blob: fe4f49212b99ac5eb3e8692d07ab3315577ab246 [file] [log] [blame]
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001/*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 *
9 * See ../COPYING for licensing terms.
10 */
11#define pr_fmt(fmt) "%s: " fmt, __func__
12
13#include <linux/kernel.h>
14#include <linux/init.h>
15#include <linux/errno.h>
16#include <linux/time.h>
17#include <linux/aio_abi.h>
18#include <linux/export.h>
19#include <linux/syscalls.h>
20#include <linux/backing-dev.h>
21#include <linux/uio.h>
22
23#include <linux/sched.h>
24#include <linux/fs.h>
25#include <linux/file.h>
26#include <linux/mm.h>
27#include <linux/mman.h>
28#include <linux/mmu_context.h>
29#include <linux/percpu.h>
30#include <linux/slab.h>
31#include <linux/timer.h>
32#include <linux/aio.h>
33#include <linux/highmem.h>
34#include <linux/workqueue.h>
35#include <linux/security.h>
36#include <linux/eventfd.h>
37#include <linux/blkdev.h>
38#include <linux/compat.h>
39#include <linux/migrate.h>
40#include <linux/ramfs.h>
41#include <linux/percpu-refcount.h>
42#include <linux/mount.h>
43
44#include <asm/kmap_types.h>
45#include <asm/uaccess.h>
46
47#include "internal.h"
48
49#define AIO_RING_MAGIC 0xa10a10a1
50#define AIO_RING_COMPAT_FEATURES 1
51#define AIO_RING_INCOMPAT_FEATURES 0
52struct aio_ring {
53 unsigned id; /* kernel internal index number */
54 unsigned nr; /* number of io_events */
55 unsigned head; /* Written to by userland or under ring_lock
56 * mutex by aio_read_events_ring(). */
57 unsigned tail;
58
59 unsigned magic;
60 unsigned compat_features;
61 unsigned incompat_features;
62 unsigned header_length; /* size of aio_ring */
63
64
65 struct io_event io_events[0];
66}; /* 128 bytes + ring size */
67
68#define AIO_RING_PAGES 8
69
70struct kioctx_table {
71 struct rcu_head rcu;
72 unsigned nr;
73 struct kioctx *table[];
74};
75
76struct kioctx_cpu {
77 unsigned reqs_available;
78};
79
80struct ctx_rq_wait {
81 struct completion comp;
82 atomic_t count;
83};
84
85struct kioctx {
86 struct percpu_ref users;
87 atomic_t dead;
88
89 struct percpu_ref reqs;
90
91 unsigned long user_id;
92
93 struct __percpu kioctx_cpu *cpu;
94
95 /*
96 * For percpu reqs_available, number of slots we move to/from global
97 * counter at a time:
98 */
99 unsigned req_batch;
100 /*
101 * This is what userspace passed to io_setup(), it's not used for
102 * anything but counting against the global max_reqs quota.
103 *
104 * The real limit is nr_events - 1, which will be larger (see
105 * aio_setup_ring())
106 */
107 unsigned max_reqs;
108
109 /* Size of ringbuffer, in units of struct io_event */
110 unsigned nr_events;
111
112 unsigned long mmap_base;
113 unsigned long mmap_size;
114
115 struct page **ring_pages;
116 long nr_pages;
117
118 struct work_struct free_work;
119
120 /*
121 * signals when all in-flight requests are done
122 */
123 struct ctx_rq_wait *rq_wait;
124
125 struct {
126 /*
127 * This counts the number of available slots in the ringbuffer,
128 * so we avoid overflowing it: it's decremented (if positive)
129 * when allocating a kiocb and incremented when the resulting
130 * io_event is pulled off the ringbuffer.
131 *
132 * We batch accesses to it with a percpu version.
133 */
134 atomic_t reqs_available;
135 } ____cacheline_aligned_in_smp;
136
137 struct {
138 spinlock_t ctx_lock;
139 struct list_head active_reqs; /* used for cancellation */
140 } ____cacheline_aligned_in_smp;
141
142 struct {
143 struct mutex ring_lock;
144 wait_queue_head_t wait;
145 } ____cacheline_aligned_in_smp;
146
147 struct {
148 unsigned tail;
149 unsigned completed_events;
150 spinlock_t completion_lock;
151 } ____cacheline_aligned_in_smp;
152
153 struct page *internal_pages[AIO_RING_PAGES];
154 struct file *aio_ring_file;
155
156 unsigned id;
157};
158
159/*
160 * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
161 * cancelled or completed (this makes a certain amount of sense because
162 * successful cancellation - io_cancel() - does deliver the completion to
163 * userspace).
164 *
165 * And since most things don't implement kiocb cancellation and we'd really like
166 * kiocb completion to be lockless when possible, we use ki_cancel to
167 * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
168 * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
169 */
170#define KIOCB_CANCELLED ((void *) (~0ULL))
171
172struct aio_kiocb {
173 struct kiocb common;
174
175 struct kioctx *ki_ctx;
176 kiocb_cancel_fn *ki_cancel;
177
178 struct iocb __user *ki_user_iocb; /* user's aiocb */
179 __u64 ki_user_data; /* user's data for completion */
180
181 struct list_head ki_list; /* the aio core uses this
182 * for cancellation */
183
184 /*
185 * If the aio_resfd field of the userspace iocb is not zero,
186 * this is the underlying eventfd context to deliver events to.
