Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame^] | 1 | /* |
| 2 | * net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support |
| 3 | * Copyright (c) 2008 Marvell Semiconductor |
| 4 | * |
| 5 | * Copyright (c) 2015 CMC Electronics, Inc. |
| 6 | * Added support for VLAN Table Unit operations |
| 7 | * |
| 8 | * This program is free software; you can redistribute it and/or modify |
| 9 | * it under the terms of the GNU General Public License as published by |
| 10 | * the Free Software Foundation; either version 2 of the License, or |
| 11 | * (at your option) any later version. |
| 12 | */ |
| 13 | |
| 14 | #include <linux/delay.h> |
| 15 | #include <linux/etherdevice.h> |
| 16 | #include <linux/ethtool.h> |
| 17 | #include <linux/if_bridge.h> |
| 18 | #include <linux/jiffies.h> |
| 19 | #include <linux/list.h> |
| 20 | #include <linux/module.h> |
| 21 | #include <linux/netdevice.h> |
| 22 | #include <linux/phy.h> |
| 23 | #include <net/dsa.h> |
| 24 | #include <net/switchdev.h> |
| 25 | #include "mv88e6xxx.h" |
| 26 | |
| 27 | static void assert_smi_lock(struct dsa_switch *ds) |
| 28 | { |
| 29 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 30 | |
| 31 | if (unlikely(!mutex_is_locked(&ps->smi_mutex))) { |
| 32 | dev_err(ds->master_dev, "SMI lock not held!\n"); |
| 33 | dump_stack(); |
| 34 | } |
| 35 | } |
| 36 | |
| 37 | /* If the switch's ADDR[4:0] strap pins are strapped to zero, it will |
| 38 | * use all 32 SMI bus addresses on its SMI bus, and all switch registers |
| 39 | * will be directly accessible on some {device address,register address} |
| 40 | * pair. If the ADDR[4:0] pins are not strapped to zero, the switch |
| 41 | * will only respond to SMI transactions to that specific address, and |
| 42 | * an indirect addressing mechanism needs to be used to access its |
| 43 | * registers. |
| 44 | */ |
| 45 | static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr) |
| 46 | { |
| 47 | int ret; |
| 48 | int i; |
| 49 | |
| 50 | for (i = 0; i < 16; i++) { |
| 51 | ret = mdiobus_read_nested(bus, sw_addr, SMI_CMD); |
| 52 | if (ret < 0) |
| 53 | return ret; |
| 54 | |
| 55 | if ((ret & SMI_CMD_BUSY) == 0) |
| 56 | return 0; |
| 57 | } |
| 58 | |
| 59 | return -ETIMEDOUT; |
| 60 | } |
| 61 | |
| 62 | static int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr, |
| 63 | int reg) |
| 64 | { |
| 65 | int ret; |
| 66 | |
| 67 | if (sw_addr == 0) |
| 68 | return mdiobus_read_nested(bus, addr, reg); |
| 69 | |
| 70 | /* Wait for the bus to become free. */ |
| 71 | ret = mv88e6xxx_reg_wait_ready(bus, sw_addr); |
| 72 | if (ret < 0) |
| 73 | return ret; |
| 74 | |
| 75 | /* Transmit the read command. */ |
| 76 | ret = mdiobus_write_nested(bus, sw_addr, SMI_CMD, |
| 77 | SMI_CMD_OP_22_READ | (addr << 5) | reg); |
| 78 | if (ret < 0) |
| 79 | return ret; |
| 80 | |
| 81 | /* Wait for the read command to complete. */ |
| 82 | ret = mv88e6xxx_reg_wait_ready(bus, sw_addr); |
| 83 | if (ret < 0) |
| 84 | return ret; |
| 85 | |
| 86 | /* Read the data. */ |
| 87 | ret = mdiobus_read_nested(bus, sw_addr, SMI_DATA); |
| 88 | if (ret < 0) |
| 89 | return ret; |
| 90 | |
| 91 | return ret & 0xffff; |
| 92 | } |
| 93 | |
| 94 | static int _mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg) |
| 95 | { |
| 96 | struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev); |
| 97 | int ret; |
| 98 | |
| 99 | assert_smi_lock(ds); |
| 100 | |
| 101 | if (bus == NULL) |
| 102 | return -EINVAL; |
| 103 | |
| 104 | ret = __mv88e6xxx_reg_read(bus, ds->pd->sw_addr, addr, reg); |
| 105 | if (ret < 0) |
| 106 | return ret; |
| 107 | |
| 108 | dev_dbg(ds->master_dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n", |
| 109 | addr, reg, ret); |
| 110 | |
| 111 | return ret; |
| 112 | } |
| 113 | |
| 114 | int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg) |
| 115 | { |
| 116 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 117 | int ret; |
| 118 | |
| 119 | mutex_lock(&ps->smi_mutex); |
| 120 | ret = _mv88e6xxx_reg_read(ds, addr, reg); |
| 121 | mutex_unlock(&ps->smi_mutex); |
| 122 | |
| 123 | return ret; |
| 124 | } |
| 125 | |
| 126 | static int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr, |
| 127 | int reg, u16 val) |
| 128 | { |
| 129 | int ret; |
| 130 | |
| 131 | if (sw_addr == 0) |
| 132 | return mdiobus_write_nested(bus, addr, reg, val); |
| 133 | |
| 134 | /* Wait for the bus to become free. */ |
| 135 | ret = mv88e6xxx_reg_wait_ready(bus, sw_addr); |
| 136 | if (ret < 0) |
| 137 | return ret; |
| 138 | |
| 139 | /* Transmit the data to write. */ |
| 140 | ret = mdiobus_write_nested(bus, sw_addr, SMI_DATA, val); |
| 141 | if (ret < 0) |
| 142 | return ret; |
| 143 | |
| 144 | /* Transmit the write command. */ |
| 145 | ret = mdiobus_write_nested(bus, sw_addr, SMI_CMD, |
| 146 | SMI_CMD_OP_22_WRITE | (addr << 5) | reg); |
| 147 | if (ret < 0) |
| 148 | return ret; |
| 149 | |
| 150 | /* Wait for the write command to complete. */ |
| 151 | ret = mv88e6xxx_reg_wait_ready(bus, sw_addr); |
| 152 | if (ret < 0) |
| 153 | return ret; |
| 154 | |
| 155 | return 0; |
| 156 | } |
| 157 | |
| 158 | static int _mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, |
| 159 | u16 val) |
| 160 | { |
| 161 | struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev); |
| 162 | |
| 163 | assert_smi_lock(ds); |
| 164 | |
| 165 | if (bus == NULL) |
| 166 | return -EINVAL; |
| 167 | |
| 168 | dev_dbg(ds->master_dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n", |
| 169 | addr, reg, val); |
| 170 | |
| 171 | return __mv88e6xxx_reg_write(bus, ds->pd->sw_addr, addr, reg, val); |
| 172 | } |
| 173 | |
| 174 | int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val) |
| 175 | { |
| 176 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 177 | int ret; |
| 178 | |
| 179 | mutex_lock(&ps->smi_mutex); |
| 180 | ret = _mv88e6xxx_reg_write(ds, addr, reg, val); |
| 181 | mutex_unlock(&ps->smi_mutex); |
| 182 | |
| 183 | return ret; |
| 184 | } |
| 185 | |
| 186 | int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr) |
| 187 | { |
| 188 | REG_WRITE(REG_GLOBAL, GLOBAL_MAC_01, (addr[0] << 8) | addr[1]); |
| 189 | REG_WRITE(REG_GLOBAL, GLOBAL_MAC_23, (addr[2] << 8) | addr[3]); |
| 190 | REG_WRITE(REG_GLOBAL, GLOBAL_MAC_45, (addr[4] << 8) | addr[5]); |
| 191 | |
| 192 | return 0; |
| 193 | } |
| 194 | |
| 195 | int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr) |
| 196 | { |
| 197 | int i; |
| 198 | int ret; |
| 199 | |
| 200 | for (i = 0; i < 6; i++) { |
| 201 | int j; |
| 202 | |
| 203 | /* Write the MAC address byte. */ |
| 204 | REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MAC, |
| 205 | GLOBAL2_SWITCH_MAC_BUSY | (i << 8) | addr[i]); |
| 206 | |
| 207 | /* Wait for the write to complete. */ |
| 208 | for (j = 0; j < 16; j++) { |
| 209 | ret = REG_READ(REG_GLOBAL2, GLOBAL2_SWITCH_MAC); |
| 210 | if ((ret & GLOBAL2_SWITCH_MAC_BUSY) == 0) |
| 211 | break; |
| 212 | } |
| 213 | if (j == 16) |
| 214 | return -ETIMEDOUT; |
| 215 | } |
| 216 | |
| 217 | return 0; |
| 218 | } |
| 219 | |
| 220 | static int _mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum) |
| 221 | { |
| 222 | if (addr >= 0) |
| 223 | return _mv88e6xxx_reg_read(ds, addr, regnum); |
| 224 | return 0xffff; |
| 225 | } |
| 226 | |
| 227 | static int _mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum, |
| 228 | u16 val) |
| 229 | { |
| 230 | if (addr >= 0) |
| 231 | return _mv88e6xxx_reg_write(ds, addr, regnum, val); |
| 232 | return 0; |
| 233 | } |
| 234 | |
| 235 | #ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU |
| 236 | static int mv88e6xxx_ppu_disable(struct dsa_switch *ds) |
| 237 | { |
| 238 | int ret; |
| 239 | unsigned long timeout; |
| 240 | |
| 241 | ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL); |
| 242 | REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL, |
| 243 | ret & ~GLOBAL_CONTROL_PPU_ENABLE); |
| 244 | |
| 245 | timeout = jiffies + 1 * HZ; |
| 246 | while (time_before(jiffies, timeout)) { |
| 247 | ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS); |
| 248 | usleep_range(1000, 2000); |
| 249 | if ((ret & GLOBAL_STATUS_PPU_MASK) != |
| 250 | GLOBAL_STATUS_PPU_POLLING) |
| 251 | return 0; |
| 252 | } |
| 253 | |
| 254 | return -ETIMEDOUT; |
| 255 | } |
| 256 | |
| 257 | static int mv88e6xxx_ppu_enable(struct dsa_switch *ds) |
| 258 | { |
| 259 | int ret; |
| 260 | unsigned long timeout; |
| 261 | |
| 262 | ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL); |
| 263 | REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL, ret | GLOBAL_CONTROL_PPU_ENABLE); |
| 264 | |
| 265 | timeout = jiffies + 1 * HZ; |
| 266 | while (time_before(jiffies, timeout)) { |
| 267 | ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS); |
| 268 | usleep_range(1000, 2000); |
| 269 | if ((ret & GLOBAL_STATUS_PPU_MASK) == |
| 270 | GLOBAL_STATUS_PPU_POLLING) |
| 271 | return 0; |
| 272 | } |
| 273 | |
| 274 | return -ETIMEDOUT; |
| 275 | } |
| 276 | |
| 277 | static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly) |
| 278 | { |
| 279 | struct mv88e6xxx_priv_state *ps; |
| 280 | |
| 281 | ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work); |
| 282 | if (mutex_trylock(&ps->ppu_mutex)) { |
| 283 | struct dsa_switch *ds = ((struct dsa_switch *)ps) - 1; |
| 284 | |
| 285 | if (mv88e6xxx_ppu_enable(ds) == 0) |
| 286 | ps->ppu_disabled = 0; |
| 287 | mutex_unlock(&ps->ppu_mutex); |
| 288 | } |
| 289 | } |
| 290 | |
| 291 | static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps) |
| 292 | { |
| 293 | struct mv88e6xxx_priv_state *ps = (void *)_ps; |
| 294 | |
| 295 | schedule_work(&ps->ppu_work); |
| 296 | } |
| 297 | |
| 298 | static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds) |
| 299 | { |
| 300 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 301 | int ret; |
| 302 | |
| 303 | mutex_lock(&ps->ppu_mutex); |
| 304 | |
| 305 | /* If the PHY polling unit is enabled, disable it so that |
| 306 | * we can access the PHY registers. If it was already |
| 307 | * disabled, cancel the timer that is going to re-enable |
| 308 | * it. |
| 309 | */ |
| 310 | if (!ps->ppu_disabled) { |
| 311 | ret = mv88e6xxx_ppu_disable(ds); |
| 312 | if (ret < 0) { |
| 313 | mutex_unlock(&ps->ppu_mutex); |
| 314 | return ret; |
| 315 | } |
| 316 | ps->ppu_disabled = 1; |
| 317 | } else { |
| 318 | del_timer(&ps->ppu_timer); |
| 319 | ret = 0; |
| 320 | } |
| 321 | |
| 322 | return ret; |
| 323 | } |
| 324 | |
| 325 | static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds) |
| 326 | { |
| 327 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 328 | |
| 329 | /* Schedule a timer to re-enable the PHY polling unit. */ |
| 330 | mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10)); |
| 331 | mutex_unlock(&ps->ppu_mutex); |
| 332 | } |
| 333 | |
| 334 | void mv88e6xxx_ppu_state_init(struct dsa_switch *ds) |
| 335 | { |
| 336 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 337 | |
| 338 | mutex_init(&ps->ppu_mutex); |
| 339 | INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work); |
| 340 | init_timer(&ps->ppu_timer); |
| 341 | ps->ppu_timer.data = (unsigned long)ps; |
| 342 | ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer; |
