Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (c) International Business Machines Corp., 2006 |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify |
| 5 | * it under the terms of the GNU General Public License as published by |
| 6 | * the Free Software Foundation; either version 2 of the License, or |
| 7 | * (at your option) any later version. |
| 8 | * |
| 9 | * This program is distributed in the hope that it will be useful, |
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See |
| 12 | * the GNU General Public License for more details. |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public License |
| 15 | * along with this program; if not, write to the Free Software |
| 16 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 17 | * |
| 18 | * Author: Artem Bityutskiy (Битюцкий Артём) |
| 19 | */ |
| 20 | |
| 21 | /* |
| 22 | * The UBI Eraseblock Association (EBA) sub-system. |
| 23 | * |
| 24 | * This sub-system is responsible for I/O to/from logical eraseblock. |
| 25 | * |
| 26 | * Although in this implementation the EBA table is fully kept and managed in |
| 27 | * RAM, which assumes poor scalability, it might be (partially) maintained on |
| 28 | * flash in future implementations. |
| 29 | * |
| 30 | * The EBA sub-system implements per-logical eraseblock locking. Before |
| 31 | * accessing a logical eraseblock it is locked for reading or writing. The |
| 32 | * per-logical eraseblock locking is implemented by means of the lock tree. The |
| 33 | * lock tree is an RB-tree which refers all the currently locked logical |
| 34 | * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects. |
| 35 | * They are indexed by (@vol_id, @lnum) pairs. |
| 36 | * |
| 37 | * EBA also maintains the global sequence counter which is incremented each |
| 38 | * time a logical eraseblock is mapped to a physical eraseblock and it is |
| 39 | * stored in the volume identifier header. This means that each VID header has |
| 40 | * a unique sequence number. The sequence number is only increased an we assume |
| 41 | * 64 bits is enough to never overflow. |
| 42 | */ |
| 43 | |
| 44 | #include <linux/slab.h> |
| 45 | #include <linux/crc32.h> |
| 46 | #include <linux/err.h> |
| 47 | #include "ubi.h" |
| 48 | |
| 49 | /* Number of physical eraseblocks reserved for atomic LEB change operation */ |
| 50 | #define EBA_RESERVED_PEBS 1 |
| 51 | |
| 52 | /** |
| 53 | * next_sqnum - get next sequence number. |
| 54 | * @ubi: UBI device description object |
| 55 | * |
| 56 | * This function returns next sequence number to use, which is just the current |
| 57 | * global sequence counter value. It also increases the global sequence |
| 58 | * counter. |
| 59 | */ |
| 60 | unsigned long long ubi_next_sqnum(struct ubi_device *ubi) |
| 61 | { |
| 62 | unsigned long long sqnum; |
| 63 | |
| 64 | spin_lock(&ubi->ltree_lock); |
| 65 | sqnum = ubi->global_sqnum++; |
| 66 | spin_unlock(&ubi->ltree_lock); |
| 67 | |
| 68 | return sqnum; |
| 69 | } |
| 70 | |
| 71 | /** |
| 72 | * ubi_get_compat - get compatibility flags of a volume. |
| 73 | * @ubi: UBI device description object |
| 74 | * @vol_id: volume ID |
| 75 | * |
| 76 | * This function returns compatibility flags for an internal volume. User |
| 77 | * volumes have no compatibility flags, so %0 is returned. |
| 78 | */ |
| 79 | static int ubi_get_compat(const struct ubi_device *ubi, int vol_id) |
| 80 | { |
| 81 | if (vol_id == UBI_LAYOUT_VOLUME_ID) |
| 82 | return UBI_LAYOUT_VOLUME_COMPAT; |
| 83 | return 0; |
| 84 | } |
| 85 | |
| 86 | /** |
| 87 | * ltree_lookup - look up the lock tree. |
| 88 | * @ubi: UBI device description object |
| 89 | * @vol_id: volume ID |
| 90 | * @lnum: logical eraseblock number |
| 91 | * |
| 92 | * This function returns a pointer to the corresponding &struct ubi_ltree_entry |
| 93 | * object if the logical eraseblock is locked and %NULL if it is not. |
| 94 | * @ubi->ltree_lock has to be locked. |
| 95 | */ |
| 96 | static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id, |
| 97 | int lnum) |
| 98 | { |
| 99 | struct rb_node *p; |
| 100 | |
| 101 | p = ubi->ltree.rb_node; |
| 102 | while (p) { |
| 103 | struct ubi_ltree_entry *le; |
| 104 | |
| 105 | le = rb_entry(p, struct ubi_ltree_entry, rb); |
| 106 | |
| 107 | if (vol_id < le->vol_id) |
| 108 | p = p->rb_left; |
| 109 | else if (vol_id > le->vol_id) |
| 110 | p = p->rb_right; |
| 111 | else { |
| 112 | if (lnum < le->lnum) |
| 113 | p = p->rb_left; |
| 114 | else if (lnum > le->lnum) |
| 115 | p = p->rb_right; |
| 116 | else |
| 117 | return le; |
| 118 | } |
| 119 | } |
| 120 | |
| 121 | return NULL; |
| 122 | } |
| 123 | |
| 124 | /** |
| 125 | * ltree_add_entry - add new entry to the lock tree. |
| 126 | * @ubi: UBI device description object |
| 127 | * @vol_id: volume ID |
| 128 | * @lnum: logical eraseblock number |
| 129 | * |
| 130 | * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the |
| 131 | * lock tree. If such entry is already there, its usage counter is increased. |
| 132 | * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation |
| 133 | * failed. |
| 134 | */ |
| 135 | static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi, |
| 136 | int vol_id, int lnum) |
| 137 | { |
| 138 | struct ubi_ltree_entry *le, *le1, *le_free; |
| 139 | |
| 140 | le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS); |
| 141 | if (!le) |
| 142 | return ERR_PTR(-ENOMEM); |
| 143 | |
| 144 | le->users = 0; |
| 145 | init_rwsem(&le->mutex); |
| 146 | le->vol_id = vol_id; |
| 147 | le->lnum = lnum; |
| 148 | |
| 149 | spin_lock(&ubi->ltree_lock); |
| 150 | le1 = ltree_lookup(ubi, vol_id, lnum); |
| 151 | |
| 152 | if (le1) { |
| 153 | /* |
| 154 | * This logical eraseblock is already locked. The newly |
| 155 | * allocated lock entry is not needed. |
| 156 | */ |
| 157 | le_free = le; |
| 158 | le = le1; |
| 159 | } else { |
| 160 | struct rb_node **p, *parent = NULL; |
| 161 | |
| 162 | /* |
| 163 | * No lock entry, add the newly allocated one to the |
| 164 | * @ubi->ltree RB-tree. |
| 165 | */ |
| 166 | le_free = NULL; |
| 167 | |
| 168 | p = &ubi->ltree.rb_node; |
| 169 | while (*p) { |
| 170 | parent = *p; |
| 171 | le1 = rb_entry(parent, struct ubi_ltree_entry, rb); |
| 172 | |
| 173 | if (vol_id < le1->vol_id) |
| 174 | p = &(*p)->rb_left; |
| 175 | else if (vol_id > le1->vol_id) |
| 176 | p = &(*p)->rb_right; |
| 177 | else { |
| 178 | ubi_assert(lnum != le1->lnum); |
| 179 | if (lnum < le1->lnum) |
| 180 | p = &(*p)->rb_left; |
| 181 | else |
| 182 | p = &(*p)->rb_right; |
| 183 | } |
| 184 | } |
| 185 | |
| 186 | rb_link_node(&le->rb, parent, p); |
| 187 | rb_insert_color(&le->rb, &ubi->ltree); |
| 188 | } |
| 189 | le->users += 1; |
| 190 | spin_unlock(&ubi->ltree_lock); |
| 191 | |
| 192 | kfree(le_free); |
| 193 | return le; |
| 194 | } |
| 195 | |
| 196 | /** |