187 */
188 struct eventfd_ctx *ki_eventfd;
189};
190
191/*------ sysctl variables----*/
192static DEFINE_SPINLOCK(aio_nr_lock);
193unsigned long aio_nr; /* current system wide number of aio requests */
194unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
195/*----end sysctl variables---*/
196
197static struct kmem_cache *kiocb_cachep;
198static struct kmem_cache *kioctx_cachep;
199
200static struct vfsmount *aio_mnt;
201
202static const struct file_operations aio_ring_fops;
203static const struct address_space_operations aio_ctx_aops;
204
205static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
206{
207 struct qstr this = QSTR_INIT("[aio]", 5);
208 struct file *file;
209 struct path path;
210 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
211 if (IS_ERR(inode))
212 return ERR_CAST(inode);
213
214 inode->i_mapping->a_ops = &aio_ctx_aops;
215 inode->i_mapping->private_data = ctx;
216 inode->i_size = PAGE_SIZE * nr_pages;
217
218 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
219 if (!path.dentry) {
220 iput(inode);
221 return ERR_PTR(-ENOMEM);
222 }
223 path.mnt = mntget(aio_mnt);
224
225 d_instantiate(path.dentry, inode);
226 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
227 if (IS_ERR(file)) {
228 path_put(&path);
229 return file;
230 }
231
232 file->f_flags = O_RDWR;
233 return file;
234}
235
236static struct dentry *aio_mount(struct file_system_type *fs_type,
237 int flags, const char *dev_name, void *data)
238{
239 static const struct dentry_operations ops = {
240 .d_dname = simple_dname,
241 };
242 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops,
243 AIO_RING_MAGIC);
244
245 if (!IS_ERR(root))
246 root->d_sb->s_iflags |= SB_I_NOEXEC;
247 return root;
248}
249
250/* aio_setup
251 * Creates the slab caches used by the aio routines, panic on
252 * failure as this is done early during the boot sequence.
253 */
254static int __init aio_setup(void)
255{
256 static struct file_system_type aio_fs = {
257 .name = "aio",
258 .mount = aio_mount,
259 .kill_sb = kill_anon_super,
260 };
261 aio_mnt = kern_mount(&aio_fs);
262 if (IS_ERR(aio_mnt))
263 panic("Failed to create aio fs mount.");
264
265 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
266 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
267
268 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
269
270 return 0;
271}
272__initcall(aio_setup);
273
274static void put_aio_ring_file(struct kioctx *ctx)
275{
276 struct file *aio_ring_file = ctx->aio_ring_file;
277 if (aio_ring_file) {
278 truncate_setsize(aio_ring_file->f_inode, 0);
279
280 /* Prevent further access to the kioctx from migratepages */
281 spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
282 aio_ring_file->f_inode->i_mapping->private_data = NULL;
283 ctx->aio_ring_file = NULL;
284 spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
285
286 fput(aio_ring_file);
287 }
288}
289
290static void aio_free_ring(struct kioctx *ctx)
291{
292 int i;
293
294 /* Disconnect the kiotx from the ring file. This prevents future
295 * accesses to the kioctx from page migration.
296 */
297 put_aio_ring_file(ctx);
298
299 for (i = 0; i < ctx->nr_pages; i++) {
300 struct page *page;
301 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
302 page_count(ctx->ring_pages[i]));
303 page = ctx->ring_pages[i];
304 if (!page)
305 continue;
306 ctx->ring_pages[i] = NULL;
307 put_page(page);
308 }
309
310 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
311 kfree(ctx->ring_pages);
312 ctx->ring_pages = NULL;
313 }
314}
315
316static int aio_ring_mremap(struct vm_area_struct *vma)
317{
318 struct file *file = vma->vm_file;
319 struct mm_struct *mm = vma->vm_mm;
320 struct kioctx_table *table;
321 int i, res = -EINVAL;
322
323 spin_lock(&mm->ioctx_lock);
324 rcu_read_lock();
325 table = rcu_dereference(mm->ioctx_table);
326 for (i = 0; i < table->nr; i++) {
327 struct kioctx *ctx;
328
329 ctx = table->table[i];
330 if (ctx && ctx->aio_ring_file == file) {
331 if (!atomic_read(&ctx->dead)) {
332 ctx->user_id = ctx->mmap_base = vma->vm_start;
333 res = 0;
334 }
335 break;
336 }
337 }
338
339 rcu_read_unlock();
340 spin_unlock(&mm->ioctx_lock);
341 return res;
342}
343
344static const struct vm_operations_struct aio_ring_vm_ops = {
345 .mremap = aio_ring_mremap,
346#if IS_ENABLED(CONFIG_MMU)
347 .fault = filemap_fault,
348 .map_pages = filemap_map_pages,
349 .page_mkwrite = filemap_page_mkwrite,
350#endif
351};
352
353static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
354{
355 vma->vm_flags |= VM_DONTEXPAND;
356 vma->vm_ops = &aio_ring_vm_ops;
357 return 0;
358}
359
360static const struct file_operations aio_ring_fops = {
361 .mmap = aio_ring_mmap,
362};
363
364#if IS_ENABLED(CONFIG_MIGRATION)
365static int aio_migratepage(struct address_space *mapping, struct page *new,
366 struct page *old, enum migrate_mode mode)
367{
368 struct kioctx *ctx;
369 unsigned long flags;
370 pgoff_t idx;
371 int rc;
372
373 rc = 0;
374
375 /* mapping->private_lock here protects against the kioctx teardown. */
376 spin_lock(&mapping->private_lock);
377 ctx = mapping->private_data;
378 if (!ctx) {
379 rc = -EINVAL;
380 goto out;
381 }
382
383 /* The ring_lock mutex. The prevents aio_read_events() from writing
384 * to the ring's head, and prevents page migration from mucking in
385 * a partially initialized kiotx.