| 343 | } |
| 344 | |
| 345 | int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum) |
| 346 | { |
| 347 | int ret; |
| 348 | |
| 349 | ret = mv88e6xxx_ppu_access_get(ds); |
| 350 | if (ret >= 0) { |
| 351 | ret = mv88e6xxx_reg_read(ds, addr, regnum); |
| 352 | mv88e6xxx_ppu_access_put(ds); |
| 353 | } |
| 354 | |
| 355 | return ret; |
| 356 | } |
| 357 | |
| 358 | int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr, |
| 359 | int regnum, u16 val) |
| 360 | { |
| 361 | int ret; |
| 362 | |
| 363 | ret = mv88e6xxx_ppu_access_get(ds); |
| 364 | if (ret >= 0) { |
| 365 | ret = mv88e6xxx_reg_write(ds, addr, regnum, val); |
| 366 | mv88e6xxx_ppu_access_put(ds); |
| 367 | } |
| 368 | |
| 369 | return ret; |
| 370 | } |
| 371 | #endif |
| 372 | |
| 373 | static bool mv88e6xxx_6065_family(struct dsa_switch *ds) |
| 374 | { |
| 375 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 376 | |
| 377 | switch (ps->id) { |
| 378 | case PORT_SWITCH_ID_6031: |
| 379 | case PORT_SWITCH_ID_6061: |
| 380 | case PORT_SWITCH_ID_6035: |
| 381 | case PORT_SWITCH_ID_6065: |
| 382 | return true; |
| 383 | } |
| 384 | return false; |
| 385 | } |
| 386 | |
| 387 | static bool mv88e6xxx_6095_family(struct dsa_switch *ds) |
| 388 | { |
| 389 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 390 | |
| 391 | switch (ps->id) { |
| 392 | case PORT_SWITCH_ID_6092: |
| 393 | case PORT_SWITCH_ID_6095: |
| 394 | return true; |
| 395 | } |
| 396 | return false; |
| 397 | } |
| 398 | |
| 399 | static bool mv88e6xxx_6097_family(struct dsa_switch *ds) |
| 400 | { |
| 401 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 402 | |
| 403 | switch (ps->id) { |
| 404 | case PORT_SWITCH_ID_6046: |
| 405 | case PORT_SWITCH_ID_6085: |
| 406 | case PORT_SWITCH_ID_6096: |
| 407 | case PORT_SWITCH_ID_6097: |
| 408 | return true; |
| 409 | } |
| 410 | return false; |
| 411 | } |
| 412 | |
| 413 | static bool mv88e6xxx_6165_family(struct dsa_switch *ds) |
| 414 | { |
| 415 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 416 | |
| 417 | switch (ps->id) { |
| 418 | case PORT_SWITCH_ID_6123: |
| 419 | case PORT_SWITCH_ID_6161: |
| 420 | case PORT_SWITCH_ID_6165: |
| 421 | return true; |
| 422 | } |
| 423 | return false; |
| 424 | } |
| 425 | |
| 426 | static bool mv88e6xxx_6185_family(struct dsa_switch *ds) |
| 427 | { |
| 428 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 429 | |
| 430 | switch (ps->id) { |
| 431 | case PORT_SWITCH_ID_6121: |
| 432 | case PORT_SWITCH_ID_6122: |
| 433 | case PORT_SWITCH_ID_6152: |
| 434 | case PORT_SWITCH_ID_6155: |
| 435 | case PORT_SWITCH_ID_6182: |
| 436 | case PORT_SWITCH_ID_6185: |
| 437 | case PORT_SWITCH_ID_6108: |
| 438 | case PORT_SWITCH_ID_6131: |
| 439 | return true; |
| 440 | } |
| 441 | return false; |
| 442 | } |
| 443 | |
| 444 | static bool mv88e6xxx_6320_family(struct dsa_switch *ds) |
| 445 | { |
| 446 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 447 | |
| 448 | switch (ps->id) { |
| 449 | case PORT_SWITCH_ID_6320: |
| 450 | case PORT_SWITCH_ID_6321: |
| 451 | return true; |
| 452 | } |
| 453 | return false; |
| 454 | } |
| 455 | |
| 456 | static bool mv88e6xxx_6351_family(struct dsa_switch *ds) |
| 457 | { |
| 458 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 459 | |
| 460 | switch (ps->id) { |
| 461 | case PORT_SWITCH_ID_6171: |
| 462 | case PORT_SWITCH_ID_6175: |
| 463 | case PORT_SWITCH_ID_6350: |
| 464 | case PORT_SWITCH_ID_6351: |
| 465 | return true; |
| 466 | } |
| 467 | return false; |
| 468 | } |
| 469 | |
| 470 | static bool mv88e6xxx_6352_family(struct dsa_switch *ds) |
| 471 | { |
| 472 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 473 | |
| 474 | switch (ps->id) { |
| 475 | case PORT_SWITCH_ID_6172: |
| 476 | case PORT_SWITCH_ID_6176: |
| 477 | case PORT_SWITCH_ID_6240: |
| 478 | case PORT_SWITCH_ID_6352: |
| 479 | return true; |
| 480 | } |
| 481 | return false; |
| 482 | } |
| 483 | |
| 484 | /* We expect the switch to perform auto negotiation if there is a real |
| 485 | * phy. However, in the case of a fixed link phy, we force the port |
| 486 | * settings from the fixed link settings. |
| 487 | */ |
| 488 | void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port, |
| 489 | struct phy_device *phydev) |
| 490 | { |
| 491 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 492 | u32 reg; |
| 493 | int ret; |
| 494 | |
| 495 | if (!phy_is_pseudo_fixed_link(phydev)) |
| 496 | return; |
| 497 | |
| 498 | mutex_lock(&ps->smi_mutex); |
| 499 | |
| 500 | ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL); |
| 501 | if (ret < 0) |
| 502 | goto out; |
| 503 | |
| 504 | reg = ret & ~(PORT_PCS_CTRL_LINK_UP | |
| 505 | PORT_PCS_CTRL_FORCE_LINK | |
| 506 | PORT_PCS_CTRL_DUPLEX_FULL | |
| 507 | PORT_PCS_CTRL_FORCE_DUPLEX | |
| 508 | PORT_PCS_CTRL_UNFORCED); |
| 509 | |
| 510 | reg |= PORT_PCS_CTRL_FORCE_LINK; |
| 511 | if (phydev->link) |
| 512 | reg |= PORT_PCS_CTRL_LINK_UP; |
| 513 | |
| 514 | if (mv88e6xxx_6065_family(ds) && phydev->speed > SPEED_100) |
| 515 | goto out; |
| 516 | |
| 517 | switch (phydev->speed) { |
| 518 | case SPEED_1000: |
| 519 | reg |= PORT_PCS_CTRL_1000; |
| 520 | break; |
| 521 | case SPEED_100: |
| 522 | reg |= PORT_PCS_CTRL_100; |
| 523 | break; |
| 524 | case SPEED_10: |
| 525 | reg |= PORT_PCS_CTRL_10; |
| 526 | break; |
| 527 | default: |
| 528 | pr_info("Unknown speed"); |
| 529 | goto out; |
| 530 | } |
| 531 | |
| 532 | reg |= PORT_PCS_CTRL_FORCE_DUPLEX; |
| 533 | if (phydev->duplex == DUPLEX_FULL) |
| 534 | reg |= PORT_PCS_CTRL_DUPLEX_FULL; |
| 535 | |
| 536 | if ((mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds)) && |
| 537 | (port >= ps->num_ports - 2)) { |
| 538 | if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) |
| 539 | reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK; |
| 540 | if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) |
| 541 | reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK; |
| 542 | if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID) |
| 543 | reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK | |
| 544 | PORT_PCS_CTRL_RGMII_DELAY_TXCLK); |
| 545 | } |
| 546 | _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_PCS_CTRL, reg); |
| 547 | |
| 548 | out: |
| 549 | mutex_unlock(&ps->smi_mutex); |
| 550 | } |
| 551 | |
| 552 | static int _mv88e6xxx_stats_wait(struct dsa_switch *ds) |
| 553 | { |
| 554 | int ret; |
| 555 | int i; |
| 556 | |
| 557 | for (i = 0; i < 10; i++) { |
| 558 | ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_OP); |
| 559 | if ((ret & GLOBAL_STATS_OP_BUSY) == 0) |
| 560 | return 0; |
| 561 | } |
| 562 | |
| 563 | return -ETIMEDOUT; |
| 564 | } |
| 565 | |
| 566 | static int _mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port) |
| 567 | { |
| 568 | int ret; |
| 569 | |
| 570 | if (mv88e6xxx_6320_family(ds) || mv88e6xxx_6352_family(ds)) |
| 571 | port = (port + 1) << 5; |
| 572 | |
| 573 | /* Snapshot the hardware statistics counters for this port. */ |
| 574 | ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP, |
| 575 | GLOBAL_STATS_OP_CAPTURE_PORT | |
| 576 | GLOBAL_STATS_OP_HIST_RX_TX | port); |
| 577 | if (ret < 0) |
| 578 | return ret; |
| 579 | |
| 580 | /* Wait for the snapshotting to complete. */ |
| 581 | ret = _mv88e6xxx_stats_wait(ds); |
| 582 | if (ret < 0) |
| 583 | return ret; |
| 584 | |
| 585 | return 0; |
| 586 | } |
| 587 | |
| 588 | static void _mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val) |
| 589 | { |
| 590 | u32 _val; |
| 591 | int ret; |
| 592 | |
| 593 | *val = 0; |
| 594 | |
| 595 | ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP, |
| 596 | GLOBAL_STATS_OP_READ_CAPTURED | |
| 597 | GLOBAL_STATS_OP_HIST_RX_TX | stat); |
| 598 | if (ret < 0) |
| 599 | return; |
| 600 | |
| 601 | ret = _mv88e6xxx_stats_wait(ds); |
| 602 | if (ret < 0) |
| 603 | return; |
| 604 | |
| 605 | ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_32); |
| 606 | if (ret < 0) |
| 607 | return; |
| 608 | |
| 609 | _val = ret << 16; |
| 610 | |
| 611 | ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_01); |
| 612 | if (ret < 0) |
| 613 | return; |
| 614 | |
| 615 | *val = _val | ret; |
| 616 | } |
| 617 | |
| 618 | static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = { |
| 619 | { "in_good_octets", 8, 0x00, }, |
| 620 | { "in_bad_octets", 4, 0x02, }, |
| 621 | { "in_unicast", 4, 0x04, }, |
| 622 | { "in_broadcasts", 4, 0x06, }, |
| 623 | { "in_multicasts", 4, 0x07, }, |
| 624 | { "in_pause", 4, 0x16, }, |
| 625 | { "in_undersize", 4, 0x18, }, |
| 626 | { "in_fragments", 4, 0x19, }, |
| 627 | { "in_oversize", 4, 0x1a, }, |
| 628 | { "in_jabber", 4, 0x1b, }, |
| 629 | { "in_rx_error", 4, 0x1c, }, |
| 630 | { "in_fcs_error", 4, 0x1d, }, |
| 631 | { "out_octets", 8, 0x0e, }, |
| 632 | { "out_unicast", 4, 0x10, }, |
| 633 | { "out_broadcasts", 4, 0x13, }, |
| 634 | { "out_multicasts", 4, 0x12, }, |
| 635 | { "out_pause", 4, 0x15, }, |
| 636 | { "excessive", 4, 0x11, }, |
| 637 | { "collisions", 4, 0x1e, }, |
| 638 | { "deferred", 4, 0x05, }, |
| 639 | { "single", 4, 0x14, }, |
| 640 | { "multiple", 4, 0x17, }, |
| 641 | { "out_fcs_error", 4, 0x03, }, |
| 642 | { "late", 4, 0x1f, }, |
| 643 | { "hist_64bytes", 4, 0x08, }, |
| 644 | { "hist_65_127bytes", 4, 0x09, }, |
| 645 | { "hist_128_255bytes", 4, 0x0a, }, |
| 646 | { "hist_256_511bytes", 4, 0x0b, }, |
| 647 | { "hist_512_1023bytes", 4, 0x0c, }, |
| 648 | { "hist_1024_max_bytes", 4, 0x0d, }, |
| 649 | /* Not all devices have the following counters */ |
| 650 | { "sw_in_discards", 4, 0x110, }, |
| 651 | { "sw_in_filtered", 2, 0x112, }, |
| 652 | { "sw_out_filtered", 2, 0x113, }, |
| 653 | |
| 654 | }; |
| 655 | |
| 656 | static bool have_sw_in_discards(struct dsa_switch *ds) |
| 657 | { |
| 658 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 659 | |
| 660 | switch (ps->id) { |
| 661 | case PORT_SWITCH_ID_6095: case PORT_SWITCH_ID_6161: |
| 662 | case PORT_SWITCH_ID_6165: case PORT_SWITCH_ID_6171: |
| 663 | case PORT_SWITCH_ID_6172: case PORT_SWITCH_ID_6176: |
| 664 | case PORT_SWITCH_ID_6182: case PORT_SWITCH_ID_6185: |
| 665 | case PORT_SWITCH_ID_6352: |
| 666 | return true; |
| 667 | default: |
| 668 | return false; |
| 669 | } |
| 670 | } |
| 671 | |
| 672 | static void _mv88e6xxx_get_strings(struct dsa_switch *ds, |
| 673 | int nr_stats, |
| 674 | struct mv88e6xxx_hw_stat *stats, |
| 675 | int port, uint8_t *data) |
| 676 | { |
| 677 | int i; |
| 678 | |
| 679 | for (i = 0; i < nr_stats; i++) { |
| 680 | memcpy(data + i * ETH_GSTRING_LEN, |
| 681 | stats[i].string, ETH_GSTRING_LEN); |
| 682 | } |
| 683 | } |
| 684 | |
| 685 | static uint64_t _mv88e6xxx_get_ethtool_stat(struct dsa_switch *ds, |
| 686 | int stat, |
| 687 | struct mv88e6xxx_hw_stat *stats, |
| 688 | int port) |
| 689 | { |
| 690 | struct mv88e6xxx_hw_stat *s = stats + stat; |
| 691 | u32 low; |
| 692 | u32 high = 0; |
| 693 | int ret; |
| 694 | u64 value; |
| 695 | |
| 696 | if (s->reg >= 0x100) { |
| 697 | ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), |
| 698 | s->reg - 0x100); |
| 699 | if (ret < 0) |
| 700 | return UINT64_MAX; |
| 701 | |
| 702 | low = ret; |
| 703 | if (s->sizeof_stat == 4) { |