| 197 | * leb_read_lock - lock logical eraseblock for reading. |
| 198 | * @ubi: UBI device description object |
| 199 | * @vol_id: volume ID |
| 200 | * @lnum: logical eraseblock number |
| 201 | * |
| 202 | * This function locks a logical eraseblock for reading. Returns zero in case |
| 203 | * of success and a negative error code in case of failure. |
| 204 | */ |
| 205 | static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum) |
| 206 | { |
| 207 | struct ubi_ltree_entry *le; |
| 208 | |
| 209 | le = ltree_add_entry(ubi, vol_id, lnum); |
| 210 | if (IS_ERR(le)) |
| 211 | return PTR_ERR(le); |
| 212 | down_read(&le->mutex); |
| 213 | return 0; |
| 214 | } |
| 215 | |
| 216 | /** |
| 217 | * leb_read_unlock - unlock logical eraseblock. |
| 218 | * @ubi: UBI device description object |
| 219 | * @vol_id: volume ID |
| 220 | * @lnum: logical eraseblock number |
| 221 | */ |
| 222 | static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum) |
| 223 | { |
| 224 | struct ubi_ltree_entry *le; |
| 225 | |
| 226 | spin_lock(&ubi->ltree_lock); |
| 227 | le = ltree_lookup(ubi, vol_id, lnum); |
| 228 | le->users -= 1; |
| 229 | ubi_assert(le->users >= 0); |
| 230 | up_read(&le->mutex); |
| 231 | if (le->users == 0) { |
| 232 | rb_erase(&le->rb, &ubi->ltree); |
| 233 | kfree(le); |
| 234 | } |
| 235 | spin_unlock(&ubi->ltree_lock); |
| 236 | } |
| 237 | |
| 238 | /** |
| 239 | * leb_write_lock - lock logical eraseblock for writing. |
| 240 | * @ubi: UBI device description object |
| 241 | * @vol_id: volume ID |
| 242 | * @lnum: logical eraseblock number |
| 243 | * |
| 244 | * This function locks a logical eraseblock for writing. Returns zero in case |
| 245 | * of success and a negative error code in case of failure. |
| 246 | */ |
| 247 | static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum) |
| 248 | { |
| 249 | struct ubi_ltree_entry *le; |
| 250 | |
| 251 | le = ltree_add_entry(ubi, vol_id, lnum); |
| 252 | if (IS_ERR(le)) |
| 253 | return PTR_ERR(le); |
| 254 | down_write(&le->mutex); |
| 255 | return 0; |
| 256 | } |
| 257 | |
| 258 | /** |
| 259 | * leb_write_lock - lock logical eraseblock for writing. |
| 260 | * @ubi: UBI device description object |
| 261 | * @vol_id: volume ID |
| 262 | * @lnum: logical eraseblock number |
| 263 | * |
| 264 | * This function locks a logical eraseblock for writing if there is no |
| 265 | * contention and does nothing if there is contention. Returns %0 in case of |
| 266 | * success, %1 in case of contention, and and a negative error code in case of |
| 267 | * failure. |
| 268 | */ |
| 269 | static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum) |
| 270 | { |
| 271 | struct ubi_ltree_entry *le; |
| 272 | |
| 273 | le = ltree_add_entry(ubi, vol_id, lnum); |
| 274 | if (IS_ERR(le)) |
| 275 | return PTR_ERR(le); |
| 276 | if (down_write_trylock(&le->mutex)) |
| 277 | return 0; |
| 278 | |
| 279 | /* Contention, cancel */ |
| 280 | spin_lock(&ubi->ltree_lock); |
| 281 | le->users -= 1; |
| 282 | ubi_assert(le->users >= 0); |
| 283 | if (le->users == 0) { |
| 284 | rb_erase(&le->rb, &ubi->ltree); |
| 285 | kfree(le); |
| 286 | } |
| 287 | spin_unlock(&ubi->ltree_lock); |
| 288 | |
| 289 | return 1; |
| 290 | } |
| 291 | |
| 292 | /** |
| 293 | * leb_write_unlock - unlock logical eraseblock. |
| 294 | * @ubi: UBI device description object |
| 295 | * @vol_id: volume ID |
| 296 | * @lnum: logical eraseblock number |
| 297 | */ |
| 298 | static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum) |
| 299 | { |
| 300 | struct ubi_ltree_entry *le; |
| 301 | |
| 302 | spin_lock(&ubi->ltree_lock); |
| 303 | le = ltree_lookup(ubi, vol_id, lnum); |
| 304 | le->users -= 1; |
| 305 | ubi_assert(le->users >= 0); |
| 306 | up_write(&le->mutex); |
| 307 | if (le->users == 0) { |
| 308 | rb_erase(&le->rb, &ubi->ltree); |
| 309 | kfree(le); |
| 310 | } |
| 311 | spin_unlock(&ubi->ltree_lock); |
| 312 | } |
| 313 | |
| 314 | /** |
| 315 | * ubi_eba_unmap_leb - un-map logical eraseblock. |
| 316 | * @ubi: UBI device description object |
| 317 | * @vol: volume description object |
| 318 | * @lnum: logical eraseblock number |
| 319 | * |
| 320 | * This function un-maps logical eraseblock @lnum and schedules corresponding |
| 321 | * physical eraseblock for erasure. Returns zero in case of success and a |
| 322 | * negative error code in case of failure. |
| 323 | */ |
| 324 | int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol, |
| 325 | int lnum) |
| 326 | { |
| 327 | int err, pnum, vol_id = vol->vol_id; |
| 328 | |
| 329 | if (ubi->ro_mode) |
| 330 | return -EROFS; |
| 331 | |
| 332 | err = leb_write_lock(ubi, vol_id, lnum); |
| 333 | if (err) |
| 334 | return err; |
| 335 | |
| 336 | pnum = vol->eba_tbl[lnum]; |
| 337 | if (pnum < 0) |
| 338 | /* This logical eraseblock is already unmapped */ |
| 339 | goto out_unlock; |
| 340 | |
| 341 | dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum); |
| 342 | |
| 343 | down_read(&ubi->fm_eba_sem); |
| 344 | vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED; |
| 345 | up_read(&ubi->fm_eba_sem); |
| 346 | err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0); |
| 347 | |
| 348 | out_unlock: |
| 349 | leb_write_unlock(ubi, vol_id, lnum); |
| 350 | return err; |
| 351 | } |
| 352 | |
| 353 | /** |
| 354 | * ubi_eba_read_leb - read data. |
| 355 | * @ubi: UBI device description object |
| 356 | * @vol: volume description object |
| 357 | * @lnum: logical eraseblock number |
| 358 | * @buf: buffer to store the read data |
| 359 | * @offset: offset from where to read |
| 360 | * @len: how many bytes to read |
| 361 | * @check: data CRC check flag |
| 362 | * |
| 363 | * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF |
| 364 | * bytes. The @check flag only makes sense for static volumes and forces |
| 365 | * eraseblock data CRC checking. |
| 366 | * |
| 367 | * In case of success this function returns zero. In case of a static volume, |
| 368 | * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be |
| 369 | * returned for any volume type if an ECC error was detected by the MTD device |
| 370 | * driver. Other negative error cored may be returned in case of other errors. |
| 371 | */ |
| 372 | int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, |
| 373 | void *buf, int offset, int len, int check) |
| 374 | { |
| 375 | int err, pnum, scrub = 0, vol_id = vol->vol_id; |
| 376 | struct ubi_vid_hdr *vid_hdr; |
| 377 | uint32_t uninitialized_var(crc); |
| 378 | |
| 379 | err = leb_read_lock(ubi, vol_id, lnum); |
| 380 | if (err) |
| 381 | return err; |
| 382 | |
| 383 | pnum = vol->eba_tbl[lnum]; |
| 384 | if (pnum < 0) { |
| 385 | /* |
| 386 | * The logical eraseblock is not mapped, fill the whole buffer |
| 387 | * with 0xFF bytes. The exception is static volumes for which |
| 388 | * it is an error to read unmapped logical eraseblocks. |
| 389 | */ |