386 */
387 if (!mutex_trylock(&ctx->ring_lock)) {
388 rc = -EAGAIN;
389 goto out;
390 }
391
392 idx = old->index;
393 if (idx < (pgoff_t)ctx->nr_pages) {
394 /* Make sure the old page hasn't already been changed */
395 if (ctx->ring_pages[idx] != old)
396 rc = -EAGAIN;
397 } else
398 rc = -EINVAL;
399
400 if (rc != 0)
401 goto out_unlock;
402
403 /* Writeback must be complete */
404 BUG_ON(PageWriteback(old));
405 get_page(new);
406
407 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
408 if (rc != MIGRATEPAGE_SUCCESS) {
409 put_page(new);
410 goto out_unlock;
411 }
412
413 /* Take completion_lock to prevent other writes to the ring buffer
414 * while the old page is copied to the new. This prevents new
415 * events from being lost.
416 */
417 spin_lock_irqsave(&ctx->completion_lock, flags);
418 migrate_page_copy(new, old);
419 BUG_ON(ctx->ring_pages[idx] != old);
420 ctx->ring_pages[idx] = new;
421 spin_unlock_irqrestore(&ctx->completion_lock, flags);
422
423 /* The old page is no longer accessible. */
424 put_page(old);
425
426out_unlock:
427 mutex_unlock(&ctx->ring_lock);
428out:
429 spin_unlock(&mapping->private_lock);
430 return rc;
431}
432#endif
433
434static const struct address_space_operations aio_ctx_aops = {
435 .set_page_dirty = __set_page_dirty_no_writeback,
436#if IS_ENABLED(CONFIG_MIGRATION)
437 .migratepage = aio_migratepage,
438#endif
439};
440
441static int aio_setup_ring(struct kioctx *ctx)
442{
443 struct aio_ring *ring;
444 unsigned nr_events = ctx->max_reqs;
445 struct mm_struct *mm = current->mm;
446 unsigned long size, unused;
447 int nr_pages;
448 int i;
449 struct file *file;
450
451 /* Compensate for the ring buffer's head/tail overlap entry */
452 nr_events += 2; /* 1 is required, 2 for good luck */
453
454 size = sizeof(struct aio_ring);
455 size += sizeof(struct io_event) * nr_events;
456
457 nr_pages = PFN_UP(size);
458 if (nr_pages < 0)
459 return -EINVAL;
460
461 file = aio_private_file(ctx, nr_pages);
462 if (IS_ERR(file)) {
463 ctx->aio_ring_file = NULL;
464 return -ENOMEM;
465 }
466
467 ctx->aio_ring_file = file;
468 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
469 / sizeof(struct io_event);
470
471 ctx->ring_pages = ctx->internal_pages;
472 if (nr_pages > AIO_RING_PAGES) {
473 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
474 GFP_KERNEL);
475 if (!ctx->ring_pages) {
476 put_aio_ring_file(ctx);
477 return -ENOMEM;
478 }
479 }
480
481 for (i = 0; i < nr_pages; i++) {
482 struct page *page;
483 page = find_or_create_page(file->f_inode->i_mapping,
484 i, GFP_HIGHUSER | __GFP_ZERO);
485 if (!page)
486 break;
487 pr_debug("pid(%d) page[%d]->count=%d\n",
488 current->pid, i, page_count(page));
489 SetPageUptodate(page);
490 unlock_page(page);
491
492 ctx->ring_pages[i] = page;
493 }
494 ctx->nr_pages = i;
495
496 if (unlikely(i != nr_pages)) {
497 aio_free_ring(ctx);
498 return -ENOMEM;
499 }
500
501 ctx->mmap_size = nr_pages * PAGE_SIZE;
502 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
503
504 down_write(&mm->mmap_sem);
505 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
506 PROT_READ | PROT_WRITE,
507 MAP_SHARED, 0, &unused);
508 up_write(&mm->mmap_sem);
509 if (IS_ERR((void *)ctx->mmap_base)) {
510 ctx->mmap_size = 0;
511 aio_free_ring(ctx);
512 return -ENOMEM;
513 }
514
515 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
516
517 ctx->user_id = ctx->mmap_base;
518 ctx->nr_events = nr_events; /* trusted copy */
519
520 ring = kmap_atomic(ctx->ring_pages[0]);
521 ring->nr = nr_events; /* user copy */
522 ring->id = ~0U;
523 ring->head = ring->tail = 0;
524 ring->magic = AIO_RING_MAGIC;
525 ring->compat_features = AIO_RING_COMPAT_FEATURES;
526 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
527 ring->header_length = sizeof(struct aio_ring);
528 kunmap_atomic(ring);
529 flush_dcache_page(ctx->ring_pages[0]);
530
531 return 0;
532}
533
534#define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
535#define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
536#define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
537
538void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
539{
540 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common);
541 struct kioctx *ctx = req->ki_ctx;
542 unsigned long flags;
543
544 spin_lock_irqsave(&ctx->ctx_lock, flags);
545
546 if (!req->ki_list.next)
547 list_add(&req->ki_list, &ctx->active_reqs);
548
549 req->ki_cancel = cancel;
550
551 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
552}
553EXPORT_SYMBOL(kiocb_set_cancel_fn);
554
555static int kiocb_cancel(struct aio_kiocb *kiocb)
556{
557 kiocb_cancel_fn *old, *cancel;
558
559 /*
560 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
561 * actually has a cancel function, hence the cmpxchg()
562 */
563
564 cancel = ACCESS_ONCE(kiocb->ki_cancel);
565 do {
566 if (!cancel || cancel == KIOCB_CANCELLED)
567 return -EINVAL;
568
569 old = cancel;
570 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
571 } while (cancel != old);
572
573 return cancel(&kiocb->common);
574}
575
576static void free_ioctx(struct work_struct *work)
577{
578 struct kioctx *ctx = container_of(work, struct kioctx, free_work);
579
580 pr_debug("freeing %p\n", ctx);
581
582 aio_free_ring(ctx);
583 free_percpu(ctx->cpu);
584 percpu_ref_exit(&ctx->reqs);
585 percpu_ref_exit(&ctx->users);
586 kmem_cache_free(kioctx_cachep, ctx);
587}
588
589static void free_ioctx_reqs(struct percpu_ref *ref)
590{
591 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
592
593 /* At this point we know that there are no any in-flight requests */
594 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
595 complete(&ctx->rq_wait->comp);
596
597 INIT_WORK(&ctx->free_work, free_ioctx);
598 schedule_work(&ctx->free_work);
599}
600
601/*
602 * When this function runs, the kioctx has been removed from the "hash table"
603 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
604 * now it's safe to cancel any that need to be.
