Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame^] | 1 | |
| 2 | /********************************************************************* |
| 3 | * |
| 4 | * vlsi_ir.h: VLSI82C147 PCI IrDA controller driver for Linux |
| 5 | * |
| 6 | * Version: 0.5 |
| 7 | * |
| 8 | * Copyright (c) 2001-2003 Martin Diehl |
| 9 | * |
| 10 | * This program is free software; you can redistribute it and/or |
| 11 | * modify it under the terms of the GNU General Public License as |
| 12 | * published by the Free Software Foundation; either version 2 of |
| 13 | * the License, or (at your option) any later version. |
| 14 | * |
| 15 | * This program is distributed in the hope that it will be useful, |
| 16 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 18 | * GNU General Public License for more details. |
| 19 | * |
| 20 | * You should have received a copy of the GNU General Public License |
| 21 | * along with this program; if not, see <http://www.gnu.org/licenses/>. |
| 22 | * |
| 23 | ********************************************************************/ |
| 24 | |
| 25 | #ifndef IRDA_VLSI_FIR_H |
| 26 | #define IRDA_VLSI_FIR_H |
| 27 | |
| 28 | /* ================================================================ |
| 29 | * compatibility stuff |
| 30 | */ |
| 31 | |
| 32 | /* definitions not present in pci_ids.h */ |
| 33 | |
| 34 | #ifndef PCI_CLASS_WIRELESS_IRDA |
| 35 | #define PCI_CLASS_WIRELESS_IRDA 0x0d00 |
| 36 | #endif |
| 37 | |
| 38 | #ifndef PCI_CLASS_SUBCLASS_MASK |
| 39 | #define PCI_CLASS_SUBCLASS_MASK 0xffff |
| 40 | #endif |
| 41 | |
| 42 | /* ================================================================ */ |
| 43 | |
| 44 | /* non-standard PCI registers */ |
| 45 | |
| 46 | enum vlsi_pci_regs { |
| 47 | VLSI_PCI_CLKCTL = 0x40, /* chip clock input control */ |
| 48 | VLSI_PCI_MSTRPAGE = 0x41, /* addr [31:24] for all busmaster cycles */ |
| 49 | VLSI_PCI_IRMISC = 0x42 /* mainly legacy UART related */ |
| 50 | }; |
| 51 | |
| 52 | /* ------------------------------------------ */ |
| 53 | |
| 54 | /* VLSI_PCI_CLKCTL: Clock Control Register (u8, rw) */ |
| 55 | |
| 56 | /* Three possible clock sources: either on-chip 48MHz PLL or |
| 57 | * external clock applied to EXTCLK pin. External clock may |
| 58 | * be either 48MHz or 40MHz, which is indicated by XCKSEL. |
| 59 | * CLKSTP controls whether the selected clock source gets |
| 60 | * connected to the IrDA block. |
| 61 | * |
| 62 | * On my HP OB-800 the BIOS sets external 40MHz clock as source |
| 63 | * when IrDA enabled and I've never detected any PLL lock success. |
| 64 | * Apparently the 14.3...MHz OSC input required for the PLL to work |
| 65 | * is not connected and the 40MHz EXTCLK is provided externally. |
| 66 | * At least this is what makes the driver working for me. |
| 67 | */ |
| 68 | |
| 69 | enum vlsi_pci_clkctl { |
| 70 | |
| 71 | /* PLL control */ |
| 72 | |
| 73 | CLKCTL_PD_INV = 0x04, /* PD#: inverted power down signal, |
| 74 | * i.e. PLL is powered, if PD_INV set */ |
| 75 | CLKCTL_LOCK = 0x40, /* (ro) set, if PLL is locked */ |
| 76 | |
| 77 | /* clock source selection */ |
| 78 | |
| 79 | CLKCTL_EXTCLK = 0x20, /* set to select external clock input, not PLL */ |
| 80 | CLKCTL_XCKSEL = 0x10, /* set to indicate EXTCLK is 40MHz, not 48MHz */ |
| 81 | |
| 82 | /* IrDA block control */ |
| 83 | |
| 84 | CLKCTL_CLKSTP = 0x80, /* set to disconnect from selected clock source */ |
| 85 | CLKCTL_WAKE = 0x08 /* set to enable wakeup feature: whenever IR activity |
| 86 | * is detected, PD_INV gets set(?) and CLKSTP cleared */ |
| 87 | }; |
| 88 | |
| 89 | /* ------------------------------------------ */ |
| 90 | |
| 91 | /* VLSI_PCI_MSTRPAGE: Master Page Register (u8, rw) and busmastering stuff */ |
| 92 | |
| 93 | #define DMA_MASK_USED_BY_HW 0xffffffff |
| 94 | #define DMA_MASK_MSTRPAGE 0x00ffffff |
| 95 | #define MSTRPAGE_VALUE (DMA_MASK_MSTRPAGE >> 24) |
| 96 | |
| 97 | /* PCI busmastering is somewhat special for this guy - in short: |
| 98 | * |
| 99 | * We select to operate using fixed MSTRPAGE=0, use ISA DMA |