| 390 | dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)", |
| 391 | len, offset, vol_id, lnum); |
| 392 | leb_read_unlock(ubi, vol_id, lnum); |
| 393 | ubi_assert(vol->vol_type != UBI_STATIC_VOLUME); |
| 394 | memset(buf, 0xFF, len); |
| 395 | return 0; |
| 396 | } |
| 397 | |
| 398 | dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d", |
| 399 | len, offset, vol_id, lnum, pnum); |
| 400 | |
| 401 | if (vol->vol_type == UBI_DYNAMIC_VOLUME) |
| 402 | check = 0; |
| 403 | |
| 404 | retry: |
| 405 | if (check) { |
| 406 | vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); |
| 407 | if (!vid_hdr) { |
| 408 | err = -ENOMEM; |
| 409 | goto out_unlock; |
| 410 | } |
| 411 | |
| 412 | err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1); |
| 413 | if (err && err != UBI_IO_BITFLIPS) { |
| 414 | if (err > 0) { |
| 415 | /* |
| 416 | * The header is either absent or corrupted. |
| 417 | * The former case means there is a bug - |
| 418 | * switch to read-only mode just in case. |
| 419 | * The latter case means a real corruption - we |
| 420 | * may try to recover data. FIXME: but this is |
| 421 | * not implemented. |
| 422 | */ |
| 423 | if (err == UBI_IO_BAD_HDR_EBADMSG || |
| 424 | err == UBI_IO_BAD_HDR) { |
| 425 | ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d", |
| 426 | pnum, vol_id, lnum); |
| 427 | err = -EBADMSG; |
| 428 | } else { |
| 429 | /* |
| 430 | * Ending up here in the non-Fastmap case |
| 431 | * is a clear bug as the VID header had to |
| 432 | * be present at scan time to have it referenced. |
| 433 | * With fastmap the story is more complicated. |
| 434 | * Fastmap has the mapping info without the need |
| 435 | * of a full scan. So the LEB could have been |
| 436 | * unmapped, Fastmap cannot know this and keeps |
| 437 | * the LEB referenced. |
| 438 | * This is valid and works as the layer above UBI |
| 439 | * has to do bookkeeping about used/referenced |
| 440 | * LEBs in any case. |
| 441 | */ |
| 442 | if (ubi->fast_attach) { |
| 443 | err = -EBADMSG; |
| 444 | } else { |
| 445 | err = -EINVAL; |
| 446 | ubi_ro_mode(ubi); |
| 447 | } |
| 448 | } |
| 449 | } |
| 450 | goto out_free; |
| 451 | } else if (err == UBI_IO_BITFLIPS) |
| 452 | scrub = 1; |
| 453 | |
| 454 | ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs)); |
| 455 | ubi_assert(len == be32_to_cpu(vid_hdr->data_size)); |
| 456 | |
| 457 | crc = be32_to_cpu(vid_hdr->data_crc); |
| 458 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 459 | } |
| 460 | |
| 461 | err = ubi_io_read_data(ubi, buf, pnum, offset, len); |
| 462 | if (err) { |
| 463 | if (err == UBI_IO_BITFLIPS) |
| 464 | scrub = 1; |
| 465 | else if (mtd_is_eccerr(err)) { |
| 466 | if (vol->vol_type == UBI_DYNAMIC_VOLUME) |
| 467 | goto out_unlock; |
| 468 | scrub = 1; |
| 469 | if (!check) { |
| 470 | ubi_msg(ubi, "force data checking"); |
| 471 | check = 1; |
| 472 | goto retry; |
| 473 | } |
| 474 | } else |
| 475 | goto out_unlock; |
| 476 | } |
| 477 | |
| 478 | if (check) { |
| 479 | uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len); |
| 480 | if (crc1 != crc) { |
| 481 | ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x", |
| 482 | crc1, crc); |
| 483 | err = -EBADMSG; |
| 484 | goto out_unlock; |
| 485 | } |
| 486 | } |
| 487 | |
| 488 | if (scrub) |
| 489 | err = ubi_wl_scrub_peb(ubi, pnum); |
| 490 | |
| 491 | leb_read_unlock(ubi, vol_id, lnum); |
| 492 | return err; |
| 493 | |
| 494 | out_free: |
| 495 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 496 | out_unlock: |
| 497 | leb_read_unlock(ubi, vol_id, lnum); |
| 498 | return err; |
| 499 | } |
| 500 | |
| 501 | /** |
| 502 | * ubi_eba_read_leb_sg - read data into a scatter gather list. |
| 503 | * @ubi: UBI device description object |
| 504 | * @vol: volume description object |
| 505 | * @lnum: logical eraseblock number |
| 506 | * @sgl: UBI scatter gather list to store the read data |
| 507 | * @offset: offset from where to read |
| 508 | * @len: how many bytes to read |
| 509 | * @check: data CRC check flag |
| 510 | * |
| 511 | * This function works exactly like ubi_eba_read_leb(). But instead of |
| 512 | * storing the read data into a buffer it writes to an UBI scatter gather |
| 513 | * list. |
| 514 | */ |
| 515 | int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol, |
| 516 | struct ubi_sgl *sgl, int lnum, int offset, int len, |
| 517 | int check) |
| 518 | { |
| 519 | int to_read; |
| 520 | int ret; |
| 521 | struct scatterlist *sg; |
| 522 | |
| 523 | for (;;) { |
| 524 | ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT); |
| 525 | sg = &sgl->sg[sgl->list_pos]; |
| 526 | if (len < sg->length - sgl->page_pos) |
| 527 | to_read = len; |
| 528 | else |
| 529 | to_read = sg->length - sgl->page_pos; |
| 530 | |
| 531 | ret = ubi_eba_read_leb(ubi, vol, lnum, |
| 532 | sg_virt(sg) + sgl->page_pos, offset, |
| 533 | to_read, check); |
| 534 | if (ret < 0) |
| 535 | return ret; |
| 536 | |
| 537 | offset += to_read; |
| 538 | len -= to_read; |
| 539 | if (!len) { |
| 540 | sgl->page_pos += to_read; |
| 541 | if (sgl->page_pos == sg->length) { |
| 542 | sgl->list_pos++; |
| 543 | sgl->page_pos = 0; |
| 544 | } |
| 545 | |
| 546 | break; |
| 547 | } |
| 548 | |
| 549 | sgl->list_pos++; |
| 550 | sgl->page_pos = 0; |
| 551 | } |
| 552 | |
| 553 | return ret; |
| 554 | } |
| 555 | |
| 556 | /** |
| 557 | * recover_peb - recover from write failure. |
| 558 | * @ubi: UBI device description object |
| 559 | * @pnum: the physical eraseblock to recover |
| 560 | * @vol_id: volume ID |
| 561 | * @lnum: logical eraseblock number |
| 562 | * @buf: data which was not written because of the write failure |
| 563 | * @offset: offset of the failed write |
| 564 | * @len: how many bytes should have been written |
| 565 | * |
| 566 | * This function is called in case of a write failure and moves all good data |
| 567 | * from the potentially bad physical eraseblock to a good physical eraseblock. |
| 568 | * This function also writes the data which was not written due to the failure. |
| 569 | * Returns new physical eraseblock number in case of success, and a negative |
| 570 | * error code in case of failure. |
| 571 | */ |
| 572 | static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum, |
| 573 | const void *buf, int offset, int len) |
| 574 | { |
| 575 | int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0; |
| 576 | struct ubi_volume *vol = ubi->volumes[idx]; |
| 577 | struct ubi_vid_hdr *vid_hdr; |
| 578 | uint32_t crc; |
| 579 | |
| 580 | vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); |
| 581 | if (!vid_hdr) |
| 582 | return -ENOMEM; |
| 583 | |
| 584 | retry: |
| 585 | new_pnum = ubi_wl_get_peb(ubi); |
| 586 | if (new_pnum < 0) { |
| 587 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 588 | up_read(&ubi->fm_eba_sem); |
| 589 | return new_pnum; |
| 590 | } |
| 591 | |