605 */
606static void free_ioctx_users(struct percpu_ref *ref)
607{
608 struct kioctx *ctx = container_of(ref, struct kioctx, users);
609 struct aio_kiocb *req;
610
611 spin_lock_irq(&ctx->ctx_lock);
612
613 while (!list_empty(&ctx->active_reqs)) {
614 req = list_first_entry(&ctx->active_reqs,
615 struct aio_kiocb, ki_list);
616
617 list_del_init(&req->ki_list);
618 kiocb_cancel(req);
619 }
620
621 spin_unlock_irq(&ctx->ctx_lock);
622
623 percpu_ref_kill(&ctx->reqs);
624 percpu_ref_put(&ctx->reqs);
625}
626
627static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
628{
629 unsigned i, new_nr;
630 struct kioctx_table *table, *old;
631 struct aio_ring *ring;
632
633 spin_lock(&mm->ioctx_lock);
634 table = rcu_dereference_raw(mm->ioctx_table);
635
636 while (1) {
637 if (table)
638 for (i = 0; i < table->nr; i++)
639 if (!table->table[i]) {
640 ctx->id = i;
641 table->table[i] = ctx;
642 spin_unlock(&mm->ioctx_lock);
643
644 /* While kioctx setup is in progress,
645 * we are protected from page migration
646 * changes ring_pages by ->ring_lock.
647 */
648 ring = kmap_atomic(ctx->ring_pages[0]);
649 ring->id = ctx->id;
650 kunmap_atomic(ring);
651 return 0;
652 }
653
654 new_nr = (table ? table->nr : 1) * 4;
655 spin_unlock(&mm->ioctx_lock);
656
657 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
658 new_nr, GFP_KERNEL);
659 if (!table)
660 return -ENOMEM;
661
662 table->nr = new_nr;
663
664 spin_lock(&mm->ioctx_lock);
665 old = rcu_dereference_raw(mm->ioctx_table);
666
667 if (!old) {
668 rcu_assign_pointer(mm->ioctx_table, table);
669 } else if (table->nr > old->nr) {
670 memcpy(table->table, old->table,
671 old->nr * sizeof(struct kioctx *));
672
673 rcu_assign_pointer(mm->ioctx_table, table);
674 kfree_rcu(old, rcu);
675 } else {
676 kfree(table);
677 table = old;
678 }
679 }
680}
681
682static void aio_nr_sub(unsigned nr)
683{
684 spin_lock(&aio_nr_lock);
685 if (WARN_ON(aio_nr - nr > aio_nr))
686 aio_nr = 0;
687 else
688 aio_nr -= nr;
689 spin_unlock(&aio_nr_lock);
690}
691
692/* ioctx_alloc
693 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
694 */
695static struct kioctx *ioctx_alloc(unsigned nr_events)
696{
697 struct mm_struct *mm = current->mm;
698 struct kioctx *ctx;
699 int err = -ENOMEM;
700
701 /*
702 * We keep track of the number of available ringbuffer slots, to prevent
703 * overflow (reqs_available), and we also use percpu counters for this.
