HALFOFF 0x00500000 /* add to address half of page */ |
| 262 | #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */ |
| 263 | #define ACTION_MASK 0x00700000 /* action mask */ |
| 264 | |
| 265 | #define NS_OPER_NUM 13 /* Number of operations supported by the simulator */ |
| 266 | #define NS_OPER_STATES 6 /* Maximum number of states in operation */ |
| 267 | |
| 268 | #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */ |
| 269 | #define OPT_PAGE512 0x00000002 /* 512-byte page chips */ |
| 270 | #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */ |
| 271 | #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */ |
| 272 | #define OPT_PAGE4096 0x00000080 /* 4096-byte page chips */ |
| 273 | #define OPT_LARGEPAGE (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */ |
| 274 | #define OPT_SMALLPAGE (OPT_PAGE512) /* 512-byte page chips */ |
| 275 | |
| 276 | /* Remove action bits from state */ |
| 277 | #define NS_STATE(x) ((x) & ~ACTION_MASK) |
| 278 | |
| 279 | /* |
| 280 | * Maximum previous states which need to be saved. Currently saving is |
| 281 | * only needed for page program operation with preceded read command |
| 282 | * (which is only valid for 512-byte pages). |
| 283 | */ |
| 284 | #define NS_MAX_PREVSTATES 1 |
| 285 | |
| 286 | /* Maximum page cache pages needed to read or write a NAND page to the cache_file */ |
| 287 | #define NS_MAX_HELD_PAGES 16 |
| 288 | |
| 289 | struct nandsim_debug_info { |
| 290 | struct dentry *dfs_root; |
| 291 | struct dentry *dfs_wear_report; |
| 292 | }; |
| 293 | |
| 294 | /* |
| 295 | * A union to represent flash memory contents and flash buffer. |
| 296 | */ |
| 297 | union ns_mem { |
| 298 | u_char *byte; /* for byte access */ |
| 299 | uint16_t *word; /* for 16-bit word access */ |
| 300 | }; |
| 301 | |
| 302 | /* |
| 303 | * The structure which describes all the internal simulator data. |
| 304 | */ |
| 305 | struct nandsim { |
| 306 | struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS]; |
| 307 | unsigned int nbparts; |
| 308 | |
| 309 | uint busw; /* flash chip bus width (8 or 16) */ |
| 310 | u_char ids[8]; /* chip's ID bytes */ |
| 311 | uint32_t options; /* chip's characteristic bits */ |
| 312 | uint32_t state; /* current chip state */ |
| 313 | uint32_t nxstate; /* next expected state */ |
| 314 | |
| 315 | uint32_t *op; /* current operation, NULL operations isn't known yet */ |
| 316 | uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */ |
| 317 | uint16_t npstates; /* number of previous states saved */ |
| 318 | uint16_t stateidx; /* current state index */ |
| 319 | |
| 320 | /* The simulated NAND flash pages array */ |
| 321 | union ns_mem *pages; |
| 322 | |
| 323 | /* Slab allocator for nand pages */ |
| 324 | struct kmem_cache *nand_pages_slab; |
| 325 | |
| 326 | /* Internal buffer of page + OOB size bytes */ |
| 327 | union ns_mem buf; |
| 328 | |
| 329 | /* NAND flash "geometry" */ |
| 330 | struct { |
| 331 | uint64_t totsz; /* total flash size, bytes */ |
| 332 | uint32_t secsz; /* flash sector (erase block) size, bytes */ |
| 333 | uint pgsz; /* NAND flash page size, bytes */ |
| 334 | uint oobsz; /* page OOB area size, bytes */ |
| 335 | uint64_t totszoob; /* total flash size including OOB, bytes */ |
| 336 | uint pgszoob; /* page size including OOB , bytes*/ |
| 337 | uint secszoob; /* sector size including OOB, bytes */ |
| 338 | uint pgnum; /* total number of pages */ |
| 339 | uint pgsec; /* number of pages per sector */ |
| 340 | uint secshift; /* bits number in sector size */ |
| 341 | uint pgshift; /* bits number in page size */ |
| 342 | uint pgaddrbytes; /* bytes per page address */ |
| 343 | uint secaddrbytes; /* bytes per sector address */ |
| 344 | uint idbytes; /* the number ID bytes that this chip outputs */ |
| 345 | } geom; |
| 346 | |
| 347 | /* NAND flash internal registers */ |
| 348 | struct { |
| 349 | unsigned command; /* the command register */ |
| 350 | u_char status; /* the status register */ |
| 351 | uint row; /* the page number */ |
| 352 | uint column; /* the offset within page */ |
| 353 | uint count; /* internal counter */ |
| 354 | uint num; /* number of bytes which must be processed */ |
| 355 | uint off; /* fixed page offset */ |
| 356 | } regs; |
| 357 | |
| 358 | /* NAND flash lines state */ |
| 359 | struct { |
| 360 | int ce; /* chip Enable */ |
| 361 | int cle; /* command Latch Enable */ |
| 362 | int ale; /* address Latch Enable */ |
| 363 | int wp; /* write Protect */ |
| 364 | } lines; |
| 365 | |
| 366 | /* Fields needed when using a cache file */ |
| 367 | struct file *cfile; /* Open file */ |
| 368 | unsigned long *pages_written; /* Which pages have been written */ |
| 369 | void *file_buf; |
| 370 | struct page *held_pages[NS_MAX_HELD_PAGES]; |
| 371 | int held_cnt; |
| 372 | |
| 373 | struct nandsim_debug_info dbg; |
| 374 | }; |
| 375 | |
| 376 | /* |
| 377 | * Operations array. To perform any operation the simulator must pass |
| 378 | * through the correspondent states chain. |
| 379 | */ |
| 380 | static struct nandsim_operations { |
| 381 | uint32_t reqopts; /* options which are required to perform the operation */ |
| 382 | uint32_t states[NS_OPER_STATES]; /* operation's states */ |
| 383 | } ops[NS_OPER_NUM] = { |
| 384 | /* Read page + OOB from the beginning */ |
| 385 | {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY, |
| 386 | STATE_DATAOUT, STATE_READY}}, |
| 387 | /* Read page + OOB from the second half */ |
| 388 | {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY, |
| 389 | STATE_DATAOUT, STATE_READY}}, |
| 390 | /* Read OOB */ |
| 391 | {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY, |
| 392 | STATE_DATAOUT, STATE_READY}}, |
| 393 | /* Program page starting from the beginning */ |
| 394 | {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN, |
| 395 | STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, |
| 396 | /* Program page starting from the beginning */ |
| 397 | {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE, |
| 398 | STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, |
| 399 | /* Program page starting from the second half */ |
| 400 | {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE, |
| 401 | STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, |
| 402 | /* Program OOB */ |
| 403 | {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE, |
| 404 | STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, |
| 405 | /* Erase sector */ |
| 406 | {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}}, |
| 407 | /* Read status */ |
| 408 | {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}}, |
| 409 | /* Read ID */ |
| 410 | {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}}, |
| 411 | /* Large page devices read page */ |
| 412 | {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY, |
| 413 | STATE_DATAOUT, STATE_READY}}, |
| 414 | /* Large page devices random page read */ |
| 415 | {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY, |
| 416 | STATE_DATAOUT, STATE_READY}}, |
| 417 | }; |
| 418 | |
| 419 | struct weak_block { |
| 420 | struct list_head list; |
| 421 | unsigned int erase_block_no; |
| 422 | unsigned int max_erases; |
| 423 | unsigned int erases_done; |
| 424 | }; |
| 425 | |
| 426 | static LIST_HEAD(weak_blocks); |
| 427 | |
| 428 | struct weak_page { |
| 429 | struct list_head list; |
| 430 | unsigned int page_no; |
| 431 | unsigned int max_writes; |
| 432 | unsigned int writes_done; |
| 433 | }; |
| 434 | |
| 435 | static LIST_HEAD(weak_pages); |
| 436 | |
| 437 | struct grave_page { |
| 438 | struct list_head list; |
| 439 | unsigned int page_no; |
| 440 | unsigned int max_reads; |
| 441 | unsigned int reads_done; |
| 442 | }; |
| 443 | |
| 444 | static LIST_HEAD(grave_pages); |
| 445 | |
| 446 | static unsigned long *erase_block_wear = NULL; |
| 447 | static unsigned int wear_eb_count = 0; |
| 448 | static unsigned long total_wear = 0; |
| 449 | |
| 450 | /* MTD structure for NAND controller */ |
| 451 | static struct mtd_info *nsmtd; |
| 452 | |
| 453 | static int nandsim_debugfs_show(struct seq_file *m, void *private) |
| 454 | { |
| 455 | unsigned long wmin = -1, wmax = 0, avg; |
| 456 | unsigned long deciles[10], decile_max[10], tot = 0; |
| 457 | unsigned int i; |
| 458 | |
| 459 | /* Calc wear stats */ |
| 460 | for (i = 0; i < wear_eb_count; ++i) { |
| 461 | unsigned long wear = erase_block_wear[i]; |
| 462 | if (wear < wmin) |
| 463 | wmin = wear; |
| 464 | if (wear > wmax) |
| 465 | wmax = wear; |
| 466 | tot += wear; |
| 467 | } |
| 468 | |
| 469 | for (i = 0; i < 9; ++i) { |
| 470 | deciles[i] = 0; |
| 471 | decile_max[i] = (wmax * (i + 1) + 5) / 10; |
| 472 | } |
| 473 | deciles[9] = 0; |
| 474 | decile_max[9] = wmax; |
| 475 | for (i = 0; i < wear_eb_count; ++i) { |
| 476 | int d; |
| 477 | unsigned long wear = erase_block_wear[i]; |
| 478 | for (d = 0; d < 10; ++d) |
| 479 | if (wear <= decile_max[d]) { |
| 480 | deciles[d] += 1; |
| 481 | break; |
| 482 | } |
| 483 | } |
| 484 | avg = tot / wear_eb_count; |
| 485 | |
| 486 | /* Output wear report */ |
| 487 | seq_printf(m, "Total numbers of erases: %lu\n", tot); |
| 488 | seq_printf(m, "Number of erase blocks: %u\n", wear_eb_count); |
| 489 | seq_printf(m, "Average number of erases: %lu\n", avg); |
| 490 | seq_printf(m, "Maximum number of erases: %lu\n", wmax); |
