Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame^] | 1 | /* drivers/net/ethernet/freescale/gianfar.c |
| 2 | * |
| 3 | * Gianfar Ethernet Driver |
| 4 | * This driver is designed for the non-CPM ethernet controllers |
| 5 | * on the 85xx and 83xx family of integrated processors |
| 6 | * Based on 8260_io/fcc_enet.c |
| 7 | * |
| 8 | * Author: Andy Fleming |
| 9 | * Maintainer: Kumar Gala |
| 10 | * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com> |
| 11 | * |
| 12 | * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc. |
| 13 | * Copyright 2007 MontaVista Software, Inc. |
| 14 | * |
| 15 | * This program is free software; you can redistribute it and/or modify it |
| 16 | * under the terms of the GNU General Public License as published by the |
| 17 | * Free Software Foundation; either version 2 of the License, or (at your |
| 18 | * option) any later version. |
| 19 | * |
| 20 | * Gianfar: AKA Lambda Draconis, "Dragon" |
| 21 | * RA 11 31 24.2 |
| 22 | * Dec +69 19 52 |
| 23 | * V 3.84 |
| 24 | * B-V +1.62 |
| 25 | * |
| 26 | * Theory of operation |
| 27 | * |
| 28 | * The driver is initialized through of_device. Configuration information |
| 29 | * is therefore conveyed through an OF-style device tree. |
| 30 | * |
| 31 | * The Gianfar Ethernet Controller uses a ring of buffer |
| 32 | * descriptors. The beginning is indicated by a register |
| 33 | * pointing to the physical address of the start of the ring. |
| 34 | * The end is determined by a "wrap" bit being set in the |
| 35 | * last descriptor of the ring. |
| 36 | * |
| 37 | * When a packet is received, the RXF bit in the |
| 38 | * IEVENT register is set, triggering an interrupt when the |
| 39 | * corresponding bit in the IMASK register is also set (if |
| 40 | * interrupt coalescing is active, then the interrupt may not |
| 41 | * happen immediately, but will wait until either a set number |
| 42 | * of frames or amount of time have passed). In NAPI, the |
| 43 | * interrupt handler will signal there is work to be done, and |
| 44 | * exit. This method will start at the last known empty |
| 45 | * descriptor, and process every subsequent descriptor until there |
| 46 | * are none left with data (NAPI will stop after a set number of |
| 47 | * packets to give time to other tasks, but will eventually |
| 48 | * process all the packets). The data arrives inside a |
| 49 | * pre-allocated skb, and so after the skb is passed up to the |
| 50 | * stack, a new skb must be allocated, and the address field in |
| 51 | * the buffer descriptor must be updated to indicate this new |
| 52 | * skb. |
| 53 | * |
| 54 | * When the kernel requests that a packet be transmitted, the |
| 55 | * driver starts where it left off last time, and points the |
| 56 | * descriptor at the buffer which was passed in. The driver |
| 57 | * then informs the DMA engine that there are packets ready to |
| 58 | * be transmitted. Once the controller is finished transmitting |
| 59 | * the packet, an interrupt may be triggered (under the same |
| 60 | * conditions as for reception, but depending on the TXF bit). |
| 61 | * The driver then cleans up the buffer. |
| 62 | */ |
| 63 | |
| 64 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 65 | #define DEBUG |
| 66 | |
| 67 | #include <linux/kernel.h> |
| 68 | #include <linux/string.h> |
| 69 | #include <linux/errno.h> |
| 70 | #include <linux/unistd.h> |
| 71 | #include <linux/slab.h> |
| 72 | #include <linux/interrupt.h> |
| 73 | #include <linux/delay.h> |
| 74 | #include <linux/netdevice.h> |
| 75 | #include <linux/etherdevice.h> |
| 76 | #include <linux/skbuff.h> |
| 77 | #include <linux/if_vlan.h> |
| 78 | #include <linux/spinlock.h> |
| 79 | #include <linux/mm.h> |
| 80 | #include <linux/of_address.h> |
| 81 | #include <linux/of_irq.h> |
| 82 | #include <linux/of_mdio.h> |
| 83 | #include <linux/of_platform.h> |
| 84 | #include <linux/ip.h> |
| 85 | #include <linux/tcp.h> |
| 86 | #include <linux/udp.h> |
| 87 | #include <linux/in.h> |
| 88 | #include <linux/net_tstamp.h> |
| 89 | |
| 90 | #include <asm/io.h> |
| 91 | #ifdef CONFIG_PPC |
| 92 | #include <asm/reg.h> |
| 93 | #include <asm/mpc85xx.h> |
| 94 | #endif |
| 95 | #include <asm/irq.h> |
| 96 | #include <asm/uaccess.h> |
| 97 | #include <linux/module.h> |
| 98 | #include <linux/dma-mapping.h> |
| 99 | #include <linux/crc32.h> |
| 100 | #include <linux/mii.h> |
| 101 | #include <linux/phy.h> |
| 102 | #include <linux/phy_fixed.h> |
| 103 | #include <linux/of.h> |
| 104 | #include <linux/of_net.h> |
| 105 | #include <linux/of_address.h> |
| 106 | #include <linux/of_irq.h> |
| 107 | |
| 108 | #include "gianfar.h" |
| 109 | |
| 110 | #define TX_TIMEOUT (5*HZ) |
| 111 | |
| 112 | const char gfar_driver_version[] = "2.0"; |
| 113 | |
| 114 | static int gfar_enet_open(struct net_device *dev); |
| 115 | static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev); |
| 116 | static void gfar_reset_task(struct work_struct *work); |
| 117 | static void gfar_timeout(struct net_device *dev); |
| 118 | static int gfar_close(struct net_device *dev); |
| 119 | static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue, |
| 120 | int alloc_cnt); |
| 121 | static int gfar_set_mac_address(struct net_device *dev); |
| 122 | static int gfar_change_mtu(struct net_device *dev, int new_mtu); |
| 123 | static irqreturn_t gfar_error(int irq, void *dev_id); |
| 124 | static irqreturn_t gfar_transmit(int irq, void *dev_id); |
| 125 | static irqreturn_t gfar_interrupt(int irq, void *dev_id); |
| 126 | static void adjust_link(struct net_device *dev); |
| 127 | static noinline void gfar_update_link_state(struct gfar_private *priv); |
| 128 | static int init_phy(struct net_device *dev); |
| 129 | static int gfar_probe(struct platform_device *ofdev); |
| 130 | static int gfar_remove(struct platform_device *ofdev); |
| 131 | static void free_skb_resources(struct gfar_private *priv); |
| 132 | static void gfar_set_multi(struct net_device *dev); |
| 133 | static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr); |
| 134 | static void gfar_configure_serdes(struct net_device *dev); |
| 135 | static int gfar_poll_rx(struct napi_struct *napi, int budget); |
| 136 | static int gfar_poll_tx(struct napi_struct *napi, int budget); |
| 137 | static int gfar_poll_rx_sq(struct napi_struct *napi, int budget); |
| 138 | static int gfar_poll_tx_sq(struct napi_struct *napi, int budget); |
| 139 | #ifdef CONFIG_NET_POLL_CONTROLLER |
| 140 | static void gfar_netpoll(struct net_device *dev); |
| 141 | #endif |
| 142 | int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit); |
| 143 | static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue); |
| 144 | static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb); |
| 145 | static void gfar_halt_nodisable(struct gfar_private *priv); |
| 146 | static void gfar_clear_exact_match(struct net_device *dev); |
| 147 | static void gfar_set_mac_for_addr(struct net_device *dev, int num, |
| 148 | const u8 *addr); |
| 149 | static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); |
| 150 | |
| 151 | MODULE_AUTHOR("Freescale Semiconductor, Inc"); |
| 152 | MODULE_DESCRIPTION("Gianfar Ethernet Driver"); |
| 153 | MODULE_LICENSE("GPL"); |
| 154 | |
| 155 | static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, |
| 156 | dma_addr_t buf) |
| 157 | { |
| 158 | u32 lstatus; |
| 159 | |
| 160 | bdp->bufPtr = cpu_to_be32(buf); |
| 161 | |
| 162 | lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT); |
| 163 | if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1) |
| 164 | lstatus |= BD_LFLAG(RXBD_WRAP); |
| 165 | |
| 166 | gfar_wmb(); |
| 167 | |
| 168 | bdp->lstatus = cpu_to_be32(lstatus); |
| 169 | } |
| 170 | |
| 171 | static void gfar_init_bds(struct net_device *ndev) |
| 172 | { |
| 173 | struct gfar_private *priv = netdev_priv(ndev); |
| 174 | struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| 175 | struct gfar_priv_tx_q *tx_queue = NULL; |
| 176 | struct gfar_priv_rx_q *rx_queue = NULL; |
| 177 | struct txbd8 *txbdp; |
| 178 | u32 __iomem *rfbptr; |
| 179 | int i, j; |
| 180 | |
| 181 | for (i = 0; i < priv->num_tx_queues; i++) { |
| 182 | tx_queue = priv->tx_queue[i]; |
| 183 | /* Initialize some variables in our dev structure */ |
| 184 | tx_queue->num_txbdfree = tx_queue->tx_ring_size; |
| 185 | tx_queue->dirty_tx = tx_queue->tx_bd_base; |
| 186 | tx_queue->cur_tx = tx_queue->tx_bd_base; |
| 187 | tx_queue->skb_curtx = 0; |
| 188 | tx_queue->skb_dirtytx = 0; |
| 189 | |
| 190 | /* Initialize Transmit Descriptor Ring */ |
| 191 | txbdp = tx_queue->tx_bd_base; |
| 192 | for (j = 0; j < tx_queue->tx_ring_size; j++) { |
| 193 | txbdp->lstatus = 0; |
| 194 | txbdp->bufPtr = 0; |
| 195 | txbdp++; |
| 196 | } |
| 197 | |
| 198 | /* Set the last descriptor in the ring to indicate wrap */ |
| 199 | txbdp--; |
| 200 | txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) | |
| 201 | TXBD_WRAP); |
| 202 | } |
| 203 | |
| 204 | rfbptr = ®s->rfbptr0; |
| 205 | for (i = 0; i < priv->num_rx_queues; i++) { |
| 206 | rx_queue = priv->rx_queue[i]; |
| 207 | |
| 208 | rx_queue->next_to_clean = 0; |
| 209 | rx_queue->next_to_use = 0; |
| 210 | rx_queue->next_to_alloc = 0; |
| 211 | |
| 212 | /* make sure next_to_clean != next_to_use after this |
| 213 | * by leaving at least 1 unused descriptor |
| 214 | */ |
| 215 | gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue)); |
| 216 | |
| 217 | rx_queue->rfbptr = rfbptr; |
| 218 | rfbptr += 2; |
| 219 | } |
| 220 | } |
| 221 | |
| 222 | static int gfar_alloc_skb_resources(struct net_device *ndev) |
| 223 | { |
| 224 | void *vaddr; |
| 225 | dma_addr_t addr; |
| 226 | int i, j; |
| 227 | struct gfar_private *priv = netdev_priv(ndev); |
| 228 | struct device *dev = priv->dev; |
| 229 | struct gfar_priv_tx_q *tx_queue = NULL; |
| 230 | struct gfar_priv_rx_q *rx_queue = NULL; |
| 231 | |
| 232 | priv->total_tx_ring_size = 0; |
| 233 | for (i = 0; i < priv->num_tx_queues; i++) |
| 234 | priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size; |
| 235 | |
| 236 | priv->total_rx_ring_size = 0; |
| 237 | for (i = 0; i < priv->num_rx_queues; i++) |
| 238 | priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size; |
| 239 | |
| 240 | /* Allocate memory for the buffer descriptors */ |
| 241 | vaddr = dma_alloc_coherent(dev, |
| 242 | (priv->total_tx_ring_size * |
| 243 | sizeof(struct txbd8)) + |
| 244 | (priv->total_rx_ring_size * |
| 245 | sizeof(struct rxbd8)), |
| 246 | &addr, GFP_KERNEL); |
| 247 | if (!vaddr) |
| 248 | return -ENOMEM; |
| 249 | |
| 250 | for (i = 0; i < priv->num_tx_queues; i++) { |
| 251 | tx_queue = priv->tx_queue[i]; |
| 252 | tx_queue->tx_bd_base = vaddr; |
| 253 | tx_queue->tx_bd_dma_base = addr; |
| 254 | tx_queue->dev = ndev; |
| 255 | /* enet DMA only understands physical addresses */ |
| 256 | addr += sizeof(struct txbd8) * tx_queue->tx_ring_size; |
| 257 | vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size; |
| 258 | } |
| 259 | |
| 260 | /* Start the rx descriptor ring where the tx ring leaves off */ |
| 261 | for (i = 0; i < priv->num_rx_queues; i++) { |
| 262 | rx_queue = priv->rx_queue[i]; |
| 263 | rx_queue->rx_bd_base = vaddr; |
| 264 | rx_queue->rx_bd_dma_base = addr; |
| 265 | rx_queue->ndev = ndev; |
| 266 | rx_queue->dev = dev; |
| 267 | addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; |
| 268 | vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; |
| 269 | } |
| 270 | |
| 271 | /* Setup the skbuff rings */ |
| 272 | for (i = 0; i < priv->num_tx_queues; i++) { |
| 273 | tx_queue = priv->tx_queue[i]; |
| 274 | tx_queue->tx_skbuff = |
| 275 | kmalloc_array(tx_queue->tx_ring_size, |
| 276 | sizeof(*tx_queue->tx_skbuff), |
| 277 | GFP_KERNEL); |
| 278 | if (!tx_queue->tx_skbuff) |
| 279 | goto cleanup; |
| 280 | |
| 281 | for (j = 0; j < tx_queue->tx_ring_size; j++) |
| 282 | tx_queue->tx_skbuff[j] = NULL; |
| 283 | } |
| 284 | |
| 285 | for (i = 0; i < priv->num_rx_queues; i++) { |
| 286 | rx_queue = priv->rx_queue[i]; |
| 287 | rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size, |
| 288 | sizeof(*rx_queue->rx_buff), |
| 289 | GFP_KERNEL); |
| 290 | if (!rx_queue->rx_buff) |
| 291 | goto cleanup; |
| 292 | } |
| 293 | |
| 294 | gfar_init_bds(ndev); |
| 295 | |
| 296 | return 0; |
| 297 | |
| 298 | cleanup: |
| 299 | free_skb_resources(priv); |
| 300 | return -ENOMEM; |
| 301 | } |
| 302 | |
| 303 | static void gfar_init_tx_rx_base(struct gfar_private *priv) |
| 304 | { |
| 305 | struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| 306 | u32 __iomem *baddr; |
| 307 | int i; |
| 308 | |
| 309 | baddr = ®s->tbase0; |
| 310 | for (i = 0; i < priv->num_tx_queues; i++) { |
| 311 | gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base); |
| 312 | baddr += 2; |
| 313 | } |
| 314 | |
| 315 | baddr = ®s->rbase0; |
| 316 | for (i = 0; i < priv->num_rx_queues; i++) { |
| 317 | gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base); |
| 318 | baddr += 2; |
| 319 | } |
| 320 | } |
| 321 | |
| 322 | static void gfar_init_rqprm(struct gfar_private *priv) |
| 323 | { |
| 324 | struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| 325 | u32 __iomem *baddr; |
| 326 | int i; |
| 327 | |
| 328 | baddr = ®s->rqprm0; |
| 329 | for (i = 0; i < priv->num_rx_queues; i++) { |
| 330 | gfar_write(baddr, priv->rx_queue[i]->rx_ring_size | |
| 331 | (DEFAULT_RX_LFC_THR << FBTHR_SHIFT)); |
| 332 | baddr++; |
| 333 | } |
| 334 | } |
| 335 | |
| 336 | static void gfar_rx_offload_en(struct gfar_private *priv) |
| 337 | { |
| 338 | /* set this when rx hw offload (TOE) functions are being used */ |
| 339 | priv->uses_rxfcb = 0; |
| 340 | |
| 341 | if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX)) |
| 342 | priv->uses_rxfcb = 1; |
| 343 | |
| 344 | if (priv->hwts_rx_en || priv->rx_filer_enable) |
| 345 | priv->uses_rxfcb = 1; |
| 346 | } |
| 347 | |
| 348 | static void gfar_mac_rx_config(struct gfar_private *priv) |
| 349 | { |
| 350 | struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| 351 | u32 rctrl = 0; |
| 352 | |
| 353 | if (priv->rx_filer_enable) { |
| 354 | rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT; |
| 355 | /* Program the RIR0 reg with the required distribution */ |
| 356 | if (priv->poll_mode == GFAR_SQ_POLLING) |
| 357 | gfar_write(®s->rir0, DEFAULT_2RXQ_RIR0); |
| 358 | else /* GFAR_MQ_POLLING */ |
| 359 | gfar_write(®s->rir0, DEFAULT_8RXQ_RIR0); |
| 360 | } |
| 361 | |
| 362 | /* Restore PROMISC mode */ |
| 363 | if (priv->ndev->flags & IFF_PROMISC) |
| 364 | rctrl |= RCTRL_PROM; |
| 365 | |
| 366 | if (priv->ndev->features & NETIF_F_RXCSUM) |
| 367 | rctrl |= RCTRL_CHECKSUMMING; |
| 368 | |
| 369 | if (priv->extended_hash) |
| 370 | rctrl |= RCTRL_EXTHASH | RCTRL_EMEN; |
| 371 | |
| 372 | if (priv->padding) { |
| 373 | rctrl &= ~RCTRL_PAL_MASK; |
| 374 | rctrl |= RCTRL_PADDING(priv->padding); |
| 375 | } |
| 376 | |
| 377 | /* Enable HW time stamping if requested from user space */ |
| 378 | if (priv->hwts_rx_en) |
| 379 | rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE; |
| 380 | |
| 381 | if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) |
| 382 | rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT; |
| 383 | |
| 384 | /* Clear the LFC bit */ |
| 385 | gfar_write(®s->rctrl, rctrl); |
| 386 | /* Init flow control threshold values */ |
| 387 | gfar_init_rqprm(priv); |
| 388 | gfar_write(®s->ptv, DEFAULT_LFC_PTVVAL); |
| 389 | rctrl |= RCTRL_LFC; |
| 390 | |
| 391 | /* Init rctrl based on our settings */ |
| 392 | gfar_write(®s->rctrl, rctrl); |
| 393 | } |
| 394 | |
| 395 | static void gfar_mac_tx_config(struct gfar_private *priv) |
| 396 | { |
| 397 | struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| 398 | u32 tctrl = 0; |
| 399 | |
| 400 | if (priv->ndev->features & NETIF_F_IP_CSUM) |
| 401 | tctrl |= TCTRL_INIT_CSUM; |
| 402 | |
| 403 | if (priv->prio_sched_en) |
| 404 | tctrl |= TCTRL_TXSCHED_PRIO; |
| 405 | else { |
| 406 | tctrl |= TCTRL_TXSCHED_WRRS; |
| 407 | gfar_write(®s->tr03wt, DEFAULT_WRRS_WEIGHT); |
| 408 | gfar_write(®s->tr47wt, DEFAULT_WRRS_WEIGHT); |
| 409 | } |
| 410 | |
| 411 | if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX) |
| 412 | tctrl |= TCTRL_VLINS; |
| 413 | |
| 414 | gfar_write(®s->tctrl, tctrl); |
| 415 | } |
| 416 | |
| 417 | static void gfar_configure_coalescing(struct gfar_private *priv, |
| 418 | unsigned long tx_mask, unsigned long rx_mask) |
| 419 | { |
| 420 | struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| 421 | u32 __iomem *baddr; |
| 422 | |
| 423 | if (priv->mode == MQ_MG_MODE) { |
| 424 | int i = 0; |
| 425 | |
| 426 | baddr = ®s->txic0; |
| 427 | for_each_set_bit(i, &tx_mask, priv->num_tx_queues) { |
| 428 | gfar_write(baddr + i, 0); |
| 429 | if (likely(priv->tx_queue[i]->txcoalescing)) |