| 592 | ubi_msg(ubi, "recover PEB %d, move data to PEB %d", |
| 593 | pnum, new_pnum); |
| 594 | |
| 595 | err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1); |
| 596 | if (err && err != UBI_IO_BITFLIPS) { |
| 597 | if (err > 0) |
| 598 | err = -EIO; |
| 599 | up_read(&ubi->fm_eba_sem); |
| 600 | goto out_put; |
| 601 | } |
| 602 | |
| 603 | ubi_assert(vid_hdr->vol_type == UBI_VID_DYNAMIC); |
| 604 | |
| 605 | mutex_lock(&ubi->buf_mutex); |
| 606 | memset(ubi->peb_buf + offset, 0xFF, len); |
| 607 | |
| 608 | /* Read everything before the area where the write failure happened */ |
| 609 | if (offset > 0) { |
| 610 | err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset); |
| 611 | if (err && err != UBI_IO_BITFLIPS) { |
| 612 | up_read(&ubi->fm_eba_sem); |
| 613 | goto out_unlock; |
| 614 | } |
| 615 | } |
| 616 | |
| 617 | memcpy(ubi->peb_buf + offset, buf, len); |
| 618 | |
| 619 | data_size = offset + len; |
| 620 | crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size); |
| 621 | vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); |
| 622 | vid_hdr->copy_flag = 1; |
| 623 | vid_hdr->data_size = cpu_to_be32(data_size); |
| 624 | vid_hdr->data_crc = cpu_to_be32(crc); |
| 625 | err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr); |
| 626 | if (err) { |
| 627 | mutex_unlock(&ubi->buf_mutex); |
| 628 | up_read(&ubi->fm_eba_sem); |
| 629 | goto write_error; |
| 630 | } |
| 631 | |
| 632 | err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size); |
| 633 | if (err) { |
| 634 | mutex_unlock(&ubi->buf_mutex); |
| 635 | up_read(&ubi->fm_eba_sem); |
| 636 | goto write_error; |
| 637 | } |
| 638 | |
| 639 | mutex_unlock(&ubi->buf_mutex); |
| 640 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 641 | |
| 642 | vol->eba_tbl[lnum] = new_pnum; |
| 643 | up_read(&ubi->fm_eba_sem); |
| 644 | ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); |
| 645 | |
| 646 | ubi_msg(ubi, "data was successfully recovered"); |
| 647 | return 0; |
| 648 | |
| 649 | out_unlock: |
| 650 | mutex_unlock(&ubi->buf_mutex); |
| 651 | out_put: |
| 652 | ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1); |
| 653 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 654 | return err; |
| 655 | |
| 656 | write_error: |
| 657 | /* |
| 658 | * Bad luck? This physical eraseblock is bad too? Crud. Let's try to |
| 659 | * get another one. |
| 660 | */ |
| 661 | ubi_warn(ubi, "failed to write to PEB %d", new_pnum); |
| 662 | ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1); |
| 663 | if (++tries > UBI_IO_RETRIES) { |
| 664 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 665 | return err; |
| 666 | } |
| 667 | ubi_msg(ubi, "try again"); |
| 668 | goto retry; |
| 669 | } |
| 670 | |
| 671 | /** |
| 672 | * ubi_eba_write_leb - write data to dynamic volume. |
| 673 | * @ubi: UBI device description object |
| 674 | * @vol: volume description object |
| 675 | * @lnum: logical eraseblock number |
| 676 | * @buf: the data to write |
| 677 | * @offset: offset within the logical eraseblock where to write |
| 678 | * @len: how many bytes to write |
| 679 | * |
| 680 | * This function writes data to logical eraseblock @lnum of a dynamic volume |
| 681 | * @vol. Returns zero in case of success and a negative error code in case |
| 682 | * of failure. In case of error, it is possible that something was still |
| 683 | * written to the flash media, but may be some garbage. |
| 684 | */ |
| 685 | int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, |
| 686 | const void *buf, int offset, int len) |
| 687 | { |
| 688 | int err, pnum, tries = 0, vol_id = vol->vol_id; |
| 689 | struct ubi_vid_hdr *vid_hdr; |
| 690 | |
| 691 | if (ubi->ro_mode) |
| 692 | return -EROFS; |
| 693 | |
| 694 | err = leb_write_lock(ubi, vol_id, lnum); |
| 695 | if (err) |
| 696 | return err; |
| 697 | |
| 698 | pnum = vol->eba_tbl[lnum]; |
| 699 | if (pnum >= 0) { |
| 700 | dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d", |
| 701 | len, offset, vol_id, lnum, pnum); |
| 702 | |
| 703 | err = ubi_io_write_data(ubi, buf, pnum, offset, len); |
| 704 | if (err) { |
| 705 | ubi_warn(ubi, "failed to write data to PEB %d", pnum); |
| 706 | if (err == -EIO && ubi->bad_allowed) |
| 707 | err = recover_peb(ubi, pnum, vol_id, lnum, buf, |
| 708 | offset, len); |
| 709 | if (err) |
| 710 | ubi_ro_mode(ubi); |
| 711 | } |
| 712 | leb_write_unlock(ubi, vol_id, lnum); |
| 713 | return err; |
| 714 | } |
| 715 | |
| 716 | /* |
| 717 | * The logical eraseblock is not mapped. We have to get a free physical |
| 718 | * eraseblock and write the volume identifier header there first. |
| 719 | */ |
| 720 | vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); |
| 721 | if (!vid_hdr) { |
| 722 | leb_write_unlock(ubi, vol_id, lnum); |
| 723 | return -ENOMEM; |
| 724 | } |
| 725 | |
| 726 | vid_hdr->vol_type = UBI_VID_DYNAMIC; |
| 727 | vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); |
| 728 | vid_hdr->vol_id = cpu_to_be32(vol_id); |
| 729 | vid_hdr->lnum = cpu_to_be32(lnum); |
| 730 | vid_hdr->compat = ubi_get_compat(ubi, vol_id); |
| 731 | vid_hdr->data_pad = cpu_to_be32(vol->data_pad); |
| 732 | |
| 733 | retry: |
| 734 | pnum = ubi_wl_get_peb(ubi); |
| 735 | if (pnum < 0) { |
| 736 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 737 | leb_write_unlock(ubi, vol_id, lnum); |
| 738 | up_read(&ubi->fm_eba_sem); |
| 739 | return pnum; |
| 740 | } |
| 741 | |
| 742 | dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d", |
| 743 | len, offset, vol_id, lnum, pnum); |
| 744 | |
| 745 | err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr); |
| 746 | if (err) { |
| 747 | ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d", |
| 748 | vol_id, lnum, pnum); |
| 749 | up_read(&ubi->fm_eba_sem); |
| 750 | goto write_error; |
| 751 | } |
| 752 | |
| 753 | if (len) { |
| 754 | err = ubi_io_write_data(ubi, buf, pnum, offset, len); |
| 755 | if (err) { |
| 756 | ubi_warn(ubi, "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d", |
| 757 | len, offset, vol_id, lnum, pnum); |
| 758 | up_read(&ubi->fm_eba_sem); |
| 759 | goto write_error; |
| 760 | } |
| 761 | } |
| 762 | |
| 763 | vol->eba_tbl[lnum] = pnum; |
| 764 | up_read(&ubi->fm_eba_sem); |
| 765 | |
| 766 | leb_write_unlock(ubi, vol_id, lnum); |
| 767 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 768 | return 0; |
| 769 | |
| 770 | write_error: |
| 771 | if (err != -EIO || !ubi->bad_allowed) { |
| 772 | ubi_ro_mode(ubi); |
| 773 | leb_write_unlock(ubi, vol_id, lnum); |
| 774 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 775 | return err; |
| 776 | } |
| 777 | |
| 778 | /* |
| 779 | * Fortunately, this is the first write operation to this physical |
| 780 | * eraseblock, so just put it and request a new one. We assume that if |
| 781 | * this physical eraseblock went bad, the erase code will handle that. |