| 100 | * address restrictions to make the PCI BM api aware of this, |
| 101 | * but ensure the hardware is dealing with real 32bit access. |
| 102 | * |
| 103 | * In detail: |
| 104 | * The chip executes normal 32bit busmaster cycles, i.e. |
| 105 | * drives all 32 address lines. These addresses however are |
| 106 | * composed of [0:23] taken from various busaddr-pointers |
| 107 | * and [24:31] taken from the MSTRPAGE register in the VLSI82C147 |
| 108 | * config space. Therefore _all_ busmastering must be |
| 109 | * targeted to/from one single 16MB (busaddr-) superpage! |
| 110 | * The point is to make sure all the allocations for memory |
| 111 | * locations with busmaster access (ring descriptors, buffers) |
| 112 | * are indeed bus-mappable to the same 16MB range (for x86 this |
| 113 | * means they must reside in the same 16MB physical memory address |
| 114 | * range). The only constraint we have which supports "several objects |
| 115 | * mappable to common 16MB range" paradigma, is the old ISA DMA |
| 116 | * restriction to the first 16MB of physical address range. |
| 117 | * Hence the approach here is to enable PCI busmaster support using |
| 118 | * the correct 32bit dma-mask used by the chip. Afterwards the device's |
| 119 | * dma-mask gets restricted to 24bit, which must be honoured somehow by |
| 120 | * all allocations for memory areas to be exposed to the chip ... |
| 121 | * |
| 122 | * Note: |
| 123 | * Don't be surprised to get "Setting latency timer..." messages every |
| 124 | * time when PCI busmastering is enabled for the chip. |
| 125 | * The chip has its PCI latency timer RO fixed at 0 - which is not a |
| 126 | * problem here, because it is never requesting _burst_ transactions. |
| 127 | */ |
| 128 | |
| 129 | /* ------------------------------------------ */ |
| 130 | |
| 131 | /* VLSI_PCIIRMISC: IR Miscellaneous Register (u8, rw) */ |
| 132 | |
| 133 | /* legacy UART emulation - not used by this driver - would require: |
| 134 | * (see below for some register-value definitions) |
| 135 | * |
| 136 | * - IRMISC_UARTEN must be set to enable UART address decoding |
| 137 | * - IRMISC_UARTSEL configured |
| 138 | * - IRCFG_MASTER must be cleared |
| 139 | * - IRCFG_SIR must be set |
| 140 | * - IRENABLE_PHYANDCLOCK must be asserted 0->1 (and hence IRENABLE_SIR_ON) |
| 141 | */ |
| 142 | |
| 143 | enum vlsi_pci_irmisc { |
| 144 | |
| 145 | /* IR transceiver control */ |
| 146 | |
| 147 | IRMISC_IRRAIL = 0x40, /* (ro?) IR rail power indication (and control?) |
| 148 | * 0=3.3V / 1=5V. Probably set during power-on? |
| 149 | * unclear - not touched by driver */ |
| 150 | IRMISC_IRPD = 0x08, /* transceiver power down, if set */ |
| 151 | |
| 152 | /* legacy UART control */ |
| 153 | |
| 154 | IRMISC_UARTTST = 0x80, /* UART test mode - "always write 0" */ |
| 155 | IRMISC_UARTEN = 0x04, /* enable UART address decoding */ |
| 156 | |
| 157 | /* bits [1:0] IRMISC_UARTSEL to select legacy UART address */ |
| 158 | |
| 159 | IRMISC_UARTSEL_3f8 = 0x00, |
| 160 | IRMISC_UARTSEL_2f8 = 0x01, |
| 161 | IRMISC_UARTSEL_3e8 = 0x02, |
| 162 | IRMISC_UARTSEL_2e8 = 0x03 |
| 163 | }; |
| 164 | |
| 165 | /* ================================================================ */ |
| 166 | |
| 167 | /* registers mapped to 32 byte PCI IO space */ |
| 168 | |
| 169 | /* note: better access all registers at the indicated u8/u16 size |
| 170 | * although some of them contain only 1 byte of information. |
| 171 | * some of them (particaluarly PROMPT and IRCFG) ignore |
| 172 | * access when using the wrong addressing mode! |
| 173 | */ |
| 174 | |
| 175 | enum vlsi_pio_regs { |
| 176 | VLSI_PIO_IRINTR = 0x00, /* interrupt enable/request (u8, rw) */ |
| 177 | VLSI_PIO_RINGPTR = 0x02, /* rx/tx ring pointer (u16, ro) */ |
| 178 | VLSI_PIO_RINGBASE = 0x04, /* [23:10] of ring address (u16, rw) */ |
| 179 | VLSI_PIO_RINGSIZE = 0x06, /* rx/tx ring size (u16, rw) */ |
| 180 | VLSI_PIO_PROMPT = 0x08, /* triggers ring processing (u16, wo) */ |
| 181 | /* 0x0a-0x0f: reserved / duplicated UART regs */ |