| 430 | gfar_write(baddr + i, priv->tx_queue[i]->txic); |
| 431 | } |
| 432 | |
| 433 | baddr = ®s->rxic0; |
| 434 | for_each_set_bit(i, &rx_mask, priv->num_rx_queues) { |
| 435 | gfar_write(baddr + i, 0); |
| 436 | if (likely(priv->rx_queue[i]->rxcoalescing)) |
| 437 | gfar_write(baddr + i, priv->rx_queue[i]->rxic); |
| 438 | } |
| 439 | } else { |
| 440 | /* Backward compatible case -- even if we enable |
| 441 | * multiple queues, there's only single reg to program |
| 442 | */ |
| 443 | gfar_write(®s->txic, 0); |
| 444 | if (likely(priv->tx_queue[0]->txcoalescing)) |
| 445 | gfar_write(®s->txic, priv->tx_queue[0]->txic); |
| 446 | |
| 447 | gfar_write(®s->rxic, 0); |
| 448 | if (unlikely(priv->rx_queue[0]->rxcoalescing)) |
| 449 | gfar_write(®s->rxic, priv->rx_queue[0]->rxic); |
| 450 | } |
| 451 | } |
| 452 | |
| 453 | void gfar_configure_coalescing_all(struct gfar_private *priv) |
| 454 | { |
| 455 | gfar_configure_coalescing(priv, 0xFF, 0xFF); |
| 456 | } |
| 457 | |
| 458 | static struct net_device_stats *gfar_get_stats(struct net_device *dev) |
| 459 | { |
| 460 | struct gfar_private *priv = netdev_priv(dev); |
| 461 | unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0; |
| 462 | unsigned long tx_packets = 0, tx_bytes = 0; |
| 463 | int i; |
| 464 | |
| 465 | for (i = 0; i < priv->num_rx_queues; i++) { |
| 466 | rx_packets += priv->rx_queue[i]->stats.rx_packets; |
| 467 | rx_bytes += priv->rx_queue[i]->stats.rx_bytes; |
| 468 | rx_dropped += priv->rx_queue[i]->stats.rx_dropped; |
| 469 | } |
| 470 | |
| 471 | dev->stats.rx_packets = rx_packets; |
| 472 | dev->stats.rx_bytes = rx_bytes; |
| 473 | dev->stats.rx_dropped = rx_dropped; |
| 474 | |
| 475 | for (i = 0; i < priv->num_tx_queues; i++) { |
| 476 | tx_bytes += priv->tx_queue[i]->stats.tx_bytes; |
| 477 | tx_packets += priv->tx_queue[i]->stats.tx_packets; |
| 478 | } |
| 479 | |
| 480 | dev->stats.tx_bytes = tx_bytes; |
| 481 | dev->stats.tx_packets = tx_packets; |
| 482 | |
| 483 | return &dev->stats; |
| 484 | } |
| 485 | |
| 486 | static int gfar_set_mac_addr(struct net_device *dev, void *p) |
| 487 | { |
| 488 | eth_mac_addr(dev, p); |
| 489 | |
| 490 | gfar_set_mac_for_addr(dev, 0, dev->dev_addr); |
| 491 | |
| 492 | return 0; |
| 493 | } |
| 494 | |
| 495 | static const struct net_device_ops gfar_netdev_ops = { |
| 496 | .ndo_open = gfar_enet_open, |
| 497 | .ndo_start_xmit = gfar_start_xmit, |
| 498 | .ndo_stop = gfar_close, |
| 499 | .ndo_change_mtu = gfar_change_mtu, |
| 500 | .ndo_set_features = gfar_set_features, |
| 501 | .ndo_set_rx_mode = gfar_set_multi, |
| 502 | .ndo_tx_timeout = gfar_timeout, |
| 503 | .ndo_do_ioctl = gfar_ioctl, |
| 504 | .ndo_get_stats = gfar_get_stats, |
| 505 | .ndo_set_mac_address = gfar_set_mac_addr, |
| 506 | .ndo_validate_addr = eth_validate_addr, |
| 507 | #ifdef CONFIG_NET_POLL_CONTROLLER |
| 508 | .ndo_poll_controller = gfar_netpoll, |
| 509 | #endif |
| 510 | }; |
| 511 | |
| 512 | static void gfar_ints_disable(struct gfar_private *priv) |
| 513 | { |
| 514 | int i; |
| 515 | for (i = 0; i < priv->num_grps; i++) { |
| 516 | struct gfar __iomem *regs = priv->gfargrp[i].regs; |
| 517 | /* Clear IEVENT */ |
| 518 | gfar_write(®s->ievent, IEVENT_INIT_CLEAR); |
| 519 | |
| 520 | /* Initialize IMASK */ |
| 521 | gfar_write(®s->imask, IMASK_INIT_CLEAR); |
| 522 | } |
| 523 | } |
| 524 | |
| 525 | static void gfar_ints_enable(struct gfar_private *priv) |
| 526 | { |
| 527 | int i; |
| 528 | for (i = 0; i < priv->num_grps; i++) { |
| 529 | struct gfar __iomem *regs = priv->gfargrp[i].regs; |
| 530 | /* Unmask the interrupts we look for */ |
| 531 | gfar_write(®s->imask, IMASK_DEFAULT); |
| 532 | } |
| 533 | } |
| 534 | |
| 535 | static int gfar_alloc_tx_queues(struct gfar_private *priv) |
| 536 | { |
| 537 | int i; |
| 538 | |
| 539 | for (i = 0; i < priv->num_tx_queues; i++) { |
| 540 | priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q), |
| 541 | GFP_KERNEL); |
| 542 | if (!priv->tx_queue[i]) |
| 543 | return -ENOMEM; |
| 544 | |
| 545 | priv->tx_queue[i]->tx_skbuff = NULL; |
| 546 | priv->tx_queue[i]->qindex = i; |
| 547 | priv->tx_queue[i]->dev = priv->ndev; |
| 548 | spin_lock_init(&(priv->tx_queue[i]->txlock)); |
| 549 | } |
| 550 | return 0; |
| 551 | } |
| 552 | |
| 553 | static int gfar_alloc_rx_queues(struct gfar_private *priv) |
| 554 | { |
| 555 | int i; |
| 556 | |
| 557 | for (i = 0; i < priv->num_rx_queues; i++) { |
| 558 | priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q), |
| 559 | GFP_KERNEL); |
| 560 | if (!priv->rx_queue[i]) |
| 561 | return -ENOMEM; |
| 562 | |
| 563 | priv->rx_queue[i]->qindex = i; |
| 564 | priv->rx_queue[i]->ndev = priv->ndev; |
| 565 | } |
| 566 | return 0; |
| 567 | } |
| 568 | |
| 569 | static void gfar_free_tx_queues(struct gfar_private *priv) |
| 570 | { |
| 571 | int i; |
| 572 | |
| 573 | for (i = 0; i < priv->num_tx_queues; i++) |
| 574 | kfree(priv->tx_queue[i]); |
| 575 | } |
| 576 | |
| 577 | static void gfar_free_rx_queues(struct gfar_private *priv) |
| 578 | { |
| 579 | int i; |
| 580 | |
| 581 | for (i = 0; i < priv->num_rx_queues; i++) |
| 582 | kfree(priv->rx_queue[i]); |
| 583 | } |
| 584 | |
| 585 | static void unmap_group_regs(struct gfar_private *priv) |
| 586 | { |
| 587 | int i; |
| 588 | |
| 589 | for (i = 0; i < MAXGROUPS; i++) |
| 590 | if (priv->gfargrp[i].regs) |
| 591 | iounmap(priv->gfargrp[i].regs); |
| 592 | } |
| 593 | |
| 594 | static void free_gfar_dev(struct gfar_private *priv) |
| 595 | { |
| 596 | int i, j; |
| 597 | |
| 598 | for (i = 0; i < priv->num_grps; i++) |
| 599 | for (j = 0; j < GFAR_NUM_IRQS; j++) { |
| 600 | kfree(priv->gfargrp[i].irqinfo[j]); |
| 601 | priv->gfargrp[i].irqinfo[j] = NULL; |
| 602 | } |
| 603 | |
| 604 | free_netdev(priv->ndev); |
| 605 | } |
| 606 | |
| 607 | static void disable_napi(struct gfar_private *priv) |
| 608 | { |
| 609 | int i; |
| 610 | |
| 611 | for (i = 0; i < priv->num_grps; i++) { |
| 612 | napi_disable(&priv->gfargrp[i].napi_rx); |
| 613 | napi_disable(&priv->gfargrp[i].napi_tx); |
| 614 | } |
| 615 | } |
| 616 | |
| 617 | static void enable_napi(struct gfar_private *priv) |
| 618 | { |
| 619 | int i; |
| 620 | |
| 621 | for (i = 0; i < priv->num_grps; i++) { |
| 622 | napi_enable(&priv->gfargrp[i].napi_rx); |
| 623 | napi_enable(&priv->gfargrp[i].napi_tx); |
| 624 | } |
| 625 | } |
| 626 | |
| 627 | static int gfar_parse_group(struct device_node *np, |
| 628 | struct gfar_private *priv, const char *model) |
| 629 | { |
| 630 | struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps]; |
| 631 | int i; |
| 632 | |
| 633 | for (i = 0; i < GFAR_NUM_IRQS; i++) { |
| 634 | grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo), |
| 635 | GFP_KERNEL); |
| 636 | if (!grp->irqinfo[i]) |
| 637 | return -ENOMEM; |
| 638 | } |
| 639 | |
| 640 | grp->regs = of_iomap(np, 0); |
| 641 | if (!grp->regs) |
| 642 | return -ENOMEM; |
| 643 | |
| 644 | gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0); |
| 645 | |
| 646 | /* If we aren't the FEC we have multiple interrupts */ |
| 647 | if (model && strcasecmp(model, "FEC")) { |
| 648 | gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1); |
| 649 | gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2); |
| 650 | if (!gfar_irq(grp, TX)->irq || |
| 651 | !gfar_irq(grp, RX)->irq || |
| 652 | !gfar_irq(grp, ER)->irq) |
| 653 | return -EINVAL; |
| 654 | } |
| 655 | |
| 656 | grp->priv = priv; |
| 657 | spin_lock_init(&grp->grplock); |
| 658 | if (priv->mode == MQ_MG_MODE) { |
| 659 | u32 rxq_mask, txq_mask; |
| 660 | int ret; |
| 661 | |
| 662 | grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); |
| 663 | grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); |
| 664 | |
| 665 | ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask); |
| 666 | if (!ret) { |
| 667 | grp->rx_bit_map = rxq_mask ? |
| 668 | rxq_mask : (DEFAULT_MAPPING >> priv->num_grps); |
| 669 | } |
| 670 | |
| 671 | ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask); |
| 672 | if (!ret) { |
| 673 | grp->tx_bit_map = txq_mask ? |
| 674 | txq_mask : (DEFAULT_MAPPING >> priv->num_grps); |
| 675 | } |
| 676 | |
| 677 | if (priv->poll_mode == GFAR_SQ_POLLING) { |
| 678 | /* One Q per interrupt group: Q0 to G0, Q1 to G1 */ |
| 679 | grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); |
| 680 | grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); |
| 681 | } |
| 682 | } else { |
| 683 | grp->rx_bit_map = 0xFF; |
| 684 | grp->tx_bit_map = 0xFF; |
| 685 | } |
| 686 | |
| 687 | /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses |
| 688 | * right to left, so we need to revert the 8 bits to get the q index |
| 689 | */ |
| 690 | grp->rx_bit_map = bitrev8(grp->rx_bit_map); |
| 691 | grp->tx_bit_map = bitrev8(grp->tx_bit_map); |
| 692 | |
| 693 | /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values, |
| 694 | * also assign queues to groups |
| 695 | */ |
| 696 | for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) { |
| 697 | if (!grp->rx_queue) |
| 698 | grp->rx_queue = priv->rx_queue[i]; |
| 699 | grp->num_rx_queues++; |
| 700 | grp->rstat |= (RSTAT_CLEAR_RHALT >> i); |
| 701 | priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i); |
| 702 | priv->rx_queue[i]->grp = grp; |
| 703 | } |
| 704 | |
| 705 | for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) { |
| 706 | if (!grp->tx_queue) |
| 707 | grp->tx_queue = priv->tx_queue[i]; |
| 708 | grp->num_tx_queues++; |
| 709 | grp->tstat |= (TSTAT_CLEAR_THALT >> i); |
| 710 | priv->tqueue |= (TQUEUE_EN0 >> i); |
| 711 | priv->tx_queue[i]->grp = grp; |
| 712 | } |
| 713 | |
| 714 | priv->num_grps++; |
| 715 | |
| 716 | return 0; |
| 717 | } |
| 718 | |
| 719 | static int gfar_of_group_count(struct device_node *np) |
| 720 | { |
| 721 | struct device_node *child; |
| 722 | int num = 0; |
| 723 | |
| 724 | for_each_available_child_of_node(np, child) |
| 725 | if (!of_node_cmp(child->name, "queue-group")) |
| 726 | num++; |
| 727 | |
| 728 | return num; |
| 729 | } |
| 730 | |
| 731 | static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev) |
| 732 | { |
| 733 | const char *model; |
| 734 | const char *ctype; |
| 735 | const void *mac_addr; |
| 736 | int err = 0, i; |
| 737 | struct net_device *dev = NULL; |
| 738 | struct gfar_private *priv = NULL; |
| 739 | struct device_node *np = ofdev->dev.of_node; |
| 740 | struct device_node *child = NULL; |
| 741 | struct property *stash; |
| 742 | u32 stash_len = 0; |
| 743 | u32 stash_idx = 0; |
| 744 | unsigned int num_tx_qs, num_rx_qs; |
| 745 | unsigned short mode, poll_mode; |
| 746 | |
| 747 | if (!np) |
| 748 | return -ENODEV; |
| 749 | |
| 750 | if (of_device_is_compatible(np, "fsl,etsec2")) { |
| 751 | mode = MQ_MG_MODE; |
| 752 | poll_mode = GFAR_SQ_POLLING; |
| 753 | } else { |
| 754 | mode = SQ_SG_MODE; |
| 755 | poll_mode = GFAR_SQ_POLLING; |
| 756 | } |
| 757 | |
| 758 | if (mode == SQ_SG_MODE) { |
| 759 | num_tx_qs = 1; |
| 760 | num_rx_qs = 1; |
| 761 | } else { /* MQ_MG_MODE */ |
| 762 | /* get the actual number of supported groups */ |
| 763 | unsigned int num_grps = gfar_of_group_count(np); |
| 764 | |
| 765 | if (num_grps == 0 || num_grps > MAXGROUPS) { |
| 766 | dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n", |
| 767 | num_grps); |
| 768 | pr_err("Cannot do alloc_etherdev, aborting\n"); |
| 769 | return -EINVAL; |
| 770 | } |
| 771 | |
| 772 | if (poll_mode == GFAR_SQ_POLLING) { |
| 773 | num_tx_qs = num_grps; /* one txq per int group */ |
| 774 | num_rx_qs = num_grps; /* one rxq per int group */ |
| 775 | } else { /* GFAR_MQ_POLLING */ |
| 776 | u32 tx_queues, rx_queues; |
| 777 | int ret; |
| 778 | |
| 779 | /* parse the num of HW tx and rx queues */ |
| 780 | ret = of_property_read_u32(np, "fsl,num_tx_queues", |
| 781 | &tx_queues); |
| 782 | num_tx_qs = ret ? 1 : tx_queues; |
| 783 | |
| 784 | ret = of_property_read_u32(np, "fsl,num_rx_queues", |
| 785 | &rx_queues); |
| 786 | num_rx_qs = ret ? 1 : rx_queues; |
| 787 | } |
| 788 | } |
| 789 | |
| 790 | if (num_tx_qs > MAX_TX_QS) { |
| 791 | pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n", |
| 792 | num_tx_qs, MAX_TX_QS); |
| 793 | pr_err("Cannot do alloc_etherdev, aborting\n"); |
| 794 | return -EINVAL; |
| 795 | } |
| 796 | |
| 797 | if (num_rx_qs > MAX_RX_QS) { |
| 798 | pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n", |
| 799 | num_rx_qs, MAX_RX_QS); |
| 800 | pr_err("Cannot do alloc_etherdev, aborting\n"); |
| 801 | return -EINVAL; |
| 802 | } |
| 803 | |
| 804 | *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs); |
| 805 | dev = *pdev; |
| 806 | if (NULL == dev) |
| 807 | return -ENOMEM; |
| 808 | |
| 809 | priv = netdev_priv(dev); |
| 810 | priv->ndev = dev; |
| 811 | |
| 812 | priv->mode = mode; |
| 813 | priv->poll_mode = poll_mode; |
| 814 | |
| 815 | priv->num_tx_queues = num_tx_qs; |
| 816 | netif_set_real_num_rx_queues(dev, num_rx_qs); |
| 817 | priv->num_rx_queues = num_rx_qs; |
| 818 | |
| 819 | err = gfar_alloc_tx_queues(priv); |
| 820 | if (err) |
| 821 | goto tx_alloc_failed; |
| 822 | |
| 823 | err = gfar_alloc_rx_queues(priv); |
| 824 | if (err) |
| 825 | goto rx_alloc_failed; |
| 826 | |
| 827 | err = of_property_read_string(np, "model", &model); |
| 828 | if (err) { |
| 829 | pr_err("Device model property missing, aborting\n"); |
| 830 | goto rx_alloc_failed; |
| 831 | } |
| 832 | |
| 833 | /* Init Rx queue filer rule set linked list */ |
| 834 | INIT_LIST_HEAD(&priv->rx_list.list); |
| 835 | priv->rx_list.count = 0; |
| 836 | mutex_init(&priv->rx_queue_access); |
| 837 | |
| 838 | for (i = 0; i < MAXGROUPS; i++) |
| 839 | priv->gfargrp[i].regs = NULL; |
| 840 | |
| 841 | /* Parse and initialize group specific information */ |
| 842 | if (priv->mode == MQ_MG_MODE) { |
| 843 | for_each_available_child_of_node(np, child) { |
| 844 | if (of_node_cmp(child->name, "queue-group")) |
| 845 | continue; |
| 846 | |
| 847 | err = gfar_parse_group(child, priv, model); |
| 848 | if (err) |
| 849 | goto err_grp_init; |
| 850 | } |
| 851 | } else { /* SQ_SG_MODE */ |
| 852 | err = gfar_parse_group(np, priv, model); |
| 853 | if (err) |
| 854 | goto err_grp_init; |
| 855 | } |
| 856 | |
| 857 | stash = of_find_property(np, "bd-stash", NULL); |
| 858 | |
| 859 | if (stash) { |
| 860 | priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING; |
| 861 | priv->bd_stash_en = 1; |
| 862 | } |
| 863 | |
| 864 | err = of_property_read_u32(np, "rx-stash-len", &stash_len); |
| 865 | |
| 866 | if (err == 0) |
| 867 | priv->rx_stash_size = stash_len; |
| 868 | |
| 869 | err = of_property_read_u32(np, "rx-stash-idx", &stash_idx); |
| 870 | |
| 871 | if (err == 0) |
| 872 | priv->rx_stash_index = stash_idx; |
| 873 | |
| 874 | if (stash_len || stash_idx) |
| 875 | priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING; |
| 876 | |
| 877 | mac_addr = of_get_mac_address(np); |
| 878 | |
| 879 | if (mac_addr) |
| 880 | memcpy(dev->dev_addr, mac_addr, ETH_ALEN); |
| 881 | |
| 882 | if (model && !strcasecmp(model, "TSEC")) |
| 883 | priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | |
| 884 | FSL_GIANFAR_DEV_HAS_COALESCE | |
| 885 | FSL_GIANFAR_DEV_HAS_RMON | |
| 886 | FSL_GIANFAR_DEV_HAS_MULTI_INTR; |
| 887 | |
| 888 | if (model && !strcasecmp(model, "eTSEC")) |
| 889 | priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | |
| 890 | FSL_GIANFAR_DEV_HAS_COALESCE | |
| 891 | FSL_GIANFAR_DEV_HAS_RMON | |
| 892 | FSL_GIANFAR_DEV_HAS_MULTI_INTR | |
| 893 | FSL_GIANFAR_DEV_HAS_CSUM | |
| 894 | FSL_GIANFAR_DEV_HAS_VLAN | |
| 895 | FSL_GIANFAR_DEV_HAS_MAGIC_PACKET | |
| 896 | FSL_GIANFAR_DEV_HAS_EXTENDED_HASH | |
| 897 | FSL_GIANFAR_DEV_HAS_TIMER | |
| 898 | FSL_GIANFAR_DEV_HAS_RX_FILER; |
| 899 | |
| 900 | err = of_property_read_string(np, "phy-connection-type", &ctype); |
| 901 | |
| 902 | /* We only care about rgmii-id. The rest are autodetected */ |
| 903 | if (err == 0 && !strcmp(ctype, "rgmii-id")) |
| 904 | priv->interface = PHY_INTERFACE_MODE_RGMII_ID; |
| 905 | else |
| 906 | priv->interface = PHY_INTERFACE_MODE_MII; |
| 907 | |
| 908 | if (of_find_property(np, "fsl,magic-packet", NULL)) |
| 909 | priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET; |
| 910 | |
| 911 | if (of_get_property(np, "fsl,wake-on-filer", NULL)) |
| 912 | priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER; |
| 913 | |
| 914 | priv->phy_node = of_parse_phandle(np, "phy-handle", 0); |
| 915 | |
| 916 | /* In the case of a fixed PHY, the DT node associated |
| 917 | * to the PHY is the Ethernet MAC DT node. |
| 918 | */ |
| 919 | if (!priv->phy_node && of_phy_is_fixed_link(np)) { |
| 920 | err = of_phy_register_fixed_link(np); |
| 921 | if (err) |
| 922 | goto err_grp_init; |
| 923 | |
| 924 | priv->phy_node = of_node_get(np); |
| 925 | } |
| 926 | |