| 491 | seq_printf(m, "Minimum number of erases: %lu\n", wmin); |
| 492 | for (i = 0; i < 10; ++i) { |
| 493 | unsigned long from = (i ? decile_max[i - 1] + 1 : 0); |
| 494 | if (from > decile_max[i]) |
| 495 | continue; |
| 496 | seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n", |
| 497 | from, |
| 498 | decile_max[i], |
| 499 | deciles[i]); |
| 500 | } |
| 501 | |
| 502 | return 0; |
| 503 | } |
| 504 | |
| 505 | static int nandsim_debugfs_open(struct inode *inode, struct file *file) |
| 506 | { |
| 507 | return single_open(file, nandsim_debugfs_show, inode->i_private); |
| 508 | } |
| 509 | |
| 510 | static const struct file_operations dfs_fops = { |
| 511 | .open = nandsim_debugfs_open, |
| 512 | .read = seq_read, |
| 513 | .llseek = seq_lseek, |
| 514 | .release = single_release, |
| 515 | }; |
| 516 | |
| 517 | /** |
| 518 | * nandsim_debugfs_create - initialize debugfs |
| 519 | * @dev: nandsim device description object |
| 520 | * |
| 521 | * This function creates all debugfs files for UBI device @ubi. Returns zero in |
| 522 | * case of success and a negative error code in case of failure. |
| 523 | */ |
| 524 | static int nandsim_debugfs_create(struct nandsim *dev) |
| 525 | { |
| 526 | struct nandsim_debug_info *dbg = &dev->dbg; |
| 527 | struct dentry *dent; |
| 528 | int err; |
| 529 | |
| 530 | if (!IS_ENABLED(CONFIG_DEBUG_FS)) |
| 531 | return 0; |
| 532 | |
| 533 | dent = debugfs_create_dir("nandsim", NULL); |
| 534 | if (IS_ERR_OR_NULL(dent)) { |
| 535 | int err = dent ? -ENODEV : PTR_ERR(dent); |
| 536 | |
| 537 | NS_ERR("cannot create \"nandsim\" debugfs directory, err %d\n", |
| 538 | err); |
| 539 | return err; |
| 540 | } |
| 541 | dbg->dfs_root = dent; |
| 542 | |
| 543 | dent = debugfs_create_file("wear_report", S_IRUSR, |
| 544 | dbg->dfs_root, dev, &dfs_fops); |
| 545 | if (IS_ERR_OR_NULL(dent)) |
| 546 | goto out_remove; |
| 547 | dbg->dfs_wear_report = dent; |
| 548 | |
| 549 | return 0; |
| 550 | |
| 551 | out_remove: |
| 552 | debugfs_remove_recursive(dbg->dfs_root); |
| 553 | err = dent ? PTR_ERR(dent) : -ENODEV; |
| 554 | return err; |
| 555 | } |
| 556 | |
| 557 | /** |
| 558 | * nandsim_debugfs_remove - destroy all debugfs files |
| 559 | */ |
| 560 | static void nandsim_debugfs_remove(struct nandsim *ns) |
| 561 | { |
| 562 | if (IS_ENABLED(CONFIG_DEBUG_FS)) |
| 563 | debugfs_remove_recursive(ns->dbg.dfs_root); |
| 564 | } |
| 565 | |
| 566 | /* |
| 567 | * Allocate array of page pointers, create slab allocation for an array |
| 568 | * and initialize the array by NULL pointers. |
| 569 | * |
| 570 | * RETURNS: 0 if success, -ENOMEM if memory alloc fails. |
| 571 | */ |
| 572 | static int alloc_device(struct nandsim *ns) |
| 573 | { |
| 574 | struct file *cfile; |
| 575 | int i, err; |
| 576 | |
| 577 | if (cache_file) { |
| 578 | cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600); |
| 579 | if (IS_ERR(cfile)) |
| 580 | return PTR_ERR(cfile); |
| 581 | if (!(cfile->f_mode & FMODE_CAN_READ)) { |
| 582 | NS_ERR("alloc_device: cache file not readable\n"); |
| 583 | err = -EINVAL; |
| 584 | goto err_close; |
| 585 | } |
| 586 | if (!(cfile->f_mode & FMODE_CAN_WRITE)) { |
| 587 | NS_ERR("alloc_device: cache file not writeable\n"); |
| 588 | err = -EINVAL; |
| 589 | goto err_close; |
| 590 | } |
| 591 | ns->pages_written = vzalloc(BITS_TO_LONGS(ns->geom.pgnum) * |
| 592 | sizeof(unsigned long)); |
| 593 | if (!ns->pages_written) { |
| 594 | NS_ERR("alloc_device: unable to allocate pages written array\n"); |
| 595 | err = -ENOMEM; |
| 596 | goto err_close; |
| 597 | } |
| 598 | ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL); |
| 599 | if (!ns->file_buf) { |
| 600 | NS_ERR("alloc_device: unable to allocate file buf\n"); |
| 601 | err = -ENOMEM; |
| 602 | goto err_free; |
| 603 | } |
| 604 | ns->cfile = cfile; |
| 605 | return 0; |
| 606 | } |
| 607 | |
| 608 | ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem)); |
| 609 | if (!ns->pages) { |
| 610 | NS_ERR("alloc_device: unable to allocate page array\n"); |
| 611 | return -ENOMEM; |
| 612 | } |
| 613 | for (i = 0; i < ns->geom.pgnum; i++) { |
| 614 | ns->pages[i].byte = NULL; |
| 615 | } |
| 616 | ns->nand_pages_slab = kmem_cache_create("nandsim", |
| 617 | ns->geom.pgszoob, 0, 0, NULL); |
| 618 | if (!ns->nand_pages_slab) { |
| 619 | NS_ERR("cache_create: unable to create kmem_cache\n"); |
| 620 | return -ENOMEM; |
| 621 | } |
| 622 | |
| 623 | return 0; |
| 624 | |
| 625 | err_free: |
| 626 | vfree(ns->pages_written); |
| 627 | err_close: |
| 628 | filp_close(cfile, NULL); |
| 629 | return err; |
| 630 | } |
| 631 | |
| 632 | /* |
| 633 | * Free any allocated pages, and free the array of page pointers. |
| 634 | */ |
| 635 | static void free_device(struct nandsim *ns) |
| 636 | { |
| 637 | int i; |
| 638 | |
| 639 | if (ns->cfile) { |
| 640 | kfree(ns->file_buf); |
| 641 | vfree(ns->pages_written); |
| 642 | filp_close(ns->cfile, NULL); |
| 643 | return; |
| 644 | } |
| 645 | |
| 646 | if (ns->pages) { |
| 647 | for (i = 0; i < ns->geom.pgnum; i++) { |
| 648 | if (ns->pages[i].byte) |
| 649 | kmem_cache_free(ns->nand_pages_slab, |
| 650 | ns->pages[i].byte); |
| 651 | } |
| 652 | kmem_cache_destroy(ns->nand_pages_slab); |
| 653 | vfree(ns->pages); |
| 654 | } |
| 655 | } |
| 656 | |
| 657 | static char *get_partition_name(int i) |
| 658 | { |
| 659 | return kasprintf(GFP_KERNEL, "NAND simulator partition %d", i); |
| 660 | } |
| 661 | |
| 662 | /* |
| 663 | * Initialize the nandsim structure. |
| 664 | * |
| 665 | * RETURNS: 0 if success, -ERRNO if failure. |
| 666 | */ |
| 667 | static int init_nandsim(struct mtd_info *mtd) |
| 668 | { |
| 669 | struct nand_chip *chip = mtd->priv; |
| 670 | struct nandsim *ns = chip->priv; |
| 671 | int i, ret = 0; |
| 672 | uint64_t remains; |
| 673 | uint64_t next_offset; |
| 674 | |
| 675 | if (NS_IS_INITIALIZED(ns)) { |
| 676 | NS_ERR("init_nandsim: nandsim is already initialized\n"); |
| 677 | return -EIO; |
| 678 | } |
| 679 | |
| 680 | /* Force mtd to not do delays */ |
| 681 | chip->chip_delay = 0; |
| 682 | |
| 683 | /* Initialize the NAND flash parameters */ |
| 684 | ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8; |
| 685 | ns->geom.totsz = mtd->size; |
| 686 | ns->geom.pgsz = mtd->writesize; |
| 687 | ns->geom.oobsz = mtd->oobsize; |
| 688 | ns->geom.secsz = mtd->erasesize; |
| 689 | ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz; |
| 690 | ns->geom.pgnum = div_u64(ns->geom.totsz, ns->geom.pgsz); |
| 691 | ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz; |
| 692 | ns->geom.secshift = ffs(ns->geom.secsz) - 1; |
| 693 | ns->geom.pgshift = chip->page_shift; |
| 694 | ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz; |
| 695 | ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec; |
| 696 | ns->options = 0; |
| 697 | |
| 698 | if (ns->geom.pgsz == 512) { |
| 699 | ns->options |= OPT_PAGE512; |
| 700 | if (ns->busw == 8) |
| 701 | ns->options |= OPT_PAGE512_8BIT; |
| 702 | } else if (ns->geom.pgsz == 2048) { |
| 703 | ns->options |= OPT_PAGE2048; |
| 704 | } else if (ns->geom.pgsz == 4096) { |
| 705 | ns->options |= OPT_PAGE4096; |
| 706 | } else { |
| 707 | NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz); |
| 708 | return -EIO; |
| 709 | } |
| 710 | |
| 711 | if (ns->options & OPT_SMALLPAGE) { |
| 712 | if (ns->geom.totsz <= (32 << 20)) { |
| 713 | ns->geom.pgaddrbytes = 3; |
| 714 | ns->geom.secaddrbytes = 2; |
| 715 | } else { |
| 716 | ns->geom.pgaddrbytes = 4; |
| 717 | ns->geom.secaddrbytes = 3; |
| 718 | } |
| 719 | } else { |
| 720 | if (ns->geom.totsz <= (128 << 20)) { |
| 721 | ns->geom.pgaddrbytes = 4; |
| 722 | ns->geom.secaddrbytes = 2; |
| 723 | } else { |
| 724 | ns->geom.pgaddrbytes = 5; |
| 725 | ns->geom.secaddrbytes = 3; |
| 726 | } |
| 727 | } |
| 728 | |
| 729 | /* Fill the partition_info structure */ |
| 730 | if (parts_num > ARRAY_SIZE(ns->partitions)) { |
| 731 | NS_ERR("too many partitions.\n"); |
| 732 | return -EINVAL; |
| 733 | } |
| 734 | remains = ns->geom.totsz; |
| 735 | next_offset = 0; |
| 736 | for (i = 0; i < parts_num; ++i) { |
| 737 | uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz; |
| 738 | |
| 739 | if (!part_sz || part_sz > remains) { |
| 740 | NS_ERR("bad partition size.\n"); |
| 741 | return -EINVAL; |
| 742 | } |
| 743 | ns->partitions[i].name = get_partition_name(i); |
| 744 | if (!ns->partitions[i].name) { |
| 745 | NS_ERR("unable to allocate memory.\n"); |
| 746 | return -ENOMEM; |
| 747 | } |
| 748 | ns->partitions[i].offset = next_offset; |
| 749 | ns->partitions[i].size = part_sz; |
| 750 | next_offset += ns->partitions[i].size; |
| 751 | remains -= ns->partitions[i].size; |
| 752 | } |
| 753 | ns->nbparts = parts_num; |
| 754 | if (remains) { |
| 755 | if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) { |
| 756 | NS_ERR("too many partitions.\n"); |
| 757 | return -EINVAL; |
| 758 | } |
| 759 | ns->partitions[i].name = get_partition_name(i); |
| 760 | if (!ns->partitions[i].name) { |
| 761 | NS_ERR("unable to allocate memory.\n"); |
| 762 | return -ENOMEM; |
| 763 | } |
| 764 | ns->partitions[i].offset = next_offset; |
| 765 | ns->partitions[i].size = remains; |
| 766 | ns->nbparts += 1; |
| 767 | } |
| 768 | |
| 769 | if (ns->busw == 16) |
| 770 | NS_WARN("16-bit flashes support wasn't tested\n"); |