704 *
705 * So since up to half the slots might be on other cpu's percpu counters
706 * and unavailable, double nr_events so userspace sees what they
707 * expected: additionally, we move req_batch slots to/from percpu
708 * counters at a time, so make sure that isn't 0:
709 */
710 nr_events = max(nr_events, num_possible_cpus() * 4);
711 nr_events *= 2;
712
713 /* Prevent overflows */
714 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
715 pr_debug("ENOMEM: nr_events too high\n");
716 return ERR_PTR(-EINVAL);
717 }
718
719 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
720 return ERR_PTR(-EAGAIN);
721
722 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
723 if (!ctx)
724 return ERR_PTR(-ENOMEM);
725
726 ctx->max_reqs = nr_events;
727
728 spin_lock_init(&ctx->ctx_lock);
729 spin_lock_init(&ctx->completion_lock);
730 mutex_init(&ctx->ring_lock);
731 /* Protect against page migration throughout kiotx setup by keeping
732 * the ring_lock mutex held until setup is complete. */
733 mutex_lock(&ctx->ring_lock);
734 init_waitqueue_head(&ctx->wait);
735
736 INIT_LIST_HEAD(&ctx->active_reqs);
737
738 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
739 goto err;
740
741 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
742 goto err;
743
744 ctx->cpu = alloc_percpu(struct kioctx_cpu);
745 if (!ctx->cpu)
746 goto err;
747
748 err = aio_setup_ring(ctx);
749 if (err < 0)
750 goto err;
751
752 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
753 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
754 if (ctx->req_batch < 1)
755 ctx->req_batch = 1;
756
757 /* limit the number of system wide aios */
758 spin_lock(&aio_nr_lock);
759 if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
760 aio_nr + nr_events < aio_nr) {
761 spin_unlock(&aio_nr_lock);
762 err = -EAGAIN;
763 goto err_ctx;
764 }
765 aio_nr += ctx->max_reqs;
766 spin_unlock(&aio_nr_lock);
767
768 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
769 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
770
771 err = ioctx_add_table(ctx, mm);
772 if (err)
773 goto err_cleanup;
774
775 /* Release the ring_lock mutex now that all setup is complete. */
776 mutex_unlock(&ctx->ring_lock);
777
778 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
779 ctx, ctx->user_id, mm, ctx->nr_events);
780 return ctx;
781
782err_cleanup:
783 aio_nr_sub(ctx->max_reqs);
784err_ctx:
785 atomic_set(&ctx->dead, 1);
786 if (ctx->mmap_size)
787 vm_munmap(ctx->mmap_base, ctx->mmap_size);
788 aio_free_ring(ctx);
789err:
790 mutex_unlock(&ctx->ring_lock);
791 free_percpu(ctx->cpu);
792 percpu_ref_exit(&ctx->reqs);
793 percpu_ref_exit(&ctx->users);
794 kmem_cache_free(kioctx_cachep, ctx);
795 pr_debug("error allocating ioctx %d\n", err);
796 return ERR_PTR(err);
797}
798
799/* kill_ioctx
800 * Cancels all outstanding aio requests on an aio context. Used
801 * when the processes owning a context have all exited to encourage
802 * the rapid destruction of the kioctx.
803 */
804static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
805 struct ctx_rq_wait *wait)
806{
807 struct kioctx_table *table;
808
809 spin_lock(&mm->ioctx_lock);
810 if (atomic_xchg(&ctx->dead, 1)) {
811 spin_unlock(&mm->ioctx_lock);
812 return -EINVAL;
813 }
814
815 table = rcu_dereference_raw(mm->ioctx_table);
816 WARN_ON(ctx != table->table[ctx->id]);
817 table->table[ctx->id] = NULL;
818 spin_unlock(&mm->ioctx_lock);
819
820 /* percpu_ref_kill() will do the necessary call_rcu() */
821 wake_up_all(&ctx->wait);
822
823 /*
824 * It'd be more correct to do this in free_ioctx(), after all
825 * the outstanding kiocbs have finished - but by then io_destroy
826 * has already returned, so io_setup() could potentially return
827 * -EAGAIN with no ioctxs actually in use (as far as userspace
828 * could tell).
829 */
830 aio_nr_sub(ctx->max_reqs);
831
832 if (ctx->mmap_size)
833 vm_munmap(ctx->mmap_base, ctx->mmap_size);
834
835 ctx->rq_wait = wait;
836 percpu_ref_kill(&ctx->users);
837 return 0;
838}
839
840/*
841 * exit_aio: called when the last user of mm goes away. At this point, there is
842 * no way for any new requests to be submited or any of the io_* syscalls to be
843 * called on the context.
844 *
845 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
846 * them.
847 */
848void exit_aio(struct mm_struct *mm)
849{
850 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
851 struct ctx_rq_wait wait;
852 int i, skipped;
853
854 if (!table)
855 return;
856
857 atomic_set(&wait.count, table->nr);
858 init_completion(&wait.comp);
859
860 skipped = 0;
861 for (i = 0; i < table->nr; ++i) {
862 struct kioctx *ctx = table->table[i];
863
864 if (!ctx) {
865 skipped++;
866 continue;
867 }
868
869 /*
870 * We don't need to bother with munmap() here - exit_mmap(mm)
871 * is coming and it'll unmap everything. And we simply can't,
872 * this is not necessarily our ->mm.
873 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
874 * that it needs to unmap the area, just set it to 0.
875 */
876 ctx->mmap_size = 0;
877 kill_ioctx(mm, ctx, &wait);
878 }
879
880 if (!atomic_sub_and_test(skipped, &wait.count)) {
881 /* Wait until all IO for the context are done. */
882 wait_for_completion(&wait.comp);
883 }
884
885 RCU_INIT_POINTER(mm->ioctx_table, NULL);
886 kfree(table);
887}
888
889static void put_reqs_available(struct kioctx *ctx, unsigned nr)
890{
891 struct kioctx_cpu *kcpu;
892 unsigned long flags;
893
894 local_irq_save(flags);
895 kcpu = this_cpu_ptr(ctx->cpu);
896 kcpu->reqs_available += nr;
897
898 while (kcpu->reqs_available >= ctx->req_batch * 2) {
899 kcpu->reqs_available -= ctx->req_batch;
900 atomic_add(ctx->req_batch, &ctx->reqs_available);
901 }
902
903 local_irq_restore(flags);
904}
905
906static bool get_reqs_available(struct kioctx *ctx)
907{
908 struct kioctx_cpu *kcpu;
909 bool ret = false;
910 unsigned long flags;
911
912 local_irq_save(flags);
913 kcpu = this_cpu_ptr(ctx->cpu);
914 if (!kcpu->reqs_available) {
915 int old, avail = atomic_read(&ctx->reqs_available);
916
917 do {
918 if (avail < ctx->req_batch)
919 goto out;
920
921 old = avail;
922 avail = atomic_cmpxchg(&ctx->reqs_available,
923 avail, avail - ctx->req_batch);
924 } while (avail != old);
925
926 kcpu->reqs_available += ctx->req_batch;
927 }
928
929 ret = true;
930 kcpu->reqs_available--;
931out:
932 local_irq_restore(flags);
933 return ret;
934}
935
936/* refill_reqs_available
937 * Updates the reqs_available reference counts used for tracking the
938 * number of free slots in the completion ring. This can be called
939 * from aio_complete() (to optimistically update reqs_available) or
940 * from aio_get_req() (the we're out of events case). It must be
941 * called holding ctx->completion_lock.