| 182 | VLSI_PIO_IRCFG = 0x10, /* configuration select (u16, rw) */ |
| 183 | VLSI_PIO_SIRFLAG = 0x12, /* BOF/EOF for filtered SIR (u16, ro) */ |
| 184 | VLSI_PIO_IRENABLE = 0x14, /* enable and status register (u16, rw/ro) */ |
| 185 | VLSI_PIO_PHYCTL = 0x16, /* physical layer current status (u16, ro) */ |
| 186 | VLSI_PIO_NPHYCTL = 0x18, /* next physical layer select (u16, rw) */ |
| 187 | VLSI_PIO_MAXPKT = 0x1a, /* [11:0] max len for packet receive (u16, rw) */ |
| 188 | VLSI_PIO_RCVBCNT = 0x1c /* current receive-FIFO byte count (u16, ro) */ |
| 189 | /* 0x1e-0x1f: reserved / duplicated UART regs */ |
| 190 | }; |
| 191 | |
| 192 | /* ------------------------------------------ */ |
| 193 | |
| 194 | /* VLSI_PIO_IRINTR: Interrupt Register (u8, rw) */ |
| 195 | |
| 196 | /* enable-bits: |
| 197 | * 1 = enable / 0 = disable |
| 198 | * interrupt condition bits: |
| 199 | * set according to corresponding interrupt source |
| 200 | * (regardless of the state of the enable bits) |
| 201 | * enable bit status indicates whether interrupt gets raised |
| 202 | * write-to-clear |
| 203 | * note: RPKTINT and TPKTINT behave different in legacy UART mode (which we don't use :-) |
| 204 | */ |
| 205 | |
| 206 | enum vlsi_pio_irintr { |
| 207 | IRINTR_ACTEN = 0x80, /* activity interrupt enable */ |
| 208 | IRINTR_ACTIVITY = 0x40, /* activity monitor (traffic detected) */ |
| 209 | IRINTR_RPKTEN = 0x20, /* receive packet interrupt enable*/ |
| 210 | IRINTR_RPKTINT = 0x10, /* rx-packet transferred from fifo to memory finished */ |
| 211 | IRINTR_TPKTEN = 0x08, /* transmit packet interrupt enable */ |
| 212 | IRINTR_TPKTINT = 0x04, /* last bit of tx-packet+crc shifted to ir-pulser */ |
| 213 | IRINTR_OE_EN = 0x02, /* UART rx fifo overrun error interrupt enable */ |
| 214 | IRINTR_OE_INT = 0x01 /* UART rx fifo overrun error (read LSR to clear) */ |
| 215 | }; |
| 216 | |
| 217 | /* we use this mask to check whether the (shared PCI) interrupt is ours */ |
| 218 | |
| 219 | #define IRINTR_INT_MASK (IRINTR_ACTIVITY|IRINTR_RPKTINT|IRINTR_TPKTINT) |
| 220 | |
| 221 | /* ------------------------------------------ */ |
| 222 | |
| 223 | /* VLSI_PIO_RINGPTR: Ring Pointer Read-Back Register (u16, ro) */ |
| 224 | |
| 225 | /* _both_ ring pointers are indices relative to the _entire_ rx,tx-ring! |
| 226 | * i.e. the referenced descriptor is located |
| 227 | * at RINGBASE + PTR * sizeof(descr) for rx and tx |
| 228 | * therefore, the tx-pointer has offset MAX_RING_DESCR |
| 229 | */ |
| 230 | |
| 231 | #define MAX_RING_DESCR 64 /* tx, rx rings may contain up to 64 descr each */ |
| 232 | |
| 233 | #define RINGPTR_RX_MASK (MAX_RING_DESCR-1) |
| 234 | #define RINGPTR_TX_MASK ((MAX_RING_DESCR-1)<<8) |
| 235 | |
| 236 | #define RINGPTR_GET_RX(p) ((p)&RINGPTR_RX_MASK) |
| 237 | #define RINGPTR_GET_TX(p) (((p)&RINGPTR_TX_MASK)>>8) |
| 238 | |
| 239 | /* ------------------------------------------ */ |
| 240 | |
| 241 | /* VLSI_PIO_RINGBASE: Ring Pointer Base Address Register (u16, ro) */ |
| 242 | |
| 243 | /* Contains [23:10] part of the ring base (bus-) address |
| 244 | * which must be 1k-alinged. [31:24] is taken from |
| 245 | * VLSI_PCI_MSTRPAGE above. |
| 246 | * The controller initiates non-burst PCI BM cycles to |
| 247 | * fetch and update the descriptors in the ring. |
| 248 | * Once fetched, the descriptor remains cached onchip |
| 249 | * until it gets closed and updated due to the ring |
| 250 | * processing state machine. |
| 251 | * The entire ring area is split in rx and tx areas with each |
| 252 | * area consisting of 64 descriptors of 8 bytes each. |
| 253 | * The rx(tx) ring is located at ringbase+0 (ringbase+64*8). |
| 254 | */ |
| 255 | |
| 256 | #define BUS_TO_RINGBASE(p) (((p)>>10)&0x3fff) |
| 257 | |
| 258 | /* ------------------------------------------ */ |
| 259 | |
| 260 | /* VLSI_PIO_RINGSIZE: Ring Size Register (u16, rw) */ |
| 261 | |
| 262 | /* bit mask to indicate the ring size to be used for rx and tx. |
| 263 | * possible values encoded bits |
| 264 | * 4 0000 |
| 265 | * 8 0001 |
| 266 | * 16 0011 |
| 267 | * 32 0111 |