| 771 | |
| 772 | printk("flash size: %llu MiB\n", |
| 773 | (unsigned long long)ns->geom.totsz >> 20); |
| 774 | printk("page size: %u bytes\n", ns->geom.pgsz); |
| 775 | printk("OOB area size: %u bytes\n", ns->geom.oobsz); |
| 776 | printk("sector size: %u KiB\n", ns->geom.secsz >> 10); |
| 777 | printk("pages number: %u\n", ns->geom.pgnum); |
| 778 | printk("pages per sector: %u\n", ns->geom.pgsec); |
| 779 | printk("bus width: %u\n", ns->busw); |
| 780 | printk("bits in sector size: %u\n", ns->geom.secshift); |
| 781 | printk("bits in page size: %u\n", ns->geom.pgshift); |
| 782 | printk("bits in OOB size: %u\n", ffs(ns->geom.oobsz) - 1); |
| 783 | printk("flash size with OOB: %llu KiB\n", |
| 784 | (unsigned long long)ns->geom.totszoob >> 10); |
| 785 | printk("page address bytes: %u\n", ns->geom.pgaddrbytes); |
| 786 | printk("sector address bytes: %u\n", ns->geom.secaddrbytes); |
| 787 | printk("options: %#x\n", ns->options); |
| 788 | |
| 789 | if ((ret = alloc_device(ns)) != 0) |
| 790 | return ret; |
| 791 | |
| 792 | /* Allocate / initialize the internal buffer */ |
| 793 | ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL); |
| 794 | if (!ns->buf.byte) { |
| 795 | NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n", |
| 796 | ns->geom.pgszoob); |
| 797 | return -ENOMEM; |
| 798 | } |
| 799 | memset(ns->buf.byte, 0xFF, ns->geom.pgszoob); |
| 800 | |
| 801 | return 0; |
| 802 | } |
| 803 | |
| 804 | /* |
| 805 | * Free the nandsim structure. |
| 806 | */ |
| 807 | static void free_nandsim(struct nandsim *ns) |
| 808 | { |
| 809 | kfree(ns->buf.byte); |
| 810 | free_device(ns); |
| 811 | |
| 812 | return; |
| 813 | } |
| 814 | |
| 815 | static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd) |
| 816 | { |
| 817 | char *w; |
| 818 | int zero_ok; |
| 819 | unsigned int erase_block_no; |
| 820 | loff_t offset; |
| 821 | |
| 822 | if (!badblocks) |
| 823 | return 0; |
| 824 | w = badblocks; |
| 825 | do { |
| 826 | zero_ok = (*w == '0' ? 1 : 0); |
| 827 | erase_block_no = simple_strtoul(w, &w, 0); |
| 828 | if (!zero_ok && !erase_block_no) { |
| 829 | NS_ERR("invalid badblocks.\n"); |
| 830 | return -EINVAL; |
| 831 | } |
| 832 | offset = (loff_t)erase_block_no * ns->geom.secsz; |
| 833 | if (mtd_block_markbad(mtd, offset)) { |
| 834 | NS_ERR("invalid badblocks.\n"); |
| 835 | return -EINVAL; |
| 836 | } |
| 837 | if (*w == ',') |
| 838 | w += 1; |
| 839 | } while (*w); |
| 840 | return 0; |
| 841 | } |
| 842 | |
| 843 | static int parse_weakblocks(void) |
| 844 | { |
| 845 | char *w; |
| 846 | int zero_ok; |
| 847 | unsigned int erase_block_no; |
| 848 | unsigned int max_erases; |
| 849 | struct weak_block *wb; |
| 850 | |
| 851 | if (!weakblocks) |
| 852 | return 0; |
| 853 | w = weakblocks; |
| 854 | do { |
| 855 | zero_ok = (*w == '0' ? 1 : 0); |
| 856 | erase_block_no = simple_strtoul(w, &w, 0); |
| 857 | if (!zero_ok && !erase_block_no) { |
| 858 | NS_ERR("invalid weakblocks.\n"); |
| 859 | return -EINVAL; |
| 860 | } |
| 861 | max_erases = 3; |
| 862 | if (*w == ':') { |
| 863 | w += 1; |
| 864 | max_erases = simple_strtoul(w, &w, 0); |
| 865 | } |
| 866 | if (*w == ',') |
| 867 | w += 1; |
| 868 | wb = kzalloc(sizeof(*wb), GFP_KERNEL); |
| 869 | if (!wb) { |
| 870 | NS_ERR("unable to allocate memory.\n"); |
| 871 | return -ENOMEM; |
| 872 | } |
| 873 | wb->erase_block_no = erase_block_no; |
| 874 | wb->max_erases = max_erases; |
| 875 | list_add(&wb->list, &weak_blocks); |
| 876 | } while (*w); |
| 877 | return 0; |
| 878 | } |
| 879 | |
| 880 | static int erase_error(unsigned int erase_block_no) |
| 881 | { |
| 882 | struct weak_block *wb; |
| 883 | |
| 884 | list_for_each_entry(wb, &weak_blocks, list) |
| 885 | if (wb->erase_block_no == erase_block_no) { |
| 886 | if (wb->erases_done >= wb->max_erases) |
| 887 | return 1; |
| 888 | wb->erases_done += 1; |
| 889 | return 0; |
| 890 | } |
| 891 | return 0; |
| 892 | } |
| 893 | |
| 894 | static int parse_weakpages(void) |
| 895 | { |
| 896 | char *w; |
| 897 | int zero_ok; |
| 898 | unsigned int page_no; |
| 899 | unsigned int max_writes; |
| 900 | struct weak_page *wp; |
| 901 | |
| 902 | if (!weakpages) |
| 903 | return 0; |
| 904 | w = weakpages; |
| 905 | do { |
| 906 | zero_ok = (*w == '0' ? 1 : 0); |
| 907 | page_no = simple_strtoul(w, &w, 0); |
| 908 | if (!zero_ok && !page_no) { |
| 909 | NS_ERR("invalid weakpagess.\n"); |
| 910 | return -EINVAL; |
| 911 | } |
| 912 | max_writes = 3; |
| 913 | if (*w == ':') { |
| 914 | w += 1; |
| 915 | max_writes = simple_strtoul(w, &w, 0); |
| 916 | } |
| 917 | if (*w == ',') |
| 918 | w += 1; |
| 919 | wp = kzalloc(sizeof(*wp), GFP_KERNEL); |
| 920 | if (!wp) { |
| 921 | NS_ERR("unable to allocate memory.\n"); |
| 922 | return -ENOMEM; |
| 923 | } |
| 924 | wp->page_no = page_no; |
| 925 | wp->max_writes = max_writes; |
| 926 | list_add(&wp->list, &weak_pages); |
| 927 | } while (*w); |
| 928 | return 0; |
| 929 | } |
| 930 | |
| 931 | static int write_error(unsigned int page_no) |
| 932 | { |
| 933 | struct weak_page *wp; |
| 934 | |
| 935 | list_for_each_entry(wp, &weak_pages, list) |
| 936 | if (wp->page_no == page_no) { |
| 937 | if (wp->writes_done >= wp->max_writes) |
| 938 | return 1; |
| 939 | wp->writes_done += 1; |
| 940 | return 0; |
| 941 | } |
| 942 | return 0; |
| 943 | } |
| 944 | |
| 945 | static int parse_gravepages(void) |
| 946 | { |
| 947 | char *g; |
| 948 | int zero_ok; |
| 949 | unsigned int page_no; |
| 950 | unsigned int max_reads; |
| 951 | struct grave_page *gp; |
| 952 | |
| 953 | if (!gravepages) |
| 954 | return 0; |
| 955 | g = gravepages; |
| 956 | do { |
| 957 | zero_ok = (*g == '0' ? 1 : 0); |
| 958 | page_no = simple_strtoul(g, &g, 0); |
| 959 | if (!zero_ok && !page_no) { |
| 960 | NS_ERR("invalid gravepagess.\n"); |
| 961 | return -EINVAL; |
| 962 | } |
| 963 | max_reads = 3; |
| 964 | if (*g == ':') { |
| 965 | g += 1; |
| 966 | max_reads = simple_strtoul(g, &g, 0); |
| 967 | } |
| 968 | if (*g == ',') |
| 969 | g += 1; |
| 970 | gp = kzalloc(sizeof(*gp), GFP_KERNEL); |
| 971 | if (!gp) { |
| 972 | NS_ERR("unable to allocate memory.\n"); |
| 973 | return -ENOMEM; |
| 974 | } |
| 975 | gp->page_no = page_no; |
| 976 | gp->max_reads = max_reads; |
| 977 | list_add(&gp->list, &grave_pages); |
| 978 | } while (*g); |
| 979 | return 0; |
| 980 | } |
| 981 | |
| 982 | static int read_error(unsigned int page_no) |
| 983 | { |
| 984 | struct grave_page *gp; |
| 985 | |
| 986 | list_for_each_entry(gp, &grave_pages, list) |
| 987 | if (gp->page_no == page_no) { |
| 988 | if (gp->reads_done >= gp->max_reads) |
| 989 | return 1; |
| 990 | gp->reads_done += 1; |
| 991 | return 0; |
| 992 | } |
| 993 | return 0; |
| 994 | } |
| 995 | |
| 996 | static void free_lists(void) |
| 997 | { |
| 998 | struct list_head *pos, *n; |
| 999 | list_for_each_safe(pos, n, &weak_blocks) { |
| 1000 | list_del(pos); |
| 1001 | kfree(list_entry(pos, struct weak_block, list)); |
| 1002 | } |
| 1003 | list_for_each_safe(pos, n, &weak_pages) { |
| 1004 | list_del(pos); |
| 1005 | kfree(list_entry(pos, struct weak_page, list)); |
| 1006 | } |
| 1007 | list_for_each_safe(pos, n, &grave_pages) { |
| 1008 | list_del(pos); |
| 1009 | kfree(list_entry(pos, struct grave_page, list)); |
| 1010 | } |
| 1011 | kfree(erase_block_wear); |
| 1012 | } |
| 1013 | |
| 1014 | static int setup_wear_reporting(struct mtd_info *mtd) |
| 1015 | { |
| 1016 | size_t mem; |
| 1017 | |
| 1018 | wear_eb_count = div_u64(mtd->size, mtd->erasesize); |
| 1019 | mem = wear_eb_count * sizeof(unsigned long); |
| 1020 | if (mem / sizeof(unsigned long) != wear_eb_count) { |
| 1021 | NS_ERR("Too many erase blocks for wear reporting\n"); |
| 1022 | return -ENOMEM; |
| 1023 | } |
| 1024 | erase_block_wear = kzalloc(mem, GFP_KERNEL); |
| 1025 | if (!erase_block_wear) { |
| 1026 | NS_ERR("Too many erase blocks for wear reporting\n"); |
| 1027 | return -ENOMEM; |
| 1028 | } |
| 1029 | return 0; |
| 1030 | } |
| 1031 | |
| 1032 | static void update_wear(unsigned int erase_block_no) |
| 1033 | { |
| 1034 | if (!erase_block_wear) |
| 1035 | return; |
| 1036 | total_wear += 1; |
| 1037 | /* |
| 1038 | * TODO: Notify this through a debugfs entry, |
| 1039 | * instead of showing an error message. |
| 1040 | */ |
| 1041 | if (total_wear == 0) |
| 1042 | NS_ERR("Erase counter total overflow\n"); |
| 1043 | erase_block_wear[erase_block_no] += 1; |
| 1044 | if (erase_block_wear[erase_block_no] == 0) |
| 1045 | NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no); |
| 1046 | } |
| 1047 | |
| 1048 | /* |
| 1049 | * Returns the string representation of 'state' state. |
| 1050 | */ |
| 1051 | static char *get_state_name(uint32_t state) |
| 1052 | { |
| 1053 | switch (NS_STATE(state)) { |
| 1054 | case STATE_CMD_READ0: |
| 1055 | return "STATE_CMD_READ0"; |
| 1056 | case STATE_CMD_READ1: |
| 1057 | return "STATE_CMD_READ1"; |
| 1058 | case STATE_CMD_PAGEPROG: |
| 1059 | return "STATE_CMD_PAGEPROG"; |
| 1060 | case STATE_CMD_READOOB: |
| 1061 | return "STATE_CMD_READOOB"; |
| 1062 | case STATE_CMD_READSTART: |
| 1063 | return "STATE_CMD_READSTART"; |
| 1064 | case STATE_CMD_ERASE1: |
| 1065 | return "STATE_CMD_ERASE1"; |
| 1066 | case STATE_CMD_STATUS: |
| 1067 | return "STATE_CMD_STATUS"; |
| 1068 | case STATE_CMD_SEQIN: |
| 1069 | return "STATE_CMD_SEQIN"; |