| 704 | ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), |
| 705 | s->reg - 0x100 + 1); |
| 706 | if (ret < 0) |
| 707 | return UINT64_MAX; |
| 708 | high = ret; |
| 709 | } |
| 710 | } else { |
| 711 | _mv88e6xxx_stats_read(ds, s->reg, &low); |
| 712 | if (s->sizeof_stat == 8) |
| 713 | _mv88e6xxx_stats_read(ds, s->reg + 1, &high); |
| 714 | } |
| 715 | value = (((u64)high) << 16) | low; |
| 716 | return value; |
| 717 | } |
| 718 | |
| 719 | static void _mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds, |
| 720 | int nr_stats, |
| 721 | struct mv88e6xxx_hw_stat *stats, |
| 722 | int port, uint64_t *data) |
| 723 | { |
| 724 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 725 | int ret; |
| 726 | int i; |
| 727 | |
| 728 | mutex_lock(&ps->smi_mutex); |
| 729 | |
| 730 | ret = _mv88e6xxx_stats_snapshot(ds, port); |
| 731 | if (ret < 0) { |
| 732 | mutex_unlock(&ps->smi_mutex); |
| 733 | return; |
| 734 | } |
| 735 | |
| 736 | /* Read each of the counters. */ |
| 737 | for (i = 0; i < nr_stats; i++) |
| 738 | data[i] = _mv88e6xxx_get_ethtool_stat(ds, i, stats, port); |
| 739 | |
| 740 | mutex_unlock(&ps->smi_mutex); |
| 741 | } |
| 742 | |
| 743 | /* All the statistics in the table */ |
| 744 | void |
| 745 | mv88e6xxx_get_strings(struct dsa_switch *ds, int port, uint8_t *data) |
| 746 | { |
| 747 | if (have_sw_in_discards(ds)) |
| 748 | _mv88e6xxx_get_strings(ds, ARRAY_SIZE(mv88e6xxx_hw_stats), |
| 749 | mv88e6xxx_hw_stats, port, data); |
| 750 | else |
| 751 | _mv88e6xxx_get_strings(ds, ARRAY_SIZE(mv88e6xxx_hw_stats) - 3, |
| 752 | mv88e6xxx_hw_stats, port, data); |
| 753 | } |
| 754 | |
| 755 | int mv88e6xxx_get_sset_count(struct dsa_switch *ds) |
| 756 | { |
| 757 | if (have_sw_in_discards(ds)) |
| 758 | return ARRAY_SIZE(mv88e6xxx_hw_stats); |
| 759 | return ARRAY_SIZE(mv88e6xxx_hw_stats) - 3; |
| 760 | } |
| 761 | |
| 762 | void |
| 763 | mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds, |
| 764 | int port, uint64_t *data) |
| 765 | { |
| 766 | if (have_sw_in_discards(ds)) |
| 767 | _mv88e6xxx_get_ethtool_stats( |
| 768 | ds, ARRAY_SIZE(mv88e6xxx_hw_stats), |
| 769 | mv88e6xxx_hw_stats, port, data); |
| 770 | else |
| 771 | _mv88e6xxx_get_ethtool_stats( |
| 772 | ds, ARRAY_SIZE(mv88e6xxx_hw_stats) - 3, |
| 773 | mv88e6xxx_hw_stats, port, data); |
| 774 | } |
| 775 | |
| 776 | int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port) |
| 777 | { |
| 778 | return 32 * sizeof(u16); |
| 779 | } |
| 780 | |
| 781 | void mv88e6xxx_get_regs(struct dsa_switch *ds, int port, |
| 782 | struct ethtool_regs *regs, void *_p) |
| 783 | { |
| 784 | u16 *p = _p; |
| 785 | int i; |
| 786 | |
| 787 | regs->version = 0; |
| 788 | |
| 789 | memset(p, 0xff, 32 * sizeof(u16)); |
| 790 | |
| 791 | for (i = 0; i < 32; i++) { |
| 792 | int ret; |
| 793 | |
| 794 | ret = mv88e6xxx_reg_read(ds, REG_PORT(port), i); |
| 795 | if (ret >= 0) |
| 796 | p[i] = ret; |
| 797 | } |
| 798 | } |
| 799 | |
| 800 | static int _mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset, |
| 801 | u16 mask) |
| 802 | { |
| 803 | unsigned long timeout = jiffies + HZ / 10; |
| 804 | |
| 805 | while (time_before(jiffies, timeout)) { |
| 806 | int ret; |
| 807 | |
| 808 | ret = _mv88e6xxx_reg_read(ds, reg, offset); |
| 809 | if (ret < 0) |
| 810 | return ret; |
| 811 | if (!(ret & mask)) |
| 812 | return 0; |
| 813 | |
| 814 | usleep_range(1000, 2000); |
| 815 | } |
| 816 | return -ETIMEDOUT; |
| 817 | } |
| 818 | |
| 819 | static int mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset, u16 mask) |
| 820 | { |
| 821 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 822 | int ret; |
| 823 | |
| 824 | mutex_lock(&ps->smi_mutex); |
| 825 | ret = _mv88e6xxx_wait(ds, reg, offset, mask); |
| 826 | mutex_unlock(&ps->smi_mutex); |
| 827 | |
| 828 | return ret; |
| 829 | } |
| 830 | |
| 831 | static int _mv88e6xxx_phy_wait(struct dsa_switch *ds) |
| 832 | { |
| 833 | return _mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_SMI_OP, |
| 834 | GLOBAL2_SMI_OP_BUSY); |
| 835 | } |
| 836 | |
| 837 | int mv88e6xxx_eeprom_load_wait(struct dsa_switch *ds) |
| 838 | { |
| 839 | return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP, |
| 840 | GLOBAL2_EEPROM_OP_LOAD); |
| 841 | } |
| 842 | |
| 843 | int mv88e6xxx_eeprom_busy_wait(struct dsa_switch *ds) |
| 844 | { |
| 845 | return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP, |
| 846 | GLOBAL2_EEPROM_OP_BUSY); |
| 847 | } |
| 848 | |
| 849 | static int _mv88e6xxx_atu_wait(struct dsa_switch *ds) |
| 850 | { |
| 851 | return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_ATU_OP, |
| 852 | GLOBAL_ATU_OP_BUSY); |
| 853 | } |
| 854 | |
| 855 | static int _mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int addr, |
| 856 | int regnum) |
| 857 | { |
| 858 | int ret; |
| 859 | |
| 860 | ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP, |
| 861 | GLOBAL2_SMI_OP_22_READ | (addr << 5) | |
| 862 | regnum); |
| 863 | if (ret < 0) |
| 864 | return ret; |
| 865 | |
| 866 | ret = _mv88e6xxx_phy_wait(ds); |
| 867 | if (ret < 0) |
| 868 | return ret; |
| 869 | |
| 870 | return _mv88e6xxx_reg_read(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA); |
| 871 | } |
| 872 | |
| 873 | static int _mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int addr, |
| 874 | int regnum, u16 val) |
| 875 | { |
| 876 | int ret; |
| 877 | |
| 878 | ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA, val); |
| 879 | if (ret < 0) |
| 880 | return ret; |
| 881 | |
| 882 | ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP, |
| 883 | GLOBAL2_SMI_OP_22_WRITE | (addr << 5) | |
| 884 | regnum); |
| 885 | |
| 886 | return _mv88e6xxx_phy_wait(ds); |
| 887 | } |
| 888 | |
| 889 | int mv88e6xxx_get_eee(struct dsa_switch *ds, int port, struct ethtool_eee *e) |
| 890 | { |
| 891 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 892 | int reg; |
| 893 | |
| 894 | mutex_lock(&ps->smi_mutex); |
| 895 | |
| 896 | reg = _mv88e6xxx_phy_read_indirect(ds, port, 16); |
| 897 | if (reg < 0) |
| 898 | goto out; |
| 899 | |
| 900 | e->eee_enabled = !!(reg & 0x0200); |
| 901 | e->tx_lpi_enabled = !!(reg & 0x0100); |
| 902 | |
| 903 | reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_STATUS); |
| 904 | if (reg < 0) |
| 905 | goto out; |
| 906 | |
| 907 | e->eee_active = !!(reg & PORT_STATUS_EEE); |
| 908 | reg = 0; |
| 909 | |
| 910 | out: |
| 911 | mutex_unlock(&ps->smi_mutex); |
| 912 | return reg; |
| 913 | } |
| 914 | |
| 915 | int mv88e6xxx_set_eee(struct dsa_switch *ds, int port, |
| 916 | struct phy_device *phydev, struct ethtool_eee *e) |
| 917 | { |
| 918 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 919 | int reg; |
| 920 | int ret; |
| 921 | |
| 922 | mutex_lock(&ps->smi_mutex); |
| 923 | |
| 924 | ret = _mv88e6xxx_phy_read_indirect(ds, port, 16); |
| 925 | if (ret < 0) |
| 926 | goto out; |
| 927 | |
| 928 | reg = ret & ~0x0300; |
| 929 | if (e->eee_enabled) |
| 930 | reg |= 0x0200; |
| 931 | if (e->tx_lpi_enabled) |
| 932 | reg |= 0x0100; |
| 933 | |
| 934 | ret = _mv88e6xxx_phy_write_indirect(ds, port, 16, reg); |
| 935 | out: |
| 936 | mutex_unlock(&ps->smi_mutex); |
| 937 | |
| 938 | return ret; |
| 939 | } |
| 940 | |
| 941 | static int _mv88e6xxx_atu_cmd(struct dsa_switch *ds, u16 cmd) |
| 942 | { |
| 943 | int ret; |
| 944 | |
| 945 | ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_OP, cmd); |
| 946 | if (ret < 0) |
| 947 | return ret; |
| 948 | |
| 949 | return _mv88e6xxx_atu_wait(ds); |
| 950 | } |
| 951 | |
| 952 | static int _mv88e6xxx_atu_data_write(struct dsa_switch *ds, |
| 953 | struct mv88e6xxx_atu_entry *entry) |
| 954 | { |
| 955 | u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK; |
| 956 | |
| 957 | if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) { |
| 958 | unsigned int mask, shift; |
| 959 | |
| 960 | if (entry->trunk) { |
| 961 | data |= GLOBAL_ATU_DATA_TRUNK; |
| 962 | mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK; |
| 963 | shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT; |
| 964 | } else { |
| 965 | mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK; |
| 966 | shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT; |
| 967 | } |
| 968 | |
| 969 | data |= (entry->portv_trunkid << shift) & mask; |
| 970 | } |
| 971 | |
| 972 | return _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_DATA, data); |
| 973 | } |
| 974 | |
| 975 | static int _mv88e6xxx_atu_flush_move(struct dsa_switch *ds, |
| 976 | struct mv88e6xxx_atu_entry *entry, |
| 977 | bool static_too) |
| 978 | { |
| 979 | int op; |
| 980 | int err; |
| 981 | |
| 982 | err = _mv88e6xxx_atu_wait(ds); |
| 983 | if (err) |
| 984 | return err; |
| 985 | |
| 986 | err = _mv88e6xxx_atu_data_write(ds, entry); |
| 987 | if (err) |
| 988 | return err; |
| 989 | |
| 990 | if (entry->fid) { |
| 991 | err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_FID, |
| 992 | entry->fid); |
| 993 | if (err) |
| 994 | return err; |
| 995 | |
| 996 | op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB : |
| 997 | GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB; |
| 998 | } else { |
| 999 | op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL : |
| 1000 | GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC; |
| 1001 | } |
| 1002 | |
| 1003 | return _mv88e6xxx_atu_cmd(ds, op); |
| 1004 | } |
| 1005 | |
| 1006 | static int _mv88e6xxx_atu_flush(struct dsa_switch *ds, u16 fid, bool static_too) |
| 1007 | { |
| 1008 | struct mv88e6xxx_atu_entry entry = { |
| 1009 | .fid = fid, |
| 1010 | .state = 0, /* EntryState bits must be 0 */ |
| 1011 | }; |
| 1012 | |
| 1013 | return _mv88e6xxx_atu_flush_move(ds, &entry, static_too); |
| 1014 | } |
| 1015 | |
| 1016 | static int _mv88e6xxx_atu_move(struct dsa_switch *ds, u16 fid, int from_port, |
| 1017 | int to_port, bool static_too) |
| 1018 | { |
| 1019 | struct mv88e6xxx_atu_entry entry = { |
| 1020 | .trunk = false, |
| 1021 | .fid = fid, |
| 1022 | }; |
| 1023 | |
| 1024 | /* EntryState bits must be 0xF */ |
| 1025 | entry.state = GLOBAL_ATU_DATA_STATE_MASK; |
| 1026 | |
| 1027 | /* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */ |
| 1028 | entry.portv_trunkid = (to_port & 0x0f) << 4; |
| 1029 | entry.portv_trunkid |= from_port & 0x0f; |
| 1030 | |
| 1031 | return _mv88e6xxx_atu_flush_move(ds, &entry, static_too); |
| 1032 | } |
| 1033 | |
| 1034 | static int _mv88e6xxx_atu_remove(struct dsa_switch *ds, u16 fid, int port, |
| 1035 | bool static_too) |
| 1036 | { |
| 1037 | /* Destination port 0xF means remove the entries */ |
| 1038 | return _mv88e6xxx_atu_move(ds, fid, port, 0x0f, static_too); |
| 1039 | } |
| 1040 | |
| 1041 | static int mv88e6xxx_set_port_state(struct dsa_switch *ds, int port, u8 state) |
| 1042 | { |
| 1043 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 1044 | int reg, ret = 0; |
| 1045 | u8 oldstate; |
| 1046 | |
| 1047 | mutex_lock(&ps->smi_mutex); |
| 1048 | |
| 1049 | reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL); |
| 1050 | if (reg < 0) { |
| 1051 | ret = reg; |
| 1052 | goto abort; |
| 1053 | } |
| 1054 | |
| 1055 | oldstate = reg & PORT_CONTROL_STATE_MASK; |
| 1056 | if (oldstate != state) { |
