blob: 365d6dff21de2e1a6222da448ce86ea1126d7dec [file] [log] [blame]
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001/*
2 * w1_ds28e04.c - w1 family 1C (DS28E04) driver
3 *
4 * Copyright (c) 2012 Markus Franke <franke.m@sebakmt.com>
5 *
6 * This source code is licensed under the GNU General Public License,
7 * Version 2. See the file COPYING for more details.
8 */
9
10#include <linux/kernel.h>
11#include <linux/module.h>
12#include <linux/moduleparam.h>
13#include <linux/device.h>
14#include <linux/types.h>
15#include <linux/delay.h>
16#include <linux/slab.h>
17#include <linux/crc16.h>
18#include <linux/uaccess.h>
19
20#define CRC16_INIT 0
21#define CRC16_VALID 0xb001
22
23#include "../w1.h"
24#include "../w1_int.h"
25#include "../w1_family.h"
26
27MODULE_LICENSE("GPL");
28MODULE_AUTHOR("Markus Franke <franke.m@sebakmt.com>, <franm@hrz.tu-chemnitz.de>");
29MODULE_DESCRIPTION("w1 family 1C driver for DS28E04, 4kb EEPROM and PIO");
30MODULE_ALIAS("w1-family-" __stringify(W1_FAMILY_DS28E04));
31
32/* Allow the strong pullup to be disabled, but default to enabled.
33 * If it was disabled a parasite powered device might not get the required
34 * current to copy the data from the scratchpad to EEPROM. If it is enabled
35 * parasite powered devices have a better chance of getting the current
36 * required.
37 */
38static int w1_strong_pullup = 1;
39module_param_named(strong_pullup, w1_strong_pullup, int, 0);
40
41/* enable/disable CRC checking on DS28E04-100 memory accesses */
42static char w1_enable_crccheck = 1;
43
44#define W1_EEPROM_SIZE 512
45#define W1_PAGE_COUNT 16
46#define W1_PAGE_SIZE 32
47#define W1_PAGE_BITS 5
48#define W1_PAGE_MASK 0x1F
49
50#define W1_F1C_READ_EEPROM 0xF0
51#define W1_F1C_WRITE_SCRATCH 0x0F
52#define W1_F1C_READ_SCRATCH 0xAA
53#define W1_F1C_COPY_SCRATCH 0x55
54#define W1_F1C_ACCESS_WRITE 0x5A
55
56#define W1_1C_REG_LOGIC_STATE 0x220
57
58struct w1_f1C_data {
59 u8 memory[W1_EEPROM_SIZE];
60 u32 validcrc;
61};
62
63/**
64 * Check the file size bounds and adjusts count as needed.
65 * This would not be needed if the file size didn't reset to 0 after a write.
66 */
67static inline size_t w1_f1C_fix_count(loff_t off, size_t count, size_t size)
68{
69 if (off > size)
70 return 0;
71
72 if ((off + count) > size)
73 return size - off;
74
75 return count;
76}
77
78static int w1_f1C_refresh_block(struct w1_slave *sl, struct w1_f1C_data *data,
79 int block)
80{
81 u8 wrbuf[3];
82 int off = block * W1_PAGE_SIZE;
83
84 if (data->validcrc & (1 << block))
85 return 0;
86
87 if (w1_reset_select_slave(sl)) {
88 data->validcrc = 0;
89 return -EIO;
90 }
91
92 wrbuf[0] = W1_F1C_READ_EEPROM;
93 wrbuf[1] = off & 0xff;
94 wrbuf[2] = off >> 8;
95 w1_write_block(sl->master, wrbuf, 3);
96 w1_read_block(sl->master, &data->memory[off], W1_PAGE_SIZE);
97
98 /* cache the block if the CRC is valid */
99 if (crc16(CRC16_INIT, &data->memory[off], W1_PAGE_SIZE) == CRC16_VALID)
100 data->validcrc |= (1 << block);
101
102 return 0;
103}
104
105static int w1_f1C_read(struct w1_slave *sl, int addr, int len, char *data)
106{
107 u8 wrbuf[3];
108
109 /* read directly from the EEPROM */
110 if (w1_reset_select_slave(sl))
111 return -EIO;
112
113 wrbuf[0] = W1_F1C_READ_EEPROM;
114 wrbuf[1] = addr & 0xff;
115 wrbuf[2] = addr >> 8;
116
117 w1_write_block(sl->master, wrbuf, sizeof(wrbuf));
118 return w1_read_block(sl->master, data, len);
119}
120
121static ssize_t eeprom_read(struct file *filp, struct kobject *kobj,
122 struct bin_attribute *bin_attr, char *buf,
123 loff_t off, size_t count)
124{
125 struct w1_slave *sl = kobj_to_w1_slave(kobj);
126 struct w1_f1C_data *data = sl->family_data;
127 int i, min_page, max_page;
128
129 count = w1_f1C_fix_count(off, count, W1_EEPROM_SIZE);
130 if (count == 0)
131 return 0;
132
133 mutex_lock(&sl->master->mutex);
134
135 if (w1_enable_crccheck) {
136 min_page = (off >> W1_PAGE_BITS);
137 max_page = (off + count - 1) >> W1_PAGE_BITS;
138 for (i = min_page; i <= max_page; i++) {
139 if (w1_f1C_refresh_block(sl, data, i)) {
140 count = -EIO;
141 goto out_up;
142 }
143 }
144 memcpy(buf, &data->memory[off], count);
145 } else {
146 count = w1_f1C_read(sl, off, count, buf);
147 }
148
149out_up:
150 mutex_unlock(&sl->master->mutex);
151
152 return count;
153}
154
155/**
156 * Writes to the scratchpad and reads it back for verification.