| 782 | */ |
| 783 | err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); |
| 784 | if (err || ++tries > UBI_IO_RETRIES) { |
| 785 | ubi_ro_mode(ubi); |
| 786 | leb_write_unlock(ubi, vol_id, lnum); |
| 787 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 788 | return err; |
| 789 | } |
| 790 | |
| 791 | vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); |
| 792 | ubi_msg(ubi, "try another PEB"); |
| 793 | goto retry; |
| 794 | } |
| 795 | |
| 796 | /** |
| 797 | * ubi_eba_write_leb_st - write data to static volume. |
| 798 | * @ubi: UBI device description object |
| 799 | * @vol: volume description object |
| 800 | * @lnum: logical eraseblock number |
| 801 | * @buf: data to write |
| 802 | * @len: how many bytes to write |
| 803 | * @used_ebs: how many logical eraseblocks will this volume contain |
| 804 | * |
| 805 | * This function writes data to logical eraseblock @lnum of static volume |
| 806 | * @vol. The @used_ebs argument should contain total number of logical |
| 807 | * eraseblock in this static volume. |
| 808 | * |
| 809 | * When writing to the last logical eraseblock, the @len argument doesn't have |
| 810 | * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent |
| 811 | * to the real data size, although the @buf buffer has to contain the |
| 812 | * alignment. In all other cases, @len has to be aligned. |
| 813 | * |
| 814 | * It is prohibited to write more than once to logical eraseblocks of static |
| 815 | * volumes. This function returns zero in case of success and a negative error |
| 816 | * code in case of failure. |
| 817 | */ |
| 818 | int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol, |
| 819 | int lnum, const void *buf, int len, int used_ebs) |
| 820 | { |
| 821 | int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id; |
| 822 | struct ubi_vid_hdr *vid_hdr; |
| 823 | uint32_t crc; |
| 824 | |
| 825 | if (ubi->ro_mode) |
| 826 | return -EROFS; |
| 827 | |
| 828 | if (lnum == used_ebs - 1) |
| 829 | /* If this is the last LEB @len may be unaligned */ |
| 830 | len = ALIGN(data_size, ubi->min_io_size); |
| 831 | else |
| 832 | ubi_assert(!(len & (ubi->min_io_size - 1))); |
| 833 | |
| 834 | vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); |
| 835 | if (!vid_hdr) |
| 836 | return -ENOMEM; |
| 837 | |
| 838 | err = leb_write_lock(ubi, vol_id, lnum); |
| 839 | if (err) { |
| 840 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 841 | return err; |
| 842 | } |
| 843 | |
| 844 | vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); |
| 845 | vid_hdr->vol_id = cpu_to_be32(vol_id); |
| 846 | vid_hdr->lnum = cpu_to_be32(lnum); |
| 847 | vid_hdr->compat = ubi_get_compat(ubi, vol_id); |
| 848 | vid_hdr->data_pad = cpu_to_be32(vol->data_pad); |
| 849 | |
| 850 | crc = crc32(UBI_CRC32_INIT, buf, data_size); |
| 851 | vid_hdr->vol_type = UBI_VID_STATIC; |
| 852 | vid_hdr->data_size = cpu_to_be32(data_size); |
| 853 | vid_hdr->used_ebs = cpu_to_be32(used_ebs); |
| 854 | vid_hdr->data_crc = cpu_to_be32(crc); |
| 855 | |
| 856 | retry: |
| 857 | pnum = ubi_wl_get_peb(ubi); |
| 858 | if (pnum < 0) { |
| 859 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 860 | leb_write_unlock(ubi, vol_id, lnum); |
| 861 | up_read(&ubi->fm_eba_sem); |
| 862 | return pnum; |
| 863 | } |
| 864 | |
| 865 | dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d", |
| 866 | len, vol_id, lnum, pnum, used_ebs); |
| 867 | |
| 868 | err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr); |
| 869 | if (err) { |
| 870 | ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d", |
| 871 | vol_id, lnum, pnum); |
| 872 | up_read(&ubi->fm_eba_sem); |
| 873 | goto write_error; |
| 874 | } |
| 875 | |
| 876 | err = ubi_io_write_data(ubi, buf, pnum, 0, len); |
| 877 | if (err) { |
| 878 | ubi_warn(ubi, "failed to write %d bytes of data to PEB %d", |
| 879 | len, pnum); |
| 880 | up_read(&ubi->fm_eba_sem); |
| 881 | goto write_error; |
| 882 | } |
| 883 | |
| 884 | ubi_assert(vol->eba_tbl[lnum] < 0); |
| 885 | vol->eba_tbl[lnum] = pnum; |
| 886 | up_read(&ubi->fm_eba_sem); |
| 887 | |
| 888 | leb_write_unlock(ubi, vol_id, lnum); |
| 889 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 890 | return 0; |
| 891 | |
| 892 | write_error: |
| 893 | if (err != -EIO || !ubi->bad_allowed) { |
| 894 | /* |
| 895 | * This flash device does not admit of bad eraseblocks or |
| 896 | * something nasty and unexpected happened. Switch to read-only |
| 897 | * mode just in case. |
| 898 | */ |
| 899 | ubi_ro_mode(ubi); |
| 900 | leb_write_unlock(ubi, vol_id, lnum); |
| 901 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 902 | return err; |
| 903 | } |
| 904 | |
| 905 | err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); |
| 906 | if (err || ++tries > UBI_IO_RETRIES) { |
| 907 | ubi_ro_mode(ubi); |
| 908 | leb_write_unlock(ubi, vol_id, lnum); |
| 909 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 910 | return err; |
| 911 | } |
| 912 | |
| 913 | vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); |
| 914 | ubi_msg(ubi, "try another PEB"); |
| 915 | goto retry; |
| 916 | } |
| 917 | |
| 918 | /* |
| 919 | * ubi_eba_atomic_leb_change - change logical eraseblock atomically. |
| 920 | * @ubi: UBI device description object |
| 921 | * @vol: volume description object |
| 922 | * @lnum: logical eraseblock number |
| 923 | * @buf: data to write |
| 924 | * @len: how many bytes to write |
| 925 | * |
| 926 | * This function changes the contents of a logical eraseblock atomically. @buf |
| 927 | * has to contain new logical eraseblock data, and @len - the length of the |
| 928 | * data, which has to be aligned. This function guarantees that in case of an |
| 929 | * unclean reboot the old contents is preserved. Returns zero in case of |
| 930 | * success and a negative error code in case of failure. |
| 931 | * |
| 932 | * UBI reserves one LEB for the "atomic LEB change" operation, so only one |
| 933 | * LEB change may be done at a time. This is ensured by @ubi->alc_mutex. |
| 934 | */ |
| 935 | int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol, |
| 936 | int lnum, const void *buf, int len) |
| 937 | { |
| 938 | int err, pnum, old_pnum, tries = 0, vol_id = vol->vol_id; |
| 939 | struct ubi_vid_hdr *vid_hdr; |
| 940 | uint32_t crc; |
| 941 | |
| 942 | if (ubi->ro_mode) |
| 943 | return -EROFS; |
| 944 | |
| 945 | if (len == 0) { |
| 946 | /* |
| 947 | * Special case when data length is zero. In this case the LEB |
| 948 | * has to be unmapped and mapped somewhere else. |
| 949 | */ |
| 950 | err = ubi_eba_unmap_leb(ubi, vol, lnum); |
| 951 | if (err) |
| 952 | return err; |
| 953 | return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0); |
| 954 | } |
| 955 | |
| 956 | vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); |
| 957 | if (!vid_hdr) |
| 958 | return -ENOMEM; |
| 959 | |