| 927 | /* Find the TBI PHY. If it's not there, we don't support SGMII */ |
| 928 | priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0); |
| 929 | |
| 930 | return 0; |
| 931 | |
| 932 | err_grp_init: |
| 933 | unmap_group_regs(priv); |
| 934 | rx_alloc_failed: |
| 935 | gfar_free_rx_queues(priv); |
| 936 | tx_alloc_failed: |
| 937 | gfar_free_tx_queues(priv); |
| 938 | free_gfar_dev(priv); |
| 939 | return err; |
| 940 | } |
| 941 | |
| 942 | static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr) |
| 943 | { |
| 944 | struct hwtstamp_config config; |
| 945 | struct gfar_private *priv = netdev_priv(netdev); |
| 946 | |
| 947 | if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) |
| 948 | return -EFAULT; |
| 949 | |
| 950 | /* reserved for future extensions */ |
| 951 | if (config.flags) |
| 952 | return -EINVAL; |
| 953 | |
| 954 | switch (config.tx_type) { |
| 955 | case HWTSTAMP_TX_OFF: |
| 956 | priv->hwts_tx_en = 0; |
| 957 | break; |
| 958 | case HWTSTAMP_TX_ON: |
| 959 | if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) |
| 960 | return -ERANGE; |
| 961 | priv->hwts_tx_en = 1; |
| 962 | break; |
| 963 | default: |
| 964 | return -ERANGE; |
| 965 | } |
| 966 | |
| 967 | switch (config.rx_filter) { |
| 968 | case HWTSTAMP_FILTER_NONE: |
| 969 | if (priv->hwts_rx_en) { |
| 970 | priv->hwts_rx_en = 0; |
| 971 | reset_gfar(netdev); |
| 972 | } |
| 973 | break; |
| 974 | default: |
| 975 | if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) |
| 976 | return -ERANGE; |
| 977 | if (!priv->hwts_rx_en) { |
| 978 | priv->hwts_rx_en = 1; |
| 979 | reset_gfar(netdev); |
| 980 | } |
| 981 | config.rx_filter = HWTSTAMP_FILTER_ALL; |
| 982 | break; |
| 983 | } |
| 984 | |
| 985 | return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? |
| 986 | -EFAULT : 0; |
| 987 | } |
| 988 | |
| 989 | static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr) |
| 990 | { |
| 991 | struct hwtstamp_config config; |
| 992 | struct gfar_private *priv = netdev_priv(netdev); |
| 993 | |
| 994 | config.flags = 0; |
| 995 | config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; |
| 996 | config.rx_filter = (priv->hwts_rx_en ? |
| 997 | HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE); |
| 998 | |
| 999 | return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? |
| 1000 | -EFAULT : 0; |
| 1001 | } |
| 1002 | |
| 1003 | static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) |
| 1004 | { |
| 1005 | struct gfar_private *priv = netdev_priv(dev); |
| 1006 | |
| 1007 | if (!netif_running(dev)) |
| 1008 | return -EINVAL; |
| 1009 | |
| 1010 | if (cmd == SIOCSHWTSTAMP) |
| 1011 | return gfar_hwtstamp_set(dev, rq); |
| 1012 | if (cmd == SIOCGHWTSTAMP) |
| 1013 | return gfar_hwtstamp_get(dev, rq); |
| 1014 | |
| 1015 | if (!priv->phydev) |
| 1016 | return -ENODEV; |
| 1017 | |
| 1018 | return phy_mii_ioctl(priv->phydev, rq, cmd); |
| 1019 | } |
| 1020 | |
| 1021 | static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar, |
| 1022 | u32 class) |
| 1023 | { |
| 1024 | u32 rqfpr = FPR_FILER_MASK; |
| 1025 | u32 rqfcr = 0x0; |
| 1026 | |
| 1027 | rqfar--; |
| 1028 | rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT; |
| 1029 | priv->ftp_rqfpr[rqfar] = rqfpr; |
| 1030 | priv->ftp_rqfcr[rqfar] = rqfcr; |
| 1031 | gfar_write_filer(priv, rqfar, rqfcr, rqfpr); |
| 1032 | |
| 1033 | rqfar--; |
| 1034 | rqfcr = RQFCR_CMP_NOMATCH; |
| 1035 | priv->ftp_rqfpr[rqfar] = rqfpr; |
| 1036 | priv->ftp_rqfcr[rqfar] = rqfcr; |
| 1037 | gfar_write_filer(priv, rqfar, rqfcr, rqfpr); |
| 1038 | |
| 1039 | rqfar--; |
| 1040 | rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND; |
| 1041 | rqfpr = class; |
| 1042 | priv->ftp_rqfcr[rqfar] = rqfcr; |
| 1043 | priv->ftp_rqfpr[rqfar] = rqfpr; |
| 1044 | gfar_write_filer(priv, rqfar, rqfcr, rqfpr); |
| 1045 | |
| 1046 | rqfar--; |
| 1047 | rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND; |
| 1048 | rqfpr = class; |
| 1049 | priv->ftp_rqfcr[rqfar] = rqfcr; |
| 1050 | priv->ftp_rqfpr[rqfar] = rqfpr; |
| 1051 | gfar_write_filer(priv, rqfar, rqfcr, rqfpr); |
| 1052 | |
| 1053 | return rqfar; |
| 1054 | } |
| 1055 | |
| 1056 | static void gfar_init_filer_table(struct gfar_private *priv) |
| 1057 | { |
| 1058 | int i = 0x0; |
| 1059 | u32 rqfar = MAX_FILER_IDX; |
| 1060 | u32 rqfcr = 0x0; |
| 1061 | u32 rqfpr = FPR_FILER_MASK; |
| 1062 | |
| 1063 | /* Default rule */ |
| 1064 | rqfcr = RQFCR_CMP_MATCH; |
| 1065 | priv->ftp_rqfcr[rqfar] = rqfcr; |
| 1066 | priv->ftp_rqfpr[rqfar] = rqfpr; |
| 1067 | gfar_write_filer(priv, rqfar, rqfcr, rqfpr); |
| 1068 | |
| 1069 | rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6); |
| 1070 | rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP); |
| 1071 | rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP); |
| 1072 | rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4); |
| 1073 | rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP); |
| 1074 | rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP); |
| 1075 | |
| 1076 | /* cur_filer_idx indicated the first non-masked rule */ |
| 1077 | priv->cur_filer_idx = rqfar; |
| 1078 | |
| 1079 | /* Rest are masked rules */ |
| 1080 | rqfcr = RQFCR_CMP_NOMATCH; |
| 1081 | for (i = 0; i < rqfar; i++) { |
| 1082 | priv->ftp_rqfcr[i] = rqfcr; |
| 1083 | priv->ftp_rqfpr[i] = rqfpr; |
| 1084 | gfar_write_filer(priv, i, rqfcr, rqfpr); |
| 1085 | } |
| 1086 | } |
| 1087 | |
| 1088 | #ifdef CONFIG_PPC |
| 1089 | static void __gfar_detect_errata_83xx(struct gfar_private *priv) |
| 1090 | { |
| 1091 | unsigned int pvr = mfspr(SPRN_PVR); |
| 1092 | unsigned int svr = mfspr(SPRN_SVR); |
| 1093 | unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */ |
| 1094 | unsigned int rev = svr & 0xffff; |
| 1095 | |
| 1096 | /* MPC8313 Rev 2.0 and higher; All MPC837x */ |
| 1097 | if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) || |
| 1098 | (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) |
| 1099 | priv->errata |= GFAR_ERRATA_74; |
| 1100 | |
| 1101 | /* MPC8313 and MPC837x all rev */ |
| 1102 | if ((pvr == 0x80850010 && mod == 0x80b0) || |
| 1103 | (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) |
| 1104 | priv->errata |= GFAR_ERRATA_76; |
| 1105 | |
| 1106 | /* MPC8313 Rev < 2.0 */ |
| 1107 | if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) |
| 1108 | priv->errata |= GFAR_ERRATA_12; |
| 1109 | } |
| 1110 | |
| 1111 | static void __gfar_detect_errata_85xx(struct gfar_private *priv) |
| 1112 | { |
| 1113 | unsigned int svr = mfspr(SPRN_SVR); |
| 1114 | |
| 1115 | if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20)) |
| 1116 | priv->errata |= GFAR_ERRATA_12; |
| 1117 | if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) || |
| 1118 | ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20))) |
| 1119 | priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */ |
| 1120 | } |
| 1121 | #endif |
| 1122 | |
| 1123 | static void gfar_detect_errata(struct gfar_private *priv) |
| 1124 | { |
| 1125 | struct device *dev = &priv->ofdev->dev; |
| 1126 | |
| 1127 | /* no plans to fix */ |
| 1128 | priv->errata |= GFAR_ERRATA_A002; |
| 1129 | |
| 1130 | #ifdef CONFIG_PPC |
| 1131 | if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2)) |
| 1132 | __gfar_detect_errata_85xx(priv); |
| 1133 | else /* non-mpc85xx parts, i.e. e300 core based */ |
| 1134 | __gfar_detect_errata_83xx(priv); |
| 1135 | #endif |
| 1136 | |
| 1137 | if (priv->errata) |
| 1138 | dev_info(dev, "enabled errata workarounds, flags: 0x%x\n", |
| 1139 | priv->errata); |
| 1140 | } |
| 1141 | |
| 1142 | void gfar_mac_reset(struct gfar_private *priv) |
| 1143 | { |
| 1144 | struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| 1145 | u32 tempval; |
| 1146 | |
| 1147 | /* Reset MAC layer */ |
| 1148 | gfar_write(®s->maccfg1, MACCFG1_SOFT_RESET); |
| 1149 | |
| 1150 | /* We need to delay at least 3 TX clocks */ |
| 1151 | udelay(3); |
| 1152 | |
| 1153 | /* the soft reset bit is not self-resetting, so we need to |
| 1154 | * clear it before resuming normal operation |
| 1155 | */ |
| 1156 | gfar_write(®s->maccfg1, 0); |
| 1157 | |
| 1158 | udelay(3); |
| 1159 | |
| 1160 | gfar_rx_offload_en(priv); |
| 1161 | |
| 1162 | /* Initialize the max receive frame/buffer lengths */ |
| 1163 | gfar_write(®s->maxfrm, GFAR_JUMBO_FRAME_SIZE); |
| 1164 | gfar_write(®s->mrblr, GFAR_RXB_SIZE); |
| 1165 | |
| 1166 | /* Initialize the Minimum Frame Length Register */ |
| 1167 | gfar_write(®s->minflr, MINFLR_INIT_SETTINGS); |
| 1168 | |
| 1169 | /* Initialize MACCFG2. */ |
| 1170 | tempval = MACCFG2_INIT_SETTINGS; |
| 1171 | |
| 1172 | /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1 |
| 1173 | * are marked as truncated. Avoid this by MACCFG2[Huge Frame]=1, |
| 1174 | * and by checking RxBD[LG] and discarding larger than MAXFRM. |
| 1175 | */ |
| 1176 | if (gfar_has_errata(priv, GFAR_ERRATA_74)) |
| 1177 | tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK; |
| 1178 | |
| 1179 | gfar_write(®s->maccfg2, tempval); |
| 1180 | |
| 1181 | /* Clear mac addr hash registers */ |
| 1182 | gfar_write(®s->igaddr0, 0); |
| 1183 | gfar_write(®s->igaddr1, 0); |
| 1184 | gfar_write(®s->igaddr2, 0); |
| 1185 | gfar_write(®s->igaddr3, 0); |
| 1186 | gfar_write(®s->igaddr4, 0); |
| 1187 | gfar_write(®s->igaddr5, 0); |
| 1188 | gfar_write(®s->igaddr6, 0); |
| 1189 | gfar_write(®s->igaddr7, 0); |
| 1190 | |
| 1191 | gfar_write(®s->gaddr0, 0); |
| 1192 | gfar_write(®s->gaddr1, 0); |
| 1193 | gfar_write(®s->gaddr2, 0); |
| 1194 | gfar_write(®s->gaddr3, 0); |
| 1195 | gfar_write(®s->gaddr4, 0); |
| 1196 | gfar_write(®s->gaddr5, 0); |
| 1197 | gfar_write(®s->gaddr6, 0); |
| 1198 | gfar_write(®s->gaddr7, 0); |
| 1199 | |
| 1200 | if (priv->extended_hash) |
| 1201 | gfar_clear_exact_match(priv->ndev); |
| 1202 | |
| 1203 | gfar_mac_rx_config(priv); |
| 1204 | |
| 1205 | gfar_mac_tx_config(priv); |
| 1206 | |
| 1207 | gfar_set_mac_address(priv->ndev); |
| 1208 | |
| 1209 | gfar_set_multi(priv->ndev); |
| 1210 | |
| 1211 | /* clear ievent and imask before configuring coalescing */ |
| 1212 | gfar_ints_disable(priv); |
| 1213 | |
| 1214 | /* Configure the coalescing support */ |
| 1215 | gfar_configure_coalescing_all(priv); |
| 1216 | } |
| 1217 | |
| 1218 | static void gfar_hw_init(struct gfar_private *priv) |
| 1219 | { |
| 1220 | struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| 1221 | u32 attrs; |
| 1222 | |
| 1223 | /* Stop the DMA engine now, in case it was running before |
| 1224 | * (The firmware could have used it, and left it running). |
| 1225 | */ |
| 1226 | gfar_halt(priv); |
| 1227 | |
| 1228 | gfar_mac_reset(priv); |
| 1229 | |
| 1230 | /* Zero out the rmon mib registers if it has them */ |
| 1231 | if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { |
| 1232 | memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib)); |
| 1233 | |
| 1234 | /* Mask off the CAM interrupts */ |
| 1235 | gfar_write(®s->rmon.cam1, 0xffffffff); |
| 1236 | gfar_write(®s->rmon.cam2, 0xffffffff); |
| 1237 | } |
| 1238 | |
| 1239 | /* Initialize ECNTRL */ |
| 1240 | gfar_write(®s->ecntrl, ECNTRL_INIT_SETTINGS); |
| 1241 | |
| 1242 | /* Set the extraction length and index */ |
| 1243 | attrs = ATTRELI_EL(priv->rx_stash_size) | |
| 1244 | ATTRELI_EI(priv->rx_stash_index); |
| 1245 | |
| 1246 | gfar_write(®s->attreli, attrs); |
| 1247 | |
| 1248 | /* Start with defaults, and add stashing |
| 1249 | * depending on driver parameters |
| 1250 | */ |
| 1251 | attrs = ATTR_INIT_SETTINGS; |
| 1252 | |
| 1253 | if (priv->bd_stash_en) |
| 1254 | attrs |= ATTR_BDSTASH; |
| 1255 | |
| 1256 | if (priv->rx_stash_size != 0) |
| 1257 | attrs |= ATTR_BUFSTASH; |
| 1258 | |
| 1259 | gfar_write(®s->attr, attrs); |
| 1260 | |
| 1261 | /* FIFO configs */ |
| 1262 | gfar_write(®s->fifo_tx_thr, DEFAULT_FIFO_TX_THR); |
| 1263 | gfar_write(®s->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE); |
| 1264 | gfar_write(®s->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF); |
| 1265 | |
| 1266 | /* Program the interrupt steering regs, only for MG devices */ |
| 1267 | if (priv->num_grps > 1) |
| 1268 | gfar_write_isrg(priv); |
| 1269 | } |
| 1270 | |
| 1271 | static void gfar_init_addr_hash_table(struct gfar_private *priv) |
| 1272 | { |
| 1273 | struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| 1274 | |
| 1275 | if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) { |
| 1276 | priv->extended_hash = 1; |
| 1277 | priv->hash_width = 9; |
| 1278 | |
| 1279 | priv->hash_regs[0] = ®s->igaddr0; |
| 1280 | priv->hash_regs[1] = ®s->igaddr1; |
| 1281 | priv->hash_regs[2] = ®s->igaddr2; |
| 1282 | priv->hash_regs[3] = ®s->igaddr3; |
| 1283 | priv->hash_regs[4] = ®s->igaddr4; |
| 1284 | priv->hash_regs[5] = ®s->igaddr5; |
| 1285 | priv->hash_regs[6] = ®s->igaddr6; |
| 1286 | priv->hash_regs[7] = ®s->igaddr7; |
| 1287 | priv->hash_regs[8] = ®s->gaddr0; |
| 1288 | priv->hash_regs[9] = ®s->gaddr1; |
| 1289 | priv->hash_regs[10] = ®s->gaddr2; |
| 1290 | priv->hash_regs[11] = ®s->gaddr3; |
| 1291 | priv->hash_regs[12] = ®s->gaddr4; |
| 1292 | priv->hash_regs[13] = ®s->gaddr5; |
| 1293 | priv->hash_regs[14] = ®s->gaddr6; |
| 1294 | priv->hash_regs[15] = ®s->gaddr7; |
| 1295 | |
| 1296 | } else { |
| 1297 | priv->extended_hash = 0; |
| 1298 | priv->hash_width = 8; |
| 1299 | |
| 1300 | priv->hash_regs[0] = ®s->gaddr0; |
| 1301 | priv->hash_regs[1] = ®s->gaddr1; |
| 1302 | priv->hash_regs[2] = ®s->gaddr2; |
| 1303 | priv->hash_regs[3] = ®s->gaddr3; |
| 1304 | priv->hash_regs[4] = ®s->gaddr4; |
| 1305 | priv->hash_regs[5] = ®s->gaddr5; |
| 1306 | priv->hash_regs[6] = ®s->gaddr6; |
| 1307 | priv->hash_regs[7] = ®s->gaddr7; |
| 1308 | } |
| 1309 | } |
| 1310 | |
| 1311 | /* Set up the ethernet device structure, private data, |
| 1312 | * and anything else we need before we start |
| 1313 | */ |
| 1314 | static int gfar_probe(struct platform_device *ofdev) |
| 1315 | { |
| 1316 | struct net_device *dev = NULL; |
| 1317 | struct gfar_private *priv = NULL; |
| 1318 | int err = 0, i; |
| 1319 | |
| 1320 | err = gfar_of_init(ofdev, &dev); |
| 1321 | |
| 1322 | if (err) |
| 1323 | return err; |
| 1324 | |
| 1325 | priv = netdev_priv(dev); |
| 1326 | priv->ndev = dev; |
| 1327 | priv->ofdev = ofdev; |
| 1328 | priv->dev = &ofdev->dev; |
| 1329 | SET_NETDEV_DEV(dev, &ofdev->dev); |
| 1330 | |
| 1331 | INIT_WORK(&priv->reset_task, gfar_reset_task); |
| 1332 | |
| 1333 | platform_set_drvdata(ofdev, priv); |
| 1334 | |
| 1335 | gfar_detect_errata(priv); |
| 1336 | |
| 1337 | /* Set the dev->base_addr to the gfar reg region */ |
| 1338 | dev->base_addr = (unsigned long) priv->gfargrp[0].regs; |
| 1339 | |
| 1340 | /* Fill in the dev structure */ |
| 1341 | dev->watchdog_timeo = TX_TIMEOUT; |
| 1342 | dev->mtu = 1500; |
| 1343 | dev->netdev_ops = &gfar_netdev_ops; |
| 1344 | dev->ethtool_ops = &gfar_ethtool_ops; |
| 1345 | |
| 1346 | /* Register for napi ...We are registering NAPI for each grp */ |
| 1347 | for (i = 0; i < priv->num_grps; i++) { |
| 1348 | if (priv->poll_mode == GFAR_SQ_POLLING) { |
| 1349 | netif_napi_add(dev, &priv->gfargrp[i].napi_rx, |
| 1350 | gfar_poll_rx_sq, GFAR_DEV_WEIGHT); |
| 1351 | netif_napi_add(dev, &priv->gfargrp[i].napi_tx, |
| 1352 | gfar_poll_tx_sq, 2); |
| 1353 | } else { |
| 1354 | netif_napi_add(dev, &priv->gfargrp[i].napi_rx, |
| 1355 | gfar_poll_rx, GFAR_DEV_WEIGHT); |
| 1356 | netif_napi_add(dev, &priv->gfargrp[i].napi_tx, |
| 1357 | gfar_poll_tx, 2); |
| 1358 | } |
| 1359 | } |
| 1360 | |
| 1361 | if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) { |
| 1362 | dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | |
| 1363 | NETIF_F_RXCSUM; |
| 1364 | dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | |
| 1365 | NETIF_F_RXCSUM | NETIF_F_HIGHDMA; |
| 1366 | } |
| 1367 | |
| 1368 | if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) { |
| 1369 | dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX | |
| 1370 | NETIF_F_HW_VLAN_CTAG_RX; |
| 1371 | dev->features |= NETIF_F_HW_VLAN_CTAG_RX; |
| 1372 | } |
| 1373 | |
| 1374 | dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; |
| 1375 | |
| 1376 | gfar_init_addr_hash_table(priv); |
| 1377 | |
| 1378 | /* Insert receive time stamps into padding alignment bytes */ |
| 1379 | if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) |
| 1380 | priv->padding = 8; |
| 1381 | |
| 1382 | if (dev->features & NETIF_F_IP_CSUM || |
| 1383 | priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) |
| 1384 | dev->needed_headroom = GMAC_FCB_LEN; |
| 1385 | |
| 1386 | /* Initializing some of the rx/tx queue level parameters */ |
| 1387 | for (i = 0; i < priv->num_tx_queues; i++) { |
| 1388 | priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE; |
| 1389 | priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE; |