157 * Then copies the scratchpad to EEPROM.
158 * The data must be on one page.
159 * The master must be locked.
160 *
161 * @param sl The slave structure
162 * @param addr Address for the write
163 * @param len length must be <= (W1_PAGE_SIZE - (addr & W1_PAGE_MASK))
164 * @param data The data to write
165 * @return 0=Success -1=failure
166 */
167static int w1_f1C_write(struct w1_slave *sl, int addr, int len, const u8 *data)
168{
169 u8 wrbuf[4];
170 u8 rdbuf[W1_PAGE_SIZE + 3];
171 u8 es = (addr + len - 1) & 0x1f;
172 unsigned int tm = 10;
173 int i;
174 struct w1_f1C_data *f1C = sl->family_data;
175
176 /* Write the data to the scratchpad */
177 if (w1_reset_select_slave(sl))
178 return -1;
179
180 wrbuf[0] = W1_F1C_WRITE_SCRATCH;
181 wrbuf[1] = addr & 0xff;
182 wrbuf[2] = addr >> 8;
183
184 w1_write_block(sl->master, wrbuf, 3);
185 w1_write_block(sl->master, data, len);
186
187 /* Read the scratchpad and verify */
188 if (w1_reset_select_slave(sl))
189 return -1;
190
191 w1_write_8(sl->master, W1_F1C_READ_SCRATCH);
192 w1_read_block(sl->master, rdbuf, len + 3);
193
194 /* Compare what was read against the data written */
195 if ((rdbuf[0] != wrbuf[1]) || (rdbuf[1] != wrbuf[2]) ||
196 (rdbuf[2] != es) || (memcmp(data, &rdbuf[3], len) != 0))
197 return -1;
198
199 /* Copy the scratchpad to EEPROM */
200 if (w1_reset_select_slave(sl))
201 return -1;
202
203 wrbuf[0] = W1_F1C_COPY_SCRATCH;
204 wrbuf[3] = es;
205
206 for (i = 0; i < sizeof(wrbuf); ++i) {
207 /* issue 10ms strong pullup (or delay) on the last byte
208 for writing the data from the scratchpad to EEPROM */
209 if (w1_strong_pullup && i == sizeof(wrbuf)-1)
210 w1_next_pullup(sl->master, tm);
211
212 w1_write_8(sl->master, wrbuf[i]);
213 }
214
215 if (!w1_strong_pullup)
216 msleep(tm);
217
218 if (w1_enable_crccheck) {
219 /* invalidate cached data */
220 f1C->validcrc &= ~(1 << (addr >> W1_PAGE_BITS));
221 }
222
223 /* Reset the bus to wake up the EEPROM (this may not be needed) */
224 w1_reset_bus(sl->master);
225
226 return 0;
227}
228
229static ssize_t eeprom_write(struct file *filp, struct kobject *kobj,
230 struct bin_attribute *bin_attr, char *buf,
231 loff_t off, size_t count)
232
233{
234 struct w1_slave *sl = kobj_to_w1_slave(kobj);
235 int addr, len, idx;
236
237 count = w1_f1C_fix_count(off, count, W1_EEPROM_SIZE);
238 if (count == 0)
239 return 0;
240
241 if (w1_enable_crccheck) {
242 /* can only write full blocks in cached mode */
243 if ((off & W1_PAGE_MASK) || (count & W1_PAGE_MASK)) {
244 dev_err(&sl->dev, "invalid offset/count off=%d cnt=%zd\n",
245 (int)off, count);
246 return -EINVAL;
247 }
248
249 /* make sure the block CRCs are valid */
250 for (idx = 0; idx < count; idx += W1_PAGE_SIZE) {
251 if (crc16(CRC16_INIT, &buf[idx], W1_PAGE_SIZE)
252 != CRC16_VALID) {
253 dev_err(&sl->dev, "bad CRC at offset %d\n",
254 (int)off);
255 return -EINVAL;
256 }
257 }
258 }
259
260 mutex_lock(&sl->master->mutex);
261
262 /* Can only write data to one page at a time */
263 idx = 0;
264 while (idx < count) {
265 addr = off + idx;
266 len = W1_PAGE_SIZE - (addr & W1_PAGE_MASK);
267 if (len > (count - idx))
268 len = count - idx;
269
270 if (w1_f1C_write(sl, addr, len, &buf[idx]) < 0) {
271 count = -EIO;
272 goto out_up;
273 }
274 idx += len;
275 }
276
277out_up:
278 mutex_unlock(&sl->master->mutex);
279
280 return count;
281}
282
283static BIN_ATTR_RW(eeprom, W1_EEPROM_SIZE);
284
285static ssize_t pio_read(struct file *filp, struct kobject *kobj,