| 1057 | /* Flush forwarding database if we're moving a port |
| 1058 | * from Learning or Forwarding state to Disabled or |
| 1059 | * Blocking or Listening state. |
| 1060 | */ |
| 1061 | if (oldstate >= PORT_CONTROL_STATE_LEARNING && |
| 1062 | state <= PORT_CONTROL_STATE_BLOCKING) { |
| 1063 | ret = _mv88e6xxx_atu_remove(ds, 0, port, false); |
| 1064 | if (ret) |
| 1065 | goto abort; |
| 1066 | } |
| 1067 | reg = (reg & ~PORT_CONTROL_STATE_MASK) | state; |
| 1068 | ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL, |
| 1069 | reg); |
| 1070 | } |
| 1071 | |
| 1072 | abort: |
| 1073 | mutex_unlock(&ps->smi_mutex); |
| 1074 | return ret; |
| 1075 | } |
| 1076 | |
| 1077 | static int _mv88e6xxx_port_vlan_map_set(struct dsa_switch *ds, int port, |
| 1078 | u16 output_ports) |
| 1079 | { |
| 1080 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 1081 | const u16 mask = (1 << ps->num_ports) - 1; |
| 1082 | int reg; |
| 1083 | |
| 1084 | reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_BASE_VLAN); |
| 1085 | if (reg < 0) |
| 1086 | return reg; |
| 1087 | |
| 1088 | reg &= ~mask; |
| 1089 | reg |= output_ports & mask; |
| 1090 | |
| 1091 | return _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_BASE_VLAN, reg); |
| 1092 | } |
| 1093 | |
| 1094 | int mv88e6xxx_port_stp_update(struct dsa_switch *ds, int port, u8 state) |
| 1095 | { |
| 1096 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 1097 | int stp_state; |
| 1098 | |
| 1099 | switch (state) { |
| 1100 | case BR_STATE_DISABLED: |
| 1101 | stp_state = PORT_CONTROL_STATE_DISABLED; |
| 1102 | break; |
| 1103 | case BR_STATE_BLOCKING: |
| 1104 | case BR_STATE_LISTENING: |
| 1105 | stp_state = PORT_CONTROL_STATE_BLOCKING; |
| 1106 | break; |
| 1107 | case BR_STATE_LEARNING: |
| 1108 | stp_state = PORT_CONTROL_STATE_LEARNING; |
| 1109 | break; |
| 1110 | case BR_STATE_FORWARDING: |
| 1111 | default: |
| 1112 | stp_state = PORT_CONTROL_STATE_FORWARDING; |
| 1113 | break; |
| 1114 | } |
| 1115 | |
| 1116 | netdev_dbg(ds->ports[port], "port state %d [%d]\n", state, stp_state); |
| 1117 | |
| 1118 | /* mv88e6xxx_port_stp_update may be called with softirqs disabled, |
| 1119 | * so we can not update the port state directly but need to schedule it. |
| 1120 | */ |
| 1121 | ps->port_state[port] = stp_state; |
| 1122 | set_bit(port, &ps->port_state_update_mask); |
| 1123 | schedule_work(&ps->bridge_work); |
| 1124 | |
| 1125 | return 0; |
| 1126 | } |
| 1127 | |
| 1128 | static int _mv88e6xxx_port_pvid_get(struct dsa_switch *ds, int port, u16 *pvid) |
| 1129 | { |
| 1130 | int ret; |
| 1131 | |
| 1132 | ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_DEFAULT_VLAN); |
| 1133 | if (ret < 0) |
| 1134 | return ret; |
| 1135 | |
| 1136 | *pvid = ret & PORT_DEFAULT_VLAN_MASK; |
| 1137 | |
| 1138 | return 0; |
| 1139 | } |
| 1140 | |
| 1141 | int mv88e6xxx_port_pvid_get(struct dsa_switch *ds, int port, u16 *pvid) |
| 1142 | { |
| 1143 | int ret; |
| 1144 | |
| 1145 | ret = mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_DEFAULT_VLAN); |
| 1146 | if (ret < 0) |
| 1147 | return ret; |
| 1148 | |
| 1149 | *pvid = ret & PORT_DEFAULT_VLAN_MASK; |
| 1150 | |
| 1151 | return 0; |
| 1152 | } |
| 1153 | |
| 1154 | static int _mv88e6xxx_port_pvid_set(struct dsa_switch *ds, int port, u16 pvid) |
| 1155 | { |
| 1156 | return _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_DEFAULT_VLAN, |
| 1157 | pvid & PORT_DEFAULT_VLAN_MASK); |
| 1158 | } |
| 1159 | |
| 1160 | static int _mv88e6xxx_vtu_wait(struct dsa_switch *ds) |
| 1161 | { |
| 1162 | return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_VTU_OP, |
| 1163 | GLOBAL_VTU_OP_BUSY); |
| 1164 | } |
| 1165 | |
| 1166 | static int _mv88e6xxx_vtu_cmd(struct dsa_switch *ds, u16 op) |
| 1167 | { |
| 1168 | int ret; |
| 1169 | |
| 1170 | ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_OP, op); |
| 1171 | if (ret < 0) |
| 1172 | return ret; |
| 1173 | |
| 1174 | return _mv88e6xxx_vtu_wait(ds); |
| 1175 | } |
| 1176 | |
| 1177 | static int _mv88e6xxx_vtu_stu_flush(struct dsa_switch *ds) |
| 1178 | { |
| 1179 | int ret; |
| 1180 | |
| 1181 | ret = _mv88e6xxx_vtu_wait(ds); |
| 1182 | if (ret < 0) |
| 1183 | return ret; |
| 1184 | |
| 1185 | return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_FLUSH_ALL); |
| 1186 | } |
| 1187 | |
| 1188 | static int _mv88e6xxx_vtu_stu_data_read(struct dsa_switch *ds, |
| 1189 | struct mv88e6xxx_vtu_stu_entry *entry, |
| 1190 | unsigned int nibble_offset) |
| 1191 | { |
| 1192 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 1193 | u16 regs[3]; |
| 1194 | int i; |
| 1195 | int ret; |
| 1196 | |
| 1197 | for (i = 0; i < 3; ++i) { |
| 1198 | ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, |
| 1199 | GLOBAL_VTU_DATA_0_3 + i); |
| 1200 | if (ret < 0) |
| 1201 | return ret; |
| 1202 | |
| 1203 | regs[i] = ret; |
| 1204 | } |
| 1205 | |
| 1206 | for (i = 0; i < ps->num_ports; ++i) { |
| 1207 | unsigned int shift = (i % 4) * 4 + nibble_offset; |
| 1208 | u16 reg = regs[i / 4]; |
| 1209 | |
| 1210 | entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK; |
| 1211 | } |
| 1212 | |
| 1213 | return 0; |
| 1214 | } |
| 1215 | |
| 1216 | static int _mv88e6xxx_vtu_stu_data_write(struct dsa_switch *ds, |
| 1217 | struct mv88e6xxx_vtu_stu_entry *entry, |
| 1218 | unsigned int nibble_offset) |
| 1219 | { |
| 1220 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 1221 | u16 regs[3] = { 0 }; |
| 1222 | int i; |
| 1223 | int ret; |
| 1224 | |
| 1225 | for (i = 0; i < ps->num_ports; ++i) { |
| 1226 | unsigned int shift = (i % 4) * 4 + nibble_offset; |
| 1227 | u8 data = entry->data[i]; |
| 1228 | |
| 1229 | regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift; |
| 1230 | } |
| 1231 | |
| 1232 | for (i = 0; i < 3; ++i) { |
| 1233 | ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, |
| 1234 | GLOBAL_VTU_DATA_0_3 + i, regs[i]); |
| 1235 | if (ret < 0) |
| 1236 | return ret; |
| 1237 | } |
| 1238 | |
| 1239 | return 0; |
| 1240 | } |
| 1241 | |
| 1242 | static int _mv88e6xxx_vtu_vid_write(struct dsa_switch *ds, u16 vid) |
| 1243 | { |
| 1244 | return _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID, |
| 1245 | vid & GLOBAL_VTU_VID_MASK); |
| 1246 | } |
| 1247 | |
| 1248 | static int _mv88e6xxx_vtu_getnext(struct dsa_switch *ds, |
| 1249 | struct mv88e6xxx_vtu_stu_entry *entry) |
| 1250 | { |
| 1251 | struct mv88e6xxx_vtu_stu_entry next = { 0 }; |
| 1252 | int ret; |
| 1253 | |
| 1254 | ret = _mv88e6xxx_vtu_wait(ds); |
| 1255 | if (ret < 0) |
| 1256 | return ret; |
| 1257 | |
| 1258 | ret = _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_VTU_GET_NEXT); |
| 1259 | if (ret < 0) |
| 1260 | return ret; |
| 1261 | |
| 1262 | ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_VID); |
| 1263 | if (ret < 0) |
| 1264 | return ret; |
| 1265 | |
| 1266 | next.vid = ret & GLOBAL_VTU_VID_MASK; |
| 1267 | next.valid = !!(ret & GLOBAL_VTU_VID_VALID); |
| 1268 | |
| 1269 | if (next.valid) { |
| 1270 | ret = _mv88e6xxx_vtu_stu_data_read(ds, &next, 0); |
| 1271 | if (ret < 0) |
| 1272 | return ret; |
| 1273 | |
| 1274 | if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) || |
| 1275 | mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) { |
| 1276 | ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, |
| 1277 | GLOBAL_VTU_FID); |
| 1278 | if (ret < 0) |
| 1279 | return ret; |
| 1280 | |
| 1281 | next.fid = ret & GLOBAL_VTU_FID_MASK; |
| 1282 | |
| 1283 | ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, |
| 1284 | GLOBAL_VTU_SID); |
| 1285 | if (ret < 0) |
| 1286 | return ret; |
| 1287 | |
| 1288 | next.sid = ret & GLOBAL_VTU_SID_MASK; |
| 1289 | } |
| 1290 | } |
| 1291 | |
| 1292 | *entry = next; |
| 1293 | return 0; |
| 1294 | } |
| 1295 | |
| 1296 | static int _mv88e6xxx_vtu_loadpurge(struct dsa_switch *ds, |
| 1297 | struct mv88e6xxx_vtu_stu_entry *entry) |
| 1298 | { |
| 1299 | u16 reg = 0; |
| 1300 | int ret; |
| 1301 | |
| 1302 | ret = _mv88e6xxx_vtu_wait(ds); |
| 1303 | if (ret < 0) |
| 1304 | return ret; |
| 1305 | |
| 1306 | if (!entry->valid) |
| 1307 | goto loadpurge; |
| 1308 | |
| 1309 | /* Write port member tags */ |
| 1310 | ret = _mv88e6xxx_vtu_stu_data_write(ds, entry, 0); |
| 1311 | if (ret < 0) |
| 1312 | return ret; |
| 1313 | |
| 1314 | if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) || |
| 1315 | mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) { |
| 1316 | reg = entry->sid & GLOBAL_VTU_SID_MASK; |
| 1317 | ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID, reg); |
| 1318 | if (ret < 0) |
| 1319 | return ret; |
| 1320 | |
| 1321 | reg = entry->fid & GLOBAL_VTU_FID_MASK; |
| 1322 | ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_FID, reg); |
| 1323 | if (ret < 0) |
| 1324 | return ret; |
| 1325 | } |
| 1326 | |
| 1327 | reg = GLOBAL_VTU_VID_VALID; |
| 1328 | loadpurge: |
| 1329 | reg |= entry->vid & GLOBAL_VTU_VID_MASK; |
| 1330 | ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID, reg); |
| 1331 | if (ret < 0) |
| 1332 | return ret; |
| 1333 | |
| 1334 | return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_VTU_LOAD_PURGE); |
| 1335 | } |
| 1336 | |
| 1337 | static int _mv88e6xxx_stu_getnext(struct dsa_switch *ds, u8 sid, |
| 1338 | struct mv88e6xxx_vtu_stu_entry *entry) |
| 1339 | { |
| 1340 | struct mv88e6xxx_vtu_stu_entry next = { 0 }; |
| 1341 | int ret; |
| 1342 | |
| 1343 | ret = _mv88e6xxx_vtu_wait(ds); |
| 1344 | if (ret < 0) |
| 1345 | return ret; |
| 1346 | |
| 1347 | ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID, |
| 1348 | sid & GLOBAL_VTU_SID_MASK); |
| 1349 | if (ret < 0) |
| 1350 | return ret; |
| 1351 | |
| 1352 | ret = _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_STU_GET_NEXT); |
| 1353 | if (ret < 0) |
| 1354 | return ret; |
| 1355 | |
| 1356 | ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_SID); |
| 1357 | if (ret < 0) |
| 1358 | return ret; |
| 1359 | |
| 1360 | next.sid = ret & GLOBAL_VTU_SID_MASK; |
| 1361 | |
| 1362 | ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_VID); |
| 1363 | if (ret < 0) |
| 1364 | return ret; |
| 1365 | |
| 1366 | next.valid = !!(ret & GLOBAL_VTU_VID_VALID); |
| 1367 | |
| 1368 | if (next.valid) { |
| 1369 | ret = _mv88e6xxx_vtu_stu_data_read(ds, &next, 2); |
| 1370 | if (ret < 0) |
| 1371 | return ret; |
| 1372 | } |
| 1373 | |
| 1374 | *entry = next; |
| 1375 | return 0; |
| 1376 | } |
| 1377 | |
| 1378 | static int _mv88e6xxx_stu_loadpurge(struct dsa_switch *ds, |
| 1379 | struct mv88e6xxx_vtu_stu_entry *entry) |
| 1380 | { |
| 1381 | u16 reg = 0; |
| 1382 | int ret; |
| 1383 | |
| 1384 | ret = _mv88e6xxx_vtu_wait(ds); |
| 1385 | if (ret < 0) |
| 1386 | return ret; |
| 1387 | |
| 1388 | if (!entry->valid) |
| 1389 | goto loadpurge; |
| 1390 | |
| 1391 | /* Write port states */ |
| 1392 | ret = _mv88e6xxx_vtu_stu_data_write(ds, entry, 2); |
| 1393 | if (ret < 0) |
| 1394 | return ret; |
| 1395 | |
| 1396 | reg = GLOBAL_VTU_VID_VALID; |
| 1397 | loadpurge: |
| 1398 | ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID, reg); |
| 1399 | if (ret < 0) |
| 1400 | return ret; |
| 1401 | |
| 1402 | reg = entry->sid & GLOBAL_VTU_SID_MASK; |
| 1403 | ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID, reg); |