| 268 | * 64 1111 |
| 269 | * located at [15:12] for tx and [11:8] for rx ([7:0] unused) |
| 270 | * |
| 271 | * note: probably a good idea to have IRCFG_MSTR cleared when writing |
| 272 | * this so the state machines are stopped and the RINGPTR is reset! |
| 273 | */ |
| 274 | |
| 275 | #define SIZE_TO_BITS(num) ((((num)-1)>>2)&0x0f) |
| 276 | #define TX_RX_TO_RINGSIZE(tx,rx) ((SIZE_TO_BITS(tx)<<12)|(SIZE_TO_BITS(rx)<<8)) |
| 277 | #define RINGSIZE_TO_RXSIZE(rs) ((((rs)&0x0f00)>>6)+4) |
| 278 | #define RINGSIZE_TO_TXSIZE(rs) ((((rs)&0xf000)>>10)+4) |
| 279 | |
| 280 | |
| 281 | /* ------------------------------------------ */ |
| 282 | |
| 283 | /* VLSI_PIO_PROMPT: Ring Prompting Register (u16, write-to-start) */ |
| 284 | |
| 285 | /* writing any value kicks the ring processing state machines |
| 286 | * for both tx, rx rings as follows: |
| 287 | * - active rings (currently owning an active descriptor) |
| 288 | * ignore the prompt and continue |
| 289 | * - idle rings fetch the next descr from the ring and start |
| 290 | * their processing |
| 291 | */ |
| 292 | |
| 293 | /* ------------------------------------------ */ |
| 294 | |
| 295 | /* VLSI_PIO_IRCFG: IR Config Register (u16, rw) */ |
| 296 | |
| 297 | /* notes: |
| 298 | * - not more than one SIR/MIR/FIR bit must be set at any time |
| 299 | * - SIR, MIR, FIR and CRC16 select the configuration which will |
| 300 | * be applied on next 0->1 transition of IRENABLE_PHYANDCLOCK (see below). |
| 301 | * - besides allowing the PCI interface to execute busmaster cycles |
| 302 | * and therefore the ring SM to operate, the MSTR bit has side-effects: |
| 303 | * when MSTR is cleared, the RINGPTR's get reset and the legacy UART mode |
| 304 | * (in contrast to busmaster access mode) gets enabled. |
| 305 | * - clearing ENRX or setting ENTX while data is received may stall the |
| 306 | * receive fifo until ENRX reenabled _and_ another packet arrives |
| 307 | * - SIRFILT means the chip performs the required unwrapping of hardware |
| 308 | * headers (XBOF's, BOF/EOF) and un-escaping in the _receive_ direction. |
| 309 | * Only the resulting IrLAP payload is copied to the receive buffers - |
| 310 | * but with the 16bit FCS still encluded. Question remains, whether it |
| 311 | * was already checked or we should do it before passing the packet to IrLAP? |
| 312 | */ |
| 313 | |
| 314 | enum vlsi_pio_ircfg { |
| 315 | IRCFG_LOOP = 0x4000, /* enable loopback test mode */ |
| 316 | IRCFG_ENTX = 0x1000, /* transmit enable */ |
| 317 | IRCFG_ENRX = 0x0800, /* receive enable */ |
| 318 | IRCFG_MSTR = 0x0400, /* master enable */ |
| 319 | IRCFG_RXANY = 0x0200, /* receive any packet */ |
| 320 | IRCFG_CRC16 = 0x0080, /* 16bit (not 32bit) CRC select for MIR/FIR */ |
| 321 | IRCFG_FIR = 0x0040, /* FIR 4PPM encoding mode enable */ |
| 322 | IRCFG_MIR = 0x0020, /* MIR HDLC encoding mode enable */ |
| 323 | IRCFG_SIR = 0x0010, /* SIR encoding mode enable */ |
| 324 | IRCFG_SIRFILT = 0x0008, /* enable SIR decode filter (receiver unwrapping) */ |
| 325 | IRCFG_SIRTEST = 0x0004, /* allow SIR decode filter when not in SIR mode */ |
| 326 | IRCFG_TXPOL = 0x0002, /* invert tx polarity when set */ |
| 327 | IRCFG_RXPOL = 0x0001 /* invert rx polarity when set */ |
| 328 | }; |
| 329 | |
| 330 | /* ------------------------------------------ */ |
| 331 | |
| 332 | /* VLSI_PIO_SIRFLAG: SIR Flag Register (u16, ro) */ |
| 333 | |
| 334 | /* register contains hardcoded BOF=0xc0 at [7:0] and EOF=0xc1 at [15:8] |
| 335 | * which is used for unwrapping received frames in SIR decode-filter mode |
| 336 | */ |
| 337 | |
| 338 | /* ------------------------------------------ */ |
| 339 | |
| 340 | /* VLSI_PIO_IRENABLE: IR Enable Register (u16, rw/ro) */ |
| 341 | |
| 342 | /* notes: |
| 343 | * - IREN acts as gate for latching the configured IR mode information |
| 344 | * from IRCFG and IRPHYCTL when IREN=reset and applying them when |
| 345 | * IREN gets set afterwards. |
| 346 | * - ENTXST reflects IRCFG_ENTX |
| 347 | * - ENRXST = IRCFG_ENRX && (!IRCFG_ENTX || IRCFG_LOOP) |