| 1390 | priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE; |
| 1391 | priv->tx_queue[i]->txic = DEFAULT_TXIC; |
| 1392 | } |
| 1393 | |
| 1394 | for (i = 0; i < priv->num_rx_queues; i++) { |
| 1395 | priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE; |
| 1396 | priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE; |
| 1397 | priv->rx_queue[i]->rxic = DEFAULT_RXIC; |
| 1398 | } |
| 1399 | |
| 1400 | /* Always enable rx filer if available */ |
| 1401 | priv->rx_filer_enable = |
| 1402 | (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0; |
| 1403 | /* Enable most messages by default */ |
| 1404 | priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1; |
| 1405 | /* use pritority h/w tx queue scheduling for single queue devices */ |
| 1406 | if (priv->num_tx_queues == 1) |
| 1407 | priv->prio_sched_en = 1; |
| 1408 | |
| 1409 | set_bit(GFAR_DOWN, &priv->state); |
| 1410 | |
| 1411 | gfar_hw_init(priv); |
| 1412 | |
| 1413 | /* Carrier starts down, phylib will bring it up */ |
| 1414 | netif_carrier_off(dev); |
| 1415 | |
| 1416 | err = register_netdev(dev); |
| 1417 | |
| 1418 | if (err) { |
| 1419 | pr_err("%s: Cannot register net device, aborting\n", dev->name); |
| 1420 | goto register_fail; |
| 1421 | } |
| 1422 | |
| 1423 | if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) |
| 1424 | priv->wol_supported |= GFAR_WOL_MAGIC; |
| 1425 | |
| 1426 | if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) && |
| 1427 | priv->rx_filer_enable) |
| 1428 | priv->wol_supported |= GFAR_WOL_FILER_UCAST; |
| 1429 | |
| 1430 | device_set_wakeup_capable(&ofdev->dev, priv->wol_supported); |
| 1431 | |
| 1432 | /* fill out IRQ number and name fields */ |
| 1433 | for (i = 0; i < priv->num_grps; i++) { |
| 1434 | struct gfar_priv_grp *grp = &priv->gfargrp[i]; |
| 1435 | if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { |
| 1436 | sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s", |
| 1437 | dev->name, "_g", '0' + i, "_tx"); |
| 1438 | sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s", |
| 1439 | dev->name, "_g", '0' + i, "_rx"); |
| 1440 | sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s", |
| 1441 | dev->name, "_g", '0' + i, "_er"); |
| 1442 | } else |
| 1443 | strcpy(gfar_irq(grp, TX)->name, dev->name); |
| 1444 | } |
| 1445 | |
| 1446 | /* Initialize the filer table */ |
| 1447 | gfar_init_filer_table(priv); |
| 1448 | |
| 1449 | /* Print out the device info */ |
| 1450 | netdev_info(dev, "mac: %pM\n", dev->dev_addr); |
| 1451 | |
| 1452 | /* Even more device info helps when determining which kernel |
| 1453 | * provided which set of benchmarks. |
| 1454 | */ |
| 1455 | netdev_info(dev, "Running with NAPI enabled\n"); |
| 1456 | for (i = 0; i < priv->num_rx_queues; i++) |
| 1457 | netdev_info(dev, "RX BD ring size for Q[%d]: %d\n", |
| 1458 | i, priv->rx_queue[i]->rx_ring_size); |
| 1459 | for (i = 0; i < priv->num_tx_queues; i++) |
| 1460 | netdev_info(dev, "TX BD ring size for Q[%d]: %d\n", |
| 1461 | i, priv->tx_queue[i]->tx_ring_size); |
| 1462 | |
| 1463 | return 0; |
| 1464 | |
| 1465 | register_fail: |
| 1466 | unmap_group_regs(priv); |
| 1467 | gfar_free_rx_queues(priv); |
| 1468 | gfar_free_tx_queues(priv); |
| 1469 | of_node_put(priv->phy_node); |
| 1470 | of_node_put(priv->tbi_node); |
| 1471 | free_gfar_dev(priv); |
| 1472 | return err; |
| 1473 | } |
| 1474 | |
| 1475 | static int gfar_remove(struct platform_device *ofdev) |
| 1476 | { |
| 1477 | struct gfar_private *priv = platform_get_drvdata(ofdev); |
| 1478 | |
| 1479 | of_node_put(priv->phy_node); |
| 1480 | of_node_put(priv->tbi_node); |
| 1481 | |
| 1482 | unregister_netdev(priv->ndev); |
| 1483 | unmap_group_regs(priv); |
| 1484 | gfar_free_rx_queues(priv); |
| 1485 | gfar_free_tx_queues(priv); |
| 1486 | free_gfar_dev(priv); |
| 1487 | |
| 1488 | return 0; |
| 1489 | } |
| 1490 | |
| 1491 | #ifdef CONFIG_PM |
| 1492 | |
| 1493 | static void __gfar_filer_disable(struct gfar_private *priv) |
| 1494 | { |
| 1495 | struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| 1496 | u32 temp; |
| 1497 | |
| 1498 | temp = gfar_read(®s->rctrl); |
| 1499 | temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT); |
| 1500 | gfar_write(®s->rctrl, temp); |
| 1501 | } |
| 1502 | |
| 1503 | static void __gfar_filer_enable(struct gfar_private *priv) |
| 1504 | { |
| 1505 | struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| 1506 | u32 temp; |
| 1507 | |
| 1508 | temp = gfar_read(®s->rctrl); |
| 1509 | temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT; |
| 1510 | gfar_write(®s->rctrl, temp); |
| 1511 | } |
| 1512 | |
| 1513 | /* Filer rules implementing wol capabilities */ |
| 1514 | static void gfar_filer_config_wol(struct gfar_private *priv) |
| 1515 | { |
| 1516 | unsigned int i; |
| 1517 | u32 rqfcr; |
| 1518 | |
| 1519 | __gfar_filer_disable(priv); |
| 1520 | |
| 1521 | /* clear the filer table, reject any packet by default */ |
| 1522 | rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH; |
| 1523 | for (i = 0; i <= MAX_FILER_IDX; i++) |
| 1524 | gfar_write_filer(priv, i, rqfcr, 0); |
| 1525 | |
| 1526 | i = 0; |
| 1527 | if (priv->wol_opts & GFAR_WOL_FILER_UCAST) { |
| 1528 | /* unicast packet, accept it */ |
| 1529 | struct net_device *ndev = priv->ndev; |
| 1530 | /* get the default rx queue index */ |
| 1531 | u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex; |
| 1532 | u32 dest_mac_addr = (ndev->dev_addr[0] << 16) | |
| 1533 | (ndev->dev_addr[1] << 8) | |
| 1534 | ndev->dev_addr[2]; |
| 1535 | |
| 1536 | rqfcr = (qindex << 10) | RQFCR_AND | |
| 1537 | RQFCR_CMP_EXACT | RQFCR_PID_DAH; |
| 1538 | |
| 1539 | gfar_write_filer(priv, i++, rqfcr, dest_mac_addr); |
| 1540 | |
| 1541 | dest_mac_addr = (ndev->dev_addr[3] << 16) | |
| 1542 | (ndev->dev_addr[4] << 8) | |
| 1543 | ndev->dev_addr[5]; |
| 1544 | rqfcr = (qindex << 10) | RQFCR_GPI | |
| 1545 | RQFCR_CMP_EXACT | RQFCR_PID_DAL; |
| 1546 | gfar_write_filer(priv, i++, rqfcr, dest_mac_addr); |
| 1547 | } |
| 1548 | |
| 1549 | __gfar_filer_enable(priv); |
| 1550 | } |
| 1551 | |
| 1552 | static void gfar_filer_restore_table(struct gfar_private *priv) |
| 1553 | { |
| 1554 | u32 rqfcr, rqfpr; |
| 1555 | unsigned int i; |
| 1556 | |
| 1557 | __gfar_filer_disable(priv); |
| 1558 | |
| 1559 | for (i = 0; i <= MAX_FILER_IDX; i++) { |
| 1560 | rqfcr = priv->ftp_rqfcr[i]; |
| 1561 | rqfpr = priv->ftp_rqfpr[i]; |
| 1562 | gfar_write_filer(priv, i, rqfcr, rqfpr); |
| 1563 | } |
| 1564 | |
| 1565 | __gfar_filer_enable(priv); |
| 1566 | } |
| 1567 | |
| 1568 | /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */ |
| 1569 | static void gfar_start_wol_filer(struct gfar_private *priv) |
| 1570 | { |
| 1571 | struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| 1572 | u32 tempval; |
| 1573 | int i = 0; |
| 1574 | |
| 1575 | /* Enable Rx hw queues */ |
| 1576 | gfar_write(®s->rqueue, priv->rqueue); |
| 1577 | |
| 1578 | /* Initialize DMACTRL to have WWR and WOP */ |
| 1579 | tempval = gfar_read(®s->dmactrl); |
| 1580 | tempval |= DMACTRL_INIT_SETTINGS; |
| 1581 | gfar_write(®s->dmactrl, tempval); |
| 1582 | |
| 1583 | /* Make sure we aren't stopped */ |
| 1584 | tempval = gfar_read(®s->dmactrl); |
| 1585 | tempval &= ~DMACTRL_GRS; |
| 1586 | gfar_write(®s->dmactrl, tempval); |
| 1587 | |
| 1588 | for (i = 0; i < priv->num_grps; i++) { |
| 1589 | regs = priv->gfargrp[i].regs; |
| 1590 | /* Clear RHLT, so that the DMA starts polling now */ |
| 1591 | gfar_write(®s->rstat, priv->gfargrp[i].rstat); |
| 1592 | /* enable the Filer General Purpose Interrupt */ |
| 1593 | gfar_write(®s->imask, IMASK_FGPI); |
| 1594 | } |
| 1595 | |
| 1596 | /* Enable Rx DMA */ |
| 1597 | tempval = gfar_read(®s->maccfg1); |
| 1598 | tempval |= MACCFG1_RX_EN; |
| 1599 | gfar_write(®s->maccfg1, tempval); |
| 1600 | } |
| 1601 | |
| 1602 | static int gfar_suspend(struct device *dev) |
| 1603 | { |
| 1604 | struct gfar_private *priv = dev_get_drvdata(dev); |
| 1605 | struct net_device *ndev = priv->ndev; |
| 1606 | struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| 1607 | u32 tempval; |
| 1608 | u16 wol = priv->wol_opts; |
| 1609 | |
| 1610 | if (!netif_running(ndev)) |
| 1611 | return 0; |
| 1612 | |
| 1613 | disable_napi(priv); |
| 1614 | netif_tx_lock(ndev); |
| 1615 | netif_device_detach(ndev); |
| 1616 | netif_tx_unlock(ndev); |
| 1617 | |
| 1618 | gfar_halt(priv); |
| 1619 | |
| 1620 | if (wol & GFAR_WOL_MAGIC) { |
| 1621 | /* Enable interrupt on Magic Packet */ |
| 1622 | gfar_write(®s->imask, IMASK_MAG); |
| 1623 | |
| 1624 | /* Enable Magic Packet mode */ |
| 1625 | tempval = gfar_read(®s->maccfg2); |
| 1626 | tempval |= MACCFG2_MPEN; |
| 1627 | gfar_write(®s->maccfg2, tempval); |
| 1628 | |
| 1629 | /* re-enable the Rx block */ |
| 1630 | tempval = gfar_read(®s->maccfg1); |
| 1631 | tempval |= MACCFG1_RX_EN; |
| 1632 | gfar_write(®s->maccfg1, tempval); |
| 1633 | |
| 1634 | } else if (wol & GFAR_WOL_FILER_UCAST) { |
| 1635 | gfar_filer_config_wol(priv); |
| 1636 | gfar_start_wol_filer(priv); |
| 1637 | |
| 1638 | } else { |
| 1639 | phy_stop(priv->phydev); |
| 1640 | } |
| 1641 | |
| 1642 | return 0; |
| 1643 | } |
| 1644 | |
| 1645 | static int gfar_resume(struct device *dev) |
| 1646 | { |
| 1647 | struct gfar_private *priv = dev_get_drvdata(dev); |
| 1648 | struct net_device *ndev = priv->ndev; |
| 1649 | struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| 1650 | u32 tempval; |
| 1651 | u16 wol = priv->wol_opts; |
| 1652 | |
| 1653 | if (!netif_running(ndev)) |
| 1654 | return 0; |
| 1655 | |
| 1656 | if (wol & GFAR_WOL_MAGIC) { |
| 1657 | /* Disable Magic Packet mode */ |
| 1658 | tempval = gfar_read(®s->maccfg2); |
| 1659 | tempval &= ~MACCFG2_MPEN; |
| 1660 | gfar_write(®s->maccfg2, tempval); |
| 1661 | |
| 1662 | } else if (wol & GFAR_WOL_FILER_UCAST) { |
| 1663 | /* need to stop rx only, tx is already down */ |
| 1664 | gfar_halt(priv); |
| 1665 | gfar_filer_restore_table(priv); |
| 1666 | |
| 1667 | } else { |
| 1668 | phy_start(priv->phydev); |
| 1669 | } |
| 1670 | |
| 1671 | gfar_start(priv); |
| 1672 | |
| 1673 | netif_device_attach(ndev); |
| 1674 | enable_napi(priv); |
| 1675 | |
| 1676 | return 0; |
| 1677 | } |
| 1678 | |
| 1679 | static int gfar_restore(struct device *dev) |
| 1680 | { |
| 1681 | struct gfar_private *priv = dev_get_drvdata(dev); |
| 1682 | struct net_device *ndev = priv->ndev; |
| 1683 | |
| 1684 | if (!netif_running(ndev)) { |
| 1685 | netif_device_attach(ndev); |
| 1686 | |
| 1687 | return 0; |
| 1688 | } |
| 1689 | |
| 1690 | gfar_init_bds(ndev); |
| 1691 | |
| 1692 | gfar_mac_reset(priv); |
| 1693 | |
| 1694 | gfar_init_tx_rx_base(priv); |
| 1695 | |
| 1696 | gfar_start(priv); |
| 1697 | |
| 1698 | priv->oldlink = 0; |
| 1699 | priv->oldspeed = 0; |
| 1700 | priv->oldduplex = -1; |
| 1701 | |
| 1702 | if (priv->phydev) |
| 1703 | phy_start(priv->phydev); |
| 1704 | |
| 1705 | netif_device_attach(ndev); |
| 1706 | enable_napi(priv); |
| 1707 | |
| 1708 | return 0; |
| 1709 | } |
| 1710 | |
| 1711 | static struct dev_pm_ops gfar_pm_ops = { |
| 1712 | .suspend = gfar_suspend, |
| 1713 | .resume = gfar_resume, |
| 1714 | .freeze = gfar_suspend, |
| 1715 | .thaw = gfar_resume, |
| 1716 | .restore = gfar_restore, |
| 1717 | }; |
| 1718 | |
| 1719 | #define GFAR_PM_OPS (&gfar_pm_ops) |
| 1720 | |
| 1721 | #else |
| 1722 | |
| 1723 | #define GFAR_PM_OPS NULL |
| 1724 | |
| 1725 | #endif |
| 1726 | |
| 1727 | /* Reads the controller's registers to determine what interface |
| 1728 | * connects it to the PHY. |
| 1729 | */ |
| 1730 | static phy_interface_t gfar_get_interface(struct net_device *dev) |
| 1731 | { |
| 1732 | struct gfar_private *priv = netdev_priv(dev); |
| 1733 | struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| 1734 | u32 ecntrl; |
| 1735 | |
| 1736 | ecntrl = gfar_read(®s->ecntrl); |
| 1737 | |
| 1738 | if (ecntrl & ECNTRL_SGMII_MODE) |
| 1739 | return PHY_INTERFACE_MODE_SGMII; |
| 1740 | |
| 1741 | if (ecntrl & ECNTRL_TBI_MODE) { |
| 1742 | if (ecntrl & ECNTRL_REDUCED_MODE) |
| 1743 | return PHY_INTERFACE_MODE_RTBI; |
| 1744 | else |
| 1745 | return PHY_INTERFACE_MODE_TBI; |
| 1746 | } |
| 1747 | |
| 1748 | if (ecntrl & ECNTRL_REDUCED_MODE) { |
| 1749 | if (ecntrl & ECNTRL_REDUCED_MII_MODE) { |
| 1750 | return PHY_INTERFACE_MODE_RMII; |
| 1751 | } |
| 1752 | else { |
| 1753 | phy_interface_t interface = priv->interface; |
| 1754 | |
| 1755 | /* This isn't autodetected right now, so it must |
| 1756 | * be set by the device tree or platform code. |
| 1757 | */ |
| 1758 | if (interface == PHY_INTERFACE_MODE_RGMII_ID) |
| 1759 | return PHY_INTERFACE_MODE_RGMII_ID; |
| 1760 | |
| 1761 | return PHY_INTERFACE_MODE_RGMII; |
| 1762 | } |
| 1763 | } |
| 1764 | |
| 1765 | if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) |
| 1766 | return PHY_INTERFACE_MODE_GMII; |
| 1767 | |
| 1768 | return PHY_INTERFACE_MODE_MII; |
| 1769 | } |
| 1770 | |
| 1771 | |
| 1772 | /* Initializes driver's PHY state, and attaches to the PHY. |
| 1773 | * Returns 0 on success. |
| 1774 | */ |
| 1775 | static int init_phy(struct net_device *dev) |
| 1776 | { |
| 1777 | struct gfar_private *priv = netdev_priv(dev); |
| 1778 | uint gigabit_support = |
| 1779 | priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ? |
| 1780 | GFAR_SUPPORTED_GBIT : 0; |
| 1781 | phy_interface_t interface; |
| 1782 | |
| 1783 | priv->oldlink = 0; |
| 1784 | priv->oldspeed = 0; |
| 1785 | priv->oldduplex = -1; |
| 1786 | |
| 1787 | interface = gfar_get_interface(dev); |
| 1788 | |
| 1789 | priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0, |
| 1790 | interface); |
| 1791 | if (!priv->phydev) { |
| 1792 | dev_err(&dev->dev, "could not attach to PHY\n"); |
| 1793 | return -ENODEV; |
| 1794 | } |
| 1795 | |
| 1796 | if (interface == PHY_INTERFACE_MODE_SGMII) |
| 1797 | gfar_configure_serdes(dev); |
| 1798 | |
| 1799 | /* Remove any features not supported by the controller */ |
| 1800 | priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support); |
| 1801 | priv->phydev->advertising = priv->phydev->supported; |
| 1802 | |
| 1803 | /* Add support for flow control, but don't advertise it by default */ |
| 1804 | priv->phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause); |
| 1805 | |
| 1806 | return 0; |
| 1807 | } |
| 1808 | |
| 1809 | /* Initialize TBI PHY interface for communicating with the |
| 1810 | * SERDES lynx PHY on the chip. We communicate with this PHY |
| 1811 | * through the MDIO bus on each controller, treating it as a |
| 1812 | * "normal" PHY at the address found in the TBIPA register. We assume |
| 1813 | * that the TBIPA register is valid. Either the MDIO bus code will set |
| 1814 | * it to a value that doesn't conflict with other PHYs on the bus, or the |
| 1815 | * value doesn't matter, as there are no other PHYs on the bus. |
| 1816 | */ |
| 1817 | static void gfar_configure_serdes(struct net_device *dev) |
| 1818 | { |
| 1819 | struct gfar_private *priv = netdev_priv(dev); |
| 1820 | struct phy_device *tbiphy; |
| 1821 | |
| 1822 | if (!priv->tbi_node) { |
| 1823 | dev_warn(&dev->dev, "error: SGMII mode requires that the " |
| 1824 | "device tree specify a tbi-handle\n"); |
| 1825 | return; |
| 1826 | } |
| 1827 | |
| 1828 | tbiphy = of_phy_find_device(priv->tbi_node); |
| 1829 | if (!tbiphy) { |
| 1830 | dev_err(&dev->dev, "error: Could not get TBI device\n"); |
| 1831 | return; |
| 1832 | } |
| 1833 | |
| 1834 | /* If the link is already up, we must already be ok, and don't need to |
| 1835 | * configure and reset the TBI<->SerDes link. Maybe U-Boot configured |
| 1836 | * everything for us? Resetting it takes the link down and requires |
| 1837 | * several seconds for it to come back. |
| 1838 | */ |
| 1839 | if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) { |
| 1840 | put_device(&tbiphy->dev); |
| 1841 | return; |
| 1842 | } |
| 1843 | |
| 1844 | /* Single clk mode, mii mode off(for serdes communication) */ |
| 1845 | phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT); |
| 1846 | |
| 1847 | phy_write(tbiphy, MII_ADVERTISE, |
| 1848 | ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | |
| 1849 | ADVERTISE_1000XPSE_ASYM); |
| 1850 | |
| 1851 | phy_write(tbiphy, MII_BMCR, |
| 1852 | BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX | |
| 1853 | BMCR_SPEED1000); |
| 1854 | |
| 1855 | put_device(&tbiphy->dev); |
| 1856 | } |
| 1857 | |
| 1858 | static int __gfar_is_rx_idle(struct gfar_private *priv) |
| 1859 | { |
| 1860 | u32 res; |
| 1861 | |
| 1862 | /* Normaly TSEC should not hang on GRS commands, so we should |
| 1863 | * actually wait for IEVENT_GRSC flag. |
| 1864 | */ |
| 1865 | if (!gfar_has_errata(priv, GFAR_ERRATA_A002)) |
| 1866 | return 0; |
| 1867 | |
| 1868 | /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are |