| 1070 | case STATE_CMD_READID: |
| 1071 | return "STATE_CMD_READID"; |
| 1072 | case STATE_CMD_ERASE2: |
| 1073 | return "STATE_CMD_ERASE2"; |
| 1074 | case STATE_CMD_RESET: |
| 1075 | return "STATE_CMD_RESET"; |
| 1076 | case STATE_CMD_RNDOUT: |
| 1077 | return "STATE_CMD_RNDOUT"; |
| 1078 | case STATE_CMD_RNDOUTSTART: |
| 1079 | return "STATE_CMD_RNDOUTSTART"; |
| 1080 | case STATE_ADDR_PAGE: |
| 1081 | return "STATE_ADDR_PAGE"; |
| 1082 | case STATE_ADDR_SEC: |
| 1083 | return "STATE_ADDR_SEC"; |
| 1084 | case STATE_ADDR_ZERO: |
| 1085 | return "STATE_ADDR_ZERO"; |
| 1086 | case STATE_ADDR_COLUMN: |
| 1087 | return "STATE_ADDR_COLUMN"; |
| 1088 | case STATE_DATAIN: |
| 1089 | return "STATE_DATAIN"; |
| 1090 | case STATE_DATAOUT: |
| 1091 | return "STATE_DATAOUT"; |
| 1092 | case STATE_DATAOUT_ID: |
| 1093 | return "STATE_DATAOUT_ID"; |
| 1094 | case STATE_DATAOUT_STATUS: |
| 1095 | return "STATE_DATAOUT_STATUS"; |
| 1096 | case STATE_READY: |
| 1097 | return "STATE_READY"; |
| 1098 | case STATE_UNKNOWN: |
| 1099 | return "STATE_UNKNOWN"; |
| 1100 | } |
| 1101 | |
| 1102 | NS_ERR("get_state_name: unknown state, BUG\n"); |
| 1103 | return NULL; |
| 1104 | } |
| 1105 | |
| 1106 | /* |
| 1107 | * Check if command is valid. |
| 1108 | * |
| 1109 | * RETURNS: 1 if wrong command, 0 if right. |
| 1110 | */ |
| 1111 | static int check_command(int cmd) |
| 1112 | { |
| 1113 | switch (cmd) { |
| 1114 | |
| 1115 | case NAND_CMD_READ0: |
| 1116 | case NAND_CMD_READ1: |
| 1117 | case NAND_CMD_READSTART: |
| 1118 | case NAND_CMD_PAGEPROG: |
| 1119 | case NAND_CMD_READOOB: |
| 1120 | case NAND_CMD_ERASE1: |
| 1121 | case NAND_CMD_STATUS: |
| 1122 | case NAND_CMD_SEQIN: |
| 1123 | case NAND_CMD_READID: |
| 1124 | case NAND_CMD_ERASE2: |
| 1125 | case NAND_CMD_RESET: |
| 1126 | case NAND_CMD_RNDOUT: |
| 1127 | case NAND_CMD_RNDOUTSTART: |
| 1128 | return 0; |
| 1129 | |
| 1130 | default: |
| 1131 | return 1; |
| 1132 | } |
| 1133 | } |
| 1134 | |
| 1135 | /* |
| 1136 | * Returns state after command is accepted by command number. |
| 1137 | */ |
| 1138 | static uint32_t get_state_by_command(unsigned command) |
| 1139 | { |
| 1140 | switch (command) { |
| 1141 | case NAND_CMD_READ0: |
| 1142 | return STATE_CMD_READ0; |
| 1143 | case NAND_CMD_READ1: |
| 1144 | return STATE_CMD_READ1; |
| 1145 | case NAND_CMD_PAGEPROG: |
| 1146 | return STATE_CMD_PAGEPROG; |
| 1147 | case NAND_CMD_READSTART: |
| 1148 | return STATE_CMD_READSTART; |
| 1149 | case NAND_CMD_READOOB: |
| 1150 | return STATE_CMD_READOOB; |
| 1151 | case NAND_CMD_ERASE1: |
| 1152 | return STATE_CMD_ERASE1; |
| 1153 | case NAND_CMD_STATUS: |
| 1154 | return STATE_CMD_STATUS; |
| 1155 | case NAND_CMD_SEQIN: |
| 1156 | return STATE_CMD_SEQIN; |
| 1157 | case NAND_CMD_READID: |
| 1158 | return STATE_CMD_READID; |
| 1159 | case NAND_CMD_ERASE2: |
| 1160 | return STATE_CMD_ERASE2; |
| 1161 | case NAND_CMD_RESET: |
| 1162 | return STATE_CMD_RESET; |
| 1163 | case NAND_CMD_RNDOUT: |
| 1164 | return STATE_CMD_RNDOUT; |
| 1165 | case NAND_CMD_RNDOUTSTART: |
| 1166 | return STATE_CMD_RNDOUTSTART; |
| 1167 | } |
| 1168 | |
| 1169 | NS_ERR("get_state_by_command: unknown command, BUG\n"); |
| 1170 | return 0; |
| 1171 | } |
| 1172 | |
| 1173 | /* |
| 1174 | * Move an address byte to the correspondent internal register. |
| 1175 | */ |
| 1176 | static inline void accept_addr_byte(struct nandsim *ns, u_char bt) |
| 1177 | { |
| 1178 | uint byte = (uint)bt; |
| 1179 | |
| 1180 | if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) |
| 1181 | ns->regs.column |= (byte << 8 * ns->regs.count); |
| 1182 | else { |
| 1183 | ns->regs.row |= (byte << 8 * (ns->regs.count - |
| 1184 | ns->geom.pgaddrbytes + |
| 1185 | ns->geom.secaddrbytes)); |
| 1186 | } |
| 1187 | |
| 1188 | return; |
| 1189 | } |
| 1190 | |
| 1191 | /* |
| 1192 | * Switch to STATE_READY state. |
| 1193 | */ |
| 1194 | static inline void switch_to_ready_state(struct nandsim *ns, u_char status) |
| 1195 | { |
| 1196 | NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY)); |
| 1197 | |
| 1198 | ns->state = STATE_READY; |
| 1199 | ns->nxstate = STATE_UNKNOWN; |
| 1200 | ns->op = NULL; |
| 1201 | ns->npstates = 0; |
| 1202 | ns->stateidx = 0; |
| 1203 | ns->regs.num = 0; |
| 1204 | ns->regs.count = 0; |
| 1205 | ns->regs.off = 0; |
| 1206 | ns->regs.row = 0; |
| 1207 | ns->regs.column = 0; |
| 1208 | ns->regs.status = status; |
| 1209 | } |
| 1210 | |
| 1211 | /* |
| 1212 | * If the operation isn't known yet, try to find it in the global array |
| 1213 | * of supported operations. |
| 1214 | * |
| 1215 | * Operation can be unknown because of the following. |
| 1216 | * 1. New command was accepted and this is the first call to find the |
| 1217 | * correspondent states chain. In this case ns->npstates = 0; |
| 1218 | * 2. There are several operations which begin with the same command(s) |
| 1219 | * (for example program from the second half and read from the |
| 1220 | * second half operations both begin with the READ1 command). In this |
| 1221 | * case the ns->pstates[] array contains previous states. |
| 1222 | * |
| 1223 | * Thus, the function tries to find operation containing the following |
| 1224 | * states (if the 'flag' parameter is 0): |
| 1225 | * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state |
| 1226 | * |
| 1227 | * If (one and only one) matching operation is found, it is accepted ( |
| 1228 | * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is |
| 1229 | * zeroed). |
| 1230 | * |
| 1231 | * If there are several matches, the current state is pushed to the |
| 1232 | * ns->pstates. |
| 1233 | * |
| 1234 | * The operation can be unknown only while commands are input to the chip. |
| 1235 | * As soon as address command is accepted, the operation must be known. |
| 1236 | * In such situation the function is called with 'flag' != 0, and the |
| 1237 | * operation is searched using the following pattern: |
| 1238 | * ns->pstates[0], ... ns->pstates[ns->npstates], <address input> |
| 1239 | * |
| 1240 | * It is supposed that this pattern must either match one operation or |
| 1241 | * none. There can't be ambiguity in that case. |
| 1242 | * |
| 1243 | * If no matches found, the function does the following: |
| 1244 | * 1. if there are saved states present, try to ignore them and search |
| 1245 | * again only using the last command. If nothing was found, switch |
| 1246 | * to the STATE_READY state. |
| 1247 | * 2. if there are no saved states, switch to the STATE_READY state. |
| 1248 | * |
| 1249 | * RETURNS: -2 - no matched operations found. |
| 1250 | * -1 - several matches. |
| 1251 | * 0 - operation is found. |
| 1252 | */ |
| 1253 | static int find_operation(struct nandsim *ns, uint32_t flag) |
| 1254 | { |
| 1255 | int opsfound = 0; |
| 1256 | int i, j, idx = 0; |
| 1257 | |
| 1258 | for (i = 0; i < NS_OPER_NUM; i++) { |
| 1259 | |
| 1260 | int found = 1; |
| 1261 | |
| 1262 | if (!(ns->options & ops[i].reqopts)) |
| 1263 | /* Ignore operations we can't perform */ |
| 1264 | continue; |
| 1265 | |
| 1266 | if (flag) { |
| 1267 | if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK)) |
| 1268 | continue; |
| 1269 | } else { |
| 1270 | if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates])) |
| 1271 | continue; |
| 1272 | } |
| 1273 | |
| 1274 | for (j = 0; j < ns->npstates; j++) |
| 1275 | if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j]) |
| 1276 | && (ns->options & ops[idx].reqopts)) { |
| 1277 | found = 0; |
| 1278 | break; |
| 1279 | } |
| 1280 | |
| 1281 | if (found) { |
| 1282 | idx = i; |
| 1283 | opsfound += 1; |
| 1284 | } |
| 1285 | } |
| 1286 | |
| 1287 | if (opsfound == 1) { |
| 1288 | /* Exact match */ |
| 1289 | ns->op = &ops[idx].states[0]; |
| 1290 | if (flag) { |
| 1291 | /* |
| 1292 | * In this case the find_operation function was |
| 1293 | * called when address has just began input. But it isn't |
| 1294 | * yet fully input and the current state must |
| 1295 | * not be one of STATE_ADDR_*, but the STATE_ADDR_* |
| 1296 | * state must be the next state (ns->nxstate). |
| 1297 | */ |
| 1298 | ns->stateidx = ns->npstates - 1; |
| 1299 | } else { |
| 1300 | ns->stateidx = ns->npstates; |
| 1301 | } |
| 1302 | ns->npstates = 0; |
| 1303 | ns->state = ns->op[ns->stateidx]; |
| 1304 | ns->nxstate = ns->op[ns->stateidx + 1]; |
| 1305 | NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n", |
| 1306 | idx, get_state_name(ns->state), get_state_name(ns->nxstate)); |
| 1307 | return 0; |
| 1308 | } |
| 1309 | |
| 1310 | if (opsfound == 0) { |
| 1311 | /* Nothing was found. Try to ignore previous commands (if any) and search again */ |
| 1312 | if (ns->npstates != 0) { |
| 1313 | NS_DBG("find_operation: no operation found, try again with state %s\n", |
| 1314 | get_state_name(ns->state)); |
| 1315 | ns->npstates = 0; |
| 1316 | return find_operation(ns, 0); |
| 1317 | |
| 1318 | } |
| 1319 | NS_DBG("find_operation: no operations found\n"); |
| 1320 | switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); |
| 1321 | return -2; |
| 1322 | } |
| 1323 | |
| 1324 | if (flag) { |
| 1325 | /* This shouldn't happen */ |
| 1326 | NS_DBG("find_operation: BUG, operation must be known if address is input\n"); |
| 1327 | return -2; |
| 1328 | } |
| 1329 | |
| 1330 | NS_DBG("find_operation: there is still ambiguity\n"); |