| 348 | */ |
| 349 | |
| 350 | enum vlsi_pio_irenable { |
| 351 | IRENABLE_PHYANDCLOCK = 0x8000, /* enable IR phy and gate the mode config (rw) */ |
| 352 | IRENABLE_CFGER = 0x4000, /* mode configuration error (ro) */ |
| 353 | IRENABLE_FIR_ON = 0x2000, /* FIR on status (ro) */ |
| 354 | IRENABLE_MIR_ON = 0x1000, /* MIR on status (ro) */ |
| 355 | IRENABLE_SIR_ON = 0x0800, /* SIR on status (ro) */ |
| 356 | IRENABLE_ENTXST = 0x0400, /* transmit enable status (ro) */ |
| 357 | IRENABLE_ENRXST = 0x0200, /* Receive enable status (ro) */ |
| 358 | IRENABLE_CRC16_ON = 0x0100 /* 16bit (not 32bit) CRC enabled status (ro) */ |
| 359 | }; |
| 360 | |
| 361 | #define IRENABLE_MASK 0xff00 /* Read mask */ |
| 362 | |
| 363 | /* ------------------------------------------ */ |
| 364 | |
| 365 | /* VLSI_PIO_PHYCTL: IR Physical Layer Current Control Register (u16, ro) */ |
| 366 | |
| 367 | /* read-back of the currently applied physical layer status. |
| 368 | * applied from VLSI_PIO_NPHYCTL at rising edge of IRENABLE_PHYANDCLOCK |
| 369 | * contents identical to VLSI_PIO_NPHYCTL (see below) |
| 370 | */ |
| 371 | |
| 372 | /* ------------------------------------------ */ |
| 373 | |
| 374 | /* VLSI_PIO_NPHYCTL: IR Physical Layer Next Control Register (u16, rw) */ |
| 375 | |
| 376 | /* latched during IRENABLE_PHYANDCLOCK=0 and applied at 0-1 transition |
| 377 | * |
| 378 | * consists of BAUD[15:10], PLSWID[9:5] and PREAMB[4:0] bits defined as follows: |
| 379 | * |
| 380 | * SIR-mode: BAUD = (115.2kHz / baudrate) - 1 |
| 381 | * PLSWID = (pulsetime * freq / (BAUD+1)) - 1 |
| 382 | * where pulsetime is the requested IrPHY pulse width |
| 383 | * and freq is 8(16)MHz for 40(48)MHz primary input clock |
| 384 | * PREAMB: don't care for SIR |
| 385 | * |
| 386 | * The nominal SIR pulse width is 3/16 bit time so we have PLSWID=12 |
| 387 | * fixed for all SIR speeds at 40MHz input clock (PLSWID=24 at 48MHz). |
| 388 | * IrPHY also allows shorter pulses down to the nominal pulse duration |
| 389 | * at 115.2kbaud (minus some tolerance) which is 1.41 usec. |
| 390 | * Using the expression PLSWID = 12/(BAUD+1)-1 (multiplied by two for 48MHz) |
| 391 | * we get the minimum acceptable PLSWID values according to the VLSI |
| 392 | * specification, which provides 1.5 usec pulse width for all speeds (except |
| 393 | * for 2.4kbaud getting 6usec). This is fine with IrPHY v1.3 specs and |
| 394 | * reduces the transceiver power which drains the battery. At 9.6kbaud for |
| 395 | * example this amounts to more than 90% battery power saving! |
| 396 | * |
| 397 | * MIR-mode: BAUD = 0 |
| 398 | * PLSWID = 9(10) for 40(48) MHz input clock |
| 399 | * to get nominal MIR pulse width |
| 400 | * PREAMB = 1 |
| 401 | * |
| 402 | * FIR-mode: BAUD = 0 |
| 403 | * PLSWID: don't care |
| 404 | * PREAMB = 15 |
| 405 | */ |
| 406 | |
| 407 | #define PHYCTL_BAUD_SHIFT 10 |
| 408 | #define PHYCTL_BAUD_MASK 0xfc00 |
| 409 | #define PHYCTL_PLSWID_SHIFT 5 |
| 410 | #define PHYCTL_PLSWID_MASK 0x03e0 |
| 411 | #define PHYCTL_PREAMB_SHIFT 0 |
| 412 | #define PHYCTL_PREAMB_MASK 0x001f |
| 413 | |
| 414 | #define PHYCTL_TO_BAUD(bwp) (((bwp)&PHYCTL_BAUD_MASK)>>PHYCTL_BAUD_SHIFT) |
| 415 | #define PHYCTL_TO_PLSWID(bwp) (((bwp)&PHYCTL_PLSWID_MASK)>>PHYCTL_PLSWID_SHIFT) |
| 416 | #define PHYCTL_TO_PREAMB(bwp) (((bwp)&PHYCTL_PREAMB_MASK)>>PHYCTL_PREAMB_SHIFT) |
| 417 | |
| 418 | #define BWP_TO_PHYCTL(b,w,p) ((((b)<<PHYCTL_BAUD_SHIFT)&PHYCTL_BAUD_MASK) \ |
| 419 | | (((w)<<PHYCTL_PLSWID_SHIFT)&PHYCTL_PLSWID_MASK) \ |
| 420 | | (((p)<<PHYCTL_PREAMB_SHIFT)&PHYCTL_PREAMB_MASK)) |
| 421 | |
| 422 | #define BAUD_BITS(br) ((115200/(br))-1) |
| 423 | |
| 424 | static inline unsigned |
| 425 | calc_width_bits(unsigned baudrate, unsigned widthselect, unsigned clockselect) |
| 426 | { |
| 427 | unsigned tmp; |
| 428 | |
| 429 | if (widthselect) /* nominal 3/16 puls width */ |
| 430 | return (clockselect) ? 12 : 24; |
| 431 | |
| 432 | tmp = ((clockselect) ? 12 : 24) / (BAUD_BITS(baudrate)+1); |
| 433 | |
| 434 | /* intermediate result of integer division needed here */ |