| 960 | mutex_lock(&ubi->alc_mutex); |
| 961 | err = leb_write_lock(ubi, vol_id, lnum); |
| 962 | if (err) |
| 963 | goto out_mutex; |
| 964 | |
| 965 | vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); |
| 966 | vid_hdr->vol_id = cpu_to_be32(vol_id); |
| 967 | vid_hdr->lnum = cpu_to_be32(lnum); |
| 968 | vid_hdr->compat = ubi_get_compat(ubi, vol_id); |
| 969 | vid_hdr->data_pad = cpu_to_be32(vol->data_pad); |
| 970 | |
| 971 | crc = crc32(UBI_CRC32_INIT, buf, len); |
| 972 | vid_hdr->vol_type = UBI_VID_DYNAMIC; |
| 973 | vid_hdr->data_size = cpu_to_be32(len); |
| 974 | vid_hdr->copy_flag = 1; |
| 975 | vid_hdr->data_crc = cpu_to_be32(crc); |
| 976 | |
| 977 | retry: |
| 978 | pnum = ubi_wl_get_peb(ubi); |
| 979 | if (pnum < 0) { |
| 980 | err = pnum; |
| 981 | up_read(&ubi->fm_eba_sem); |
| 982 | goto out_leb_unlock; |
| 983 | } |
| 984 | |
| 985 | dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d", |
| 986 | vol_id, lnum, vol->eba_tbl[lnum], pnum); |
| 987 | |
| 988 | err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr); |
| 989 | if (err) { |
| 990 | ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d", |
| 991 | vol_id, lnum, pnum); |
| 992 | up_read(&ubi->fm_eba_sem); |
| 993 | goto write_error; |
| 994 | } |
| 995 | |
| 996 | err = ubi_io_write_data(ubi, buf, pnum, 0, len); |
| 997 | if (err) { |
| 998 | ubi_warn(ubi, "failed to write %d bytes of data to PEB %d", |
| 999 | len, pnum); |
| 1000 | up_read(&ubi->fm_eba_sem); |
| 1001 | goto write_error; |
| 1002 | } |
| 1003 | |
| 1004 | old_pnum = vol->eba_tbl[lnum]; |
| 1005 | vol->eba_tbl[lnum] = pnum; |
| 1006 | up_read(&ubi->fm_eba_sem); |
| 1007 | |
| 1008 | if (old_pnum >= 0) { |
| 1009 | err = ubi_wl_put_peb(ubi, vol_id, lnum, old_pnum, 0); |
| 1010 | if (err) |
| 1011 | goto out_leb_unlock; |
| 1012 | } |
| 1013 | |
| 1014 | out_leb_unlock: |
| 1015 | leb_write_unlock(ubi, vol_id, lnum); |
| 1016 | out_mutex: |
| 1017 | mutex_unlock(&ubi->alc_mutex); |
| 1018 | ubi_free_vid_hdr(ubi, vid_hdr); |
| 1019 | return err; |
| 1020 | |
| 1021 | write_error: |
| 1022 | if (err != -EIO || !ubi->bad_allowed) { |
| 1023 | /* |
| 1024 | * This flash device does not admit of bad eraseblocks or |
| 1025 | * something nasty and unexpected happened. Switch to read-only |
| 1026 | * mode just in case. |
| 1027 | */ |
| 1028 | ubi_ro_mode(ubi); |
| 1029 | goto out_leb_unlock; |
| 1030 | } |
| 1031 | |
| 1032 | err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); |
| 1033 | if (err || ++tries > UBI_IO_RETRIES) { |
| 1034 | ubi_ro_mode(ubi); |
| 1035 | goto out_leb_unlock; |
| 1036 | } |
| 1037 | |
| 1038 | vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); |
| 1039 | ubi_msg(ubi, "try another PEB"); |
| 1040 | goto retry; |
| 1041 | } |
| 1042 | |
| 1043 | /** |
| 1044 | * is_error_sane - check whether a read error is sane. |
| 1045 | * @err: code of the error happened during reading |
| 1046 | * |
| 1047 | * This is a helper function for 'ubi_eba_copy_leb()' which is called when we |
| 1048 | * cannot read data from the target PEB (an error @err happened). If the error |
| 1049 | * code is sane, then we treat this error as non-fatal. Otherwise the error is |
| 1050 | * fatal and UBI will be switched to R/O mode later. |
| 1051 | * |
| 1052 | * The idea is that we try not to switch to R/O mode if the read error is |
| 1053 | * something which suggests there was a real read problem. E.g., %-EIO. Or a |
| 1054 | * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O |
| 1055 | * mode, simply because we do not know what happened at the MTD level, and we |
| 1056 | * cannot handle this. E.g., the underlying driver may have become crazy, and |
| 1057 | * it is safer to switch to R/O mode to preserve the data. |
| 1058 | * |
| 1059 | * And bear in mind, this is about reading from the target PEB, i.e. the PEB |
| 1060 | * which we have just written. |
| 1061 | */ |
| 1062 | static int is_error_sane(int err) |
| 1063 | { |
| 1064 | if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR || |
| 1065 | err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT) |
| 1066 | return 0; |
| 1067 | return 1; |
| 1068 | } |
| 1069 | |
| 1070 | /** |
| 1071 | * ubi_eba_copy_leb - copy logical eraseblock. |
| 1072 | * @ubi: UBI device description object |
| 1073 | * @from: physical eraseblock number from where to copy |
| 1074 | * @to: physical eraseblock number where to copy |
| 1075 | * @vid_hdr: VID header of the @from physical eraseblock |
| 1076 | * |
| 1077 | * This function copies logical eraseblock from physical eraseblock @from to |
| 1078 | * physical eraseblock @to. The @vid_hdr buffer may be changed by this |
| 1079 | * function. Returns: |
| 1080 | * o %0 in case of success; |
| 1081 | * o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc; |
| 1082 | * o a negative error code in case of failure. |
| 1083 | */ |
| 1084 | int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, |
| 1085 | struct ubi_vid_hdr *vid_hdr) |
| 1086 | { |
| 1087 | int err, vol_id, lnum, data_size, aldata_size, idx; |
| 1088 | struct ubi_volume *vol; |
| 1089 | uint32_t crc; |
| 1090 | |
| 1091 | vol_id = be32_to_cpu(vid_hdr->vol_id); |
| 1092 | lnum = be32_to_cpu(vid_hdr->lnum); |
| 1093 | |
| 1094 | dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to); |
| 1095 | |
| 1096 | if (vid_hdr->vol_type == UBI_VID_STATIC) { |
| 1097 | data_size = be32_to_cpu(vid_hdr->data_size); |
| 1098 | aldata_size = ALIGN(data_size, ubi->min_io_size); |
| 1099 | } else |
| 1100 | data_size = aldata_size = |
| 1101 | ubi->leb_size - be32_to_cpu(vid_hdr->data_pad); |
| 1102 | |
| 1103 | idx = vol_id2idx(ubi, vol_id); |
| 1104 | spin_lock(&ubi->volumes_lock); |
| 1105 | /* |
| 1106 | * Note, we may race with volume deletion, which means that the volume |
| 1107 | * this logical eraseblock belongs to might be being deleted. Since the |
| 1108 | * volume deletion un-maps all the volume's logical eraseblocks, it will |
| 1109 | * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish. |
| 1110 | */ |
| 1111 | vol = ubi->volumes[idx]; |
| 1112 | spin_unlock(&ubi->volumes_lock); |
| 1113 | if (!vol) { |
| 1114 | /* No need to do further work, cancel */ |
| 1115 | dbg_wl("volume %d is being removed, cancel", vol_id); |
| 1116 | return MOVE_CANCEL_RACE; |
| 1117 | } |
| 1118 | |
| 1119 | /* |
| 1120 | * We do not want anybody to write to this logical eraseblock while we |
| 1121 | * are moving it, so lock it. |
| 1122 | * |
| 1123 | * Note, we are using non-waiting locking here, because we cannot sleep |
| 1124 | * on the LEB, since it may cause deadlocks. Indeed, imagine a task is |
| 1125 | * unmapping the LEB which is mapped to the PEB we are going to move |
| 1126 | * (@from). This task locks the LEB and goes sleep in the |
| 1127 | * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are |