| 1331 | |
| 1332 | ns->pstates[ns->npstates++] = ns->state; |
| 1333 | |
| 1334 | return -1; |
| 1335 | } |
| 1336 | |
| 1337 | static void put_pages(struct nandsim *ns) |
| 1338 | { |
| 1339 | int i; |
| 1340 | |
| 1341 | for (i = 0; i < ns->held_cnt; i++) |
| 1342 | page_cache_release(ns->held_pages[i]); |
| 1343 | } |
| 1344 | |
| 1345 | /* Get page cache pages in advance to provide NOFS memory allocation */ |
| 1346 | static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos) |
| 1347 | { |
| 1348 | pgoff_t index, start_index, end_index; |
| 1349 | struct page *page; |
| 1350 | struct address_space *mapping = file->f_mapping; |
| 1351 | |
| 1352 | start_index = pos >> PAGE_CACHE_SHIFT; |
| 1353 | end_index = (pos + count - 1) >> PAGE_CACHE_SHIFT; |
| 1354 | if (end_index - start_index + 1 > NS_MAX_HELD_PAGES) |
| 1355 | return -EINVAL; |
| 1356 | ns->held_cnt = 0; |
| 1357 | for (index = start_index; index <= end_index; index++) { |
| 1358 | page = find_get_page(mapping, index); |
| 1359 | if (page == NULL) { |
| 1360 | page = find_or_create_page(mapping, index, GFP_NOFS); |
| 1361 | if (page == NULL) { |
| 1362 | write_inode_now(mapping->host, 1); |
| 1363 | page = find_or_create_page(mapping, index, GFP_NOFS); |
| 1364 | } |
| 1365 | if (page == NULL) { |
| 1366 | put_pages(ns); |
| 1367 | return -ENOMEM; |
| 1368 | } |
| 1369 | unlock_page(page); |
| 1370 | } |
| 1371 | ns->held_pages[ns->held_cnt++] = page; |
| 1372 | } |
| 1373 | return 0; |
| 1374 | } |
| 1375 | |
| 1376 | static int set_memalloc(void) |
| 1377 | { |
| 1378 | if (current->flags & PF_MEMALLOC) |
| 1379 | return 0; |
| 1380 | current->flags |= PF_MEMALLOC; |
| 1381 | return 1; |
| 1382 | } |
| 1383 | |
| 1384 | static void clear_memalloc(int memalloc) |
| 1385 | { |
| 1386 | if (memalloc) |
| 1387 | current->flags &= ~PF_MEMALLOC; |
| 1388 | } |
| 1389 | |
| 1390 | static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos) |
| 1391 | { |
| 1392 | ssize_t tx; |
| 1393 | int err, memalloc; |
| 1394 | |
| 1395 | err = get_pages(ns, file, count, pos); |
| 1396 | if (err) |
| 1397 | return err; |
| 1398 | memalloc = set_memalloc(); |
| 1399 | tx = kernel_read(file, pos, buf, count); |
| 1400 | clear_memalloc(memalloc); |
| 1401 | put_pages(ns); |
| 1402 | return tx; |
| 1403 | } |
| 1404 | |
| 1405 | static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos) |
| 1406 | { |
| 1407 | ssize_t tx; |
| 1408 | int err, memalloc; |
| 1409 | |
| 1410 | err = get_pages(ns, file, count, pos); |
| 1411 | if (err) |
| 1412 | return err; |
| 1413 | memalloc = set_memalloc(); |
| 1414 | tx = kernel_write(file, buf, count, pos); |
| 1415 | clear_memalloc(memalloc); |
| 1416 | put_pages(ns); |
| 1417 | return tx; |
| 1418 | } |
| 1419 | |
| 1420 | /* |
| 1421 | * Returns a pointer to the current page. |
| 1422 | */ |
| 1423 | static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns) |
| 1424 | { |
| 1425 | return &(ns->pages[ns->regs.row]); |
| 1426 | } |
| 1427 | |
| 1428 | /* |
| 1429 | * Retuns a pointer to the current byte, within the current page. |
| 1430 | */ |
| 1431 | static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns) |
| 1432 | { |
| 1433 | return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off; |
| 1434 | } |
| 1435 | |
| 1436 | static int do_read_error(struct nandsim *ns, int num) |
| 1437 | { |
| 1438 | unsigned int page_no = ns->regs.row; |
| 1439 | |
| 1440 | if (read_error(page_no)) { |
| 1441 | prandom_bytes(ns->buf.byte, num); |
| 1442 | NS_WARN("simulating read error in page %u\n", page_no); |
| 1443 | return 1; |
| 1444 | } |
| 1445 | return 0; |
| 1446 | } |
| 1447 | |
| 1448 | static void do_bit_flips(struct nandsim *ns, int num) |
| 1449 | { |
| 1450 | if (bitflips && prandom_u32() < (1 << 22)) { |
| 1451 | int flips = 1; |
| 1452 | if (bitflips > 1) |
| 1453 | flips = (prandom_u32() % (int) bitflips) + 1; |
| 1454 | while (flips--) { |
| 1455 | int pos = prandom_u32() % (num * 8); |
| 1456 | ns->buf.byte[pos / 8] ^= (1 << (pos % 8)); |
| 1457 | NS_WARN("read_page: flipping bit %d in page %d " |
| 1458 | "reading from %d ecc: corrected=%u failed=%u\n", |
| 1459 | pos, ns->regs.row, ns->regs.column + ns->regs.off, |
| 1460 | nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed); |
| 1461 | } |
| 1462 | } |
| 1463 | } |
| 1464 | |
| 1465 | /* |
| 1466 | * Fill the NAND buffer with data read from the specified page. |
| 1467 | */ |
| 1468 | static void read_page(struct nandsim *ns, int num) |
| 1469 | { |
| 1470 | union ns_mem *mypage; |
| 1471 | |
| 1472 | if (ns->cfile) { |
| 1473 | if (!test_bit(ns->regs.row, ns->pages_written)) { |
| 1474 | NS_DBG("read_page: page %d not written\n", ns->regs.row); |
| 1475 | memset(ns->buf.byte, 0xFF, num); |
| 1476 | } else { |
| 1477 | loff_t pos; |
| 1478 | ssize_t tx; |
| 1479 | |
| 1480 | NS_DBG("read_page: page %d written, reading from %d\n", |
| 1481 | ns->regs.row, ns->regs.column + ns->regs.off); |
| 1482 | if (do_read_error(ns, num)) |
| 1483 | return; |
| 1484 | pos = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off; |
| 1485 | tx = read_file(ns, ns->cfile, ns->buf.byte, num, pos); |
| 1486 | if (tx != num) { |
| 1487 | NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx); |
| 1488 | return; |
| 1489 | } |
| 1490 | do_bit_flips(ns, num); |
| 1491 | } |
| 1492 | return; |
| 1493 | } |
| 1494 | |
| 1495 | mypage = NS_GET_PAGE(ns); |
| 1496 | if (mypage->byte == NULL) { |
| 1497 | NS_DBG("read_page: page %d not allocated\n", ns->regs.row); |
| 1498 | memset(ns->buf.byte, 0xFF, num); |
| 1499 | } else { |
| 1500 | NS_DBG("read_page: page %d allocated, reading from %d\n", |
| 1501 | ns->regs.row, ns->regs.column + ns->regs.off); |
| 1502 | if (do_read_error(ns, num)) |
| 1503 | return; |
| 1504 | memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num); |
| 1505 | do_bit_flips(ns, num); |
| 1506 | } |
| 1507 | } |
| 1508 | |
| 1509 | /* |
| 1510 | * Erase all pages in the specified sector. |
| 1511 | */ |
| 1512 | static void erase_sector(struct nandsim *ns) |
| 1513 | { |
| 1514 | union ns_mem *mypage; |
| 1515 | int i; |
| 1516 | |
| 1517 | if (ns->cfile) { |
| 1518 | for (i = 0; i < ns->geom.pgsec; i++) |
| 1519 | if (__test_and_clear_bit(ns->regs.row + i, |
| 1520 | ns->pages_written)) { |
| 1521 | NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i); |
| 1522 | } |
| 1523 | return; |
| 1524 | } |
| 1525 | |
| 1526 | mypage = NS_GET_PAGE(ns); |
| 1527 | for (i = 0; i < ns->geom.pgsec; i++) { |
| 1528 | if (mypage->byte != NULL) { |
| 1529 | NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i); |
| 1530 | kmem_cache_free(ns->nand_pages_slab, mypage->byte); |
| 1531 | mypage->byte = NULL; |
| 1532 | } |
| 1533 | mypage++; |
| 1534 | } |
| 1535 | } |
| 1536 | |
| 1537 | /* |
| 1538 | * Program the specified page with the contents from the NAND buffer. |
| 1539 | */ |
| 1540 | static int prog_page(struct nandsim *ns, int num) |
| 1541 | { |
| 1542 | int i; |
| 1543 | union ns_mem *mypage; |
| 1544 | u_char *pg_off; |
| 1545 | |
| 1546 | if (ns->cfile) { |
| 1547 | loff_t off; |
| 1548 | ssize_t tx; |
| 1549 | int all; |
| 1550 | |
| 1551 | NS_DBG("prog_page: writing page %d\n", ns->regs.row); |
| 1552 | pg_off = ns->file_buf + ns->regs.column + ns->regs.off; |
| 1553 | off = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off; |
| 1554 | if (!test_bit(ns->regs.row, ns->pages_written)) { |
| 1555 | all = 1; |
| 1556 | memset(ns->file_buf, 0xff, ns->geom.pgszoob); |
| 1557 | } else { |
| 1558 | all = 0; |
| 1559 | tx = read_file(ns, ns->cfile, pg_off, num, off); |
| 1560 | if (tx != num) { |
| 1561 | NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx); |
| 1562 | return -1; |
| 1563 | } |
| 1564 | } |
| 1565 | for (i = 0; i < num; i++) |
| 1566 | pg_off[i] &= ns->buf.byte[i]; |
| 1567 | if (all) { |
| 1568 | loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob; |
| 1569 | tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, pos); |
| 1570 | if (tx != ns->geom.pgszoob) { |
| 1571 | NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx); |
| 1572 | return -1; |
| 1573 | } |
| 1574 | __set_bit(ns->regs.row, ns->pages_written); |
| 1575 | } else { |
| 1576 | tx = write_file(ns, ns->cfile, pg_off, num, off); |
| 1577 | if (tx != num) { |
| 1578 | NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx); |
| 1579 | return -1; |
| 1580 | } |
| 1581 | } |
| 1582 | return 0; |
| 1583 | } |
| 1584 | |
| 1585 | mypage = NS_GET_PAGE(ns); |
| 1586 | if (mypage->byte == NULL) { |
| 1587 | NS_DBG("prog_page: allocating page %d\n", ns->regs.row); |
| 1588 | /* |
| 1589 | * We allocate memory with GFP_NOFS because a flash FS may |
| 1590 | * utilize this. If it is holding an FS lock, then gets here, |
| 1591 | * then kernel memory alloc runs writeback which goes to the FS |
| 1592 | * again and deadlocks. This was seen in practice. |
| 1593 | */ |
| 1594 | mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS); |
| 1595 | if (mypage->byte == NULL) { |
| 1596 | NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row); |
| 1597 | return -1; |
| 1598 | } |
| 1599 | memset(mypage->byte, 0xFF, ns->geom.pgszoob); |
| 1600 | } |
| 1601 | |
| 1602 | pg_off = NS_PAGE_BYTE_OFF(ns); |
| 1603 | for (i = 0; i < num; i++) |
| 1604 | pg_off[i] &= ns->buf.byte[i]; |
| 1605 | |