| 435 | |
| 436 | return (tmp>0) ? (tmp-1) : 0; |
| 437 | } |
| 438 | |
| 439 | #define PHYCTL_SIR(br,ws,cs) BWP_TO_PHYCTL(BAUD_BITS(br),calc_width_bits((br),(ws),(cs)),0) |
| 440 | #define PHYCTL_MIR(cs) BWP_TO_PHYCTL(0,((cs)?9:10),1) |
| 441 | #define PHYCTL_FIR BWP_TO_PHYCTL(0,0,15) |
| 442 | |
| 443 | /* quite ugly, I know. But implementing these calculations here avoids |
| 444 | * having magic numbers in the code and allows some playing with pulsewidths |
| 445 | * without risk to violate the standards. |
| 446 | * FWIW, here is the table for reference: |
| 447 | * |
| 448 | * baudrate BAUD min-PLSWID nom-PLSWID PREAMB |
| 449 | * 2400 47 0(0) 12(24) 0 |
| 450 | * 9600 11 0(0) 12(24) 0 |
| 451 | * 19200 5 1(2) 12(24) 0 |
| 452 | * 38400 2 3(6) 12(24) 0 |
| 453 | * 57600 1 5(10) 12(24) 0 |
| 454 | * 115200 0 11(22) 12(24) 0 |
| 455 | * MIR 0 - 9(10) 1 |
| 456 | * FIR 0 - 0 15 |
| 457 | * |
| 458 | * note: x(y) means x-value for 40MHz / y-value for 48MHz primary input clock |
| 459 | */ |
| 460 | |
| 461 | /* ------------------------------------------ */ |
| 462 | |
| 463 | |
| 464 | /* VLSI_PIO_MAXPKT: Maximum Packet Length register (u16, rw) */ |
| 465 | |
| 466 | /* maximum acceptable length for received packets */ |
| 467 | |
| 468 | /* hw imposed limitation - register uses only [11:0] */ |
| 469 | #define MAX_PACKET_LENGTH 0x0fff |
| 470 | |
| 471 | /* IrLAP I-field (apparently not defined elsewhere) */ |
| 472 | #define IRDA_MTU 2048 |
| 473 | |
| 474 | /* complete packet consists of A(1)+C(1)+I(<=IRDA_MTU) */ |
| 475 | #define IRLAP_SKB_ALLOCSIZE (1+1+IRDA_MTU) |
| 476 | |
| 477 | /* the buffers we use to exchange frames with the hardware need to be |
| 478 | * larger than IRLAP_SKB_ALLOCSIZE because we may have up to 4 bytes FCS |
| 479 | * appended and, in SIR mode, a lot of frame wrapping bytes. The worst |
| 480 | * case appears to be a SIR packet with I-size==IRDA_MTU and all bytes |
| 481 | * requiring to be escaped to provide transparency. Furthermore, the peer |
| 482 | * might ask for quite a number of additional XBOFs: |
| 483 | * up to 115+48 XBOFS 163 |
| 484 | * regular BOF 1 |
| 485 | * A-field 1 |
| 486 | * C-field 1 |
| 487 | * I-field, IRDA_MTU, all escaped 4096 |
| 488 | * FCS (16 bit at SIR, escaped) 4 |
| 489 | * EOF 1 |
| 490 | * AFAICS nothing in IrLAP guarantees A/C field not to need escaping |
| 491 | * (f.e. 0xc0/0xc1 - i.e. BOF/EOF - are legal values there) so in the |
| 492 | * worst case we have 4269 bytes total frame size. |
| 493 | * However, the VLSI uses 12 bits only for all buffer length values, |
| 494 | * which limits the maximum useable buffer size <= 4095. |
| 495 | * Note this is not a limitation in the receive case because we use |
| 496 | * the SIR filtering mode where the hw unwraps the frame and only the |
| 497 | * bare packet+fcs is stored into the buffer - in contrast to the SIR |
| 498 | * tx case where we have to pass frame-wrapped packets to the hw. |
| 499 | * If this would ever become an issue in real life, the only workaround |
| 500 | * I see would be using the legacy UART emulation in SIR mode. |
| 501 | */ |
| 502 | |
| 503 | #define XFER_BUF_SIZE MAX_PACKET_LENGTH |
| 504 | |
| 505 | /* ------------------------------------------ */ |
| 506 | |
| 507 | /* VLSI_PIO_RCVBCNT: Receive Byte Count Register (u16, ro) */ |
| 508 | |
| 509 | /* receive packet counter gets incremented on every non-filtered |
| 510 | * byte which was put in the receive fifo and reset for each |
| 511 | * new packet. Used to decide whether we are just in the middle |
| 512 | * of receiving |
| 513 | */ |
| 514 | |
| 515 | /* better apply the [11:0] mask when reading, as some docs say the |
| 516 | * reserved [15:12] would return 1 when reading - which is wrong AFAICS |
| 517 | */ |
| 518 | #define RCVBCNT_MASK 0x0fff |
| 519 | |
| 520 | /******************************************************************/ |
| 521 | |
| 522 | /* descriptors for rx/tx ring |
| 523 | * |
| 524 | * accessed by hardware - don't change! |
| 525 | * |