| 1869 | * the same as bits 23-30, the eTSEC Rx is assumed to be idle |
| 1870 | * and the Rx can be safely reset. |
| 1871 | */ |
| 1872 | res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c); |
| 1873 | res &= 0x7f807f80; |
| 1874 | if ((res & 0xffff) == (res >> 16)) |
| 1875 | return 1; |
| 1876 | |
| 1877 | return 0; |
| 1878 | } |
| 1879 | |
| 1880 | /* Halt the receive and transmit queues */ |
| 1881 | static void gfar_halt_nodisable(struct gfar_private *priv) |
| 1882 | { |
| 1883 | struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| 1884 | u32 tempval; |
| 1885 | unsigned int timeout; |
| 1886 | int stopped; |
| 1887 | |
| 1888 | gfar_ints_disable(priv); |
| 1889 | |
| 1890 | if (gfar_is_dma_stopped(priv)) |
| 1891 | return; |
| 1892 | |
| 1893 | /* Stop the DMA, and wait for it to stop */ |
| 1894 | tempval = gfar_read(®s->dmactrl); |
| 1895 | tempval |= (DMACTRL_GRS | DMACTRL_GTS); |
| 1896 | gfar_write(®s->dmactrl, tempval); |
| 1897 | |
| 1898 | retry: |
| 1899 | timeout = 1000; |
| 1900 | while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) { |
| 1901 | cpu_relax(); |
| 1902 | timeout--; |
| 1903 | } |
| 1904 | |
| 1905 | if (!timeout) |
| 1906 | stopped = gfar_is_dma_stopped(priv); |
| 1907 | |
| 1908 | if (!stopped && !gfar_is_rx_dma_stopped(priv) && |
| 1909 | !__gfar_is_rx_idle(priv)) |
| 1910 | goto retry; |
| 1911 | } |
| 1912 | |
| 1913 | /* Halt the receive and transmit queues */ |
| 1914 | void gfar_halt(struct gfar_private *priv) |
| 1915 | { |
| 1916 | struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| 1917 | u32 tempval; |
| 1918 | |
| 1919 | /* Dissable the Rx/Tx hw queues */ |
| 1920 | gfar_write(®s->rqueue, 0); |
| 1921 | gfar_write(®s->tqueue, 0); |
| 1922 | |
| 1923 | mdelay(10); |
| 1924 | |
| 1925 | gfar_halt_nodisable(priv); |
| 1926 | |
| 1927 | /* Disable Rx/Tx DMA */ |
| 1928 | tempval = gfar_read(®s->maccfg1); |
| 1929 | tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN); |
| 1930 | gfar_write(®s->maccfg1, tempval); |
| 1931 | } |
| 1932 | |
| 1933 | void stop_gfar(struct net_device *dev) |
| 1934 | { |
| 1935 | struct gfar_private *priv = netdev_priv(dev); |
| 1936 | |
| 1937 | netif_tx_stop_all_queues(dev); |
| 1938 | |
| 1939 | smp_mb__before_atomic(); |
| 1940 | set_bit(GFAR_DOWN, &priv->state); |
| 1941 | smp_mb__after_atomic(); |
| 1942 | |
| 1943 | disable_napi(priv); |
| 1944 | |
| 1945 | /* disable ints and gracefully shut down Rx/Tx DMA */ |
| 1946 | gfar_halt(priv); |
| 1947 | |
| 1948 | phy_stop(priv->phydev); |
| 1949 | |
| 1950 | free_skb_resources(priv); |
| 1951 | } |
| 1952 | |
| 1953 | static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue) |
| 1954 | { |
| 1955 | struct txbd8 *txbdp; |
| 1956 | struct gfar_private *priv = netdev_priv(tx_queue->dev); |
| 1957 | int i, j; |
| 1958 | |
| 1959 | txbdp = tx_queue->tx_bd_base; |
| 1960 | |
| 1961 | for (i = 0; i < tx_queue->tx_ring_size; i++) { |
| 1962 | if (!tx_queue->tx_skbuff[i]) |
| 1963 | continue; |
| 1964 | |
| 1965 | dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr), |
| 1966 | be16_to_cpu(txbdp->length), DMA_TO_DEVICE); |
| 1967 | txbdp->lstatus = 0; |
| 1968 | for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags; |
| 1969 | j++) { |
| 1970 | txbdp++; |
| 1971 | dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr), |
| 1972 | be16_to_cpu(txbdp->length), |
| 1973 | DMA_TO_DEVICE); |
| 1974 | } |
| 1975 | txbdp++; |
| 1976 | dev_kfree_skb_any(tx_queue->tx_skbuff[i]); |
| 1977 | tx_queue->tx_skbuff[i] = NULL; |
| 1978 | } |
| 1979 | kfree(tx_queue->tx_skbuff); |
| 1980 | tx_queue->tx_skbuff = NULL; |
| 1981 | } |
| 1982 | |
| 1983 | static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue) |
| 1984 | { |
| 1985 | int i; |
| 1986 | |
| 1987 | struct rxbd8 *rxbdp = rx_queue->rx_bd_base; |
| 1988 | |
| 1989 | if (rx_queue->skb) |
| 1990 | dev_kfree_skb(rx_queue->skb); |
| 1991 | |
| 1992 | for (i = 0; i < rx_queue->rx_ring_size; i++) { |
| 1993 | struct gfar_rx_buff *rxb = &rx_queue->rx_buff[i]; |
| 1994 | |
| 1995 | rxbdp->lstatus = 0; |
| 1996 | rxbdp->bufPtr = 0; |
| 1997 | rxbdp++; |
| 1998 | |
| 1999 | if (!rxb->page) |
| 2000 | continue; |
| 2001 | |
| 2002 | dma_unmap_page(rx_queue->dev, rxb->dma, |
| 2003 | PAGE_SIZE, DMA_FROM_DEVICE); |
| 2004 | __free_page(rxb->page); |
| 2005 | |
| 2006 | rxb->page = NULL; |
| 2007 | } |
| 2008 | |
| 2009 | kfree(rx_queue->rx_buff); |
| 2010 | rx_queue->rx_buff = NULL; |
| 2011 | } |
| 2012 | |
| 2013 | /* If there are any tx skbs or rx skbs still around, free them. |
| 2014 | * Then free tx_skbuff and rx_skbuff |
| 2015 | */ |
| 2016 | static void free_skb_resources(struct gfar_private *priv) |
| 2017 | { |
| 2018 | struct gfar_priv_tx_q *tx_queue = NULL; |
| 2019 | struct gfar_priv_rx_q *rx_queue = NULL; |
| 2020 | int i; |
| 2021 | |
| 2022 | /* Go through all the buffer descriptors and free their data buffers */ |
| 2023 | for (i = 0; i < priv->num_tx_queues; i++) { |
| 2024 | struct netdev_queue *txq; |
| 2025 | |
| 2026 | tx_queue = priv->tx_queue[i]; |
| 2027 | txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex); |
| 2028 | if (tx_queue->tx_skbuff) |
| 2029 | free_skb_tx_queue(tx_queue); |
| 2030 | netdev_tx_reset_queue(txq); |
| 2031 | } |
| 2032 | |
| 2033 | for (i = 0; i < priv->num_rx_queues; i++) { |
| 2034 | rx_queue = priv->rx_queue[i]; |
| 2035 | if (rx_queue->rx_buff) |
| 2036 | free_skb_rx_queue(rx_queue); |
| 2037 | } |
| 2038 | |
| 2039 | dma_free_coherent(priv->dev, |
| 2040 | sizeof(struct txbd8) * priv->total_tx_ring_size + |
| 2041 | sizeof(struct rxbd8) * priv->total_rx_ring_size, |
| 2042 | priv->tx_queue[0]->tx_bd_base, |
| 2043 | priv->tx_queue[0]->tx_bd_dma_base); |
| 2044 | } |
| 2045 | |
| 2046 | void gfar_start(struct gfar_private *priv) |
| 2047 | { |
| 2048 | struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| 2049 | u32 tempval; |
| 2050 | int i = 0; |
| 2051 | |
| 2052 | /* Enable Rx/Tx hw queues */ |
| 2053 | gfar_write(®s->rqueue, priv->rqueue); |
| 2054 | gfar_write(®s->tqueue, priv->tqueue); |
| 2055 | |
| 2056 | /* Initialize DMACTRL to have WWR and WOP */ |
| 2057 | tempval = gfar_read(®s->dmactrl); |
| 2058 | tempval |= DMACTRL_INIT_SETTINGS; |
| 2059 | gfar_write(®s->dmactrl, tempval); |
| 2060 | |
| 2061 | /* Make sure we aren't stopped */ |
| 2062 | tempval = gfar_read(®s->dmactrl); |
| 2063 | tempval &= ~(DMACTRL_GRS | DMACTRL_GTS); |
| 2064 | gfar_write(®s->dmactrl, tempval); |
| 2065 | |
| 2066 | for (i = 0; i < priv->num_grps; i++) { |
| 2067 | regs = priv->gfargrp[i].regs; |
| 2068 | /* Clear THLT/RHLT, so that the DMA starts polling now */ |
| 2069 | gfar_write(®s->tstat, priv->gfargrp[i].tstat); |
| 2070 | gfar_write(®s->rstat, priv->gfargrp[i].rstat); |
| 2071 | } |
| 2072 | |
| 2073 | /* Enable Rx/Tx DMA */ |
| 2074 | tempval = gfar_read(®s->maccfg1); |
| 2075 | tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN); |
| 2076 | gfar_write(®s->maccfg1, tempval); |
| 2077 | |
| 2078 | gfar_ints_enable(priv); |
| 2079 | |
| 2080 | priv->ndev->trans_start = jiffies; /* prevent tx timeout */ |
| 2081 | } |
| 2082 | |
| 2083 | static void free_grp_irqs(struct gfar_priv_grp *grp) |
| 2084 | { |
| 2085 | free_irq(gfar_irq(grp, TX)->irq, grp); |
| 2086 | free_irq(gfar_irq(grp, RX)->irq, grp); |
| 2087 | free_irq(gfar_irq(grp, ER)->irq, grp); |
| 2088 | } |
| 2089 | |
| 2090 | static int register_grp_irqs(struct gfar_priv_grp *grp) |
| 2091 | { |
| 2092 | struct gfar_private *priv = grp->priv; |
| 2093 | struct net_device *dev = priv->ndev; |
| 2094 | int err; |
| 2095 | |
| 2096 | /* If the device has multiple interrupts, register for |
| 2097 | * them. Otherwise, only register for the one |
| 2098 | */ |
| 2099 | if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { |
| 2100 | /* Install our interrupt handlers for Error, |
| 2101 | * Transmit, and Receive |
| 2102 | */ |
| 2103 | err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0, |
| 2104 | gfar_irq(grp, ER)->name, grp); |
| 2105 | if (err < 0) { |
| 2106 | netif_err(priv, intr, dev, "Can't get IRQ %d\n", |
| 2107 | gfar_irq(grp, ER)->irq); |
| 2108 | |
| 2109 | goto err_irq_fail; |
| 2110 | } |
| 2111 | enable_irq_wake(gfar_irq(grp, ER)->irq); |
| 2112 | |
| 2113 | err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0, |
| 2114 | gfar_irq(grp, TX)->name, grp); |
| 2115 | if (err < 0) { |
| 2116 | netif_err(priv, intr, dev, "Can't get IRQ %d\n", |
| 2117 | gfar_irq(grp, TX)->irq); |
| 2118 | goto tx_irq_fail; |
| 2119 | } |
| 2120 | err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0, |
| 2121 | gfar_irq(grp, RX)->name, grp); |
| 2122 | if (err < 0) { |
| 2123 | netif_err(priv, intr, dev, "Can't get IRQ %d\n", |
| 2124 | gfar_irq(grp, RX)->irq); |
| 2125 | goto rx_irq_fail; |
| 2126 | } |
| 2127 | enable_irq_wake(gfar_irq(grp, RX)->irq); |
| 2128 | |
| 2129 | } else { |
| 2130 | err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0, |
| 2131 | gfar_irq(grp, TX)->name, grp); |
| 2132 | if (err < 0) { |
| 2133 | netif_err(priv, intr, dev, "Can't get IRQ %d\n", |
| 2134 | gfar_irq(grp, TX)->irq); |
| 2135 | goto err_irq_fail; |
| 2136 | } |
| 2137 | enable_irq_wake(gfar_irq(grp, TX)->irq); |
| 2138 | } |
| 2139 | |
| 2140 | return 0; |
| 2141 | |
| 2142 | rx_irq_fail: |
| 2143 | free_irq(gfar_irq(grp, TX)->irq, grp); |
| 2144 | tx_irq_fail: |
| 2145 | free_irq(gfar_irq(grp, ER)->irq, grp); |
| 2146 | err_irq_fail: |
| 2147 | return err; |
| 2148 | |
| 2149 | } |
| 2150 | |
| 2151 | static void gfar_free_irq(struct gfar_private *priv) |
| 2152 | { |
| 2153 | int i; |
| 2154 | |
| 2155 | /* Free the IRQs */ |
| 2156 | if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { |
| 2157 | for (i = 0; i < priv->num_grps; i++) |
| 2158 | free_grp_irqs(&priv->gfargrp[i]); |
| 2159 | } else { |
| 2160 | for (i = 0; i < priv->num_grps; i++) |
| 2161 | free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq, |
| 2162 | &priv->gfargrp[i]); |
| 2163 | } |
| 2164 | } |
| 2165 | |
| 2166 | static int gfar_request_irq(struct gfar_private *priv) |
| 2167 | { |
| 2168 | int err, i, j; |
| 2169 | |
| 2170 | for (i = 0; i < priv->num_grps; i++) { |
| 2171 | err = register_grp_irqs(&priv->gfargrp[i]); |
| 2172 | if (err) { |
| 2173 | for (j = 0; j < i; j++) |
| 2174 | free_grp_irqs(&priv->gfargrp[j]); |
| 2175 | return err; |
| 2176 | } |
| 2177 | } |
| 2178 | |
| 2179 | return 0; |
| 2180 | } |
| 2181 | |
| 2182 | /* Bring the controller up and running */ |
| 2183 | int startup_gfar(struct net_device *ndev) |
| 2184 | { |
| 2185 | struct gfar_private *priv = netdev_priv(ndev); |
| 2186 | int err; |
| 2187 | |
| 2188 | gfar_mac_reset(priv); |
| 2189 | |
| 2190 | err = gfar_alloc_skb_resources(ndev); |
| 2191 | if (err) |
| 2192 | return err; |
| 2193 | |
| 2194 | gfar_init_tx_rx_base(priv); |
| 2195 | |
| 2196 | smp_mb__before_atomic(); |
| 2197 | clear_bit(GFAR_DOWN, &priv->state); |
| 2198 | smp_mb__after_atomic(); |
| 2199 | |
| 2200 | /* Start Rx/Tx DMA and enable the interrupts */ |
| 2201 | gfar_start(priv); |
| 2202 | |
| 2203 | /* force link state update after mac reset */ |
| 2204 | priv->oldlink = 0; |
| 2205 | priv->oldspeed = 0; |
| 2206 | priv->oldduplex = -1; |
| 2207 | |
| 2208 | phy_start(priv->phydev); |
| 2209 | |
| 2210 | enable_napi(priv); |
| 2211 | |
| 2212 | netif_tx_wake_all_queues(ndev); |
| 2213 | |
| 2214 | return 0; |
| 2215 | } |
| 2216 | |
| 2217 | /* Called when something needs to use the ethernet device |
| 2218 | * Returns 0 for success. |
| 2219 | */ |
| 2220 | static int gfar_enet_open(struct net_device *dev) |
| 2221 | { |
| 2222 | struct gfar_private *priv = netdev_priv(dev); |
| 2223 | int err; |
| 2224 | |
| 2225 | err = init_phy(dev); |
| 2226 | if (err) |
| 2227 | return err; |
| 2228 | |
| 2229 | err = gfar_request_irq(priv); |
| 2230 | if (err) |
| 2231 | return err; |
| 2232 | |
| 2233 | err = startup_gfar(dev); |
| 2234 | if (err) |
| 2235 | return err; |
| 2236 | |
| 2237 | return err; |
| 2238 | } |
| 2239 | |
| 2240 | static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb) |
| 2241 | { |
| 2242 | struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN); |
| 2243 | |
| 2244 | memset(fcb, 0, GMAC_FCB_LEN); |
| 2245 | |
| 2246 | return fcb; |
| 2247 | } |
| 2248 | |
| 2249 | static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb, |
| 2250 | int fcb_length) |
| 2251 | { |
| 2252 | /* If we're here, it's a IP packet with a TCP or UDP |
| 2253 | * payload. We set it to checksum, using a pseudo-header |
| 2254 | * we provide |
| 2255 | */ |
| 2256 | u8 flags = TXFCB_DEFAULT; |
| 2257 | |
| 2258 | /* Tell the controller what the protocol is |
| 2259 | * And provide the already calculated phcs |
| 2260 | */ |
| 2261 | if (ip_hdr(skb)->protocol == IPPROTO_UDP) { |
| 2262 | flags |= TXFCB_UDP; |
| 2263 | fcb->phcs = (__force __be16)(udp_hdr(skb)->check); |
| 2264 | } else |
| 2265 | fcb->phcs = (__force __be16)(tcp_hdr(skb)->check); |
| 2266 | |
| 2267 | /* l3os is the distance between the start of the |
| 2268 | * frame (skb->data) and the start of the IP hdr. |
| 2269 | * l4os is the distance between the start of the |
| 2270 | * l3 hdr and the l4 hdr |
| 2271 | */ |
| 2272 | fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length); |
| 2273 | fcb->l4os = skb_network_header_len(skb); |
| 2274 | |
| 2275 | fcb->flags = flags; |
| 2276 | } |
| 2277 | |
| 2278 | void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb) |
| 2279 | { |
| 2280 | fcb->flags |= TXFCB_VLN; |
| 2281 | fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb)); |
| 2282 | } |
| 2283 | |
| 2284 | static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride, |
| 2285 | struct txbd8 *base, int ring_size) |
| 2286 | { |
| 2287 | struct txbd8 *new_bd = bdp + stride; |
| 2288 | |
| 2289 | return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd; |
| 2290 | } |
| 2291 | |
| 2292 | static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base, |
| 2293 | int ring_size) |
| 2294 | { |
| 2295 | return skip_txbd(bdp, 1, base, ring_size); |
| 2296 | } |
| 2297 | |
| 2298 | /* eTSEC12: csum generation not supported for some fcb offsets */ |
| 2299 | static inline bool gfar_csum_errata_12(struct gfar_private *priv, |
| 2300 | unsigned long fcb_addr) |
| 2301 | { |
| 2302 | return (gfar_has_errata(priv, GFAR_ERRATA_12) && |
| 2303 | (fcb_addr % 0x20) > 0x18); |
| 2304 | } |
| 2305 | |
| 2306 | /* eTSEC76: csum generation for frames larger than 2500 may |
| 2307 | * cause excess delays before start of transmission |
| 2308 | */ |
| 2309 | static inline bool gfar_csum_errata_76(struct gfar_private *priv, |
| 2310 | unsigned int len) |
| 2311 | { |
| 2312 | return (gfar_has_errata(priv, GFAR_ERRATA_76) && |
| 2313 | (len > 2500)); |
| 2314 | } |
| 2315 | |
| 2316 | /* This is called by the kernel when a frame is ready for transmission. |
| 2317 | * It is pointed to by the dev->hard_start_xmit function pointer |
| 2318 | */ |
| 2319 | static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| 2320 | { |
| 2321 | struct gfar_private *priv = netdev_priv(dev); |
| 2322 | struct gfar_priv_tx_q *tx_queue = NULL; |
| 2323 | struct netdev_queue *txq; |
| 2324 | struct gfar __iomem *regs = NULL; |
| 2325 | struct txfcb *fcb = NULL; |
| 2326 | struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL; |
| 2327 | u32 lstatus; |
| 2328 | int i, rq = 0; |
| 2329 | int do_tstamp, do_csum, do_vlan; |
| 2330 | u32 bufaddr; |
| 2331 | unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0; |
| 2332 | |
| 2333 | rq = skb->queue_mapping; |
| 2334 | tx_queue = priv->tx_queue[rq]; |
| 2335 | txq = netdev_get_tx_queue(dev, rq); |
| 2336 | base = tx_queue->tx_bd_base; |
| 2337 | regs = tx_queue->grp->regs; |
| 2338 | |
| 2339 | do_csum = (CHECKSUM_PARTIAL == skb->ip_summed); |
| 2340 | do_vlan = skb_vlan_tag_present(skb); |
| 2341 | do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && |
| 2342 | priv->hwts_tx_en; |
| 2343 | |
| 2344 | if (do_csum || do_vlan) |
| 2345 | fcb_len = GMAC_FCB_LEN; |
| 2346 | |
| 2347 | /* check if time stamp should be generated */ |
| 2348 | if (unlikely(do_tstamp)) |
| 2349 | fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN; |
| 2350 | |
| 2351 | /* make space for additional header when fcb is needed */ |
| 2352 | if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) { |
| 2353 | struct sk_buff *skb_new; |
| 2354 | |
| 2355 | skb_new = skb_realloc_headroom(skb, fcb_len); |
| 2356 | if (!skb_new) { |
| 2357 | dev->stats.tx_errors++; |
| 2358 | dev_kfree_skb_any(skb); |
| 2359 | return NETDEV_TX_OK; |
| 2360 | } |
| 2361 | |
| 2362 | if (skb->sk) |
| 2363 | skb_set_owner_w(skb_new, skb->sk); |
| 2364 | dev_consume_skb_any(skb); |
| 2365 | skb = skb_new; |
| 2366 | } |
| 2367 | |
| 2368 | /* total number of fragments in the SKB */ |