| 1606 | return 0; |
| 1607 | } |
| 1608 | |
| 1609 | /* |
| 1610 | * If state has any action bit, perform this action. |
| 1611 | * |
| 1612 | * RETURNS: 0 if success, -1 if error. |
| 1613 | */ |
| 1614 | static int do_state_action(struct nandsim *ns, uint32_t action) |
| 1615 | { |
| 1616 | int num; |
| 1617 | int busdiv = ns->busw == 8 ? 1 : 2; |
| 1618 | unsigned int erase_block_no, page_no; |
| 1619 | |
| 1620 | action &= ACTION_MASK; |
| 1621 | |
| 1622 | /* Check that page address input is correct */ |
| 1623 | if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) { |
| 1624 | NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row); |
| 1625 | return -1; |
| 1626 | } |
| 1627 | |
| 1628 | switch (action) { |
| 1629 | |
| 1630 | case ACTION_CPY: |
| 1631 | /* |
| 1632 | * Copy page data to the internal buffer. |
| 1633 | */ |
| 1634 | |
| 1635 | /* Column shouldn't be very large */ |
| 1636 | if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) { |
| 1637 | NS_ERR("do_state_action: column number is too large\n"); |
| 1638 | break; |
| 1639 | } |
| 1640 | num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; |
| 1641 | read_page(ns, num); |
| 1642 | |
| 1643 | NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n", |
| 1644 | num, NS_RAW_OFFSET(ns) + ns->regs.off); |
| 1645 | |
| 1646 | if (ns->regs.off == 0) |
| 1647 | NS_LOG("read page %d\n", ns->regs.row); |
| 1648 | else if (ns->regs.off < ns->geom.pgsz) |
| 1649 | NS_LOG("read page %d (second half)\n", ns->regs.row); |
| 1650 | else |
| 1651 | NS_LOG("read OOB of page %d\n", ns->regs.row); |
| 1652 | |
| 1653 | NS_UDELAY(access_delay); |
| 1654 | NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv); |
| 1655 | |
| 1656 | break; |
| 1657 | |
| 1658 | case ACTION_SECERASE: |
| 1659 | /* |
| 1660 | * Erase sector. |
| 1661 | */ |
| 1662 | |
| 1663 | if (ns->lines.wp) { |
| 1664 | NS_ERR("do_state_action: device is write-protected, ignore sector erase\n"); |
| 1665 | return -1; |
| 1666 | } |
| 1667 | |
| 1668 | if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec |
| 1669 | || (ns->regs.row & ~(ns->geom.secsz - 1))) { |
| 1670 | NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row); |
| 1671 | return -1; |
| 1672 | } |
| 1673 | |
| 1674 | ns->regs.row = (ns->regs.row << |
| 1675 | 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column; |
| 1676 | ns->regs.column = 0; |
| 1677 | |
| 1678 | erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift); |
| 1679 | |
| 1680 | NS_DBG("do_state_action: erase sector at address %#x, off = %d\n", |
| 1681 | ns->regs.row, NS_RAW_OFFSET(ns)); |
| 1682 | NS_LOG("erase sector %u\n", erase_block_no); |
| 1683 | |
| 1684 | erase_sector(ns); |
| 1685 | |
| 1686 | NS_MDELAY(erase_delay); |
| 1687 | |
| 1688 | if (erase_block_wear) |
| 1689 | update_wear(erase_block_no); |
| 1690 | |
| 1691 | if (erase_error(erase_block_no)) { |
| 1692 | NS_WARN("simulating erase failure in erase block %u\n", erase_block_no); |
| 1693 | return -1; |
| 1694 | } |
| 1695 | |
| 1696 | break; |
| 1697 | |
| 1698 | case ACTION_PRGPAGE: |
| 1699 | /* |
| 1700 | * Program page - move internal buffer data to the page. |
| 1701 | */ |
| 1702 | |
| 1703 | if (ns->lines.wp) { |
| 1704 | NS_WARN("do_state_action: device is write-protected, programm\n"); |
| 1705 | return -1; |
| 1706 | } |
| 1707 | |
| 1708 | num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; |
| 1709 | if (num != ns->regs.count) { |
| 1710 | NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n", |
| 1711 | ns->regs.count, num); |
| 1712 | return -1; |
| 1713 | } |
| 1714 | |
| 1715 | if (prog_page(ns, num) == -1) |
| 1716 | return -1; |
| 1717 | |
| 1718 | page_no = ns->regs.row; |
| 1719 | |
| 1720 | NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n", |
| 1721 | num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off); |
| 1722 | NS_LOG("programm page %d\n", ns->regs.row); |
| 1723 | |
| 1724 | NS_UDELAY(programm_delay); |
| 1725 | NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv); |
| 1726 | |
| 1727 | if (write_error(page_no)) { |
| 1728 | NS_WARN("simulating write failure in page %u\n", page_no); |
| 1729 | return -1; |
| 1730 | } |
| 1731 | |
| 1732 | break; |
| 1733 | |
| 1734 | case ACTION_ZEROOFF: |
| 1735 | NS_DBG("do_state_action: set internal offset to 0\n"); |
| 1736 | ns->regs.off = 0; |
| 1737 | break; |
| 1738 | |
| 1739 | case ACTION_HALFOFF: |
| 1740 | if (!(ns->options & OPT_PAGE512_8BIT)) { |
| 1741 | NS_ERR("do_state_action: BUG! can't skip half of page for non-512" |
| 1742 | "byte page size 8x chips\n"); |
| 1743 | return -1; |
| 1744 | } |
| 1745 | NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2); |
| 1746 | ns->regs.off = ns->geom.pgsz/2; |
| 1747 | break; |
| 1748 | |
| 1749 | case ACTION_OOBOFF: |
| 1750 | NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz); |
| 1751 | ns->regs.off = ns->geom.pgsz; |
| 1752 | break; |
| 1753 | |
| 1754 | default: |
| 1755 | NS_DBG("do_state_action: BUG! unknown action\n"); |
| 1756 | } |
| 1757 | |
| 1758 | return 0; |
| 1759 | } |
| 1760 | |
| 1761 | /* |
| 1762 | * Switch simulator's state. |
| 1763 | */ |
| 1764 | static void switch_state(struct nandsim *ns) |
| 1765 | { |
| 1766 | if (ns->op) { |
| 1767 | /* |
| 1768 | * The current operation have already been identified. |
| 1769 | * Just follow the states chain. |
| 1770 | */ |
| 1771 | |
| 1772 | ns->stateidx += 1; |
| 1773 | ns->state = ns->nxstate; |
| 1774 | ns->nxstate = ns->op[ns->stateidx + 1]; |
| 1775 | |
| 1776 | NS_DBG("switch_state: operation is known, switch to the next state, " |
| 1777 | "state: %s, nxstate: %s\n", |
| 1778 | get_state_name(ns->state), get_state_name(ns->nxstate)); |
| 1779 | |
| 1780 | /* See, whether we need to do some action */ |
| 1781 | if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { |
| 1782 | switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); |
| 1783 | return; |
| 1784 | } |
| 1785 | |
| 1786 | } else { |
| 1787 | /* |
| 1788 | * We don't yet know which operation we perform. |
| 1789 | * Try to identify it. |
| 1790 | */ |
| 1791 | |
| 1792 | /* |
| 1793 | * The only event causing the switch_state function to |
| 1794 | * be called with yet unknown operation is new command. |
| 1795 | */ |
| 1796 | ns->state = get_state_by_command(ns->regs.command); |
| 1797 | |
| 1798 | NS_DBG("switch_state: operation is unknown, try to find it\n"); |
| 1799 | |
| 1800 | if (find_operation(ns, 0) != 0) |
| 1801 | return; |
| 1802 | |
| 1803 | if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { |
| 1804 | switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); |
| 1805 | return; |
| 1806 | } |
| 1807 | } |
| 1808 | |
| 1809 | /* For 16x devices column means the page offset in words */ |
| 1810 | if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) { |
| 1811 | NS_DBG("switch_state: double the column number for 16x device\n"); |
| 1812 | ns->regs.column <<= 1; |
| 1813 | } |
| 1814 | |
| 1815 | if (NS_STATE(ns->nxstate) == STATE_READY) { |
| 1816 | /* |
| 1817 | * The current state is the last. Return to STATE_READY |
| 1818 | */ |
| 1819 | |
| 1820 | u_char status = NS_STATUS_OK(ns); |
| 1821 | |
| 1822 | /* In case of data states, see if all bytes were input/output */ |
| 1823 | if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) |
| 1824 | && ns->regs.count != ns->regs.num) { |
| 1825 | NS_WARN("switch_state: not all bytes were processed, %d left\n", |
| 1826 | ns->regs.num - ns->regs.count); |
| 1827 | status = NS_STATUS_FAILED(ns); |
| 1828 | } |
| 1829 | |
| 1830 | NS_DBG("switch_state: operation complete, switch to STATE_READY state\n"); |
| 1831 | |
| 1832 | switch_to_ready_state(ns, status); |
| 1833 | |
| 1834 | return; |
| 1835 | } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) { |
| 1836 | /* |
| 1837 | * If the next state is data input/output, switch to it now |
| 1838 | */ |
| 1839 | |
| 1840 | ns->state = ns->nxstate; |
| 1841 | ns->nxstate = ns->op[++ns->stateidx + 1]; |
| 1842 | ns->regs.num = ns->regs.count = 0; |
| 1843 | |
| 1844 | NS_DBG("switch_state: the next state is data I/O, switch, " |
| 1845 | "state: %s, nxstate: %s\n", |
| 1846 | get_state_name(ns->state), get_state_name(ns->nxstate)); |
| 1847 | |
| 1848 | /* |
| 1849 | * Set the internal register to the count of bytes which |
| 1850 | * are expected to be input or output |
| 1851 | */ |
| 1852 | switch (NS_STATE(ns->state)) { |
| 1853 | case STATE_DATAIN: |
| 1854 | case STATE_DATAOUT: |
| 1855 | ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; |
| 1856 | break; |
| 1857 | |
| 1858 | case STATE_DATAOUT_ID: |
| 1859 | ns->regs.num = ns->geom.idbytes; |
| 1860 | break; |
| 1861 | |
| 1862 | case STATE_DATAOUT_STATUS: |
| 1863 | ns->regs.count = ns->regs.num = 0; |
| 1864 | break; |
| 1865 | |
| 1866 | default: |
| 1867 | NS_ERR("switch_state: BUG! unknown data state\n"); |
| 1868 | } |
| 1869 | |
| 1870 | } else if (ns->nxstate & STATE_ADDR_MASK) { |
| 1871 | /* |
| 1872 | * If the next state is address input, set the internal |
| 1873 | * register to the number of expected address bytes |
| 1874 | */ |
| 1875 | |
| 1876 | ns->regs.count = 0; |
| 1877 | |
| 1878 | switch (NS_STATE(ns->nxstate)) { |
| 1879 | case STATE_ADDR_PAGE: |
| 1880 | ns->regs.num = ns->geom.pgaddrbytes; |
| 1881 | |
| 1882 | break; |