| 1128 | * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the |
| 1129 | * LEB is already locked, we just do not move it and return |
| 1130 | * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because |
| 1131 | * we do not know the reasons of the contention - it may be just a |
| 1132 | * normal I/O on this LEB, so we want to re-try. |
| 1133 | */ |
| 1134 | err = leb_write_trylock(ubi, vol_id, lnum); |
| 1135 | if (err) { |
| 1136 | dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum); |
| 1137 | return MOVE_RETRY; |
| 1138 | } |
| 1139 | |
| 1140 | /* |
| 1141 | * The LEB might have been put meanwhile, and the task which put it is |
| 1142 | * probably waiting on @ubi->move_mutex. No need to continue the work, |
| 1143 | * cancel it. |
| 1144 | */ |
| 1145 | if (vol->eba_tbl[lnum] != from) { |
| 1146 | dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel", |
| 1147 | vol_id, lnum, from, vol->eba_tbl[lnum]); |
| 1148 | err = MOVE_CANCEL_RACE; |
| 1149 | goto out_unlock_leb; |
| 1150 | } |
| 1151 | |
| 1152 | /* |
| 1153 | * OK, now the LEB is locked and we can safely start moving it. Since |
| 1154 | * this function utilizes the @ubi->peb_buf buffer which is shared |
| 1155 | * with some other functions - we lock the buffer by taking the |
| 1156 | * @ubi->buf_mutex. |
| 1157 | */ |
| 1158 | mutex_lock(&ubi->buf_mutex); |
| 1159 | dbg_wl("read %d bytes of data", aldata_size); |
| 1160 | err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size); |
| 1161 | if (err && err != UBI_IO_BITFLIPS) { |
| 1162 | ubi_warn(ubi, "error %d while reading data from PEB %d", |
| 1163 | err, from); |
| 1164 | err = MOVE_SOURCE_RD_ERR; |
| 1165 | goto out_unlock_buf; |
| 1166 | } |
| 1167 | |
| 1168 | /* |
| 1169 | * Now we have got to calculate how much data we have to copy. In |
| 1170 | * case of a static volume it is fairly easy - the VID header contains |
| 1171 | * the data size. In case of a dynamic volume it is more difficult - we |
| 1172 | * have to read the contents, cut 0xFF bytes from the end and copy only |
| 1173 | * the first part. We must do this to avoid writing 0xFF bytes as it |
| 1174 | * may have some side-effects. And not only this. It is important not |
| 1175 | * to include those 0xFFs to CRC because later the they may be filled |
| 1176 | * by data. |
| 1177 | */ |
| 1178 | if (vid_hdr->vol_type == UBI_VID_DYNAMIC) |
| 1179 | aldata_size = data_size = |
| 1180 | ubi_calc_data_len(ubi, ubi->peb_buf, data_size); |
| 1181 | |
| 1182 | cond_resched(); |
| 1183 | crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size); |
| 1184 | cond_resched(); |
| 1185 | |
| 1186 | /* |
| 1187 | * It may turn out to be that the whole @from physical eraseblock |
| 1188 | * contains only 0xFF bytes. Then we have to only write the VID header |
| 1189 | * and do not write any data. This also means we should not set |
| 1190 | * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc. |
| 1191 | */ |
| 1192 | if (data_size > 0) { |
| 1193 | vid_hdr->copy_flag = 1; |
| 1194 | vid_hdr->data_size = cpu_to_be32(data_size); |
| 1195 | vid_hdr->data_crc = cpu_to_be32(crc); |
| 1196 | } |
| 1197 | vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); |
| 1198 | |
| 1199 | err = ubi_io_write_vid_hdr(ubi, to, vid_hdr); |
| 1200 | if (err) { |
| 1201 | if (err == -EIO) |
| 1202 | err = MOVE_TARGET_WR_ERR; |
| 1203 | goto out_unlock_buf; |
| 1204 | } |
| 1205 | |
| 1206 | cond_resched(); |
| 1207 | |
| 1208 | /* Read the VID header back and check if it was written correctly */ |
| 1209 | err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1); |
| 1210 | if (err) { |
| 1211 | if (err != UBI_IO_BITFLIPS) { |
| 1212 | ubi_warn(ubi, "error %d while reading VID header back from PEB %d", |
| 1213 | err, to); |
| 1214 | if (is_error_sane(err)) |
| 1215 | err = MOVE_TARGET_RD_ERR; |
| 1216 | } else |
| 1217 | err = MOVE_TARGET_BITFLIPS; |
| 1218 | goto out_unlock_buf; |
| 1219 | } |
| 1220 | |
| 1221 | if (data_size > 0) { |
| 1222 | err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size); |
| 1223 | if (err) { |
| 1224 | if (err == -EIO) |
| 1225 | err = MOVE_TARGET_WR_ERR; |
| 1226 | goto out_unlock_buf; |
| 1227 | } |
| 1228 | |
| 1229 | cond_resched(); |
| 1230 | |
| 1231 | /* |
| 1232 | * We've written the data and are going to read it back to make |
| 1233 | * sure it was written correctly. |
| 1234 | */ |
| 1235 | memset(ubi->peb_buf, 0xFF, aldata_size); |
| 1236 | err = ubi_io_read_data(ubi, ubi->peb_buf, to, 0, aldata_size); |
| 1237 | if (err) { |
| 1238 | if (err != UBI_IO_BITFLIPS) { |
| 1239 | ubi_warn(ubi, "error %d while reading data back from PEB %d", |
| 1240 | err, to); |
| 1241 | if (is_error_sane(err)) |
| 1242 | err = MOVE_TARGET_RD_ERR; |
| 1243 | } else |
| 1244 | err = MOVE_TARGET_BITFLIPS; |
| 1245 | goto out_unlock_buf; |
| 1246 | } |
| 1247 | |
| 1248 | cond_resched(); |
| 1249 | |
| 1250 | if (crc != crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size)) { |
| 1251 | ubi_warn(ubi, "read data back from PEB %d and it is different", |
| 1252 | to); |
| 1253 | err = -EINVAL; |
| 1254 | goto out_unlock_buf; |
| 1255 | } |
| 1256 | } |
| 1257 | |
| 1258 | ubi_assert(vol->eba_tbl[lnum] == from); |
| 1259 | down_read(&ubi->fm_eba_sem); |
| 1260 | vol->eba_tbl[lnum] = to; |
| 1261 | up_read(&ubi->fm_eba_sem); |
| 1262 | |
| 1263 | out_unlock_buf: |
| 1264 | mutex_unlock(&ubi->buf_mutex); |
| 1265 | out_unlock_leb: |
| 1266 | leb_write_unlock(ubi, vol_id, lnum); |
| 1267 | return err; |
| 1268 | } |
| 1269 | |
| 1270 | /** |
| 1271 | * print_rsvd_warning - warn about not having enough reserved PEBs. |
| 1272 | * @ubi: UBI device description object |
| 1273 | * |
| 1274 | * This is a helper function for 'ubi_eba_init()' which is called when UBI |
| 1275 | * cannot reserve enough PEBs for bad block handling. This function makes a |
| 1276 | * decision whether we have to print a warning or not. The algorithm is as |
| 1277 | * follows: |
| 1278 | * o if this is a new UBI image, then just print the warning |
| 1279 | * o if this is an UBI image which has already been used for some time, print |
| 1280 | * a warning only if we can reserve less than 10% of the expected amount of |
| 1281 | * the reserved PEB. |
| 1282 | * |
| 1283 | * The idea is that when UBI is used, PEBs become bad, and the reserved pool |
| 1284 | * of PEBs becomes smaller, which is normal and we do not want to scare users |
| 1285 | * with a warning every time they attach the MTD device. This was an issue |
| 1286 | * reported by real users. |
| 1287 | */ |
| 1288 | static void print_rsvd_warning(struct ubi_device *ubi, |
| 1289 | struct ubi_attach_info *ai) |
| 1290 | { |
| 1291 | /* |
| 1292 | * The 1 << 18 (256KiB) number is picked randomly, just a reasonably |
| 1293 | * large number to distinguish between newly flashed and used images. |
| 1294 | */ |