| 2369 | nr_frags = skb_shinfo(skb)->nr_frags; |
| 2370 | |
| 2371 | /* calculate the required number of TxBDs for this skb */ |
| 2372 | if (unlikely(do_tstamp)) |
| 2373 | nr_txbds = nr_frags + 2; |
| 2374 | else |
| 2375 | nr_txbds = nr_frags + 1; |
| 2376 | |
| 2377 | /* check if there is space to queue this packet */ |
| 2378 | if (nr_txbds > tx_queue->num_txbdfree) { |
| 2379 | /* no space, stop the queue */ |
| 2380 | netif_tx_stop_queue(txq); |
| 2381 | dev->stats.tx_fifo_errors++; |
| 2382 | return NETDEV_TX_BUSY; |
| 2383 | } |
| 2384 | |
| 2385 | /* Update transmit stats */ |
| 2386 | bytes_sent = skb->len; |
| 2387 | tx_queue->stats.tx_bytes += bytes_sent; |
| 2388 | /* keep Tx bytes on wire for BQL accounting */ |
| 2389 | GFAR_CB(skb)->bytes_sent = bytes_sent; |
| 2390 | tx_queue->stats.tx_packets++; |
| 2391 | |
| 2392 | txbdp = txbdp_start = tx_queue->cur_tx; |
| 2393 | lstatus = be32_to_cpu(txbdp->lstatus); |
| 2394 | |
| 2395 | /* Time stamp insertion requires one additional TxBD */ |
| 2396 | if (unlikely(do_tstamp)) |
| 2397 | txbdp_tstamp = txbdp = next_txbd(txbdp, base, |
| 2398 | tx_queue->tx_ring_size); |
| 2399 | |
| 2400 | if (nr_frags == 0) { |
| 2401 | if (unlikely(do_tstamp)) { |
| 2402 | u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus); |
| 2403 | |
| 2404 | lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); |
| 2405 | txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts); |
| 2406 | } else { |
| 2407 | lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); |
| 2408 | } |
| 2409 | } else { |
| 2410 | /* Place the fragment addresses and lengths into the TxBDs */ |
| 2411 | for (i = 0; i < nr_frags; i++) { |
| 2412 | unsigned int frag_len; |
| 2413 | /* Point at the next BD, wrapping as needed */ |
| 2414 | txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); |
| 2415 | |
| 2416 | frag_len = skb_shinfo(skb)->frags[i].size; |
| 2417 | |
| 2418 | lstatus = be32_to_cpu(txbdp->lstatus) | frag_len | |
| 2419 | BD_LFLAG(TXBD_READY); |
| 2420 | |
| 2421 | /* Handle the last BD specially */ |
| 2422 | if (i == nr_frags - 1) |
| 2423 | lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); |
| 2424 | |
| 2425 | bufaddr = skb_frag_dma_map(priv->dev, |
| 2426 | &skb_shinfo(skb)->frags[i], |
| 2427 | 0, |
| 2428 | frag_len, |
| 2429 | DMA_TO_DEVICE); |
| 2430 | if (unlikely(dma_mapping_error(priv->dev, bufaddr))) |
| 2431 | goto dma_map_err; |
| 2432 | |
| 2433 | /* set the TxBD length and buffer pointer */ |
| 2434 | txbdp->bufPtr = cpu_to_be32(bufaddr); |
| 2435 | txbdp->lstatus = cpu_to_be32(lstatus); |
| 2436 | } |
| 2437 | |
| 2438 | lstatus = be32_to_cpu(txbdp_start->lstatus); |
| 2439 | } |
| 2440 | |
| 2441 | /* Add TxPAL between FCB and frame if required */ |
| 2442 | if (unlikely(do_tstamp)) { |
| 2443 | skb_push(skb, GMAC_TXPAL_LEN); |
| 2444 | memset(skb->data, 0, GMAC_TXPAL_LEN); |
| 2445 | } |
| 2446 | |
| 2447 | /* Add TxFCB if required */ |
| 2448 | if (fcb_len) { |
| 2449 | fcb = gfar_add_fcb(skb); |
| 2450 | lstatus |= BD_LFLAG(TXBD_TOE); |
| 2451 | } |
| 2452 | |
| 2453 | /* Set up checksumming */ |
| 2454 | if (do_csum) { |
| 2455 | gfar_tx_checksum(skb, fcb, fcb_len); |
| 2456 | |
| 2457 | if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) || |
| 2458 | unlikely(gfar_csum_errata_76(priv, skb->len))) { |
| 2459 | __skb_pull(skb, GMAC_FCB_LEN); |
| 2460 | skb_checksum_help(skb); |
| 2461 | if (do_vlan || do_tstamp) { |
| 2462 | /* put back a new fcb for vlan/tstamp TOE */ |
| 2463 | fcb = gfar_add_fcb(skb); |
| 2464 | } else { |
| 2465 | /* Tx TOE not used */ |
| 2466 | lstatus &= ~(BD_LFLAG(TXBD_TOE)); |
| 2467 | fcb = NULL; |
| 2468 | } |
| 2469 | } |
| 2470 | } |
| 2471 | |
| 2472 | if (do_vlan) |
| 2473 | gfar_tx_vlan(skb, fcb); |
| 2474 | |
| 2475 | /* Setup tx hardware time stamping if requested */ |
| 2476 | if (unlikely(do_tstamp)) { |
| 2477 | skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; |
| 2478 | fcb->ptp = 1; |
| 2479 | } |
| 2480 | |
| 2481 | bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb), |
| 2482 | DMA_TO_DEVICE); |
| 2483 | if (unlikely(dma_mapping_error(priv->dev, bufaddr))) |
| 2484 | goto dma_map_err; |
| 2485 | |
| 2486 | txbdp_start->bufPtr = cpu_to_be32(bufaddr); |
| 2487 | |
| 2488 | /* If time stamping is requested one additional TxBD must be set up. The |
| 2489 | * first TxBD points to the FCB and must have a data length of |
| 2490 | * GMAC_FCB_LEN. The second TxBD points to the actual frame data with |
| 2491 | * the full frame length. |
| 2492 | */ |
| 2493 | if (unlikely(do_tstamp)) { |
| 2494 | u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus); |
| 2495 | |
| 2496 | bufaddr = be32_to_cpu(txbdp_start->bufPtr); |
| 2497 | bufaddr += fcb_len; |
| 2498 | lstatus_ts |= BD_LFLAG(TXBD_READY) | |
| 2499 | (skb_headlen(skb) - fcb_len); |
| 2500 | |
| 2501 | txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr); |
| 2502 | txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts); |
| 2503 | lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN; |
| 2504 | } else { |
| 2505 | lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb); |
| 2506 | } |
| 2507 | |
| 2508 | netdev_tx_sent_queue(txq, bytes_sent); |
| 2509 | |
| 2510 | gfar_wmb(); |
| 2511 | |
| 2512 | txbdp_start->lstatus = cpu_to_be32(lstatus); |
| 2513 | |
| 2514 | gfar_wmb(); /* force lstatus write before tx_skbuff */ |
| 2515 | |
| 2516 | tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb; |
| 2517 | |
| 2518 | /* Update the current skb pointer to the next entry we will use |
| 2519 | * (wrapping if necessary) |
| 2520 | */ |
| 2521 | tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) & |
| 2522 | TX_RING_MOD_MASK(tx_queue->tx_ring_size); |
| 2523 | |
| 2524 | tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size); |
| 2525 | |
| 2526 | /* We can work in parallel with gfar_clean_tx_ring(), except |
| 2527 | * when modifying num_txbdfree. Note that we didn't grab the lock |
| 2528 | * when we were reading the num_txbdfree and checking for available |
| 2529 | * space, that's because outside of this function it can only grow. |
| 2530 | */ |
| 2531 | spin_lock_bh(&tx_queue->txlock); |
| 2532 | /* reduce TxBD free count */ |
| 2533 | tx_queue->num_txbdfree -= (nr_txbds); |
| 2534 | spin_unlock_bh(&tx_queue->txlock); |
| 2535 | |
| 2536 | /* If the next BD still needs to be cleaned up, then the bds |
| 2537 | * are full. We need to tell the kernel to stop sending us stuff. |
| 2538 | */ |
| 2539 | if (!tx_queue->num_txbdfree) { |
| 2540 | netif_tx_stop_queue(txq); |
| 2541 | |
| 2542 | dev->stats.tx_fifo_errors++; |
| 2543 | } |
| 2544 | |
| 2545 | /* Tell the DMA to go go go */ |
| 2546 | gfar_write(®s->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex); |
| 2547 | |
| 2548 | return NETDEV_TX_OK; |
| 2549 | |
| 2550 | dma_map_err: |
| 2551 | txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size); |
| 2552 | if (do_tstamp) |
| 2553 | txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); |
| 2554 | for (i = 0; i < nr_frags; i++) { |
| 2555 | lstatus = be32_to_cpu(txbdp->lstatus); |
| 2556 | if (!(lstatus & BD_LFLAG(TXBD_READY))) |
| 2557 | break; |
| 2558 | |
| 2559 | lstatus &= ~BD_LFLAG(TXBD_READY); |
| 2560 | txbdp->lstatus = cpu_to_be32(lstatus); |
| 2561 | bufaddr = be32_to_cpu(txbdp->bufPtr); |
| 2562 | dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length), |
| 2563 | DMA_TO_DEVICE); |
| 2564 | txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); |
| 2565 | } |
| 2566 | gfar_wmb(); |
| 2567 | dev_kfree_skb_any(skb); |
| 2568 | return NETDEV_TX_OK; |
| 2569 | } |
| 2570 | |
| 2571 | /* Stops the kernel queue, and halts the controller */ |
| 2572 | static int gfar_close(struct net_device *dev) |
| 2573 | { |
| 2574 | struct gfar_private *priv = netdev_priv(dev); |
| 2575 | |
| 2576 | cancel_work_sync(&priv->reset_task); |
| 2577 | stop_gfar(dev); |
| 2578 | |
| 2579 | /* Disconnect from the PHY */ |
| 2580 | phy_disconnect(priv->phydev); |
| 2581 | priv->phydev = NULL; |
| 2582 | |
| 2583 | gfar_free_irq(priv); |
| 2584 | |
| 2585 | return 0; |
| 2586 | } |
| 2587 | |
| 2588 | /* Changes the mac address if the controller is not running. */ |
| 2589 | static int gfar_set_mac_address(struct net_device *dev) |
| 2590 | { |
| 2591 | gfar_set_mac_for_addr(dev, 0, dev->dev_addr); |
| 2592 | |
| 2593 | return 0; |
| 2594 | } |
| 2595 | |
| 2596 | static int gfar_change_mtu(struct net_device *dev, int new_mtu) |
| 2597 | { |
| 2598 | struct gfar_private *priv = netdev_priv(dev); |
| 2599 | int frame_size = new_mtu + ETH_HLEN; |
| 2600 | |
| 2601 | if ((frame_size < 64) || (frame_size > GFAR_JUMBO_FRAME_SIZE)) { |
| 2602 | netif_err(priv, drv, dev, "Invalid MTU setting\n"); |
| 2603 | return -EINVAL; |
| 2604 | } |
| 2605 | |
| 2606 | while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) |
| 2607 | cpu_relax(); |
| 2608 | |
| 2609 | if (dev->flags & IFF_UP) |
| 2610 | stop_gfar(dev); |
| 2611 | |
| 2612 | dev->mtu = new_mtu; |
| 2613 | |
| 2614 | if (dev->flags & IFF_UP) |
| 2615 | startup_gfar(dev); |
| 2616 | |
| 2617 | clear_bit_unlock(GFAR_RESETTING, &priv->state); |
| 2618 | |
| 2619 | return 0; |
| 2620 | } |
| 2621 | |
| 2622 | void reset_gfar(struct net_device *ndev) |
| 2623 | { |
| 2624 | struct gfar_private *priv = netdev_priv(ndev); |
| 2625 | |
| 2626 | while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) |
| 2627 | cpu_relax(); |
| 2628 | |
| 2629 | stop_gfar(ndev); |
| 2630 | startup_gfar(ndev); |
| 2631 | |
| 2632 | clear_bit_unlock(GFAR_RESETTING, &priv->state); |
| 2633 | } |
| 2634 | |
| 2635 | /* gfar_reset_task gets scheduled when a packet has not been |
| 2636 | * transmitted after a set amount of time. |
| 2637 | * For now, assume that clearing out all the structures, and |
| 2638 | * starting over will fix the problem. |
| 2639 | */ |
| 2640 | static void gfar_reset_task(struct work_struct *work) |
| 2641 | { |
| 2642 | struct gfar_private *priv = container_of(work, struct gfar_private, |
| 2643 | reset_task); |
| 2644 | reset_gfar(priv->ndev); |
| 2645 | } |
| 2646 | |
| 2647 | static void gfar_timeout(struct net_device *dev) |
| 2648 | { |
| 2649 | struct gfar_private *priv = netdev_priv(dev); |
| 2650 | |
| 2651 | dev->stats.tx_errors++; |
| 2652 | schedule_work(&priv->reset_task); |
| 2653 | } |
| 2654 | |
| 2655 | /* Interrupt Handler for Transmit complete */ |
| 2656 | static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue) |
| 2657 | { |
| 2658 | struct net_device *dev = tx_queue->dev; |
| 2659 | struct netdev_queue *txq; |
| 2660 | struct gfar_private *priv = netdev_priv(dev); |
| 2661 | struct txbd8 *bdp, *next = NULL; |
| 2662 | struct txbd8 *lbdp = NULL; |
| 2663 | struct txbd8 *base = tx_queue->tx_bd_base; |
| 2664 | struct sk_buff *skb; |
| 2665 | int skb_dirtytx; |
| 2666 | int tx_ring_size = tx_queue->tx_ring_size; |
| 2667 | int frags = 0, nr_txbds = 0; |
| 2668 | int i; |
| 2669 | int howmany = 0; |
| 2670 | int tqi = tx_queue->qindex; |
| 2671 | unsigned int bytes_sent = 0; |
| 2672 | u32 lstatus; |
| 2673 | size_t buflen; |
| 2674 | |
| 2675 | txq = netdev_get_tx_queue(dev, tqi); |
| 2676 | bdp = tx_queue->dirty_tx; |
| 2677 | skb_dirtytx = tx_queue->skb_dirtytx; |
| 2678 | |
| 2679 | while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) { |
| 2680 | |
| 2681 | frags = skb_shinfo(skb)->nr_frags; |
| 2682 | |
| 2683 | /* When time stamping, one additional TxBD must be freed. |
| 2684 | * Also, we need to dma_unmap_single() the TxPAL. |
| 2685 | */ |
| 2686 | if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) |
| 2687 | nr_txbds = frags + 2; |
| 2688 | else |
| 2689 | nr_txbds = frags + 1; |
| 2690 | |
| 2691 | lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size); |
| 2692 | |
| 2693 | lstatus = be32_to_cpu(lbdp->lstatus); |
| 2694 | |
| 2695 | /* Only clean completed frames */ |
| 2696 | if ((lstatus & BD_LFLAG(TXBD_READY)) && |
| 2697 | (lstatus & BD_LENGTH_MASK)) |
| 2698 | break; |
| 2699 | |
| 2700 | if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { |
| 2701 | next = next_txbd(bdp, base, tx_ring_size); |
| 2702 | buflen = be16_to_cpu(next->length) + |
| 2703 | GMAC_FCB_LEN + GMAC_TXPAL_LEN; |
| 2704 | } else |
| 2705 | buflen = be16_to_cpu(bdp->length); |
| 2706 | |
| 2707 | dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr), |
| 2708 | buflen, DMA_TO_DEVICE); |
| 2709 | |
| 2710 | if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { |
| 2711 | struct skb_shared_hwtstamps shhwtstamps; |
| 2712 | u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) & |
| 2713 | ~0x7UL); |
| 2714 | |
| 2715 | memset(&shhwtstamps, 0, sizeof(shhwtstamps)); |
| 2716 | shhwtstamps.hwtstamp = ns_to_ktime(*ns); |
| 2717 | skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN); |
| 2718 | skb_tstamp_tx(skb, &shhwtstamps); |
| 2719 | gfar_clear_txbd_status(bdp); |
| 2720 | bdp = next; |
| 2721 | } |
| 2722 | |
| 2723 | gfar_clear_txbd_status(bdp); |
| 2724 | bdp = next_txbd(bdp, base, tx_ring_size); |
| 2725 | |
| 2726 | for (i = 0; i < frags; i++) { |
| 2727 | dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr), |
| 2728 | be16_to_cpu(bdp->length), |
| 2729 | DMA_TO_DEVICE); |
| 2730 | gfar_clear_txbd_status(bdp); |
| 2731 | bdp = next_txbd(bdp, base, tx_ring_size); |
| 2732 | } |
| 2733 | |
| 2734 | bytes_sent += GFAR_CB(skb)->bytes_sent; |
| 2735 | |
| 2736 | dev_kfree_skb_any(skb); |
| 2737 | |
| 2738 | tx_queue->tx_skbuff[skb_dirtytx] = NULL; |
| 2739 | |
| 2740 | skb_dirtytx = (skb_dirtytx + 1) & |
| 2741 | TX_RING_MOD_MASK(tx_ring_size); |
| 2742 | |
| 2743 | howmany++; |
| 2744 | spin_lock(&tx_queue->txlock); |
| 2745 | tx_queue->num_txbdfree += nr_txbds; |
| 2746 | spin_unlock(&tx_queue->txlock); |
| 2747 | } |
| 2748 | |
| 2749 | /* If we freed a buffer, we can restart transmission, if necessary */ |
| 2750 | if (tx_queue->num_txbdfree && |
| 2751 | netif_tx_queue_stopped(txq) && |
| 2752 | !(test_bit(GFAR_DOWN, &priv->state))) |
| 2753 | netif_wake_subqueue(priv->ndev, tqi); |
| 2754 | |
| 2755 | /* Update dirty indicators */ |
| 2756 | tx_queue->skb_dirtytx = skb_dirtytx; |
| 2757 | tx_queue->dirty_tx = bdp; |
| 2758 | |
| 2759 | netdev_tx_completed_queue(txq, howmany, bytes_sent); |
| 2760 | } |
| 2761 | |
| 2762 | static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb) |
| 2763 | { |
| 2764 | struct page *page; |
| 2765 | dma_addr_t addr; |
| 2766 | |
| 2767 | page = dev_alloc_page(); |
| 2768 | if (unlikely(!page)) |
| 2769 | return false; |
| 2770 | |
| 2771 | addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); |
| 2772 | if (unlikely(dma_mapping_error(rxq->dev, addr))) { |
| 2773 | __free_page(page); |
| 2774 | |
| 2775 | return false; |
| 2776 | } |
| 2777 | |
| 2778 | rxb->dma = addr; |
| 2779 | rxb->page = page; |
| 2780 | rxb->page_offset = 0; |
| 2781 | |
| 2782 | return true; |
| 2783 | } |
| 2784 | |
| 2785 | static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue) |
| 2786 | { |
| 2787 | struct gfar_private *priv = netdev_priv(rx_queue->ndev); |
| 2788 | struct gfar_extra_stats *estats = &priv->extra_stats; |
| 2789 | |
| 2790 | netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n"); |
| 2791 | atomic64_inc(&estats->rx_alloc_err); |
| 2792 | } |
| 2793 | |
| 2794 | static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue, |
| 2795 | int alloc_cnt) |
| 2796 | { |
| 2797 | struct rxbd8 *bdp; |
| 2798 | struct gfar_rx_buff *rxb; |
| 2799 | int i; |
| 2800 | |
| 2801 | i = rx_queue->next_to_use; |
| 2802 | bdp = &rx_queue->rx_bd_base[i]; |
| 2803 | rxb = &rx_queue->rx_buff[i]; |
| 2804 | |
| 2805 | while (alloc_cnt--) { |
| 2806 | /* try reuse page */ |
| 2807 | if (unlikely(!rxb->page)) { |
| 2808 | if (unlikely(!gfar_new_page(rx_queue, rxb))) { |
| 2809 | gfar_rx_alloc_err(rx_queue); |
| 2810 | break; |
| 2811 | } |
| 2812 | } |
| 2813 | |
| 2814 | /* Setup the new RxBD */ |
| 2815 | gfar_init_rxbdp(rx_queue, bdp, |
| 2816 | rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT); |
| 2817 | |
| 2818 | /* Update to the next pointer */ |
| 2819 | bdp++; |
| 2820 | rxb++; |
| 2821 | |
| 2822 | if (unlikely(++i == rx_queue->rx_ring_size)) { |
| 2823 | i = 0; |
| 2824 | bdp = rx_queue->rx_bd_base; |
| 2825 | rxb = rx_queue->rx_buff; |
| 2826 | } |
| 2827 | } |
| 2828 | |
| 2829 | rx_queue->next_to_use = i; |
| 2830 | rx_queue->next_to_alloc = i; |
| 2831 | } |
| 2832 | |
| 2833 | static void count_errors(u32 lstatus, struct net_device *ndev) |
| 2834 | { |
| 2835 | struct gfar_private *priv = netdev_priv(ndev); |
| 2836 | struct net_device_stats *stats = &ndev->stats; |
| 2837 | struct gfar_extra_stats *estats = &priv->extra_stats; |
| 2838 | |
| 2839 | /* If the packet was truncated, none of the other errors matter */ |