| 1883 | case STATE_ADDR_SEC: |
| 1884 | ns->regs.num = ns->geom.secaddrbytes; |
| 1885 | break; |
| 1886 | |
| 1887 | case STATE_ADDR_ZERO: |
| 1888 | ns->regs.num = 1; |
| 1889 | break; |
| 1890 | |
| 1891 | case STATE_ADDR_COLUMN: |
| 1892 | /* Column address is always 2 bytes */ |
| 1893 | ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes; |
| 1894 | break; |
| 1895 | |
| 1896 | default: |
| 1897 | NS_ERR("switch_state: BUG! unknown address state\n"); |
| 1898 | } |
| 1899 | } else { |
| 1900 | /* |
| 1901 | * Just reset internal counters. |
| 1902 | */ |
| 1903 | |
| 1904 | ns->regs.num = 0; |
| 1905 | ns->regs.count = 0; |
| 1906 | } |
| 1907 | } |
| 1908 | |
| 1909 | static u_char ns_nand_read_byte(struct mtd_info *mtd) |
| 1910 | { |
| 1911 | struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv; |
| 1912 | u_char outb = 0x00; |
| 1913 | |
| 1914 | /* Sanity and correctness checks */ |
| 1915 | if (!ns->lines.ce) { |
| 1916 | NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb); |
| 1917 | return outb; |
| 1918 | } |
| 1919 | if (ns->lines.ale || ns->lines.cle) { |
| 1920 | NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb); |
| 1921 | return outb; |
| 1922 | } |
| 1923 | if (!(ns->state & STATE_DATAOUT_MASK)) { |
| 1924 | NS_WARN("read_byte: unexpected data output cycle, state is %s " |
| 1925 | "return %#x\n", get_state_name(ns->state), (uint)outb); |
| 1926 | return outb; |
| 1927 | } |
| 1928 | |
| 1929 | /* Status register may be read as many times as it is wanted */ |
| 1930 | if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) { |
| 1931 | NS_DBG("read_byte: return %#x status\n", ns->regs.status); |
| 1932 | return ns->regs.status; |
| 1933 | } |
| 1934 | |
| 1935 | /* Check if there is any data in the internal buffer which may be read */ |
| 1936 | if (ns->regs.count == ns->regs.num) { |
| 1937 | NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb); |
| 1938 | return outb; |
| 1939 | } |
| 1940 | |
| 1941 | switch (NS_STATE(ns->state)) { |
| 1942 | case STATE_DATAOUT: |
| 1943 | if (ns->busw == 8) { |
| 1944 | outb = ns->buf.byte[ns->regs.count]; |
| 1945 | ns->regs.count += 1; |
| 1946 | } else { |
| 1947 | outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]); |
| 1948 | ns->regs.count += 2; |
| 1949 | } |
| 1950 | break; |
| 1951 | case STATE_DATAOUT_ID: |
| 1952 | NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num); |
| 1953 | outb = ns->ids[ns->regs.count]; |
| 1954 | ns->regs.count += 1; |
| 1955 | break; |
| 1956 | default: |
| 1957 | BUG(); |
| 1958 | } |
| 1959 | |
| 1960 | if (ns->regs.count == ns->regs.num) { |
| 1961 | NS_DBG("read_byte: all bytes were read\n"); |
| 1962 | |
| 1963 | if (NS_STATE(ns->nxstate) == STATE_READY) |
| 1964 | switch_state(ns); |
| 1965 | } |
| 1966 | |
| 1967 | return outb; |
| 1968 | } |
| 1969 | |
| 1970 | static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte) |
| 1971 | { |
| 1972 | struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv; |
| 1973 | |
| 1974 | /* Sanity and correctness checks */ |
| 1975 | if (!ns->lines.ce) { |
| 1976 | NS_ERR("write_byte: chip is disabled, ignore write\n"); |
| 1977 | return; |
| 1978 | } |
| 1979 | if (ns->lines.ale && ns->lines.cle) { |
| 1980 | NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n"); |
| 1981 | return; |
| 1982 | } |
| 1983 | |
| 1984 | if (ns->lines.cle == 1) { |
| 1985 | /* |
| 1986 | * The byte written is a command. |
| 1987 | */ |
| 1988 | |
| 1989 | if (byte == NAND_CMD_RESET) { |
| 1990 | NS_LOG("reset chip\n"); |
| 1991 | switch_to_ready_state(ns, NS_STATUS_OK(ns)); |
| 1992 | return; |
| 1993 | } |
| 1994 | |
| 1995 | /* Check that the command byte is correct */ |
| 1996 | if (check_command(byte)) { |
| 1997 | NS_ERR("write_byte: unknown command %#x\n", (uint)byte); |
| 1998 | return; |
| 1999 | } |
| 2000 | |
| 2001 | if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS |
| 2002 | || NS_STATE(ns->state) == STATE_DATAOUT) { |
| 2003 | int row = ns->regs.row; |
| 2004 | |
| 2005 | switch_state(ns); |
| 2006 | if (byte == NAND_CMD_RNDOUT) |
| 2007 | ns->regs.row = row; |
| 2008 | } |
| 2009 | |
| 2010 | /* Check if chip is expecting command */ |
| 2011 | if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) { |
| 2012 | /* Do not warn if only 2 id bytes are read */ |
| 2013 | if (!(ns->regs.command == NAND_CMD_READID && |
| 2014 | NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) { |
| 2015 | /* |
| 2016 | * We are in situation when something else (not command) |
| 2017 | * was expected but command was input. In this case ignore |
| 2018 | * previous command(s)/state(s) and accept the last one. |
| 2019 | */ |
| 2020 | NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, " |
| 2021 | "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate)); |
| 2022 | } |
| 2023 | switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); |
| 2024 | } |
| 2025 | |
| 2026 | NS_DBG("command byte corresponding to %s state accepted\n", |
| 2027 | get_state_name(get_state_by_command(byte))); |
| 2028 | ns->regs.command = byte; |
| 2029 | switch_state(ns); |
| 2030 | |
| 2031 | } else if (ns->lines.ale == 1) { |
| 2032 | /* |
| 2033 | * The byte written is an address. |
| 2034 | */ |
| 2035 | |
| 2036 | if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) { |
| 2037 | |
| 2038 | NS_DBG("write_byte: operation isn't known yet, identify it\n"); |
| 2039 | |
| 2040 | if (find_operation(ns, 1) < 0) |
| 2041 | return; |
| 2042 | |
| 2043 | if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { |
| 2044 | switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); |
| 2045 | return; |
| 2046 | } |
| 2047 | |
| 2048 | ns->regs.count = 0; |
| 2049 | switch (NS_STATE(ns->nxstate)) { |
| 2050 | case STATE_ADDR_PAGE: |
| 2051 | ns->regs.num = ns->geom.pgaddrbytes; |
| 2052 | break; |
| 2053 | case STATE_ADDR_SEC: |
| 2054 | ns->regs.num = ns->geom.secaddrbytes; |
| 2055 | break; |
| 2056 | case STATE_ADDR_ZERO: |
| 2057 | ns->regs.num = 1; |
| 2058 | break; |
| 2059 | default: |
| 2060 | BUG(); |
| 2061 | } |
| 2062 | } |
| 2063 | |
| 2064 | /* Check that chip is expecting address */ |
| 2065 | if (!(ns->nxstate & STATE_ADDR_MASK)) { |
| 2066 | NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, " |
| 2067 | "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate)); |
| 2068 | switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); |
| 2069 | return; |
| 2070 | } |
| 2071 | |
| 2072 | /* Check if this is expected byte */ |
| 2073 | if (ns->regs.count == ns->regs.num) { |
| 2074 | NS_ERR("write_byte: no more address bytes expected\n"); |
| 2075 | switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); |
| 2076 | return; |
| 2077 | } |
| 2078 | |
| 2079 | accept_addr_byte(ns, byte); |
| 2080 | |
| 2081 | ns->regs.count += 1; |
| 2082 | |
| 2083 | NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n", |
| 2084 | (uint)byte, ns->regs.count, ns->regs.num); |
| 2085 | |
| 2086 | if (ns->regs.count == ns->regs.num) { |
| 2087 | NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column); |
| 2088 | switch_state(ns); |
| 2089 | } |
| 2090 | |
| 2091 | } else { |
| 2092 | /* |
| 2093 | * The byte written is an input data. |
| 2094 | */ |
| 2095 | |
| 2096 | /* Check that chip is expecting data input */ |
| 2097 | if (!(ns->state & STATE_DATAIN_MASK)) { |
| 2098 | NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, " |
| 2099 | "switch to %s\n", (uint)byte, |
| 2100 | get_state_name(ns->state), get_state_name(STATE_READY)); |
| 2101 | switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); |
| 2102 | return; |
| 2103 | } |
| 2104 | |
| 2105 | /* Check if this is expected byte */ |
| 2106 | if (ns->regs.count == ns->regs.num) { |
| 2107 | NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n", |
| 2108 | ns->regs.num); |
| 2109 | return; |
| 2110 | } |
| 2111 | |
| 2112 | if (ns->busw == 8) { |
| 2113 | ns->buf.byte[ns->regs.count] = byte; |
| 2114 | ns->regs.count += 1; |
| 2115 | } else { |
| 2116 | ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte); |
| 2117 | ns->regs.count += 2; |
| 2118 | } |
| 2119 | } |
| 2120 | |
| 2121 | return; |
| 2122 | } |
| 2123 | |
| 2124 | static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask) |
| 2125 | { |
| 2126 | struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv; |
| 2127 | |
| 2128 | ns->lines.cle = bitmask & NAND_CLE ? 1 : 0; |
| 2129 | ns->lines.ale = bitmask & NAND_ALE ? 1 : 0; |
| 2130 | ns->lines.ce = bitmask & NAND_NCE ? 1 : 0; |
| 2131 | |
| 2132 | if (cmd != NAND_CMD_NONE) |
| 2133 | ns_nand_write_byte(mtd, cmd); |
| 2134 | } |
| 2135 | |
| 2136 | static int ns_device_ready(struct mtd_info *mtd) |
| 2137 | { |
| 2138 | NS_DBG("device_ready\n"); |
| 2139 | return 1; |
| 2140 | } |
| 2141 | |
| 2142 | static uint16_t ns_nand_read_word(struct mtd_info *mtd) |
| 2143 | { |
| 2144 | struct nand_chip *chip = (struct nand_chip *)mtd->priv; |
| 2145 | |
| 2146 | NS_DBG("read_word\n"); |
| 2147 | |
| 2148 | return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8); |
| 2149 | } |
| 2150 | |
| 2151 | static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) |
| 2152 | { |
| 2153 | struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv; |
| 2154 | |
| 2155 | /* Check that chip is expecting data input */ |