| 1404 | if (ret < 0) |
| 1405 | return ret; |
| 1406 | |
| 1407 | return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_STU_LOAD_PURGE); |
| 1408 | } |
| 1409 | |
| 1410 | static int _mv88e6xxx_vlan_init(struct dsa_switch *ds, u16 vid, |
| 1411 | struct mv88e6xxx_vtu_stu_entry *entry) |
| 1412 | { |
| 1413 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 1414 | struct mv88e6xxx_vtu_stu_entry vlan = { |
| 1415 | .valid = true, |
| 1416 | .vid = vid, |
| 1417 | .fid = vid, /* We use one FID per VLAN */ |
| 1418 | }; |
| 1419 | int i; |
| 1420 | |
| 1421 | /* exclude all ports except the CPU and DSA ports */ |
| 1422 | for (i = 0; i < ps->num_ports; ++i) |
| 1423 | vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i) |
| 1424 | ? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED |
| 1425 | : GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER; |
| 1426 | |
| 1427 | if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) || |
| 1428 | mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) { |
| 1429 | struct mv88e6xxx_vtu_stu_entry vstp; |
| 1430 | int err; |
| 1431 | |
| 1432 | /* Adding a VTU entry requires a valid STU entry. As VSTP is not |
| 1433 | * implemented, only one STU entry is needed to cover all VTU |
| 1434 | * entries. Thus, validate the SID 0. |
| 1435 | */ |
| 1436 | vlan.sid = 0; |
| 1437 | err = _mv88e6xxx_stu_getnext(ds, GLOBAL_VTU_SID_MASK, &vstp); |
| 1438 | if (err) |
| 1439 | return err; |
| 1440 | |
| 1441 | if (vstp.sid != vlan.sid || !vstp.valid) { |
| 1442 | memset(&vstp, 0, sizeof(vstp)); |
| 1443 | vstp.valid = true; |
| 1444 | vstp.sid = vlan.sid; |
| 1445 | |
| 1446 | err = _mv88e6xxx_stu_loadpurge(ds, &vstp); |
| 1447 | if (err) |
| 1448 | return err; |
| 1449 | } |
| 1450 | |
| 1451 | /* Clear all MAC addresses from the new database */ |
| 1452 | err = _mv88e6xxx_atu_flush(ds, vlan.fid, true); |
| 1453 | if (err) |
| 1454 | return err; |
| 1455 | } |
| 1456 | |
| 1457 | *entry = vlan; |
| 1458 | return 0; |
| 1459 | } |
| 1460 | |
| 1461 | int mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port, |
| 1462 | const struct switchdev_obj_port_vlan *vlan, |
| 1463 | struct switchdev_trans *trans) |
| 1464 | { |
| 1465 | /* We reserve a few VLANs to isolate unbridged ports */ |
| 1466 | if (vlan->vid_end >= 4000) |
| 1467 | return -EOPNOTSUPP; |
| 1468 | |
| 1469 | /* We don't need any dynamic resource from the kernel (yet), |
| 1470 | * so skip the prepare phase. |
| 1471 | */ |
| 1472 | return 0; |
| 1473 | } |
| 1474 | |
| 1475 | static int _mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port, u16 vid, |
| 1476 | bool untagged) |
| 1477 | { |
| 1478 | struct mv88e6xxx_vtu_stu_entry vlan; |
| 1479 | int err; |
| 1480 | |
| 1481 | err = _mv88e6xxx_vtu_vid_write(ds, vid - 1); |
| 1482 | if (err) |
| 1483 | return err; |
| 1484 | |
| 1485 | err = _mv88e6xxx_vtu_getnext(ds, &vlan); |
| 1486 | if (err) |
| 1487 | return err; |
| 1488 | |
| 1489 | if (vlan.vid != vid || !vlan.valid) { |
| 1490 | err = _mv88e6xxx_vlan_init(ds, vid, &vlan); |
| 1491 | if (err) |
| 1492 | return err; |
| 1493 | } |
| 1494 | |
| 1495 | vlan.data[port] = untagged ? |
| 1496 | GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED : |
| 1497 | GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED; |
| 1498 | |
| 1499 | return _mv88e6xxx_vtu_loadpurge(ds, &vlan); |
| 1500 | } |
| 1501 | |
| 1502 | int mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port, |
| 1503 | const struct switchdev_obj_port_vlan *vlan, |
| 1504 | struct switchdev_trans *trans) |
| 1505 | { |
| 1506 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 1507 | bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED; |
| 1508 | bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID; |
| 1509 | u16 vid; |
| 1510 | int err = 0; |
| 1511 | |
| 1512 | mutex_lock(&ps->smi_mutex); |
| 1513 | |
| 1514 | for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) { |
| 1515 | err = _mv88e6xxx_port_vlan_add(ds, port, vid, untagged); |
| 1516 | if (err) |
| 1517 | goto unlock; |
| 1518 | } |
| 1519 | |
| 1520 | /* no PVID with ranges, otherwise it's a bug */ |
| 1521 | if (pvid) |
| 1522 | err = _mv88e6xxx_port_pvid_set(ds, port, vlan->vid_end); |
| 1523 | unlock: |
| 1524 | mutex_unlock(&ps->smi_mutex); |
| 1525 | |
| 1526 | return err; |
| 1527 | } |
| 1528 | |
| 1529 | static int _mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port, u16 vid) |
| 1530 | { |
| 1531 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 1532 | struct mv88e6xxx_vtu_stu_entry vlan; |
| 1533 | int i, err; |
| 1534 | |
| 1535 | err = _mv88e6xxx_vtu_vid_write(ds, vid - 1); |
| 1536 | if (err) |
| 1537 | return err; |
| 1538 | |
| 1539 | err = _mv88e6xxx_vtu_getnext(ds, &vlan); |
| 1540 | if (err) |
| 1541 | return err; |
| 1542 | |
| 1543 | if (vlan.vid != vid || !vlan.valid || |
| 1544 | vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) |
| 1545 | return -ENOENT; |
| 1546 | |
| 1547 | vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER; |
| 1548 | |
| 1549 | /* keep the VLAN unless all ports are excluded */ |
| 1550 | vlan.valid = false; |
| 1551 | for (i = 0; i < ps->num_ports; ++i) { |
| 1552 | if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)) |
| 1553 | continue; |
| 1554 | |
| 1555 | if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) { |
| 1556 | vlan.valid = true; |
| 1557 | break; |
| 1558 | } |
| 1559 | } |
| 1560 | |
| 1561 | err = _mv88e6xxx_vtu_loadpurge(ds, &vlan); |
| 1562 | if (err) |
| 1563 | return err; |
| 1564 | |
| 1565 | return _mv88e6xxx_atu_remove(ds, vlan.fid, port, false); |
| 1566 | } |
| 1567 | |
| 1568 | int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port, |
| 1569 | const struct switchdev_obj_port_vlan *vlan) |
| 1570 | { |
| 1571 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 1572 | u16 pvid, vid; |
| 1573 | int err = 0; |
| 1574 | |
| 1575 | mutex_lock(&ps->smi_mutex); |
| 1576 | |
| 1577 | err = _mv88e6xxx_port_pvid_get(ds, port, &pvid); |
| 1578 | if (err) |
| 1579 | goto unlock; |
| 1580 | |
| 1581 | for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) { |
| 1582 | err = _mv88e6xxx_port_vlan_del(ds, port, vid); |
| 1583 | if (err) |
| 1584 | goto unlock; |
| 1585 | |
| 1586 | if (vid == pvid) { |
| 1587 | err = _mv88e6xxx_port_pvid_set(ds, port, 0); |
| 1588 | if (err) |
| 1589 | goto unlock; |
| 1590 | } |
| 1591 | } |
| 1592 | |
| 1593 | unlock: |
| 1594 | mutex_unlock(&ps->smi_mutex); |
| 1595 | |
| 1596 | return err; |
| 1597 | } |
| 1598 | |
| 1599 | int mv88e6xxx_vlan_getnext(struct dsa_switch *ds, u16 *vid, |
| 1600 | unsigned long *ports, unsigned long *untagged) |
| 1601 | { |
| 1602 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 1603 | struct mv88e6xxx_vtu_stu_entry next; |
| 1604 | int port; |
| 1605 | int err; |
| 1606 | |
| 1607 | if (*vid == 4095) |
| 1608 | return -ENOENT; |
| 1609 | |
| 1610 | mutex_lock(&ps->smi_mutex); |
| 1611 | err = _mv88e6xxx_vtu_vid_write(ds, *vid); |
| 1612 | if (err) |
| 1613 | goto unlock; |
| 1614 | |
| 1615 | err = _mv88e6xxx_vtu_getnext(ds, &next); |
| 1616 | unlock: |
| 1617 | mutex_unlock(&ps->smi_mutex); |
| 1618 | |
| 1619 | if (err) |
| 1620 | return err; |
| 1621 | |
| 1622 | if (!next.valid) |
| 1623 | return -ENOENT; |
| 1624 | |
| 1625 | *vid = next.vid; |
| 1626 | |
| 1627 | for (port = 0; port < ps->num_ports; ++port) { |
| 1628 | clear_bit(port, ports); |
| 1629 | clear_bit(port, untagged); |
| 1630 | |
| 1631 | if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) |
| 1632 | continue; |
| 1633 | |
| 1634 | if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED || |
| 1635 | next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED) |
| 1636 | set_bit(port, ports); |
| 1637 | |
| 1638 | if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED) |
| 1639 | set_bit(port, untagged); |
| 1640 | } |
| 1641 | |
| 1642 | return 0; |
| 1643 | } |
| 1644 | |
| 1645 | static int _mv88e6xxx_atu_mac_write(struct dsa_switch *ds, |
| 1646 | const unsigned char *addr) |
| 1647 | { |
| 1648 | int i, ret; |
| 1649 | |
| 1650 | for (i = 0; i < 3; i++) { |
| 1651 | ret = _mv88e6xxx_reg_write( |
| 1652 | ds, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i, |
| 1653 | (addr[i * 2] << 8) | addr[i * 2 + 1]); |
| 1654 | if (ret < 0) |
| 1655 | return ret; |
| 1656 | } |
| 1657 | |
| 1658 | return 0; |
| 1659 | } |
| 1660 | |
| 1661 | static int _mv88e6xxx_atu_mac_read(struct dsa_switch *ds, unsigned char *addr) |
| 1662 | { |
| 1663 | int i, ret; |
| 1664 | |
| 1665 | for (i = 0; i < 3; i++) { |
| 1666 | ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, |
| 1667 | GLOBAL_ATU_MAC_01 + i); |
| 1668 | if (ret < 0) |
| 1669 | return ret; |
| 1670 | addr[i * 2] = ret >> 8; |
| 1671 | addr[i * 2 + 1] = ret & 0xff; |
| 1672 | } |
| 1673 | |
| 1674 | return 0; |
| 1675 | } |
| 1676 | |
| 1677 | static int _mv88e6xxx_atu_load(struct dsa_switch *ds, |
| 1678 | struct mv88e6xxx_atu_entry *entry) |
| 1679 | { |
| 1680 | int ret; |
| 1681 | |
| 1682 | ret = _mv88e6xxx_atu_wait(ds); |
| 1683 | if (ret < 0) |
| 1684 | return ret; |
| 1685 | |
| 1686 | ret = _mv88e6xxx_atu_mac_write(ds, entry->mac); |
| 1687 | if (ret < 0) |
| 1688 | return ret; |
| 1689 | |
| 1690 | ret = _mv88e6xxx_atu_data_write(ds, entry); |
| 1691 | if (ret < 0) |
| 1692 | return ret; |
| 1693 | |
| 1694 | ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_FID, entry->fid); |
| 1695 | if (ret < 0) |
| 1696 | return ret; |
| 1697 | |
| 1698 | return _mv88e6xxx_atu_cmd(ds, GLOBAL_ATU_OP_LOAD_DB); |
| 1699 | } |
| 1700 | |
| 1701 | static int _mv88e6xxx_port_fdb_load(struct dsa_switch *ds, int port, |
| 1702 | const unsigned char *addr, u16 vid, |
| 1703 | u8 state) |
| 1704 | { |
| 1705 | struct mv88e6xxx_atu_entry entry = { 0 }; |
| 1706 | |
| 1707 | entry.fid = vid; /* We use one FID per VLAN */ |
| 1708 | entry.state = state; |
| 1709 | ether_addr_copy(entry.mac, addr); |
| 1710 | if (state != GLOBAL_ATU_DATA_STATE_UNUSED) { |
| 1711 | entry.trunk = false; |
| 1712 | entry.portv_trunkid = BIT(port); |
| 1713 | } |
| 1714 | |
| 1715 | return _mv88e6xxx_atu_load(ds, &entry); |
| 1716 | } |
| 1717 | |
| 1718 | int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port, |
| 1719 | const struct switchdev_obj_port_fdb *fdb, |
| 1720 | struct switchdev_trans *trans) |
| 1721 | { |
| 1722 | /* We don't use per-port FDB */ |
| 1723 | if (fdb->vid == 0) |
| 1724 | return -EOPNOTSUPP; |
| 1725 | |
| 1726 | /* We don't need any dynamic resource from the kernel (yet), |
| 1727 | * so skip the prepare phase. |
| 1728 | */ |
| 1729 | return 0; |
| 1730 | } |
| 1731 | |
| 1732 | int mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port, |
| 1733 | const struct switchdev_obj_port_fdb *fdb, |
| 1734 | struct switchdev_trans *trans) |
| 1735 | { |
| 1736 | int state = is_multicast_ether_addr(fdb->addr) ? |
| 1737 | GLOBAL_ATU_DATA_STATE_MC_STATIC : |
| 1738 | GLOBAL_ATU_DATA_STATE_UC_STATIC; |
| 1739 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 1740 | int ret; |
| 1741 | |
| 1742 | mutex_lock(&ps->smi_mutex); |
| 1743 | ret = _mv88e6xxx_port_fdb_load(ds, port, fdb->addr, fdb->vid, state); |