| 2840 | if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) { |
| 2841 | stats->rx_length_errors++; |
| 2842 | |
| 2843 | atomic64_inc(&estats->rx_trunc); |
| 2844 | |
| 2845 | return; |
| 2846 | } |
| 2847 | /* Count the errors, if there were any */ |
| 2848 | if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) { |
| 2849 | stats->rx_length_errors++; |
| 2850 | |
| 2851 | if (lstatus & BD_LFLAG(RXBD_LARGE)) |
| 2852 | atomic64_inc(&estats->rx_large); |
| 2853 | else |
| 2854 | atomic64_inc(&estats->rx_short); |
| 2855 | } |
| 2856 | if (lstatus & BD_LFLAG(RXBD_NONOCTET)) { |
| 2857 | stats->rx_frame_errors++; |
| 2858 | atomic64_inc(&estats->rx_nonoctet); |
| 2859 | } |
| 2860 | if (lstatus & BD_LFLAG(RXBD_CRCERR)) { |
| 2861 | atomic64_inc(&estats->rx_crcerr); |
| 2862 | stats->rx_crc_errors++; |
| 2863 | } |
| 2864 | if (lstatus & BD_LFLAG(RXBD_OVERRUN)) { |
| 2865 | atomic64_inc(&estats->rx_overrun); |
| 2866 | stats->rx_over_errors++; |
| 2867 | } |
| 2868 | } |
| 2869 | |
| 2870 | irqreturn_t gfar_receive(int irq, void *grp_id) |
| 2871 | { |
| 2872 | struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; |
| 2873 | unsigned long flags; |
| 2874 | u32 imask, ievent; |
| 2875 | |
| 2876 | ievent = gfar_read(&grp->regs->ievent); |
| 2877 | |
| 2878 | if (unlikely(ievent & IEVENT_FGPI)) { |
| 2879 | gfar_write(&grp->regs->ievent, IEVENT_FGPI); |
| 2880 | return IRQ_HANDLED; |
| 2881 | } |
| 2882 | |
| 2883 | if (likely(napi_schedule_prep(&grp->napi_rx))) { |
| 2884 | spin_lock_irqsave(&grp->grplock, flags); |
| 2885 | imask = gfar_read(&grp->regs->imask); |
| 2886 | imask &= IMASK_RX_DISABLED; |
| 2887 | gfar_write(&grp->regs->imask, imask); |
| 2888 | spin_unlock_irqrestore(&grp->grplock, flags); |
| 2889 | __napi_schedule(&grp->napi_rx); |
| 2890 | } else { |
| 2891 | /* Clear IEVENT, so interrupts aren't called again |
| 2892 | * because of the packets that have already arrived. |
| 2893 | */ |
| 2894 | gfar_write(&grp->regs->ievent, IEVENT_RX_MASK); |
| 2895 | } |
| 2896 | |
| 2897 | return IRQ_HANDLED; |
| 2898 | } |
| 2899 | |
| 2900 | /* Interrupt Handler for Transmit complete */ |
| 2901 | static irqreturn_t gfar_transmit(int irq, void *grp_id) |
| 2902 | { |
| 2903 | struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; |
| 2904 | unsigned long flags; |
| 2905 | u32 imask; |
| 2906 | |
| 2907 | if (likely(napi_schedule_prep(&grp->napi_tx))) { |
| 2908 | spin_lock_irqsave(&grp->grplock, flags); |
| 2909 | imask = gfar_read(&grp->regs->imask); |
| 2910 | imask &= IMASK_TX_DISABLED; |
| 2911 | gfar_write(&grp->regs->imask, imask); |
| 2912 | spin_unlock_irqrestore(&grp->grplock, flags); |
| 2913 | __napi_schedule(&grp->napi_tx); |
| 2914 | } else { |
| 2915 | /* Clear IEVENT, so interrupts aren't called again |
| 2916 | * because of the packets that have already arrived. |
| 2917 | */ |
| 2918 | gfar_write(&grp->regs->ievent, IEVENT_TX_MASK); |
| 2919 | } |
| 2920 | |
| 2921 | return IRQ_HANDLED; |
| 2922 | } |
| 2923 | |
| 2924 | static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus, |
| 2925 | struct sk_buff *skb, bool first) |
| 2926 | { |
| 2927 | unsigned int size = lstatus & BD_LENGTH_MASK; |
| 2928 | struct page *page = rxb->page; |
| 2929 | |
| 2930 | /* Remove the FCS from the packet length */ |
| 2931 | if (likely(lstatus & BD_LFLAG(RXBD_LAST))) |
| 2932 | size -= ETH_FCS_LEN; |
| 2933 | |
| 2934 | if (likely(first)) |
| 2935 | skb_put(skb, size); |
| 2936 | else |
| 2937 | skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, |
| 2938 | rxb->page_offset + RXBUF_ALIGNMENT, |
| 2939 | size, GFAR_RXB_TRUESIZE); |
| 2940 | |
| 2941 | /* try reuse page */ |
| 2942 | if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page))) |
| 2943 | return false; |
| 2944 | |
| 2945 | /* change offset to the other half */ |
| 2946 | rxb->page_offset ^= GFAR_RXB_TRUESIZE; |
| 2947 | |
| 2948 | atomic_inc(&page->_count); |
| 2949 | |
| 2950 | return true; |
| 2951 | } |
| 2952 | |
| 2953 | static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq, |
| 2954 | struct gfar_rx_buff *old_rxb) |
| 2955 | { |
| 2956 | struct gfar_rx_buff *new_rxb; |
| 2957 | u16 nta = rxq->next_to_alloc; |
| 2958 | |
| 2959 | new_rxb = &rxq->rx_buff[nta]; |
| 2960 | |
| 2961 | /* find next buf that can reuse a page */ |
| 2962 | nta++; |
| 2963 | rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0; |
| 2964 | |
| 2965 | /* copy page reference */ |
| 2966 | *new_rxb = *old_rxb; |
| 2967 | |
| 2968 | /* sync for use by the device */ |
| 2969 | dma_sync_single_range_for_device(rxq->dev, old_rxb->dma, |
| 2970 | old_rxb->page_offset, |
| 2971 | GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE); |
| 2972 | } |
| 2973 | |
| 2974 | static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue, |
| 2975 | u32 lstatus, struct sk_buff *skb) |
| 2976 | { |
| 2977 | struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean]; |
| 2978 | struct page *page = rxb->page; |
| 2979 | bool first = false; |
| 2980 | |
| 2981 | if (likely(!skb)) { |
| 2982 | void *buff_addr = page_address(page) + rxb->page_offset; |
| 2983 | |
| 2984 | skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE); |
| 2985 | if (unlikely(!skb)) { |
| 2986 | gfar_rx_alloc_err(rx_queue); |
| 2987 | return NULL; |
| 2988 | } |
| 2989 | skb_reserve(skb, RXBUF_ALIGNMENT); |
| 2990 | first = true; |
| 2991 | } |
| 2992 | |
| 2993 | dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset, |
| 2994 | GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE); |
| 2995 | |
| 2996 | if (gfar_add_rx_frag(rxb, lstatus, skb, first)) { |
| 2997 | /* reuse the free half of the page */ |
| 2998 | gfar_reuse_rx_page(rx_queue, rxb); |
| 2999 | } else { |
| 3000 | /* page cannot be reused, unmap it */ |
| 3001 | dma_unmap_page(rx_queue->dev, rxb->dma, |
| 3002 | PAGE_SIZE, DMA_FROM_DEVICE); |
| 3003 | } |
| 3004 | |
| 3005 | /* clear rxb content */ |
| 3006 | rxb->page = NULL; |
| 3007 | |
| 3008 | return skb; |
| 3009 | } |
| 3010 | |
| 3011 | static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb) |
| 3012 | { |
| 3013 | /* If valid headers were found, and valid sums |
| 3014 | * were verified, then we tell the kernel that no |
| 3015 | * checksumming is necessary. Otherwise, it is [FIXME] |
| 3016 | */ |
| 3017 | if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) == |
| 3018 | (RXFCB_CIP | RXFCB_CTU)) |
| 3019 | skb->ip_summed = CHECKSUM_UNNECESSARY; |
| 3020 | else |
| 3021 | skb_checksum_none_assert(skb); |
| 3022 | } |
| 3023 | |
| 3024 | /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */ |
| 3025 | static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb) |
| 3026 | { |
| 3027 | struct gfar_private *priv = netdev_priv(ndev); |
| 3028 | struct rxfcb *fcb = NULL; |
| 3029 | |
| 3030 | /* fcb is at the beginning if exists */ |
| 3031 | fcb = (struct rxfcb *)skb->data; |
| 3032 | |
| 3033 | /* Remove the FCB from the skb |
| 3034 | * Remove the padded bytes, if there are any |
| 3035 | */ |
| 3036 | if (priv->uses_rxfcb) |
| 3037 | skb_pull(skb, GMAC_FCB_LEN); |
| 3038 | |
| 3039 | /* Get receive timestamp from the skb */ |
| 3040 | if (priv->hwts_rx_en) { |
| 3041 | struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); |
| 3042 | u64 *ns = (u64 *) skb->data; |
| 3043 | |
| 3044 | memset(shhwtstamps, 0, sizeof(*shhwtstamps)); |
| 3045 | shhwtstamps->hwtstamp = ns_to_ktime(*ns); |
| 3046 | } |
| 3047 | |
| 3048 | if (priv->padding) |
| 3049 | skb_pull(skb, priv->padding); |
| 3050 | |
| 3051 | if (ndev->features & NETIF_F_RXCSUM) |
| 3052 | gfar_rx_checksum(skb, fcb); |
| 3053 | |
| 3054 | /* Tell the skb what kind of packet this is */ |
| 3055 | skb->protocol = eth_type_trans(skb, ndev); |
| 3056 | |
| 3057 | /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here. |
| 3058 | * Even if vlan rx accel is disabled, on some chips |
| 3059 | * RXFCB_VLN is pseudo randomly set. |
| 3060 | */ |
| 3061 | if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX && |
| 3062 | be16_to_cpu(fcb->flags) & RXFCB_VLN) |
| 3063 | __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), |
| 3064 | be16_to_cpu(fcb->vlctl)); |
| 3065 | } |
| 3066 | |
| 3067 | /* gfar_clean_rx_ring() -- Processes each frame in the rx ring |
| 3068 | * until the budget/quota has been reached. Returns the number |
| 3069 | * of frames handled |
| 3070 | */ |
| 3071 | int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit) |
| 3072 | { |
| 3073 | struct net_device *ndev = rx_queue->ndev; |
| 3074 | struct gfar_private *priv = netdev_priv(ndev); |
| 3075 | struct rxbd8 *bdp; |
| 3076 | int i, howmany = 0; |
| 3077 | struct sk_buff *skb = rx_queue->skb; |
| 3078 | int cleaned_cnt = gfar_rxbd_unused(rx_queue); |
| 3079 | unsigned int total_bytes = 0, total_pkts = 0; |
| 3080 | |
| 3081 | /* Get the first full descriptor */ |
| 3082 | i = rx_queue->next_to_clean; |
| 3083 | |
| 3084 | while (rx_work_limit--) { |
| 3085 | u32 lstatus; |
| 3086 | |
| 3087 | if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) { |
| 3088 | gfar_alloc_rx_buffs(rx_queue, cleaned_cnt); |
| 3089 | cleaned_cnt = 0; |
| 3090 | } |
| 3091 | |
| 3092 | bdp = &rx_queue->rx_bd_base[i]; |
| 3093 | lstatus = be32_to_cpu(bdp->lstatus); |
| 3094 | if (lstatus & BD_LFLAG(RXBD_EMPTY)) |
| 3095 | break; |
| 3096 | |
| 3097 | /* order rx buffer descriptor reads */ |
| 3098 | rmb(); |
| 3099 | |
| 3100 | /* fetch next to clean buffer from the ring */ |
| 3101 | skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb); |
| 3102 | if (unlikely(!skb)) |
| 3103 | break; |
| 3104 | |
| 3105 | cleaned_cnt++; |
| 3106 | howmany++; |
| 3107 | |
| 3108 | if (unlikely(++i == rx_queue->rx_ring_size)) |
| 3109 | i = 0; |
| 3110 | |
| 3111 | rx_queue->next_to_clean = i; |
| 3112 | |
| 3113 | /* fetch next buffer if not the last in frame */ |
| 3114 | if (!(lstatus & BD_LFLAG(RXBD_LAST))) |
| 3115 | continue; |
| 3116 | |
| 3117 | if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) { |
| 3118 | count_errors(lstatus, ndev); |
| 3119 | |
| 3120 | /* discard faulty buffer */ |
| 3121 | dev_kfree_skb(skb); |
| 3122 | skb = NULL; |
| 3123 | rx_queue->stats.rx_dropped++; |
| 3124 | continue; |
| 3125 | } |
| 3126 | |
| 3127 | /* Increment the number of packets */ |
| 3128 | total_pkts++; |
| 3129 | total_bytes += skb->len; |
| 3130 | |
| 3131 | skb_record_rx_queue(skb, rx_queue->qindex); |
| 3132 | |
| 3133 | gfar_process_frame(ndev, skb); |
| 3134 | |
| 3135 | /* Send the packet up the stack */ |
| 3136 | napi_gro_receive(&rx_queue->grp->napi_rx, skb); |
| 3137 | |
| 3138 | skb = NULL; |
| 3139 | } |
| 3140 | |
| 3141 | /* Store incomplete frames for completion */ |
| 3142 | rx_queue->skb = skb; |
| 3143 | |
| 3144 | rx_queue->stats.rx_packets += total_pkts; |
| 3145 | rx_queue->stats.rx_bytes += total_bytes; |
| 3146 | |
| 3147 | if (cleaned_cnt) |
| 3148 | gfar_alloc_rx_buffs(rx_queue, cleaned_cnt); |
| 3149 | |
| 3150 | /* Update Last Free RxBD pointer for LFC */ |
| 3151 | if (unlikely(priv->tx_actual_en)) { |
| 3152 | u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue); |
| 3153 | |
| 3154 | gfar_write(rx_queue->rfbptr, bdp_dma); |
| 3155 | } |
| 3156 | |
| 3157 | return howmany; |
| 3158 | } |
| 3159 | |
| 3160 | static int gfar_poll_rx_sq(struct napi_struct *napi, int budget) |
| 3161 | { |
| 3162 | struct gfar_priv_grp *gfargrp = |
| 3163 | container_of(napi, struct gfar_priv_grp, napi_rx); |
| 3164 | struct gfar __iomem *regs = gfargrp->regs; |
| 3165 | struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue; |
| 3166 | int work_done = 0; |
| 3167 | |
| 3168 | /* Clear IEVENT, so interrupts aren't called again |
| 3169 | * because of the packets that have already arrived |
| 3170 | */ |
| 3171 | gfar_write(®s->ievent, IEVENT_RX_MASK); |
| 3172 | |
| 3173 | work_done = gfar_clean_rx_ring(rx_queue, budget); |
| 3174 | |
| 3175 | if (work_done < budget) { |
| 3176 | u32 imask; |
| 3177 | napi_complete(napi); |
| 3178 | /* Clear the halt bit in RSTAT */ |
| 3179 | gfar_write(®s->rstat, gfargrp->rstat); |
| 3180 | |
| 3181 | spin_lock_irq(&gfargrp->grplock); |
| 3182 | imask = gfar_read(®s->imask); |
| 3183 | imask |= IMASK_RX_DEFAULT; |
| 3184 | gfar_write(®s->imask, imask); |
| 3185 | spin_unlock_irq(&gfargrp->grplock); |
| 3186 | } |
| 3187 | |
| 3188 | return work_done; |
| 3189 | } |
| 3190 | |
| 3191 | static int gfar_poll_tx_sq(struct napi_struct *napi, int budget) |
| 3192 | { |
| 3193 | struct gfar_priv_grp *gfargrp = |
| 3194 | container_of(napi, struct gfar_priv_grp, napi_tx); |
| 3195 | struct gfar __iomem *regs = gfargrp->regs; |
| 3196 | struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue; |
| 3197 | u32 imask; |
| 3198 | |
| 3199 | /* Clear IEVENT, so interrupts aren't called again |
| 3200 | * because of the packets that have already arrived |
| 3201 | */ |
| 3202 | gfar_write(®s->ievent, IEVENT_TX_MASK); |
| 3203 | |
| 3204 | /* run Tx cleanup to completion */ |
| 3205 | if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) |
| 3206 | gfar_clean_tx_ring(tx_queue); |
| 3207 | |
| 3208 | napi_complete(napi); |
| 3209 | |
| 3210 | spin_lock_irq(&gfargrp->grplock); |
| 3211 | imask = gfar_read(®s->imask); |
| 3212 | imask |= IMASK_TX_DEFAULT; |
| 3213 | gfar_write(®s->imask, imask); |
| 3214 | spin_unlock_irq(&gfargrp->grplock); |
| 3215 | |
| 3216 | return 0; |
| 3217 | } |
| 3218 | |
| 3219 | static int gfar_poll_rx(struct napi_struct *napi, int budget) |
| 3220 | { |
| 3221 | struct gfar_priv_grp *gfargrp = |
| 3222 | container_of(napi, struct gfar_priv_grp, napi_rx); |
| 3223 | struct gfar_private *priv = gfargrp->priv; |
| 3224 | struct gfar __iomem *regs = gfargrp->regs; |
| 3225 | struct gfar_priv_rx_q *rx_queue = NULL; |
| 3226 | int work_done = 0, work_done_per_q = 0; |
| 3227 | int i, budget_per_q = 0; |
| 3228 | unsigned long rstat_rxf; |
| 3229 | int num_act_queues; |
| 3230 | |
| 3231 | /* Clear IEVENT, so interrupts aren't called again |
| 3232 | * because of the packets that have already arrived |
| 3233 | */ |
| 3234 | gfar_write(®s->ievent, IEVENT_RX_MASK); |
| 3235 | |
| 3236 | rstat_rxf = gfar_read(®s->rstat) & RSTAT_RXF_MASK; |
| 3237 | |
| 3238 | num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS); |
| 3239 | if (num_act_queues) |
| 3240 | budget_per_q = budget/num_act_queues; |
| 3241 | |
| 3242 | for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) { |
| 3243 | /* skip queue if not active */ |
| 3244 | if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i))) |
| 3245 | continue; |
| 3246 | |
| 3247 | rx_queue = priv->rx_queue[i]; |
| 3248 | work_done_per_q = |
| 3249 | gfar_clean_rx_ring(rx_queue, budget_per_q); |
| 3250 | work_done += work_done_per_q; |
| 3251 | |
| 3252 | /* finished processing this queue */ |
| 3253 | if (work_done_per_q < budget_per_q) { |
| 3254 | /* clear active queue hw indication */ |
| 3255 | gfar_write(®s->rstat, |
| 3256 | RSTAT_CLEAR_RXF0 >> i); |
| 3257 | num_act_queues--; |
| 3258 | |
| 3259 | if (!num_act_queues) |
| 3260 | break; |
| 3261 | } |
| 3262 | } |
| 3263 | |
| 3264 | if (!num_act_queues) { |
| 3265 | u32 imask; |
| 3266 | napi_complete(napi); |
| 3267 | |
| 3268 | /* Clear the halt bit in RSTAT */ |
| 3269 | gfar_write(®s->rstat, gfargrp->rstat); |
| 3270 | |
| 3271 | spin_lock_irq(&gfargrp->grplock); |
| 3272 | imask = gfar_read(®s->imask); |
| 3273 | imask |= IMASK_RX_DEFAULT; |
| 3274 | gfar_write(®s->imask, imask); |
| 3275 | spin_unlock_irq(&gfargrp->grplock); |
| 3276 | } |
| 3277 | |
| 3278 | return work_done; |
| 3279 | } |
| 3280 | |
| 3281 | static int gfar_poll_tx(struct napi_struct *napi, int budget) |
| 3282 | { |
| 3283 | struct gfar_priv_grp *gfargrp = |
| 3284 | container_of(napi, struct gfar_priv_grp, napi_tx); |
| 3285 | struct gfar_private *priv = gfargrp->priv; |
| 3286 | struct gfar __iomem *regs = gfargrp->regs; |
| 3287 | struct gfar_priv_tx_q *tx_queue = NULL; |
| 3288 | int has_tx_work = 0; |
| 3289 | int i; |
| 3290 | |
| 3291 | /* Clear IEVENT, so interrupts aren't called again |
| 3292 | * because of the packets that have already arrived |
| 3293 | */ |
| 3294 | gfar_write(®s->ievent, IEVENT_TX_MASK); |
| 3295 | |
| 3296 | for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) { |
| 3297 | tx_queue = priv->tx_queue[i]; |
| 3298 | /* run Tx cleanup to completion */ |
| 3299 | if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) { |
| 3300 | gfar_clean_tx_ring(tx_queue); |
| 3301 | has_tx_work = 1; |
| 3302 | } |
| 3303 | } |
| 3304 | |
| 3305 | if (!has_tx_work) { |
| 3306 | u32 imask; |
| 3307 | napi_complete(napi); |
| 3308 | |
| 3309 | spin_lock_irq(&gfargrp->grplock); |
| 3310 | imask = gfar_read(®s->imask); |
| 3311 | imask |= IMASK_TX_DEFAULT; |
| 3312 | gfar_write(®s->imask, imask); |
| 3313 | spin_unlock_irq(&gfargrp->grplock); |