| 526 | * the descriptor is owned by hardware, when the ACTIVE status bit |
| 527 | * is set and nothing (besides reading status to test the bit) |
| 528 | * shall be done. The bit gets cleared by hw, when the descriptor |
| 529 | * gets closed. Premature reaping of descriptors owned be the chip |
| 530 | * can be achieved by disabling IRCFG_MSTR |
| 531 | * |
| 532 | * Attention: Writing addr overwrites status! |
| 533 | * |
| 534 | * ### FIXME: depends on endianess (but there ain't no non-i586 ob800 ;-) |
| 535 | */ |
| 536 | |
| 537 | struct ring_descr_hw { |
| 538 | volatile __le16 rd_count; /* tx/rx count [11:0] */ |
| 539 | __le16 reserved; |
| 540 | union { |
| 541 | __le32 addr; /* [23:0] of the buffer's busaddress */ |
| 542 | struct { |
| 543 | u8 addr_res[3]; |
| 544 | volatile u8 status; /* descriptor status */ |
| 545 | } __packed rd_s; |
| 546 | } __packed rd_u; |
| 547 | } __packed; |
| 548 | |
| 549 | #define rd_addr rd_u.addr |
| 550 | #define rd_status rd_u.rd_s.status |
| 551 | |
| 552 | /* ring descriptor status bits */ |
| 553 | |
| 554 | #define RD_ACTIVE 0x80 /* descriptor owned by hw (both TX,RX) */ |
| 555 | |
| 556 | /* TX ring descriptor status */ |
| 557 | |
| 558 | #define RD_TX_DISCRC 0x40 /* do not send CRC (for SIR) */ |
| 559 | #define RD_TX_BADCRC 0x20 /* force a bad CRC */ |
| 560 | #define RD_TX_PULSE 0x10 /* send indication pulse after this frame (MIR/FIR) */ |
| 561 | #define RD_TX_FRCEUND 0x08 /* force underrun */ |
| 562 | #define RD_TX_CLRENTX 0x04 /* clear ENTX after this frame */ |
| 563 | #define RD_TX_UNDRN 0x01 /* TX fifo underrun (probably PCI problem) */ |
| 564 | |
| 565 | /* RX ring descriptor status */ |
| 566 | |
| 567 | #define RD_RX_PHYERR 0x40 /* physical encoding error */ |
| 568 | #define RD_RX_CRCERR 0x20 /* CRC error (MIR/FIR) */ |
| 569 | #define RD_RX_LENGTH 0x10 /* frame exceeds buffer length */ |
| 570 | #define RD_RX_OVER 0x08 /* RX fifo overrun (probably PCI problem) */ |
| 571 | #define RD_RX_SIRBAD 0x04 /* EOF missing: BOF follows BOF (SIR, filtered) */ |
| 572 | |
| 573 | #define RD_RX_ERROR 0x7c /* any error in received frame */ |
| 574 | |
| 575 | /* the memory required to hold the 2 descriptor rings */ |
| 576 | #define HW_RING_AREA_SIZE (2 * MAX_RING_DESCR * sizeof(struct ring_descr_hw)) |
| 577 | |
| 578 | /******************************************************************/ |
| 579 | |
| 580 | /* sw-ring descriptors consists of a bus-mapped transfer buffer with |
| 581 | * associated skb and a pointer to the hw entry descriptor |
| 582 | */ |
| 583 | |
| 584 | struct ring_descr { |
| 585 | struct ring_descr_hw *hw; |
| 586 | struct sk_buff *skb; |
| 587 | void *buf; |
| 588 | }; |
| 589 | |
| 590 | /* wrappers for operations on hw-exposed ring descriptors |
| 591 | * access to the hw-part of the descriptors must use these. |
| 592 | */ |
| 593 | |
| 594 | static inline int rd_is_active(struct ring_descr *rd) |
| 595 | { |
| 596 | return (rd->hw->rd_status & RD_ACTIVE) != 0; |
| 597 | } |
| 598 | |
| 599 | static inline void rd_activate(struct ring_descr *rd) |
| 600 | { |
| 601 | rd->hw->rd_status |= RD_ACTIVE; |
| 602 | } |
| 603 | |
| 604 | static inline void rd_set_status(struct ring_descr *rd, u8 s) |
| 605 | { |
| 606 | rd->hw->rd_status = s; /* may pass ownership to the hardware */ |
| 607 | } |
| 608 | |
| 609 | static inline void rd_set_addr_status(struct ring_descr *rd, dma_addr_t a, u8 s) |
| 610 | { |
| 611 | /* order is important for two reasons: |
| 612 | * - overlayed: writing addr overwrites status |
| 613 | * - we want to write status last so we have valid address in |
| 614 | * case status has RD_ACTIVE set |
| 615 | */ |
| 616 | |
| 617 | if ((a & ~DMA_MASK_MSTRPAGE)>>24 != MSTRPAGE_VALUE) { |
| 618 | net_err_ratelimited("%s: pci busaddr inconsistency!\n", |
| 619 | __func__); |
| 620 | dump_stack(); |
| 621 | return; |
| 622 | } |
| 623 | |
| 624 | a &= DMA_MASK_MSTRPAGE; /* clear highbyte to make sure we won't write |
| 625 | * to status - just in case MSTRPAGE_VALUE!=0 |
| 626 | */ |
| 627 | rd->hw->rd_addr = cpu_to_le32(a); |
| 628 | wmb(); |