| 1295 | if (ai->max_sqnum > (1 << 18)) { |
| 1296 | int min = ubi->beb_rsvd_level / 10; |
| 1297 | |
| 1298 | if (!min) |
| 1299 | min = 1; |
| 1300 | if (ubi->beb_rsvd_pebs > min) |
| 1301 | return; |
| 1302 | } |
| 1303 | |
| 1304 | ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d", |
| 1305 | ubi->beb_rsvd_pebs, ubi->beb_rsvd_level); |
| 1306 | if (ubi->corr_peb_count) |
| 1307 | ubi_warn(ubi, "%d PEBs are corrupted and not used", |
| 1308 | ubi->corr_peb_count); |
| 1309 | } |
| 1310 | |
| 1311 | /** |
| 1312 | * self_check_eba - run a self check on the EBA table constructed by fastmap. |
| 1313 | * @ubi: UBI device description object |
| 1314 | * @ai_fastmap: UBI attach info object created by fastmap |
| 1315 | * @ai_scan: UBI attach info object created by scanning |
| 1316 | * |
| 1317 | * Returns < 0 in case of an internal error, 0 otherwise. |
| 1318 | * If a bad EBA table entry was found it will be printed out and |
| 1319 | * ubi_assert() triggers. |
| 1320 | */ |
| 1321 | int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap, |
| 1322 | struct ubi_attach_info *ai_scan) |
| 1323 | { |
| 1324 | int i, j, num_volumes, ret = 0; |
| 1325 | int **scan_eba, **fm_eba; |
| 1326 | struct ubi_ainf_volume *av; |
| 1327 | struct ubi_volume *vol; |
| 1328 | struct ubi_ainf_peb *aeb; |
| 1329 | struct rb_node *rb; |
| 1330 | |
| 1331 | num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; |
| 1332 | |
| 1333 | scan_eba = kmalloc(sizeof(*scan_eba) * num_volumes, GFP_KERNEL); |
| 1334 | if (!scan_eba) |
| 1335 | return -ENOMEM; |
| 1336 | |
| 1337 | fm_eba = kmalloc(sizeof(*fm_eba) * num_volumes, GFP_KERNEL); |
| 1338 | if (!fm_eba) { |
| 1339 | kfree(scan_eba); |
| 1340 | return -ENOMEM; |
| 1341 | } |
| 1342 | |
| 1343 | for (i = 0; i < num_volumes; i++) { |
| 1344 | vol = ubi->volumes[i]; |
| 1345 | if (!vol) |
| 1346 | continue; |
| 1347 | |
| 1348 | scan_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**scan_eba), |
| 1349 | GFP_KERNEL); |
| 1350 | if (!scan_eba[i]) { |
| 1351 | ret = -ENOMEM; |
| 1352 | goto out_free; |
| 1353 | } |
| 1354 | |
| 1355 | fm_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**fm_eba), |
| 1356 | GFP_KERNEL); |
| 1357 | if (!fm_eba[i]) { |
| 1358 | ret = -ENOMEM; |
| 1359 | goto out_free; |
| 1360 | } |
| 1361 | |
| 1362 | for (j = 0; j < vol->reserved_pebs; j++) |
| 1363 | scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED; |
| 1364 | |
| 1365 | av = ubi_find_av(ai_scan, idx2vol_id(ubi, i)); |
| 1366 | if (!av) |
| 1367 | continue; |
| 1368 | |
| 1369 | ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) |
| 1370 | scan_eba[i][aeb->lnum] = aeb->pnum; |
| 1371 | |
| 1372 | av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i)); |
| 1373 | if (!av) |
| 1374 | continue; |
| 1375 | |
| 1376 | ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) |
| 1377 | fm_eba[i][aeb->lnum] = aeb->pnum; |
| 1378 | |
| 1379 | for (j = 0; j < vol->reserved_pebs; j++) { |
| 1380 | if (scan_eba[i][j] != fm_eba[i][j]) { |
| 1381 | if (scan_eba[i][j] == UBI_LEB_UNMAPPED || |
| 1382 | fm_eba[i][j] == UBI_LEB_UNMAPPED) |
| 1383 | continue; |
| 1384 | |
| 1385 | ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!", |
| 1386 | vol->vol_id, j, fm_eba[i][j], |
| 1387 | scan_eba[i][j]); |
| 1388 | ubi_assert(0); |
| 1389 | } |
| 1390 | } |
| 1391 | } |
| 1392 | |
| 1393 | out_free: |
| 1394 | for (i = 0; i < num_volumes; i++) { |
| 1395 | if (!ubi->volumes[i]) |
| 1396 | continue; |
| 1397 | |
| 1398 | kfree(scan_eba[i]); |
| 1399 | kfree(fm_eba[i]); |
| 1400 | } |
| 1401 | |
| 1402 | kfree(scan_eba); |
| 1403 | kfree(fm_eba); |
| 1404 | return ret; |
| 1405 | } |
| 1406 | |
| 1407 | /** |
| 1408 | * ubi_eba_init - initialize the EBA sub-system using attaching information. |
| 1409 | * @ubi: UBI device description object |
| 1410 | * @ai: attaching information |
| 1411 | * |
| 1412 | * This function returns zero in case of success and a negative error code in |
| 1413 | * case of failure. |
| 1414 | */ |
| 1415 | int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai) |
| 1416 | { |
| 1417 | int i, j, err, num_volumes; |
| 1418 | struct ubi_ainf_volume *av; |
| 1419 | struct ubi_volume *vol; |
| 1420 | struct ubi_ainf_peb *aeb; |
| 1421 | struct rb_node *rb; |
| 1422 | |
| 1423 | dbg_eba("initialize EBA sub-system"); |
| 1424 | |
| 1425 | spin_lock_init(&ubi->ltree_lock); |
| 1426 | mutex_init(&ubi->alc_mutex); |
| 1427 | ubi->ltree = RB_ROOT; |
| 1428 | |
| 1429 | ubi->global_sqnum = ai->max_sqnum + 1; |
| 1430 | num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; |
| 1431 | |
| 1432 | for (i = 0; i < num_volumes; i++) { |
| 1433 | vol = ubi->volumes[i]; |
| 1434 | if (!vol) |
| 1435 | continue; |
| 1436 | |
| 1437 | cond_resched(); |
| 1438 | |
| 1439 | vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int), |
| 1440 | GFP_KERNEL); |
| 1441 | if (!vol->eba_tbl) { |
| 1442 | err = -ENOMEM; |
| 1443 | goto out_free; |
| 1444 | } |
| 1445 | |
| 1446 | for (j = 0; j < vol->reserved_pebs; j++) |
| 1447 | vol->eba_tbl[j] = UBI_LEB_UNMAPPED; |
| 1448 | |
| 1449 | av = ubi_find_av(ai, idx2vol_id(ubi, i)); |
| 1450 | if (!av) |
| 1451 | continue; |
| 1452 | |
| 1453 | ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) { |
| 1454 | if (aeb->lnum >= vol->reserved_pebs) |
| 1455 | /* |
| 1456 | * This may happen in case of an unclean reboot |
| 1457 | * during re-size. |
| 1458 | */ |
| 1459 | ubi_move_aeb_to_list(av, aeb, &ai->erase); |
| 1460 | else |
| 1461 | vol->eba_tbl[aeb->lnum] = aeb->pnum; |
| 1462 | } |
| 1463 | } |
| 1464 | |
| 1465 | if (ubi->avail_pebs < EBA_RESERVED_PEBS) { |
| 1466 | ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)", |
| 1467 | ubi->avail_pebs, EBA_RESERVED_PEBS); |
| 1468 | if (ubi->corr_peb_count) |
| 1469 | ubi_err(ubi, "%d PEBs are corrupted and not used", |
| 1470 | ubi->corr_peb_count); |
| 1471 | err = -ENOSPC; |
| 1472 | goto out_free; |
| 1473 | } |
| 1474 | ubi->avail_pebs -= EBA_RESERVED_PEBS; |
| 1475 | ubi->rsvd_pebs += EBA_RESERVED_PEBS; |
| 1476 | |
| 1477 | if (ubi->bad_allowed) { |
| 1478 | ubi_calculate_reserved(ubi); |
| 1479 | |
| 1480 | if (ubi->avail_pebs < ubi->beb_rsvd_level) { |
| 1481 | /* No enough free physical eraseblocks */ |
| 1482 | ubi->beb_rsvd_pebs = ubi->avail_pebs; |
| 1483 | print_rsvd_warning(ubi, ai); |
| 1484 | } else |
| 1485 | ubi->beb_rsvd_pebs = ubi->beb_rsvd_level; |
| 1486 | |
| 1487 | ubi->avail_pebs -= ubi->beb_rsvd_pebs; |
| 1488 | ubi->rsvd_pebs += ubi->beb_rsvd_pebs; |
| 1489 | } |
| 1490 | |
| 1491 | dbg_eba("EBA sub-system is initialized"); |
| 1492 | return 0; |
| 1493 | |
| 1494 | out_free: |
| 1495 | for (i = 0; i < num_volumes; i++) { |
| 1496 | if (!ubi->volumes[i]) |
| 1497 | continue; |
| 1498 | kfree(ubi->volumes[i]->eba_tbl); |
| 1499 | ubi->volumes[i]->eba_tbl = NULL; |
| 1500 | } |
| 1501 | return err; |
| 1502 | } |