| 1744 | mutex_unlock(&ps->smi_mutex); |
| 1745 | |
| 1746 | return ret; |
| 1747 | } |
| 1748 | |
| 1749 | int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port, |
| 1750 | const struct switchdev_obj_port_fdb *fdb) |
| 1751 | { |
| 1752 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 1753 | int ret; |
| 1754 | |
| 1755 | mutex_lock(&ps->smi_mutex); |
| 1756 | ret = _mv88e6xxx_port_fdb_load(ds, port, fdb->addr, fdb->vid, |
| 1757 | GLOBAL_ATU_DATA_STATE_UNUSED); |
| 1758 | mutex_unlock(&ps->smi_mutex); |
| 1759 | |
| 1760 | return ret; |
| 1761 | } |
| 1762 | |
| 1763 | static int _mv88e6xxx_atu_getnext(struct dsa_switch *ds, u16 fid, |
| 1764 | struct mv88e6xxx_atu_entry *entry) |
| 1765 | { |
| 1766 | struct mv88e6xxx_atu_entry next = { 0 }; |
| 1767 | int ret; |
| 1768 | |
| 1769 | next.fid = fid; |
| 1770 | |
| 1771 | ret = _mv88e6xxx_atu_wait(ds); |
| 1772 | if (ret < 0) |
| 1773 | return ret; |
| 1774 | |
| 1775 | ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_FID, fid); |
| 1776 | if (ret < 0) |
| 1777 | return ret; |
| 1778 | |
| 1779 | ret = _mv88e6xxx_atu_cmd(ds, GLOBAL_ATU_OP_GET_NEXT_DB); |
| 1780 | if (ret < 0) |
| 1781 | return ret; |
| 1782 | |
| 1783 | ret = _mv88e6xxx_atu_mac_read(ds, next.mac); |
| 1784 | if (ret < 0) |
| 1785 | return ret; |
| 1786 | |
| 1787 | ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_ATU_DATA); |
| 1788 | if (ret < 0) |
| 1789 | return ret; |
| 1790 | |
| 1791 | next.state = ret & GLOBAL_ATU_DATA_STATE_MASK; |
| 1792 | if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) { |
| 1793 | unsigned int mask, shift; |
| 1794 | |
| 1795 | if (ret & GLOBAL_ATU_DATA_TRUNK) { |
| 1796 | next.trunk = true; |
| 1797 | mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK; |
| 1798 | shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT; |
| 1799 | } else { |
| 1800 | next.trunk = false; |
| 1801 | mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK; |
| 1802 | shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT; |
| 1803 | } |
| 1804 | |
| 1805 | next.portv_trunkid = (ret & mask) >> shift; |
| 1806 | } |
| 1807 | |
| 1808 | *entry = next; |
| 1809 | return 0; |
| 1810 | } |
| 1811 | |
| 1812 | int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port, |
| 1813 | struct switchdev_obj_port_fdb *fdb, |
| 1814 | int (*cb)(struct switchdev_obj *obj)) |
| 1815 | { |
| 1816 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 1817 | struct mv88e6xxx_vtu_stu_entry vlan = { |
| 1818 | .vid = GLOBAL_VTU_VID_MASK, /* all ones */ |
| 1819 | }; |
| 1820 | int err; |
| 1821 | |
| 1822 | mutex_lock(&ps->smi_mutex); |
| 1823 | |
| 1824 | err = _mv88e6xxx_vtu_vid_write(ds, vlan.vid); |
| 1825 | if (err) |
| 1826 | goto unlock; |
| 1827 | |
| 1828 | do { |
| 1829 | struct mv88e6xxx_atu_entry addr = { |
| 1830 | .mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }, |
| 1831 | }; |
| 1832 | |
| 1833 | err = _mv88e6xxx_vtu_getnext(ds, &vlan); |
| 1834 | if (err) |
| 1835 | goto unlock; |
| 1836 | |
| 1837 | if (!vlan.valid) |
| 1838 | break; |
| 1839 | |
| 1840 | err = _mv88e6xxx_atu_mac_write(ds, addr.mac); |
| 1841 | if (err) |
| 1842 | goto unlock; |
| 1843 | |
| 1844 | do { |
| 1845 | err = _mv88e6xxx_atu_getnext(ds, vlan.fid, &addr); |
| 1846 | if (err) |
| 1847 | goto unlock; |
| 1848 | |
| 1849 | if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED) |
| 1850 | break; |
| 1851 | |
| 1852 | if (!addr.trunk && addr.portv_trunkid & BIT(port)) { |
| 1853 | bool is_static = addr.state == |
| 1854 | (is_multicast_ether_addr(addr.mac) ? |
| 1855 | GLOBAL_ATU_DATA_STATE_MC_STATIC : |
| 1856 | GLOBAL_ATU_DATA_STATE_UC_STATIC); |
| 1857 | |
| 1858 | fdb->vid = vlan.vid; |
| 1859 | ether_addr_copy(fdb->addr, addr.mac); |
| 1860 | fdb->ndm_state = is_static ? NUD_NOARP : |
| 1861 | NUD_REACHABLE; |
| 1862 | |
| 1863 | err = cb(&fdb->obj); |
| 1864 | if (err) |
| 1865 | goto unlock; |
| 1866 | } |
| 1867 | } while (!is_broadcast_ether_addr(addr.mac)); |
| 1868 | |
| 1869 | } while (vlan.vid < GLOBAL_VTU_VID_MASK); |
| 1870 | |
| 1871 | unlock: |
| 1872 | mutex_unlock(&ps->smi_mutex); |
| 1873 | |
| 1874 | return err; |
| 1875 | } |
| 1876 | |
| 1877 | int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port, u32 members) |
| 1878 | { |
| 1879 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 1880 | const u16 pvid = 4000 + ds->index * DSA_MAX_PORTS + port; |
| 1881 | int err; |
| 1882 | |
| 1883 | /* The port joined a bridge, so leave its reserved VLAN */ |
| 1884 | mutex_lock(&ps->smi_mutex); |
| 1885 | err = _mv88e6xxx_port_vlan_del(ds, port, pvid); |
| 1886 | if (!err) |
| 1887 | err = _mv88e6xxx_port_pvid_set(ds, port, 0); |
| 1888 | mutex_unlock(&ps->smi_mutex); |
| 1889 | return err; |
| 1890 | } |
| 1891 | |
| 1892 | int mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port, u32 members) |
| 1893 | { |
| 1894 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 1895 | const u16 pvid = 4000 + ds->index * DSA_MAX_PORTS + port; |
| 1896 | int err; |
| 1897 | |
| 1898 | /* The port left the bridge, so join its reserved VLAN */ |
| 1899 | mutex_lock(&ps->smi_mutex); |
| 1900 | err = _mv88e6xxx_port_vlan_add(ds, port, pvid, true); |
| 1901 | if (!err) |
| 1902 | err = _mv88e6xxx_port_pvid_set(ds, port, pvid); |
| 1903 | mutex_unlock(&ps->smi_mutex); |
| 1904 | return err; |
| 1905 | } |
| 1906 | |
| 1907 | static void mv88e6xxx_bridge_work(struct work_struct *work) |
| 1908 | { |
| 1909 | struct mv88e6xxx_priv_state *ps; |
| 1910 | struct dsa_switch *ds; |
| 1911 | int port; |
| 1912 | |
| 1913 | ps = container_of(work, struct mv88e6xxx_priv_state, bridge_work); |
| 1914 | ds = ((struct dsa_switch *)ps) - 1; |
| 1915 | |
| 1916 | while (ps->port_state_update_mask) { |
| 1917 | port = __ffs(ps->port_state_update_mask); |
| 1918 | clear_bit(port, &ps->port_state_update_mask); |
| 1919 | mv88e6xxx_set_port_state(ds, port, ps->port_state[port]); |
| 1920 | } |
| 1921 | } |
| 1922 | |
| 1923 | static int mv88e6xxx_setup_port(struct dsa_switch *ds, int port) |
| 1924 | { |
| 1925 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 1926 | int ret; |
| 1927 | u16 reg; |
| 1928 | |
| 1929 | mutex_lock(&ps->smi_mutex); |
| 1930 | |
| 1931 | if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || |
| 1932 | mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || |
| 1933 | mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) || |
| 1934 | mv88e6xxx_6065_family(ds) || mv88e6xxx_6320_family(ds)) { |
| 1935 | /* MAC Forcing register: don't force link, speed, |
| 1936 | * duplex or flow control state to any particular |
| 1937 | * values on physical ports, but force the CPU port |
| 1938 | * and all DSA ports to their maximum bandwidth and |
| 1939 | * full duplex. |
| 1940 | */ |
| 1941 | reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL); |
| 1942 | if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) { |
| 1943 | reg &= ~PORT_PCS_CTRL_UNFORCED; |
| 1944 | reg |= PORT_PCS_CTRL_FORCE_LINK | |
| 1945 | PORT_PCS_CTRL_LINK_UP | |
| 1946 | PORT_PCS_CTRL_DUPLEX_FULL | |
| 1947 | PORT_PCS_CTRL_FORCE_DUPLEX; |
| 1948 | if (mv88e6xxx_6065_family(ds)) |
| 1949 | reg |= PORT_PCS_CTRL_100; |
| 1950 | else |
| 1951 | reg |= PORT_PCS_CTRL_1000; |
| 1952 | } else { |
| 1953 | reg |= PORT_PCS_CTRL_UNFORCED; |
| 1954 | } |
| 1955 | |
| 1956 | ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), |
| 1957 | PORT_PCS_CTRL, reg); |
| 1958 | if (ret) |
| 1959 | goto abort; |
| 1960 | } |
| 1961 | |
| 1962 | /* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock, |
| 1963 | * disable Header mode, enable IGMP/MLD snooping, disable VLAN |
| 1964 | * tunneling, determine priority by looking at 802.1p and IP |
| 1965 | * priority fields (IP prio has precedence), and set STP state |
| 1966 | * to Forwarding. |
| 1967 | * |
| 1968 | * If this is the CPU link, use DSA or EDSA tagging depending |
| 1969 | * on which tagging mode was configured. |
| 1970 | * |
| 1971 | * If this is a link to another switch, use DSA tagging mode. |
| 1972 | * |
| 1973 | * If this is the upstream port for this switch, enable |
| 1974 | * forwarding of unknown unicasts and multicasts. |
| 1975 | */ |
| 1976 | reg = 0; |
| 1977 | if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || |
| 1978 | mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || |
| 1979 | mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) || |
| 1980 | mv88e6xxx_6185_family(ds) || mv88e6xxx_6320_family(ds)) |
| 1981 | reg = PORT_CONTROL_IGMP_MLD_SNOOP | |
| 1982 | PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP | |
| 1983 | PORT_CONTROL_STATE_FORWARDING; |
| 1984 | if (dsa_is_cpu_port(ds, port)) { |
| 1985 | if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds)) |
| 1986 | reg |= PORT_CONTROL_DSA_TAG; |
| 1987 | if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || |
| 1988 | mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || |
| 1989 | mv88e6xxx_6320_family(ds)) { |
| 1990 | if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA) |
| 1991 | reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA; |
| 1992 | else |
| 1993 | reg |= PORT_CONTROL_FRAME_MODE_DSA; |
| 1994 | reg |= PORT_CONTROL_FORWARD_UNKNOWN | |
| 1995 | PORT_CONTROL_FORWARD_UNKNOWN_MC; |
| 1996 | } |
| 1997 | |
| 1998 | if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || |
| 1999 | mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || |
| 2000 | mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) || |
| 2001 | mv88e6xxx_6185_family(ds) || mv88e6xxx_6320_family(ds)) { |
| 2002 | if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA) |
| 2003 | reg |= PORT_CONTROL_EGRESS_ADD_TAG; |
| 2004 | } |
| 2005 | } |
| 2006 | if (dsa_is_dsa_port(ds, port)) { |
| 2007 | if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds)) |
| 2008 | reg |= PORT_CONTROL_DSA_TAG; |
| 2009 | if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || |
| 2010 | mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || |
| 2011 | mv88e6xxx_6320_family(ds)) { |
| 2012 | reg |= PORT_CONTROL_FRAME_MODE_DSA; |
| 2013 | } |
| 2014 | |
| 2015 | if (port == dsa_upstream_port(ds)) |
| 2016 | reg |= PORT_CONTROL_FORWARD_UNKNOWN | |
| 2017 | PORT_CONTROL_FORWARD_UNKNOWN_MC; |
| 2018 | } |
| 2019 | if (reg) { |
| 2020 | ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), |
| 2021 | PORT_CONTROL, reg); |
| 2022 | if (ret) |
| 2023 | goto abort; |
| 2024 | } |
| 2025 | |
| 2026 | /* Port Control 2: don't force a good FCS, set the maximum frame size to |
| 2027 | * 10240 bytes, enable secure 802.1q tags, don't discard tagged or |
| 2028 | * untagged frames on this port, do a destination address lookup on all |
| 2029 | * received packets as usual, disable ARP mirroring and don't send a |
| 2030 | * copy of all transmitted/received frames on this port to the CPU. |
| 2031 | */ |
| 2032 | reg = 0; |
| 2033 | if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || |
| 2034 | mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || |
| 2035 | mv88e6xxx_6095_family(ds) || mv88e6xxx_6320_family(ds)) |
| 2036 | reg = PORT_CONTROL_2_MAP_DA; |
| 2037 | |
| 2038 | if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || |
| 2039 | mv88e6xxx_6165_family(ds) || mv88e6xxx_6320_family(ds)) |
| 2040 | reg |= PORT_CONTROL_2_JUMBO_10240; |
| 2041 | |
| 2042 | if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds)) { |
| 2043 | /* Set the upstream port this port should use */ |
| 2044 | reg |= dsa_upstream_port(ds); |
| 2045 | /* enable forwarding of unknown multicast addresses to |
| 2046 | * the upstream port |
| 2047 | */ |
| 2048 | if (port == dsa_upstream_port(ds)) |
| 2049 | reg |= PORT_CONTROL_2_FORWARD_UNKNOWN; |
| 2050 | } |
| 2051 | |
| 2052 | reg |= PORT_CONTROL_2_8021Q_SECURE; |
| 2053 | |
| 2054 | if (reg) { |
| 2055 | ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), |
| 2056 | PORT_CONTROL_2, reg); |
| 2057 | if (ret) |
| 2058 | goto abort; |
| 2059 | } |
| 2060 | |
| 2061 | /* Port Association Vector: when learning source addresses |
| 2062 | * of packets, add the address to the address database using |
| 2063 | * a port bitmap that has only the bit for this port set and |
| 2064 | * the other bits clear. |
| 2065 | */ |
| 2066 | reg = 1 << port; |
| 2067 | /* Disable learning for DSA and CPU ports */ |
| 2068 | if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) |
| 2069 | reg = PORT_ASSOC_VECTOR_LOCKED_PORT; |
| 2070 | |
| 2071 | ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_ASSOC_VECTOR, reg); |
| 2072 | if (ret) |
| 2073 | goto abort; |
| 2074 | |
| 2075 | /* Egress rate control 2: disable egress rate control. */ |
| 2076 | ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_RATE_CONTROL_2, |
| 2077 | 0x0000); |
| 2078 | if (ret) |
| 2079 | goto abort; |
| 2080 | |
| 2081 | if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || |
| 2082 | mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || |
| 2083 | mv88e6xxx_6320_family(ds)) { |
| 2084 | /* Do not limit the period of time that this port can |
| 2085 | * be paused for by the remote end or the period of |
| 2086 | * time that this port can pause the remote end. |
| 2087 | */ |
| 2088 | ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), |
| 2089 | PORT_PAUSE_CTRL, 0x0000); |
| 2090 | if (ret) |
| 2091 | goto abort; |
| 2092 | |
| 2093 | /* Port ATU control: disable limiting the number of |
| 2094 | * address database entries that this port is allowed |
| 2095 | * to use. |
| 2096 | */ |
| 2097 | ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), |
| 2098 | PORT_ATU_CONTROL, 0x0000); |
| 2099 | /* Priority Override: disable DA, SA and VTU priority |
| 2100 | * override. |
| 2101 | */ |
| 2102 | ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), |
| 2103 | PORT_PRI_OVERRIDE, 0x0000); |
| 2104 | if (ret) |
| 2105 | goto abort; |
| 2106 | |
| 2107 | /* Port Ethertype: use the Ethertype DSA Ethertype |
| 2108 | * value. |
| 2109 | */ |
| 2110 | ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), |
| 2111 | PORT_ETH_TYPE, ETH_P_EDSA); |
| 2112 | if (ret) |
| 2113 | goto abort; |
| 2114 | /* Tag Remap: use an identity 802.1p prio -> switch |
| 2115 | * prio mapping. |
| 2116 | */ |
| 2117 | ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), |
| 2118 | PORT_TAG_REGMAP_0123, 0x3210); |
| 2119 | if (ret) |
| 2120 | goto abort; |
| 2121 | |
| 2122 | /* Tag Remap 2: use an identity 802.1p prio -> switch |
| 2123 | * prio mapping. |
| 2124 | */ |
| 2125 | ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), |
| 2126 | PORT_TAG_REGMAP_4567, 0x7654); |
| 2127 | if (ret) |
| 2128 | goto abort; |
| 2129 | } |
| 2130 | |
| 2131 | if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || |
| 2132 | mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || |
| 2133 | mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) || |
| 2134 | mv88e6xxx_6320_family(ds)) { |
| 2135 | /* Rate Control: disable ingress rate limiting. */ |
| 2136 | ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), |
| 2137 | PORT_RATE_CONTROL, 0x0001); |
| 2138 | if (ret) |
| 2139 | goto abort; |
| 2140 | } |
| 2141 | |
| 2142 | /* Port Control 1: disable trunking, disable sending |
| 2143 | * learning messages to this port. |
| 2144 | */ |
| 2145 | ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_1, 0x0000); |
| 2146 | if (ret) |
| 2147 | goto abort; |
| 2148 | |
| 2149 | /* Port based VLAN map: do not give each port its own address |
| 2150 | * database, and allow every port to egress frames on all other ports. |
| 2151 | */ |
| 2152 | reg = BIT(ps->num_ports) - 1; /* all ports */ |
| 2153 | ret = _mv88e6xxx_port_vlan_map_set(ds, port, reg & ~port); |
| 2154 | if (ret) |
| 2155 | goto abort; |
| 2156 | |
| 2157 | /* Default VLAN ID and priority: don't set a default VLAN |
| 2158 | * ID, and set the default packet priority to zero. |
| 2159 | */ |
| 2160 | ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_DEFAULT_VLAN, |
| 2161 | 0x0000); |
| 2162 | abort: |
| 2163 | mutex_unlock(&ps->smi_mutex); |
| 2164 | return ret; |
| 2165 | } |
| 2166 | |
| 2167 | int mv88e6xxx_setup_ports(struct dsa_switch *ds) |
| 2168 | { |
| 2169 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 2170 | int ret; |
| 2171 | int i; |
| 2172 | |
| 2173 | for (i = 0; i < ps->num_ports; i++) { |
| 2174 | ret = mv88e6xxx_setup_port(ds, i); |
| 2175 | if (ret < 0) |
| 2176 | return ret; |
| 2177 | |
| 2178 | if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)) |
| 2179 | continue; |
| 2180 | |
| 2181 | /* setup the unbridged state */ |
| 2182 | ret = mv88e6xxx_port_bridge_leave(ds, i, 0); |
| 2183 | if (ret < 0) |
| 2184 | return ret; |
| 2185 | } |
| 2186 | return 0; |
| 2187 | } |
| 2188 | |
| 2189 | int mv88e6xxx_setup_common(struct dsa_switch *ds) |
| 2190 | { |
| 2191 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 2192 | |
| 2193 | mutex_init(&ps->smi_mutex); |
| 2194 | |
| 2195 | ps->id = REG_READ(REG_PORT(0), PORT_SWITCH_ID) & 0xfff0; |
| 2196 | |
| 2197 | INIT_WORK(&ps->bridge_work, mv88e6xxx_bridge_work); |
| 2198 | |
| 2199 | return 0; |
| 2200 | } |
| 2201 | |
| 2202 | int mv88e6xxx_setup_global(struct dsa_switch *ds) |
| 2203 | { |
| 2204 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 2205 | int ret; |
| 2206 | int i; |
| 2207 | |
| 2208 | /* Set the default address aging time to 5 minutes, and |
| 2209 | * enable address learn messages to be sent to all message |
| 2210 | * ports. |
| 2211 | */ |
| 2212 | REG_WRITE(REG_GLOBAL, GLOBAL_ATU_CONTROL, |
| 2213 | 0x0140 | GLOBAL_ATU_CONTROL_LEARN2ALL); |
| 2214 | |
| 2215 | /* Configure the IP ToS mapping registers. */ |
| 2216 | REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000); |
| 2217 | REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000); |
| 2218 | REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555); |
| 2219 | REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555); |
| 2220 | REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa); |
| 2221 | REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa); |
| 2222 | REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff); |
| 2223 | REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff); |
| 2224 | |
| 2225 | /* Configure the IEEE 802.1p priority mapping register. */ |
| 2226 | REG_WRITE(REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41); |
| 2227 | |
| 2228 | /* Send all frames with destination addresses matching |
| 2229 | * 01:80:c2:00:00:0x to the CPU port. |
| 2230 | */ |
| 2231 | REG_WRITE(REG_GLOBAL2, GLOBAL2_MGMT_EN_0X, 0xffff); |
| 2232 | |
| 2233 | /* Ignore removed tag data on doubly tagged packets, disable |
| 2234 | * flow control messages, force flow control priority to the |
| 2235 | * highest, and send all special multicast frames to the CPU |
| 2236 | * port at the highest priority. |
| 2237 | */ |
| 2238 | REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MGMT, |
| 2239 | 0x7 | GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x70 | |
| 2240 | GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI); |
| 2241 | |
| 2242 | /* Program the DSA routing table. */ |
| 2243 | for (i = 0; i < 32; i++) { |
| 2244 | int nexthop = 0x1f; |
| 2245 | |
| 2246 | if (ds->pd->rtable && |
| 2247 | i != ds->index && i < ds->dst->pd->nr_chips) |
| 2248 | nexthop = ds->pd->rtable[i] & 0x1f; |
| 2249 | |
| 2250 | REG_WRITE(REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING, |
| 2251 | GLOBAL2_DEVICE_MAPPING_UPDATE | |
| 2252 | (i << GLOBAL2_DEVICE_MAPPING_TARGET_SHIFT) | |
| 2253 | nexthop); |
| 2254 | } |
| 2255 | |
| 2256 | /* Clear all trunk masks. */ |
| 2257 | for (i = 0; i < 8; i++) |
| 2258 | REG_WRITE(REG_GLOBAL2, GLOBAL2_TRUNK_MASK, |
| 2259 | 0x8000 | (i << GLOBAL2_TRUNK_MASK_NUM_SHIFT) | |
| 2260 | ((1 << ps->num_ports) - 1)); |
| 2261 | |
| 2262 | /* Clear all trunk mappings. */ |
| 2263 | for (i = 0; i < 16; i++) |
| 2264 | REG_WRITE(REG_GLOBAL2, GLOBAL2_TRUNK_MAPPING, |
| 2265 | GLOBAL2_TRUNK_MAPPING_UPDATE | |
| 2266 | (i << GLOBAL2_TRUNK_MAPPING_ID_SHIFT)); |
| 2267 | |
| 2268 | if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || |
| 2269 | mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || |
| 2270 | mv88e6xxx_6320_family(ds)) { |
| 2271 | /* Send all frames with destination addresses matching |
| 2272 | * 01:80:c2:00:00:2x to the CPU port. |
| 2273 | */ |
| 2274 | REG_WRITE(REG_GLOBAL2, GLOBAL2_MGMT_EN_2X, 0xffff); |
| 2275 | |
| 2276 | /* Initialise cross-chip port VLAN table to reset |
| 2277 | * defaults. |
| 2278 | */ |
| 2279 | REG_WRITE(REG_GLOBAL2, GLOBAL2_PVT_ADDR, 0x9000); |
| 2280 | |
| 2281 | /* Clear the priority override table. */ |
| 2282 | for (i = 0; i < 16; i++) |
| 2283 | REG_WRITE(REG_GLOBAL2, GLOBAL2_PRIO_OVERRIDE, |
| 2284 | 0x8000 | (i << 8)); |
| 2285 | } |
| 2286 | |
| 2287 | if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) || |
| 2288 | mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) || |
| 2289 | mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) || |
| 2290 | mv88e6xxx_6320_family(ds)) { |
| 2291 | /* Disable ingress rate limiting by resetting all |
| 2292 | * ingress rate limit registers to their initial |
| 2293 | * state. |
| 2294 | */ |
| 2295 | for (i = 0; i < ps->num_ports; i++) |
| 2296 | REG_WRITE(REG_GLOBAL2, GLOBAL2_INGRESS_OP, |
| 2297 | 0x9000 | (i << 8)); |
| 2298 | } |
| 2299 | |
| 2300 | /* Clear the statistics counters for all ports */ |
| 2301 | REG_WRITE(REG_GLOBAL, GLOBAL_STATS_OP, GLOBAL_STATS_OP_FLUSH_ALL); |
| 2302 | |
| 2303 | /* Wait for the flush to complete. */ |
| 2304 | mutex_lock(&ps->smi_mutex); |
| 2305 | ret = _mv88e6xxx_stats_wait(ds); |
| 2306 | if (ret < 0) |
| 2307 | goto unlock; |
| 2308 | |
| 2309 | /* Clear all ATU entries */ |
| 2310 | ret = _mv88e6xxx_atu_flush(ds, 0, true); |
| 2311 | if (ret < 0) |
| 2312 | goto unlock; |
| 2313 | |
| 2314 | /* Clear all the VTU and STU entries */ |
| 2315 | ret = _mv88e6xxx_vtu_stu_flush(ds); |
| 2316 | unlock: |
| 2317 | mutex_unlock(&ps->smi_mutex); |
| 2318 | |
| 2319 | return ret; |
| 2320 | } |
| 2321 | |
| 2322 | int mv88e6xxx_switch_reset(struct dsa_switch *ds, bool ppu_active) |
| 2323 | { |
| 2324 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 2325 | u16 is_reset = (ppu_active ? 0x8800 : 0xc800); |
| 2326 | unsigned long timeout; |
| 2327 | int ret; |
| 2328 | int i; |
| 2329 | |