942 */
943static void refill_reqs_available(struct kioctx *ctx, unsigned head,
944 unsigned tail)
945{
946 unsigned events_in_ring, completed;
947
948 /* Clamp head since userland can write to it. */
949 head %= ctx->nr_events;
950 if (head <= tail)
951 events_in_ring = tail - head;
952 else
953 events_in_ring = ctx->nr_events - (head - tail);
954
955 completed = ctx->completed_events;
956 if (events_in_ring < completed)
957 completed -= events_in_ring;
958 else
959 completed = 0;
960
961 if (!completed)
962 return;
963
964 ctx->completed_events -= completed;
965 put_reqs_available(ctx, completed);
966}
967
968/* user_refill_reqs_available
969 * Called to refill reqs_available when aio_get_req() encounters an
970 * out of space in the completion ring.
971 */
972static void user_refill_reqs_available(struct kioctx *ctx)
973{
974 spin_lock_irq(&ctx->completion_lock);
975 if (ctx->completed_events) {
976 struct aio_ring *ring;
977 unsigned head;
978
979 /* Access of ring->head may race with aio_read_events_ring()
980 * here, but that's okay since whether we read the old version
981 * or the new version, and either will be valid. The important
982 * part is that head cannot pass tail since we prevent
983 * aio_complete() from updating tail by holding
984 * ctx->completion_lock. Even if head is invalid, the check
985 * against ctx->completed_events below will make sure we do the
986 * safe/right thing.
987 */
988 ring = kmap_atomic(ctx->ring_pages[0]);
989 head = ring->head;
990 kunmap_atomic(ring);
991
992 refill_reqs_available(ctx, head, ctx->tail);
993 }
994
995 spin_unlock_irq(&ctx->completion_lock);
996}
997
998/* aio_get_req
999 * Allocate a slot for an aio request.
1000 * Returns NULL if no requests are free.
1001 */
1002static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1003{
1004 struct aio_kiocb *req;
1005
1006 if (!get_reqs_available(ctx)) {
1007 user_refill_reqs_available(ctx);
1008 if (!get_reqs_available(ctx))
1009 return NULL;
1010 }
1011
1012 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1013 if (unlikely(!req))
1014 goto out_put;
1015
1016 percpu_ref_get(&ctx->reqs);
1017
1018 req->ki_ctx = ctx;
1019 return req;
1020out_put:
1021 put_reqs_available(ctx, 1);
1022 return NULL;
1023}
1024
1025static void kiocb_free(struct aio_kiocb *req)
1026{
1027 if (req->common.ki_filp)
1028 fput(req->common.ki_filp);
1029 if (req->ki_eventfd != NULL)
1030 eventfd_ctx_put(req->ki_eventfd);
1031 kmem_cache_free(kiocb_cachep, req);
1032}
1033
1034static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1035{
1036 struct aio_ring __user *ring = (void __user *)ctx_id;
1037 struct mm_struct *mm = current->mm;
1038 struct kioctx *ctx, *ret = NULL;
1039 struct kioctx_table *table;
1040 unsigned id;
1041
1042 if (get_user(id, &ring->id))
1043 return NULL;
1044
1045 rcu_read_lock();
1046 table = rcu_dereference(mm->ioctx_table);
1047
1048 if (!table || id >= table->nr)
1049 goto out;
1050
1051 ctx = table->table[id];
1052 if (ctx && ctx->user_id == ctx_id) {
1053 percpu_ref_get(&ctx->users);
1054 ret = ctx;
1055 }
1056out:
1057 rcu_read_unlock();
1058 return ret;
1059}
1060
1061/* aio_complete
1062 * Called when the io request on the given iocb is complete.
1063 */
1064static void aio_complete(struct kiocb *kiocb, long res, long res2)
1065{
1066 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common);
1067 struct kioctx *ctx = iocb->ki_ctx;
1068 struct aio_ring *ring;
1069 struct io_event *ev_page, *event;
1070 unsigned tail, pos, head;
1071 unsigned long flags;
1072
1073 /*
1074 * Special case handling for sync iocbs:
1075 * - events go directly into the iocb for fast handling
1076 * - the sync task with the iocb in its stack holds the single iocb
1077 * ref, no other paths have a way to get another ref
1078 * - the sync task helpfully left a reference to itself in the iocb
1079 */
1080 BUG_ON(is_sync_kiocb(kiocb));
1081
1082 if (iocb->ki_list.next) {
1083 unsigned long flags;
1084
1085 spin_lock_irqsave(&ctx->ctx_lock, flags);
1086 list_del(&iocb->ki_list);
1087 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1088 }
1089
1090 /*
1091 * Add a completion event to the ring buffer. Must be done holding
1092 * ctx->completion_lock to prevent other code from messing with the tail
1093 * pointer since we might be called from irq context.