286 struct bin_attribute *bin_attr, char *buf, loff_t off,
287 size_t count)
288
289{
290 struct w1_slave *sl = kobj_to_w1_slave(kobj);
291 int ret;
292
293 /* check arguments */
294 if (off != 0 || count != 1 || buf == NULL)
295 return -EINVAL;
296
297 mutex_lock(&sl->master->mutex);
298 ret = w1_f1C_read(sl, W1_1C_REG_LOGIC_STATE, count, buf);
299 mutex_unlock(&sl->master->mutex);
300
301 return ret;
302}
303
304static ssize_t pio_write(struct file *filp, struct kobject *kobj,
305 struct bin_attribute *bin_attr, char *buf, loff_t off,
306 size_t count)
307
308{
309 struct w1_slave *sl = kobj_to_w1_slave(kobj);
310 u8 wrbuf[3];
311 u8 ack;
312
313 /* check arguments */
314 if (off != 0 || count != 1 || buf == NULL)
315 return -EINVAL;
316
317 mutex_lock(&sl->master->mutex);
318
319 /* Write the PIO data */
320 if (w1_reset_select_slave(sl)) {
321 mutex_unlock(&sl->master->mutex);
322 return -1;
323 }
324
325 /* set bit 7..2 to value '1' */
326 *buf = *buf | 0xFC;
327
328 wrbuf[0] = W1_F1C_ACCESS_WRITE;
329 wrbuf[1] = *buf;
330 wrbuf[2] = ~(*buf);
331 w1_write_block(sl->master, wrbuf, 3);
332
333 w1_read_block(sl->master, &ack, sizeof(ack));
334
335 mutex_unlock(&sl->master->mutex);
336
337 /* check for acknowledgement */
338 if (ack != 0xAA)
339 return -EIO;
340
341 return count;
342}
343
344static BIN_ATTR_RW(pio, 1);
345
346static ssize_t crccheck_show(struct device *dev, struct device_attribute *attr,
347 char *buf)
348{
349 if (put_user(w1_enable_crccheck + 0x30, buf))
350 return -EFAULT;
351
352 return sizeof(w1_enable_crccheck);
353}
354
355static ssize_t crccheck_store(struct device *dev, struct device_attribute *attr,
356 const char *buf, size_t count)
357{
358 char val;
359
360 if (count != 1 || !buf)
361 return -EINVAL;
362
363 if (get_user(val, buf))
364 return -EFAULT;
365
366 /* convert to decimal */
367 val = val - 0x30;
368 if (val != 0 && val != 1)
369 return -EINVAL;
370
371 /* set the new value */
372 w1_enable_crccheck = val;
373
374 return sizeof(w1_enable_crccheck);
375}
376
377static DEVICE_ATTR_RW(crccheck);
378
379static struct attribute *w1_f1C_attrs[] = {
380 &dev_attr_crccheck.attr,
381 NULL,
382};
383
384static struct bin_attribute *w1_f1C_bin_attrs[] = {
385 &bin_attr_eeprom,
386 &bin_attr_pio,
387 NULL,
388};
389
390static const struct attribute_group w1_f1C_group = {
391 .attrs = w1_f1C_attrs,
392 .bin_attrs = w1_f1C_bin_attrs,
393};
394
395static const struct attribute_group *w1_f1C_groups[] = {
396 &w1_f1C_group,
397 NULL,
398};
399
400static int w1_f1C_add_slave(struct w1_slave *sl)
401{
402 struct w1_f1C_data *data = NULL;
403
404 if (w1_enable_crccheck) {
405 data = kzalloc(sizeof(struct w1_f1C_data), GFP_KERNEL);
406 if (!data)
407 return -ENOMEM;
408 sl->family_data = data;
409 }
410
411 return 0;
412}
413
414static void w1_f1C_remove_slave(struct w1_slave *sl)
415{
416 kfree(sl->family_data);
417 sl->family_data = NULL;
418}
419
420static struct w1_family_ops w1_f1C_fops = {
421 .add_slave = w1_f1C_add_slave,
422 .remove_slave = w1_f1C_remove_slave,
423 .groups = w1_f1C_groups,
424};
425
426static struct w1_family w1_family_1C = {
427 .fid = W1_FAMILY_DS28E04,
428 .fops = &w1_f1C_fops,
429};
430
431static int __init w1_f1C_init(void)
432{
433 return w1_register_family(&w1_family_1C);
434}
435
436static void __exit w1_f1C_fini(void)
437{
438 w1_unregister_family(&w1_family_1C);
439}
440
441module_init(w1_f1C_init);
442module_exit(w1_f1C_fini);