| 629 | rd_set_status(rd, s); /* may pass ownership to the hardware */ |
| 630 | } |
| 631 | |
| 632 | static inline void rd_set_count(struct ring_descr *rd, u16 c) |
| 633 | { |
| 634 | rd->hw->rd_count = cpu_to_le16(c); |
| 635 | } |
| 636 | |
| 637 | static inline u8 rd_get_status(struct ring_descr *rd) |
| 638 | { |
| 639 | return rd->hw->rd_status; |
| 640 | } |
| 641 | |
| 642 | static inline dma_addr_t rd_get_addr(struct ring_descr *rd) |
| 643 | { |
| 644 | dma_addr_t a; |
| 645 | |
| 646 | a = le32_to_cpu(rd->hw->rd_addr); |
| 647 | return (a & DMA_MASK_MSTRPAGE) | (MSTRPAGE_VALUE << 24); |
| 648 | } |
| 649 | |
| 650 | static inline u16 rd_get_count(struct ring_descr *rd) |
| 651 | { |
| 652 | return le16_to_cpu(rd->hw->rd_count); |
| 653 | } |
| 654 | |
| 655 | /******************************************************************/ |
| 656 | |
| 657 | /* sw descriptor rings for rx, tx: |
| 658 | * |
| 659 | * operations follow producer-consumer paradigm, with the hw |
| 660 | * in the middle doing the processing. |
| 661 | * ring size must be power of two. |
| 662 | * |
| 663 | * producer advances r->tail after inserting for processing |
| 664 | * consumer advances r->head after removing processed rd |
| 665 | * ring is empty if head==tail / full if (tail+1)==head |
| 666 | */ |
| 667 | |
| 668 | struct vlsi_ring { |
| 669 | struct pci_dev *pdev; |
| 670 | int dir; |
| 671 | unsigned len; |
| 672 | unsigned size; |
| 673 | unsigned mask; |
| 674 | atomic_t head, tail; |
| 675 | struct ring_descr *rd; |
| 676 | }; |
| 677 | |
| 678 | /* ring processing helpers */ |
| 679 | |
| 680 | static inline struct ring_descr *ring_last(struct vlsi_ring *r) |
| 681 | { |
| 682 | int t; |
| 683 | |
| 684 | t = atomic_read(&r->tail) & r->mask; |
| 685 | return (((t+1) & r->mask) == (atomic_read(&r->head) & r->mask)) ? NULL : &r->rd[t]; |
| 686 | } |
| 687 | |
| 688 | static inline struct ring_descr *ring_put(struct vlsi_ring *r) |
| 689 | { |
| 690 | atomic_inc(&r->tail); |
| 691 | return ring_last(r); |
| 692 | } |
| 693 | |
| 694 | static inline struct ring_descr *ring_first(struct vlsi_ring *r) |
| 695 | { |
| 696 | int h; |
| 697 | |
| 698 | h = atomic_read(&r->head) & r->mask; |
| 699 | return (h == (atomic_read(&r->tail) & r->mask)) ? NULL : &r->rd[h]; |
| 700 | } |
| 701 | |
| 702 | static inline struct ring_descr *ring_get(struct vlsi_ring *r) |
| 703 | { |
| 704 | atomic_inc(&r->head); |
| 705 | return ring_first(r); |
| 706 | } |
| 707 | |
| 708 | /******************************************************************/ |
| 709 | |
| 710 | /* our private compound VLSI-PCI-IRDA device information */ |
| 711 | |
| 712 | typedef struct vlsi_irda_dev { |
| 713 | struct pci_dev *pdev; |
| 714 | |
| 715 | struct irlap_cb *irlap; |
| 716 | |
| 717 | struct qos_info qos; |
| 718 | |
| 719 | unsigned mode; |
| 720 | int baud, new_baud; |
| 721 | |
| 722 | dma_addr_t busaddr; |
| 723 | void *virtaddr; |
| 724 | struct vlsi_ring *tx_ring, *rx_ring; |
| 725 | |
| 726 | ktime_t last_rx; |
| 727 | |
| 728 | spinlock_t lock; |
| 729 | struct mutex mtx; |
| 730 | |
| 731 | u8 resume_ok; |
| 732 | struct proc_dir_entry *proc_entry; |
| 733 | |
| 734 | } vlsi_irda_dev_t; |
| 735 | |
| 736 | /********************************************************/ |
| 737 | |
| 738 | /* the remapped error flags we use for returning from frame |
| 739 | * post-processing in vlsi_process_tx/rx() after it was completed |
| 740 | * by the hardware. These functions either return the >=0 number |
| 741 | * of transferred bytes in case of success or the negative (-) |
| 742 | * of the or'ed error flags. |
| 743 | */ |
| 744 | |
| 745 | #define VLSI_TX_DROP 0x0001 |
| 746 | #define VLSI_TX_FIFO 0x0002 |
| 747 | |
| 748 | #define VLSI_RX_DROP 0x0100 |
| 749 | #define VLSI_RX_OVER 0x0200 |
| 750 | #define VLSI_RX_LENGTH 0x0400 |
| 751 | #define VLSI_RX_FRAME 0x0800 |
| 752 | #define VLSI_RX_CRC 0x1000 |
| 753 | |
| 754 | /********************************************************/ |
| 755 | |
| 756 | #endif /* IRDA_VLSI_FIR_H */ |
| 757 | |