1094 */
1095 spin_lock_irqsave(&ctx->completion_lock, flags);
1096
1097 tail = ctx->tail;
1098 pos = tail + AIO_EVENTS_OFFSET;
1099
1100 if (++tail >= ctx->nr_events)
1101 tail = 0;
1102
1103 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1104 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1105
1106 event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1107 event->data = iocb->ki_user_data;
1108 event->res = res;
1109 event->res2 = res2;
1110
1111 kunmap_atomic(ev_page);
1112 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1113
1114 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1115 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1116 res, res2);
1117
1118 /* after flagging the request as done, we
1119 * must never even look at it again
1120 */
1121 smp_wmb(); /* make event visible before updating tail */
1122
1123 ctx->tail = tail;
1124
1125 ring = kmap_atomic(ctx->ring_pages[0]);
1126 head = ring->head;
1127 ring->tail = tail;
1128 kunmap_atomic(ring);
1129 flush_dcache_page(ctx->ring_pages[0]);
1130
1131 ctx->completed_events++;
1132 if (ctx->completed_events > 1)
1133 refill_reqs_available(ctx, head, tail);
1134 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1135
1136 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1137
1138 /*
1139 * Check if the user asked us to deliver the result through an
1140 * eventfd. The eventfd_signal() function is safe to be called
1141 * from IRQ context.
1142 */
1143 if (iocb->ki_eventfd != NULL)
1144 eventfd_signal(iocb->ki_eventfd, 1);
1145
1146 /* everything turned out well, dispose of the aiocb. */
1147 kiocb_free(iocb);
1148
1149 /*
1150 * We have to order our ring_info tail store above and test
1151 * of the wait list below outside the wait lock. This is
1152 * like in wake_up_bit() where clearing a bit has to be
1153 * ordered with the unlocked test.
1154 */
1155 smp_mb();
1156
1157 if (waitqueue_active(&ctx->wait))
1158 wake_up(&ctx->wait);
1159
1160 percpu_ref_put(&ctx->reqs);
1161}
1162
1163/* aio_read_events_ring
1164 * Pull an event off of the ioctx's event ring. Returns the number of
1165 * events fetched
1166 */
1167static long aio_read_events_ring(struct kioctx *ctx,
1168 struct io_event __user *event, long nr)
1169{
1170 struct aio_ring *ring;
1171 unsigned head, tail, pos;
1172 long ret = 0;
1173 int copy_ret;
1174
1175 /*
1176 * The mutex can block and wake us up and that will cause
1177 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1178 * and repeat. This should be rare enough that it doesn't cause
1179 * peformance issues. See the comment in read_events() for more detail.
1180 */
1181 sched_annotate_sleep();
1182 mutex_lock(&ctx->ring_lock);
1183
1184 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1185 ring = kmap_atomic(ctx->ring_pages[0]);
1186 head = ring->head;
1187 tail = ring->tail;
1188 kunmap_atomic(ring);
1189
1190 /*
1191 * Ensure that once we've read the current tail pointer, that
1192 * we also see the events that were stored up to the tail.
1193 */
1194 smp_rmb();
1195
1196 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1197
1198 if (head == tail)
1199 goto out;
1200
1201 head %= ctx->nr_events;
1202 tail %= ctx->nr_events;
1203
1204 while (ret < nr) {
1205 long avail;
1206 struct io_event *ev;
1207 struct page *page;
1208
1209 avail = (head <= tail ? tail : ctx->nr_events) - head;
1210 if (head == tail)
1211 break;
1212
1213 avail = min(avail, nr - ret);
1214 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1215 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1216
1217 pos = head + AIO_EVENTS_OFFSET;
1218 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1219 pos %= AIO_EVENTS_PER_PAGE;
1220
1221 ev = kmap(page);
1222 copy_ret = copy_to_user(event + ret, ev + pos,
1223 sizeof(*ev) * avail);
1224 kunmap(page);
1225
1226 if (unlikely(copy_ret)) {
1227 ret = -EFAULT;
1228 goto out;
1229 }
1230
1231 ret += avail;
1232 head += avail;
1233 head %= ctx->nr_events;
1234 }
1235
1236 ring = kmap_atomic(ctx->ring_pages[0]);
1237 ring->head = head;
1238 kunmap_atomic(ring);
1239 flush_dcache_page(ctx->ring_pages[0]);
1240
1241 pr_debug("%li h%u t%u\n", ret, head, tail);
1242out:
1243 mutex_unlock(&ctx->ring_lock);
1244
1245 return ret;
1246}
1247
1248static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1249 struct io_event __user *event, long *i)
1250{
1251 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1252
1253 if (ret > 0)
1254 *i += ret;
1255
1256 if (unlikely(atomic_read(&ctx->dead)))
1257 ret = -EINVAL;
1258
1259 if (!*i)
1260 *i = ret;
1261
1262 return ret < 0 || *i >= min_nr;
1263}
1264
1265static long read_events(struct kioctx *ctx, long min_nr, long nr,
1266 struct io_event __user *event,
1267 struct timespec __user *timeout)
1268{
1269 ktime_t until = { .tv64 = KTIME_MAX };
1270 long ret = 0;
1271
1272 if (timeout) {
1273 struct timespec ts;
1274
1275 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1276 return -EFAULT;
1277
1278 until = timespec_to_ktime(ts);
1279 }
1280
1281 /*
1282 * Note that aio_read_events() is being called as the conditional - i.e.
1283 * we're calling it after prepare_to_wait() has set task state to
1284 * TASK_INTERRUPTIBLE.
1285 *
1286 * But aio_read_events() can block, and if it blocks it's going to flip
1287 * the task state back to TASK_RUNNING.
1288 *
1289 * This should be ok, provided it doesn't flip the state back to
1290 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1291 * will only happen if the mutex_lock() call blocks, and we then find
1292 * the ringbuffer empty. So in practice we should be ok, but it's
1293 * something to be aware of when touching this code.