| 3314 | } |
| 3315 | |
| 3316 | return 0; |
| 3317 | } |
| 3318 | |
| 3319 | |
| 3320 | #ifdef CONFIG_NET_POLL_CONTROLLER |
| 3321 | /* Polling 'interrupt' - used by things like netconsole to send skbs |
| 3322 | * without having to re-enable interrupts. It's not called while |
| 3323 | * the interrupt routine is executing. |
| 3324 | */ |
| 3325 | static void gfar_netpoll(struct net_device *dev) |
| 3326 | { |
| 3327 | struct gfar_private *priv = netdev_priv(dev); |
| 3328 | int i; |
| 3329 | |
| 3330 | /* If the device has multiple interrupts, run tx/rx */ |
| 3331 | if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { |
| 3332 | for (i = 0; i < priv->num_grps; i++) { |
| 3333 | struct gfar_priv_grp *grp = &priv->gfargrp[i]; |
| 3334 | |
| 3335 | disable_irq(gfar_irq(grp, TX)->irq); |
| 3336 | disable_irq(gfar_irq(grp, RX)->irq); |
| 3337 | disable_irq(gfar_irq(grp, ER)->irq); |
| 3338 | gfar_interrupt(gfar_irq(grp, TX)->irq, grp); |
| 3339 | enable_irq(gfar_irq(grp, ER)->irq); |
| 3340 | enable_irq(gfar_irq(grp, RX)->irq); |
| 3341 | enable_irq(gfar_irq(grp, TX)->irq); |
| 3342 | } |
| 3343 | } else { |
| 3344 | for (i = 0; i < priv->num_grps; i++) { |
| 3345 | struct gfar_priv_grp *grp = &priv->gfargrp[i]; |
| 3346 | |
| 3347 | disable_irq(gfar_irq(grp, TX)->irq); |
| 3348 | gfar_interrupt(gfar_irq(grp, TX)->irq, grp); |
| 3349 | enable_irq(gfar_irq(grp, TX)->irq); |
| 3350 | } |
| 3351 | } |
| 3352 | } |
| 3353 | #endif |
| 3354 | |
| 3355 | /* The interrupt handler for devices with one interrupt */ |
| 3356 | static irqreturn_t gfar_interrupt(int irq, void *grp_id) |
| 3357 | { |
| 3358 | struct gfar_priv_grp *gfargrp = grp_id; |
| 3359 | |
| 3360 | /* Save ievent for future reference */ |
| 3361 | u32 events = gfar_read(&gfargrp->regs->ievent); |
| 3362 | |
| 3363 | /* Check for reception */ |
| 3364 | if (events & IEVENT_RX_MASK) |
| 3365 | gfar_receive(irq, grp_id); |
| 3366 | |
| 3367 | /* Check for transmit completion */ |
| 3368 | if (events & IEVENT_TX_MASK) |
| 3369 | gfar_transmit(irq, grp_id); |
| 3370 | |
| 3371 | /* Check for errors */ |
| 3372 | if (events & IEVENT_ERR_MASK) |
| 3373 | gfar_error(irq, grp_id); |
| 3374 | |
| 3375 | return IRQ_HANDLED; |
| 3376 | } |
| 3377 | |
| 3378 | /* Called every time the controller might need to be made |
| 3379 | * aware of new link state. The PHY code conveys this |
| 3380 | * information through variables in the phydev structure, and this |
| 3381 | * function converts those variables into the appropriate |
| 3382 | * register values, and can bring down the device if needed. |
| 3383 | */ |
| 3384 | static void adjust_link(struct net_device *dev) |
| 3385 | { |
| 3386 | struct gfar_private *priv = netdev_priv(dev); |
| 3387 | struct phy_device *phydev = priv->phydev; |
| 3388 | |
| 3389 | if (unlikely(phydev->link != priv->oldlink || |
| 3390 | (phydev->link && (phydev->duplex != priv->oldduplex || |
| 3391 | phydev->speed != priv->oldspeed)))) |
| 3392 | gfar_update_link_state(priv); |
| 3393 | } |
| 3394 | |
| 3395 | /* Update the hash table based on the current list of multicast |
| 3396 | * addresses we subscribe to. Also, change the promiscuity of |
| 3397 | * the device based on the flags (this function is called |
| 3398 | * whenever dev->flags is changed |
| 3399 | */ |
| 3400 | static void gfar_set_multi(struct net_device *dev) |
| 3401 | { |
| 3402 | struct netdev_hw_addr *ha; |
| 3403 | struct gfar_private *priv = netdev_priv(dev); |
| 3404 | struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| 3405 | u32 tempval; |
| 3406 | |
| 3407 | if (dev->flags & IFF_PROMISC) { |
| 3408 | /* Set RCTRL to PROM */ |
| 3409 | tempval = gfar_read(®s->rctrl); |
| 3410 | tempval |= RCTRL_PROM; |
| 3411 | gfar_write(®s->rctrl, tempval); |
| 3412 | } else { |
| 3413 | /* Set RCTRL to not PROM */ |
| 3414 | tempval = gfar_read(®s->rctrl); |
| 3415 | tempval &= ~(RCTRL_PROM); |
| 3416 | gfar_write(®s->rctrl, tempval); |
| 3417 | } |
| 3418 | |
| 3419 | if (dev->flags & IFF_ALLMULTI) { |
| 3420 | /* Set the hash to rx all multicast frames */ |
| 3421 | gfar_write(®s->igaddr0, 0xffffffff); |
| 3422 | gfar_write(®s->igaddr1, 0xffffffff); |
| 3423 | gfar_write(®s->igaddr2, 0xffffffff); |
| 3424 | gfar_write(®s->igaddr3, 0xffffffff); |
| 3425 | gfar_write(®s->igaddr4, 0xffffffff); |
| 3426 | gfar_write(®s->igaddr5, 0xffffffff); |
| 3427 | gfar_write(®s->igaddr6, 0xffffffff); |
| 3428 | gfar_write(®s->igaddr7, 0xffffffff); |
| 3429 | gfar_write(®s->gaddr0, 0xffffffff); |
| 3430 | gfar_write(®s->gaddr1, 0xffffffff); |
| 3431 | gfar_write(®s->gaddr2, 0xffffffff); |
| 3432 | gfar_write(®s->gaddr3, 0xffffffff); |
| 3433 | gfar_write(®s->gaddr4, 0xffffffff); |
| 3434 | gfar_write(®s->gaddr5, 0xffffffff); |
| 3435 | gfar_write(®s->gaddr6, 0xffffffff); |
| 3436 | gfar_write(®s->gaddr7, 0xffffffff); |
| 3437 | } else { |
| 3438 | int em_num; |
| 3439 | int idx; |
| 3440 | |
| 3441 | /* zero out the hash */ |
| 3442 | gfar_write(®s->igaddr0, 0x0); |
| 3443 | gfar_write(®s->igaddr1, 0x0); |
| 3444 | gfar_write(®s->igaddr2, 0x0); |
| 3445 | gfar_write(®s->igaddr3, 0x0); |
| 3446 | gfar_write(®s->igaddr4, 0x0); |
| 3447 | gfar_write(®s->igaddr5, 0x0); |
| 3448 | gfar_write(®s->igaddr6, 0x0); |
| 3449 | gfar_write(®s->igaddr7, 0x0); |
| 3450 | gfar_write(®s->gaddr0, 0x0); |
| 3451 | gfar_write(®s->gaddr1, 0x0); |
| 3452 | gfar_write(®s->gaddr2, 0x0); |
| 3453 | gfar_write(®s->gaddr3, 0x0); |
| 3454 | gfar_write(®s->gaddr4, 0x0); |
| 3455 | gfar_write(®s->gaddr5, 0x0); |
| 3456 | gfar_write(®s->gaddr6, 0x0); |
| 3457 | gfar_write(®s->gaddr7, 0x0); |
| 3458 | |
| 3459 | /* If we have extended hash tables, we need to |
| 3460 | * clear the exact match registers to prepare for |
| 3461 | * setting them |
| 3462 | */ |
| 3463 | if (priv->extended_hash) { |
| 3464 | em_num = GFAR_EM_NUM + 1; |
| 3465 | gfar_clear_exact_match(dev); |
| 3466 | idx = 1; |
| 3467 | } else { |
| 3468 | idx = 0; |
| 3469 | em_num = 0; |
| 3470 | } |
| 3471 | |
| 3472 | if (netdev_mc_empty(dev)) |
| 3473 | return; |
| 3474 | |
| 3475 | /* Parse the list, and set the appropriate bits */ |
| 3476 | netdev_for_each_mc_addr(ha, dev) { |
| 3477 | if (idx < em_num) { |
| 3478 | gfar_set_mac_for_addr(dev, idx, ha->addr); |
| 3479 | idx++; |
| 3480 | } else |
| 3481 | gfar_set_hash_for_addr(dev, ha->addr); |
| 3482 | } |
| 3483 | } |
| 3484 | } |
| 3485 | |
| 3486 | |
| 3487 | /* Clears each of the exact match registers to zero, so they |
| 3488 | * don't interfere with normal reception |
| 3489 | */ |
| 3490 | static void gfar_clear_exact_match(struct net_device *dev) |
| 3491 | { |
| 3492 | int idx; |
| 3493 | static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0}; |
| 3494 | |
| 3495 | for (idx = 1; idx < GFAR_EM_NUM + 1; idx++) |
| 3496 | gfar_set_mac_for_addr(dev, idx, zero_arr); |
| 3497 | } |
| 3498 | |
| 3499 | /* Set the appropriate hash bit for the given addr */ |
| 3500 | /* The algorithm works like so: |
| 3501 | * 1) Take the Destination Address (ie the multicast address), and |
| 3502 | * do a CRC on it (little endian), and reverse the bits of the |
| 3503 | * result. |
| 3504 | * 2) Use the 8 most significant bits as a hash into a 256-entry |
| 3505 | * table. The table is controlled through 8 32-bit registers: |
| 3506 | * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is |
| 3507 | * gaddr7. This means that the 3 most significant bits in the |
| 3508 | * hash index which gaddr register to use, and the 5 other bits |
| 3509 | * indicate which bit (assuming an IBM numbering scheme, which |
| 3510 | * for PowerPC (tm) is usually the case) in the register holds |
| 3511 | * the entry. |
| 3512 | */ |
| 3513 | static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr) |
| 3514 | { |
| 3515 | u32 tempval; |
| 3516 | struct gfar_private *priv = netdev_priv(dev); |
| 3517 | u32 result = ether_crc(ETH_ALEN, addr); |
| 3518 | int width = priv->hash_width; |
| 3519 | u8 whichbit = (result >> (32 - width)) & 0x1f; |
| 3520 | u8 whichreg = result >> (32 - width + 5); |
| 3521 | u32 value = (1 << (31-whichbit)); |
| 3522 | |
| 3523 | tempval = gfar_read(priv->hash_regs[whichreg]); |
| 3524 | tempval |= value; |
| 3525 | gfar_write(priv->hash_regs[whichreg], tempval); |
| 3526 | } |
| 3527 | |
| 3528 | |
| 3529 | /* There are multiple MAC Address register pairs on some controllers |
| 3530 | * This function sets the numth pair to a given address |
| 3531 | */ |
| 3532 | static void gfar_set_mac_for_addr(struct net_device *dev, int num, |
| 3533 | const u8 *addr) |
| 3534 | { |
| 3535 | struct gfar_private *priv = netdev_priv(dev); |
| 3536 | struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| 3537 | u32 tempval; |
| 3538 | u32 __iomem *macptr = ®s->macstnaddr1; |
| 3539 | |
| 3540 | macptr += num*2; |
| 3541 | |
| 3542 | /* For a station address of 0x12345678ABCD in transmission |
| 3543 | * order (BE), MACnADDR1 is set to 0xCDAB7856 and |
| 3544 | * MACnADDR2 is set to 0x34120000. |
| 3545 | */ |
| 3546 | tempval = (addr[5] << 24) | (addr[4] << 16) | |
| 3547 | (addr[3] << 8) | addr[2]; |
| 3548 | |
| 3549 | gfar_write(macptr, tempval); |
| 3550 | |
| 3551 | tempval = (addr[1] << 24) | (addr[0] << 16); |
| 3552 | |
| 3553 | gfar_write(macptr+1, tempval); |
| 3554 | } |
| 3555 | |
| 3556 | /* GFAR error interrupt handler */ |
| 3557 | static irqreturn_t gfar_error(int irq, void *grp_id) |
| 3558 | { |
| 3559 | struct gfar_priv_grp *gfargrp = grp_id; |
| 3560 | struct gfar __iomem *regs = gfargrp->regs; |
| 3561 | struct gfar_private *priv= gfargrp->priv; |
| 3562 | struct net_device *dev = priv->ndev; |
| 3563 | |
| 3564 | /* Save ievent for future reference */ |
| 3565 | u32 events = gfar_read(®s->ievent); |
| 3566 | |
| 3567 | /* Clear IEVENT */ |
| 3568 | gfar_write(®s->ievent, events & IEVENT_ERR_MASK); |
| 3569 | |
| 3570 | /* Magic Packet is not an error. */ |
| 3571 | if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) && |
| 3572 | (events & IEVENT_MAG)) |
| 3573 | events &= ~IEVENT_MAG; |
| 3574 | |
| 3575 | /* Hmm... */ |
| 3576 | if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv)) |
| 3577 | netdev_dbg(dev, |
| 3578 | "error interrupt (ievent=0x%08x imask=0x%08x)\n", |
| 3579 | events, gfar_read(®s->imask)); |
| 3580 | |
| 3581 | /* Update the error counters */ |
| 3582 | if (events & IEVENT_TXE) { |
| 3583 | dev->stats.tx_errors++; |
| 3584 | |
| 3585 | if (events & IEVENT_LC) |
| 3586 | dev->stats.tx_window_errors++; |
| 3587 | if (events & IEVENT_CRL) |
| 3588 | dev->stats.tx_aborted_errors++; |
| 3589 | if (events & IEVENT_XFUN) { |
| 3590 | netif_dbg(priv, tx_err, dev, |
| 3591 | "TX FIFO underrun, packet dropped\n"); |
| 3592 | dev->stats.tx_dropped++; |
| 3593 | atomic64_inc(&priv->extra_stats.tx_underrun); |
| 3594 | |
| 3595 | schedule_work(&priv->reset_task); |
| 3596 | } |
| 3597 | netif_dbg(priv, tx_err, dev, "Transmit Error\n"); |
| 3598 | } |
| 3599 | if (events & IEVENT_BSY) { |
| 3600 | dev->stats.rx_over_errors++; |
| 3601 | atomic64_inc(&priv->extra_stats.rx_bsy); |
| 3602 | |
| 3603 | netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n", |
| 3604 | gfar_read(®s->rstat)); |
| 3605 | } |
| 3606 | if (events & IEVENT_BABR) { |
| 3607 | dev->stats.rx_errors++; |
| 3608 | atomic64_inc(&priv->extra_stats.rx_babr); |
| 3609 | |
| 3610 | netif_dbg(priv, rx_err, dev, "babbling RX error\n"); |
| 3611 | } |
| 3612 | if (events & IEVENT_EBERR) { |
| 3613 | atomic64_inc(&priv->extra_stats.eberr); |
| 3614 | netif_dbg(priv, rx_err, dev, "bus error\n"); |
| 3615 | } |
| 3616 | if (events & IEVENT_RXC) |
| 3617 | netif_dbg(priv, rx_status, dev, "control frame\n"); |
| 3618 | |
| 3619 | if (events & IEVENT_BABT) { |
| 3620 | atomic64_inc(&priv->extra_stats.tx_babt); |
| 3621 | netif_dbg(priv, tx_err, dev, "babbling TX error\n"); |
| 3622 | } |
| 3623 | return IRQ_HANDLED; |
| 3624 | } |
| 3625 | |
| 3626 | static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv) |
| 3627 | { |
| 3628 | struct phy_device *phydev = priv->phydev; |
| 3629 | u32 val = 0; |
| 3630 | |
| 3631 | if (!phydev->duplex) |
| 3632 | return val; |
| 3633 | |
| 3634 | if (!priv->pause_aneg_en) { |
| 3635 | if (priv->tx_pause_en) |
| 3636 | val |= MACCFG1_TX_FLOW; |
| 3637 | if (priv->rx_pause_en) |
| 3638 | val |= MACCFG1_RX_FLOW; |
| 3639 | } else { |
| 3640 | u16 lcl_adv, rmt_adv; |
| 3641 | u8 flowctrl; |
| 3642 | /* get link partner capabilities */ |
| 3643 | rmt_adv = 0; |
| 3644 | if (phydev->pause) |
| 3645 | rmt_adv = LPA_PAUSE_CAP; |
| 3646 | if (phydev->asym_pause) |
| 3647 | rmt_adv |= LPA_PAUSE_ASYM; |
| 3648 | |
| 3649 | lcl_adv = 0; |
| 3650 | if (phydev->advertising & ADVERTISED_Pause) |
| 3651 | lcl_adv |= ADVERTISE_PAUSE_CAP; |
| 3652 | if (phydev->advertising & ADVERTISED_Asym_Pause) |
| 3653 | lcl_adv |= ADVERTISE_PAUSE_ASYM; |
| 3654 | |
| 3655 | flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv); |
| 3656 | if (flowctrl & FLOW_CTRL_TX) |
| 3657 | val |= MACCFG1_TX_FLOW; |
| 3658 | if (flowctrl & FLOW_CTRL_RX) |
| 3659 | val |= MACCFG1_RX_FLOW; |
| 3660 | } |
| 3661 | |
| 3662 | return val; |
| 3663 | } |
| 3664 | |
| 3665 | static noinline void gfar_update_link_state(struct gfar_private *priv) |
| 3666 | { |
| 3667 | struct gfar __iomem *regs = priv->gfargrp[0].regs; |
| 3668 | struct phy_device *phydev = priv->phydev; |
| 3669 | struct gfar_priv_rx_q *rx_queue = NULL; |
| 3670 | int i; |
| 3671 | |
| 3672 | if (unlikely(test_bit(GFAR_RESETTING, &priv->state))) |
| 3673 | return; |
| 3674 | |
| 3675 | if (phydev->link) { |
| 3676 | u32 tempval1 = gfar_read(®s->maccfg1); |
| 3677 | u32 tempval = gfar_read(®s->maccfg2); |
| 3678 | u32 ecntrl = gfar_read(®s->ecntrl); |
| 3679 | u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW); |
| 3680 | |
| 3681 | if (phydev->duplex != priv->oldduplex) { |
| 3682 | if (!(phydev->duplex)) |
| 3683 | tempval &= ~(MACCFG2_FULL_DUPLEX); |
| 3684 | else |
| 3685 | tempval |= MACCFG2_FULL_DUPLEX; |
| 3686 | |
| 3687 | priv->oldduplex = phydev->duplex; |
| 3688 | } |
| 3689 | |
| 3690 | if (phydev->speed != priv->oldspeed) { |
| 3691 | switch (phydev->speed) { |
| 3692 | case 1000: |
| 3693 | tempval = |
| 3694 | ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII); |
| 3695 | |
| 3696 | ecntrl &= ~(ECNTRL_R100); |
| 3697 | break; |
| 3698 | case 100: |
| 3699 | case 10: |
| 3700 | tempval = |
| 3701 | ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII); |
| 3702 | |
| 3703 | /* Reduced mode distinguishes |
| 3704 | * between 10 and 100 |
| 3705 | */ |
| 3706 | if (phydev->speed == SPEED_100) |
| 3707 | ecntrl |= ECNTRL_R100; |
| 3708 | else |
| 3709 | ecntrl &= ~(ECNTRL_R100); |
| 3710 | break; |
| 3711 | default: |
| 3712 | netif_warn(priv, link, priv->ndev, |
| 3713 | "Ack! Speed (%d) is not 10/100/1000!\n", |
| 3714 | phydev->speed); |
| 3715 | break; |
| 3716 | } |
| 3717 | |
| 3718 | priv->oldspeed = phydev->speed; |
| 3719 | } |
| 3720 | |
| 3721 | tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW); |
| 3722 | tempval1 |= gfar_get_flowctrl_cfg(priv); |
| 3723 | |
| 3724 | /* Turn last free buffer recording on */ |
| 3725 | if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) { |
| 3726 | for (i = 0; i < priv->num_rx_queues; i++) { |
| 3727 | u32 bdp_dma; |
| 3728 | |
| 3729 | rx_queue = priv->rx_queue[i]; |
| 3730 | bdp_dma = gfar_rxbd_dma_lastfree(rx_queue); |
| 3731 | gfar_write(rx_queue->rfbptr, bdp_dma); |
| 3732 | } |
| 3733 | |
| 3734 | priv->tx_actual_en = 1; |
| 3735 | } |
| 3736 | |
| 3737 | if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval)) |
| 3738 | priv->tx_actual_en = 0; |
| 3739 | |
| 3740 | gfar_write(®s->maccfg1, tempval1); |
| 3741 | gfar_write(®s->maccfg2, tempval); |
| 3742 | gfar_write(®s->ecntrl, ecntrl); |
| 3743 | |
| 3744 | if (!priv->oldlink) |
| 3745 | priv->oldlink = 1; |
| 3746 | |
| 3747 | } else if (priv->oldlink) { |
| 3748 | priv->oldlink = 0; |
| 3749 | priv->oldspeed = 0; |
| 3750 | priv->oldduplex = -1; |
| 3751 | } |
| 3752 | |
| 3753 | if (netif_msg_link(priv)) |
| 3754 | phy_print_status(phydev); |
| 3755 | } |
| 3756 | |
| 3757 | static const struct of_device_id gfar_match[] = |
| 3758 | { |
| 3759 | { |
| 3760 | .type = "network", |
| 3761 | .compatible = "gianfar", |
| 3762 | }, |
| 3763 | { |
| 3764 | .compatible = "fsl,etsec2", |
| 3765 | }, |
| 3766 | {}, |
| 3767 | }; |
| 3768 | MODULE_DEVICE_TABLE(of, gfar_match); |
| 3769 | |
| 3770 | /* Structure for a device driver */ |
| 3771 | static struct platform_driver gfar_driver = { |
| 3772 | .driver = { |
| 3773 | .name = "fsl-gianfar", |
| 3774 | .pm = GFAR_PM_OPS, |
| 3775 | .of_match_table = gfar_match, |
| 3776 | }, |
| 3777 | .probe = gfar_probe, |
| 3778 | .remove = gfar_remove, |
| 3779 | }; |
| 3780 | |
| 3781 | module_platform_driver(gfar_driver); |