| 2330 | /* Set all ports to the disabled state. */ |
| 2331 | for (i = 0; i < ps->num_ports; i++) { |
| 2332 | ret = REG_READ(REG_PORT(i), PORT_CONTROL); |
| 2333 | REG_WRITE(REG_PORT(i), PORT_CONTROL, ret & 0xfffc); |
| 2334 | } |
| 2335 | |
| 2336 | /* Wait for transmit queues to drain. */ |
| 2337 | usleep_range(2000, 4000); |
| 2338 | |
| 2339 | /* Reset the switch. Keep the PPU active if requested. The PPU |
| 2340 | * needs to be active to support indirect phy register access |
| 2341 | * through global registers 0x18 and 0x19. |
| 2342 | */ |
| 2343 | if (ppu_active) |
| 2344 | REG_WRITE(REG_GLOBAL, 0x04, 0xc000); |
| 2345 | else |
| 2346 | REG_WRITE(REG_GLOBAL, 0x04, 0xc400); |
| 2347 | |
| 2348 | /* Wait up to one second for reset to complete. */ |
| 2349 | timeout = jiffies + 1 * HZ; |
| 2350 | while (time_before(jiffies, timeout)) { |
| 2351 | ret = REG_READ(REG_GLOBAL, 0x00); |
| 2352 | if ((ret & is_reset) == is_reset) |
| 2353 | break; |
| 2354 | usleep_range(1000, 2000); |
| 2355 | } |
| 2356 | if (time_after(jiffies, timeout)) |
| 2357 | return -ETIMEDOUT; |
| 2358 | |
| 2359 | return 0; |
| 2360 | } |
| 2361 | |
| 2362 | int mv88e6xxx_phy_page_read(struct dsa_switch *ds, int port, int page, int reg) |
| 2363 | { |
| 2364 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 2365 | int ret; |
| 2366 | |
| 2367 | mutex_lock(&ps->smi_mutex); |
| 2368 | ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page); |
| 2369 | if (ret < 0) |
| 2370 | goto error; |
| 2371 | ret = _mv88e6xxx_phy_read_indirect(ds, port, reg); |
| 2372 | error: |
| 2373 | _mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0); |
| 2374 | mutex_unlock(&ps->smi_mutex); |
| 2375 | return ret; |
| 2376 | } |
| 2377 | |
| 2378 | int mv88e6xxx_phy_page_write(struct dsa_switch *ds, int port, int page, |
| 2379 | int reg, int val) |
| 2380 | { |
| 2381 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 2382 | int ret; |
| 2383 | |
| 2384 | mutex_lock(&ps->smi_mutex); |
| 2385 | ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page); |
| 2386 | if (ret < 0) |
| 2387 | goto error; |
| 2388 | |
| 2389 | ret = _mv88e6xxx_phy_write_indirect(ds, port, reg, val); |
| 2390 | error: |
| 2391 | _mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0); |
| 2392 | mutex_unlock(&ps->smi_mutex); |
| 2393 | return ret; |
| 2394 | } |
| 2395 | |
| 2396 | static int mv88e6xxx_port_to_phy_addr(struct dsa_switch *ds, int port) |
| 2397 | { |
| 2398 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 2399 | |
| 2400 | if (port >= 0 && port < ps->num_ports) |
| 2401 | return port; |
| 2402 | return -EINVAL; |
| 2403 | } |
| 2404 | |
| 2405 | int |
| 2406 | mv88e6xxx_phy_read(struct dsa_switch *ds, int port, int regnum) |
| 2407 | { |
| 2408 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 2409 | int addr = mv88e6xxx_port_to_phy_addr(ds, port); |
| 2410 | int ret; |
| 2411 | |
| 2412 | if (addr < 0) |
| 2413 | return addr; |
| 2414 | |
| 2415 | mutex_lock(&ps->smi_mutex); |
| 2416 | ret = _mv88e6xxx_phy_read(ds, addr, regnum); |
| 2417 | mutex_unlock(&ps->smi_mutex); |
| 2418 | return ret; |
| 2419 | } |
| 2420 | |
| 2421 | int |
| 2422 | mv88e6xxx_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val) |
| 2423 | { |
| 2424 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 2425 | int addr = mv88e6xxx_port_to_phy_addr(ds, port); |
| 2426 | int ret; |
| 2427 | |
| 2428 | if (addr < 0) |
| 2429 | return addr; |
| 2430 | |
| 2431 | mutex_lock(&ps->smi_mutex); |
| 2432 | ret = _mv88e6xxx_phy_write(ds, addr, regnum, val); |
| 2433 | mutex_unlock(&ps->smi_mutex); |
| 2434 | return ret; |
| 2435 | } |
| 2436 | |
| 2437 | int |
| 2438 | mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int port, int regnum) |
| 2439 | { |
| 2440 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 2441 | int addr = mv88e6xxx_port_to_phy_addr(ds, port); |
| 2442 | int ret; |
| 2443 | |
| 2444 | if (addr < 0) |
| 2445 | return addr; |
| 2446 | |
| 2447 | mutex_lock(&ps->smi_mutex); |
| 2448 | ret = _mv88e6xxx_phy_read_indirect(ds, addr, regnum); |
| 2449 | mutex_unlock(&ps->smi_mutex); |
| 2450 | return ret; |
| 2451 | } |
| 2452 | |
| 2453 | int |
| 2454 | mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int port, int regnum, |
| 2455 | u16 val) |
| 2456 | { |
| 2457 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 2458 | int addr = mv88e6xxx_port_to_phy_addr(ds, port); |
| 2459 | int ret; |
| 2460 | |
| 2461 | if (addr < 0) |
| 2462 | return addr; |
| 2463 | |
| 2464 | mutex_lock(&ps->smi_mutex); |
| 2465 | ret = _mv88e6xxx_phy_write_indirect(ds, addr, regnum, val); |
| 2466 | mutex_unlock(&ps->smi_mutex); |
| 2467 | return ret; |
| 2468 | } |
| 2469 | |
| 2470 | #ifdef CONFIG_NET_DSA_HWMON |
| 2471 | |
| 2472 | static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp) |
| 2473 | { |
| 2474 | struct mv88e6xxx_priv_state *ps = ds_to_priv(ds); |
| 2475 | int ret; |
| 2476 | int val; |
| 2477 | |
| 2478 | *temp = 0; |
| 2479 | |
| 2480 | mutex_lock(&ps->smi_mutex); |
| 2481 | |
| 2482 | ret = _mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x6); |
| 2483 | if (ret < 0) |
| 2484 | goto error; |
| 2485 | |
| 2486 | /* Enable temperature sensor */ |
| 2487 | ret = _mv88e6xxx_phy_read(ds, 0x0, 0x1a); |
| 2488 | if (ret < 0) |
| 2489 | goto error; |
| 2490 | |
| 2491 | ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret | (1 << 5)); |
| 2492 | if (ret < 0) |
| 2493 | goto error; |
| 2494 | |
| 2495 | /* Wait for temperature to stabilize */ |
| 2496 | usleep_range(10000, 12000); |
| 2497 | |
| 2498 | val = _mv88e6xxx_phy_read(ds, 0x0, 0x1a); |
| 2499 | if (val < 0) { |
| 2500 | ret = val; |
| 2501 | goto error; |
| 2502 | } |
| 2503 | |
| 2504 | /* Disable temperature sensor */ |
| 2505 | ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret & ~(1 << 5)); |
| 2506 | if (ret < 0) |
| 2507 | goto error; |
| 2508 | |
| 2509 | *temp = ((val & 0x1f) - 5) * 5; |
| 2510 | |
| 2511 | error: |
| 2512 | _mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x0); |
| 2513 | mutex_unlock(&ps->smi_mutex); |
| 2514 | return ret; |
| 2515 | } |
| 2516 | |
| 2517 | static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp) |
| 2518 | { |
| 2519 | int phy = mv88e6xxx_6320_family(ds) ? 3 : 0; |
| 2520 | int ret; |
| 2521 | |
| 2522 | *temp = 0; |
| 2523 | |
| 2524 | ret = mv88e6xxx_phy_page_read(ds, phy, 6, 27); |
| 2525 | if (ret < 0) |
| 2526 | return ret; |
| 2527 | |
| 2528 | *temp = (ret & 0xff) - 25; |
| 2529 | |
| 2530 | return 0; |
| 2531 | } |
| 2532 | |
| 2533 | int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp) |
| 2534 | { |
| 2535 | if (mv88e6xxx_6320_family(ds) || mv88e6xxx_6352_family(ds)) |
| 2536 | return mv88e63xx_get_temp(ds, temp); |
| 2537 | |
| 2538 | return mv88e61xx_get_temp(ds, temp); |
| 2539 | } |
| 2540 | |
| 2541 | int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp) |
| 2542 | { |
| 2543 | int phy = mv88e6xxx_6320_family(ds) ? 3 : 0; |
| 2544 | int ret; |
| 2545 | |
| 2546 | if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds)) |
| 2547 | return -EOPNOTSUPP; |
| 2548 | |
| 2549 | *temp = 0; |
| 2550 | |
| 2551 | ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26); |
| 2552 | if (ret < 0) |
| 2553 | return ret; |
| 2554 | |
| 2555 | *temp = (((ret >> 8) & 0x1f) * 5) - 25; |
| 2556 | |
| 2557 | return 0; |
| 2558 | } |
| 2559 | |
| 2560 | int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp) |
| 2561 | { |
| 2562 | int phy = mv88e6xxx_6320_family(ds) ? 3 : 0; |
| 2563 | int ret; |
| 2564 | |
| 2565 | if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds)) |
| 2566 | return -EOPNOTSUPP; |
| 2567 | |
| 2568 | ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26); |
| 2569 | if (ret < 0) |
| 2570 | return ret; |
| 2571 | temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f); |
| 2572 | return mv88e6xxx_phy_page_write(ds, phy, 6, 26, |
| 2573 | (ret & 0xe0ff) | (temp << 8)); |
| 2574 | } |
| 2575 | |
| 2576 | int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm) |
| 2577 | { |
| 2578 | int phy = mv88e6xxx_6320_family(ds) ? 3 : 0; |
| 2579 | int ret; |
| 2580 | |
| 2581 | if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds)) |
| 2582 | return -EOPNOTSUPP; |
| 2583 | |
| 2584 | *alarm = false; |
| 2585 | |
| 2586 | ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26); |
| 2587 | if (ret < 0) |
| 2588 | return ret; |
| 2589 | |
| 2590 | *alarm = !!(ret & 0x40); |
| 2591 | |
| 2592 | return 0; |
| 2593 | } |
| 2594 | #endif /* CONFIG_NET_DSA_HWMON */ |
| 2595 | |
| 2596 | char *mv88e6xxx_lookup_name(struct device *host_dev, int sw_addr, |
| 2597 | const struct mv88e6xxx_switch_id *table, |
| 2598 | unsigned int num) |
| 2599 | { |
| 2600 | struct mii_bus *bus = dsa_host_dev_to_mii_bus(host_dev); |
| 2601 | int i, ret; |
| 2602 | |
| 2603 | if (!bus) |
| 2604 | return NULL; |
| 2605 | |
| 2606 | ret = __mv88e6xxx_reg_read(bus, sw_addr, REG_PORT(0), PORT_SWITCH_ID); |
| 2607 | if (ret < 0) |
| 2608 | return NULL; |
| 2609 | |
| 2610 | /* Look up the exact switch ID */ |
| 2611 | for (i = 0; i < num; ++i) |
| 2612 | if (table[i].id == ret) |
| 2613 | return table[i].name; |
| 2614 | |
| 2615 | /* Look up only the product number */ |
| 2616 | for (i = 0; i < num; ++i) { |
| 2617 | if (table[i].id == (ret & PORT_SWITCH_ID_PROD_NUM_MASK)) { |
| 2618 | dev_warn(host_dev, "unknown revision %d, using base switch 0x%x\n", |
| 2619 | ret & PORT_SWITCH_ID_REV_MASK, |
| 2620 | ret & PORT_SWITCH_ID_PROD_NUM_MASK); |
| 2621 | return table[i].name; |
| 2622 | } |
| 2623 | } |
| 2624 | |
| 2625 | return NULL; |
| 2626 | } |
| 2627 | |
| 2628 | static int __init mv88e6xxx_init(void) |
| 2629 | { |
| 2630 | #if IS_ENABLED(CONFIG_NET_DSA_MV88E6131) |
| 2631 | register_switch_driver(&mv88e6131_switch_driver); |
| 2632 | #endif |
| 2633 | #if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65) |
| 2634 | register_switch_driver(&mv88e6123_61_65_switch_driver); |
| 2635 | #endif |
| 2636 | #if IS_ENABLED(CONFIG_NET_DSA_MV88E6352) |
| 2637 | register_switch_driver(&mv88e6352_switch_driver); |
| 2638 | #endif |
| 2639 | #if IS_ENABLED(CONFIG_NET_DSA_MV88E6171) |
| 2640 | register_switch_driver(&mv88e6171_switch_driver); |
| 2641 | #endif |
| 2642 | return 0; |
| 2643 | } |
| 2644 | module_init(mv88e6xxx_init); |
| 2645 | |
| 2646 | static void __exit mv88e6xxx_cleanup(void) |
| 2647 | { |
| 2648 | #if IS_ENABLED(CONFIG_NET_DSA_MV88E6171) |
| 2649 | unregister_switch_driver(&mv88e6171_switch_driver); |
| 2650 | #endif |
| 2651 | #if IS_ENABLED(CONFIG_NET_DSA_MV88E6352) |
| 2652 | unregister_switch_driver(&mv88e6352_switch_driver); |
| 2653 | #endif |
| 2654 | #if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65) |
| 2655 | unregister_switch_driver(&mv88e6123_61_65_switch_driver); |
| 2656 | #endif |
| 2657 | #if IS_ENABLED(CONFIG_NET_DSA_MV88E6131) |
| 2658 | unregister_switch_driver(&mv88e6131_switch_driver); |
| 2659 | #endif |
| 2660 | } |
| 2661 | module_exit(mv88e6xxx_cleanup); |
| 2662 | |
| 2663 | MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>"); |
| 2664 | MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips"); |
| 2665 | MODULE_LICENSE("GPL"); |