| 2156 | if (!(ns->state & STATE_DATAIN_MASK)) { |
| 2157 | NS_ERR("write_buf: data input isn't expected, state is %s, " |
| 2158 | "switch to STATE_READY\n", get_state_name(ns->state)); |
| 2159 | switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); |
| 2160 | return; |
| 2161 | } |
| 2162 | |
| 2163 | /* Check if these are expected bytes */ |
| 2164 | if (ns->regs.count + len > ns->regs.num) { |
| 2165 | NS_ERR("write_buf: too many input bytes\n"); |
| 2166 | switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); |
| 2167 | return; |
| 2168 | } |
| 2169 | |
| 2170 | memcpy(ns->buf.byte + ns->regs.count, buf, len); |
| 2171 | ns->regs.count += len; |
| 2172 | |
| 2173 | if (ns->regs.count == ns->regs.num) { |
| 2174 | NS_DBG("write_buf: %d bytes were written\n", ns->regs.count); |
| 2175 | } |
| 2176 | } |
| 2177 | |
| 2178 | static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) |
| 2179 | { |
| 2180 | struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv; |
| 2181 | |
| 2182 | /* Sanity and correctness checks */ |
| 2183 | if (!ns->lines.ce) { |
| 2184 | NS_ERR("read_buf: chip is disabled\n"); |
| 2185 | return; |
| 2186 | } |
| 2187 | if (ns->lines.ale || ns->lines.cle) { |
| 2188 | NS_ERR("read_buf: ALE or CLE pin is high\n"); |
| 2189 | return; |
| 2190 | } |
| 2191 | if (!(ns->state & STATE_DATAOUT_MASK)) { |
| 2192 | NS_WARN("read_buf: unexpected data output cycle, current state is %s\n", |
| 2193 | get_state_name(ns->state)); |
| 2194 | return; |
| 2195 | } |
| 2196 | |
| 2197 | if (NS_STATE(ns->state) != STATE_DATAOUT) { |
| 2198 | int i; |
| 2199 | |
| 2200 | for (i = 0; i < len; i++) |
| 2201 | buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd); |
| 2202 | |
| 2203 | return; |
| 2204 | } |
| 2205 | |
| 2206 | /* Check if these are expected bytes */ |
| 2207 | if (ns->regs.count + len > ns->regs.num) { |
| 2208 | NS_ERR("read_buf: too many bytes to read\n"); |
| 2209 | switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); |
| 2210 | return; |
| 2211 | } |
| 2212 | |
| 2213 | memcpy(buf, ns->buf.byte + ns->regs.count, len); |
| 2214 | ns->regs.count += len; |
| 2215 | |
| 2216 | if (ns->regs.count == ns->regs.num) { |
| 2217 | if (NS_STATE(ns->nxstate) == STATE_READY) |
| 2218 | switch_state(ns); |
| 2219 | } |
| 2220 | |
| 2221 | return; |
| 2222 | } |
| 2223 | |
| 2224 | /* |
| 2225 | * Module initialization function |
| 2226 | */ |
| 2227 | static int __init ns_init_module(void) |
| 2228 | { |
| 2229 | struct nand_chip *chip; |
| 2230 | struct nandsim *nand; |
| 2231 | int retval = -ENOMEM, i; |
| 2232 | |
| 2233 | if (bus_width != 8 && bus_width != 16) { |
| 2234 | NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width); |
| 2235 | return -EINVAL; |
| 2236 | } |
| 2237 | |
| 2238 | /* Allocate and initialize mtd_info, nand_chip and nandsim structures */ |
| 2239 | nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip) |
| 2240 | + sizeof(struct nandsim), GFP_KERNEL); |
| 2241 | if (!nsmtd) { |
| 2242 | NS_ERR("unable to allocate core structures.\n"); |
| 2243 | return -ENOMEM; |
| 2244 | } |
| 2245 | chip = (struct nand_chip *)(nsmtd + 1); |
| 2246 | nsmtd->priv = (void *)chip; |
| 2247 | nand = (struct nandsim *)(chip + 1); |
| 2248 | chip->priv = (void *)nand; |
| 2249 | |
| 2250 | /* |
| 2251 | * Register simulator's callbacks. |
| 2252 | */ |
| 2253 | chip->cmd_ctrl = ns_hwcontrol; |
| 2254 | chip->read_byte = ns_nand_read_byte; |
| 2255 | chip->dev_ready = ns_device_ready; |
| 2256 | chip->write_buf = ns_nand_write_buf; |
| 2257 | chip->read_buf = ns_nand_read_buf; |
| 2258 | chip->read_word = ns_nand_read_word; |
| 2259 | chip->ecc.mode = NAND_ECC_SOFT; |
| 2260 | /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */ |
| 2261 | /* and 'badblocks' parameters to work */ |
| 2262 | chip->options |= NAND_SKIP_BBTSCAN; |
| 2263 | |
| 2264 | switch (bbt) { |
| 2265 | case 2: |
| 2266 | chip->bbt_options |= NAND_BBT_NO_OOB; |
| 2267 | case 1: |
| 2268 | chip->bbt_options |= NAND_BBT_USE_FLASH; |
| 2269 | case 0: |
| 2270 | break; |
| 2271 | default: |
| 2272 | NS_ERR("bbt has to be 0..2\n"); |
| 2273 | retval = -EINVAL; |
| 2274 | goto error; |
| 2275 | } |
| 2276 | /* |
| 2277 | * Perform minimum nandsim structure initialization to handle |
| 2278 | * the initial ID read command correctly |
| 2279 | */ |
| 2280 | if (id_bytes[6] != 0xFF || id_bytes[7] != 0xFF) |
| 2281 | nand->geom.idbytes = 8; |
| 2282 | else if (id_bytes[4] != 0xFF || id_bytes[5] != 0xFF) |
| 2283 | nand->geom.idbytes = 6; |
| 2284 | else if (id_bytes[2] != 0xFF || id_bytes[3] != 0xFF) |
| 2285 | nand->geom.idbytes = 4; |
| 2286 | else |
| 2287 | nand->geom.idbytes = 2; |
| 2288 | nand->regs.status = NS_STATUS_OK(nand); |
| 2289 | nand->nxstate = STATE_UNKNOWN; |
| 2290 | nand->options |= OPT_PAGE512; /* temporary value */ |
| 2291 | memcpy(nand->ids, id_bytes, sizeof(nand->ids)); |
| 2292 | if (bus_width == 16) { |
| 2293 | nand->busw = 16; |
| 2294 | chip->options |= NAND_BUSWIDTH_16; |
| 2295 | } |
| 2296 | |
| 2297 | nsmtd->owner = THIS_MODULE; |
| 2298 | |
| 2299 | if ((retval = parse_weakblocks()) != 0) |
| 2300 | goto error; |
| 2301 | |
| 2302 | if ((retval = parse_weakpages()) != 0) |
| 2303 | goto error; |
| 2304 | |
| 2305 | if ((retval = parse_gravepages()) != 0) |
| 2306 | goto error; |
| 2307 | |
| 2308 | retval = nand_scan_ident(nsmtd, 1, NULL); |
| 2309 | if (retval) { |
| 2310 | NS_ERR("cannot scan NAND Simulator device\n"); |
| 2311 | if (retval > 0) |
| 2312 | retval = -ENXIO; |
| 2313 | goto error; |
| 2314 | } |
| 2315 | |
| 2316 | if (bch) { |
| 2317 | unsigned int eccsteps, eccbytes; |
| 2318 | if (!mtd_nand_has_bch()) { |
| 2319 | NS_ERR("BCH ECC support is disabled\n"); |
| 2320 | retval = -EINVAL; |
| 2321 | goto error; |
| 2322 | } |
| 2323 | /* use 512-byte ecc blocks */ |
| 2324 | eccsteps = nsmtd->writesize/512; |
| 2325 | eccbytes = (bch*13+7)/8; |
| 2326 | /* do not bother supporting small page devices */ |
| 2327 | if ((nsmtd->oobsize < 64) || !eccsteps) { |
| 2328 | NS_ERR("bch not available on small page devices\n"); |
| 2329 | retval = -EINVAL; |
| 2330 | goto error; |
| 2331 | } |
| 2332 | if ((eccbytes*eccsteps+2) > nsmtd->oobsize) { |
| 2333 | NS_ERR("invalid bch value %u\n", bch); |
| 2334 | retval = -EINVAL; |
| 2335 | goto error; |
| 2336 | } |
| 2337 | chip->ecc.mode = NAND_ECC_SOFT_BCH; |
| 2338 | chip->ecc.size = 512; |
| 2339 | chip->ecc.strength = bch; |
| 2340 | chip->ecc.bytes = eccbytes; |
| 2341 | NS_INFO("using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size); |
| 2342 | } |
| 2343 | |
| 2344 | retval = nand_scan_tail(nsmtd); |
| 2345 | if (retval) { |
| 2346 | NS_ERR("can't register NAND Simulator\n"); |
| 2347 | if (retval > 0) |
| 2348 | retval = -ENXIO; |
| 2349 | goto error; |
| 2350 | } |
| 2351 | |
| 2352 | if (overridesize) { |
| 2353 | uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize; |
| 2354 | if (new_size >> overridesize != nsmtd->erasesize) { |
| 2355 | NS_ERR("overridesize is too big\n"); |
| 2356 | retval = -EINVAL; |
| 2357 | goto err_exit; |
| 2358 | } |
| 2359 | /* N.B. This relies on nand_scan not doing anything with the size before we change it */ |
| 2360 | nsmtd->size = new_size; |
| 2361 | chip->chipsize = new_size; |
| 2362 | chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1; |
| 2363 | chip->pagemask = (chip->chipsize >> chip->page_shift) - 1; |
| 2364 | } |
| 2365 | |
| 2366 | if ((retval = setup_wear_reporting(nsmtd)) != 0) |
| 2367 | goto err_exit; |
| 2368 | |
| 2369 | if ((retval = nandsim_debugfs_create(nand)) != 0) |
| 2370 | goto err_exit; |
| 2371 | |
| 2372 | if ((retval = init_nandsim(nsmtd)) != 0) |
| 2373 | goto err_exit; |
| 2374 | |
| 2375 | if ((retval = chip->scan_bbt(nsmtd)) != 0) |
| 2376 | goto err_exit; |
| 2377 | |
| 2378 | if ((retval = parse_badblocks(nand, nsmtd)) != 0) |
| 2379 | goto err_exit; |
| 2380 | |
| 2381 | /* Register NAND partitions */ |
| 2382 | retval = mtd_device_register(nsmtd, &nand->partitions[0], |
| 2383 | nand->nbparts); |
| 2384 | if (retval != 0) |
| 2385 | goto err_exit; |
| 2386 | |
| 2387 | return 0; |
| 2388 | |
| 2389 | err_exit: |
| 2390 | free_nandsim(nand); |
| 2391 | nand_release(nsmtd); |
| 2392 | for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i) |
| 2393 | kfree(nand->partitions[i].name); |
| 2394 | error: |
| 2395 | kfree(nsmtd); |
| 2396 | free_lists(); |
| 2397 | |
| 2398 | return retval; |
| 2399 | } |
| 2400 | |
| 2401 | module_init(ns_init_module); |
| 2402 | |
| 2403 | /* |
| 2404 | * Module clean-up function |
| 2405 | */ |
| 2406 | static void __exit ns_cleanup_module(void) |
| 2407 | { |
| 2408 | struct nandsim *ns = ((struct nand_chip *)nsmtd->priv)->priv; |
| 2409 | int i; |
| 2410 | |
| 2411 | nandsim_debugfs_remove(ns); |
| 2412 | free_nandsim(ns); /* Free nandsim private resources */ |
| 2413 | nand_release(nsmtd); /* Unregister driver */ |
| 2414 | for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i) |
| 2415 | kfree(ns->partitions[i].name); |
| 2416 | kfree(nsmtd); /* Free other structures */ |
| 2417 | free_lists(); |
| 2418 | } |
| 2419 | |
| 2420 | module_exit(ns_cleanup_module); |
| 2421 | |
| 2422 | MODULE_LICENSE ("GPL"); |
| 2423 | MODULE_AUTHOR ("Artem B. Bityuckiy"); |
| 2424 | MODULE_DESCRIPTION ("The NAND flash simulator"); |