1294 */
1295 if (until.tv64 == 0)
1296 aio_read_events(ctx, min_nr, nr, event, &ret);
1297 else
1298 wait_event_interruptible_hrtimeout(ctx->wait,
1299 aio_read_events(ctx, min_nr, nr, event, &ret),
1300 until);
1301
1302 if (!ret && signal_pending(current))
1303 ret = -EINTR;
1304
1305 return ret;
1306}
1307
1308/* sys_io_setup:
1309 * Create an aio_context capable of receiving at least nr_events.
1310 * ctxp must not point to an aio_context that already exists, and
1311 * must be initialized to 0 prior to the call. On successful
1312 * creation of the aio_context, *ctxp is filled in with the resulting
1313 * handle. May fail with -EINVAL if *ctxp is not initialized,
1314 * if the specified nr_events exceeds internal limits. May fail
1315 * with -EAGAIN if the specified nr_events exceeds the user's limit
1316 * of available events. May fail with -ENOMEM if insufficient kernel
1317 * resources are available. May fail with -EFAULT if an invalid
1318 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1319 * implemented.
1320 */
1321SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1322{
1323 struct kioctx *ioctx = NULL;
1324 unsigned long ctx;
1325 long ret;
1326
1327 ret = get_user(ctx, ctxp);
1328 if (unlikely(ret))
1329 goto out;
1330
1331 ret = -EINVAL;
1332 if (unlikely(ctx || nr_events == 0)) {
1333 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1334 ctx, nr_events);
1335 goto out;
1336 }
1337
1338 ioctx = ioctx_alloc(nr_events);
1339 ret = PTR_ERR(ioctx);
1340 if (!IS_ERR(ioctx)) {
1341 ret = put_user(ioctx->user_id, ctxp);
1342 if (ret)
1343 kill_ioctx(current->mm, ioctx, NULL);
1344 percpu_ref_put(&ioctx->users);
1345 }
1346
1347out:
1348 return ret;
1349}
1350
1351/* sys_io_destroy:
1352 * Destroy the aio_context specified. May cancel any outstanding
1353 * AIOs and block on completion. Will fail with -ENOSYS if not
1354 * implemented. May fail with -EINVAL if the context pointed to
1355 * is invalid.
1356 */
1357SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1358{
1359 struct kioctx *ioctx = lookup_ioctx(ctx);
1360 if (likely(NULL != ioctx)) {
1361 struct ctx_rq_wait wait;
1362 int ret;
1363
1364 init_completion(&wait.comp);
1365 atomic_set(&wait.count, 1);
1366
1367 /* Pass requests_done to kill_ioctx() where it can be set
1368 * in a thread-safe way. If we try to set it here then we have
1369 * a race condition if two io_destroy() called simultaneously.
1370 */
1371 ret = kill_ioctx(current->mm, ioctx, &wait);
1372 percpu_ref_put(&ioctx->users);
1373
1374 /* Wait until all IO for the context are done. Otherwise kernel
1375 * keep using user-space buffers even if user thinks the context
1376 * is destroyed.
1377 */
1378 if (!ret)
1379 wait_for_completion(&wait.comp);
1380
1381 return ret;
1382 }
1383 pr_debug("EINVAL: invalid context id\n");
1384 return -EINVAL;
1385}
1386
1387typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *);
1388
1389static int aio_setup_vectored_rw(int rw, char __user *buf, size_t len,
1390 struct iovec **iovec,
1391 bool compat,
1392 struct iov_iter *iter)
1393{
1394#ifdef CONFIG_COMPAT
1395 if (compat)
1396 return compat_import_iovec(rw,
1397 (struct compat_iovec __user *)buf,
1398 len, UIO_FASTIOV, iovec, iter);
1399#endif
1400 return import_iovec(rw, (struct iovec __user *)buf,
1401 len, UIO_FASTIOV, iovec, iter);
1402}
1403
1404/*
1405 * aio_run_iocb:
1406 * Performs the initial checks and io submission.
1407 */
1408static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1409 char __user *buf, size_t len, bool compat)
1410{
1411 struct file *file = req->ki_filp;
1412 ssize_t ret;
1413 int rw;
1414 fmode_t mode;
1415 rw_iter_op *iter_op;
1416 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1417 struct iov_iter iter;
1418
1419 switch (opcode) {
1420 case IOCB_CMD_PREAD:
1421 case IOCB_CMD_PREADV:
1422 mode = FMODE_READ;
1423 rw = READ;
1424 iter_op = file->f_op->read_iter;
1425 goto rw_common;
1426
1427 case IOCB_CMD_PWRITE:
1428 case IOCB_CMD_PWRITEV:
1429 mode = FMODE_WRITE;
1430 rw = WRITE;
1431 iter_op = file->f_op->write_iter;
1432 goto rw_common;
1433rw_common:
1434 if (unlikely(!(file->f_mode & mode)))
1435 return -EBADF;
1436
1437 if (!iter_op)
1438 return -EINVAL;
1439
1440 if (opcode == IOCB_CMD_PREADV || opcode == IOCB_CMD_PWRITEV)
1441 ret = aio_setup_vectored_rw(rw, buf, len,
1442 &iovec, compat, &iter);
1443 else {
1444 ret = import_single_range(rw, buf, len, iovec, &iter);
1445 iovec = NULL;
1446 }
1447 if (!ret)
1448 ret = rw_verify_area(rw, file, &req->ki_pos,
1449 iov_iter_count(&iter));
1450 if (ret < 0) {
1451 kfree(iovec);
1452 return ret;
1453 }
1454
1455 len = ret;
1456
1457 if (rw == WRITE)
1458 file_start_write(file);
1459
1460 ret = iter_op(req, &iter);
1461
1462 if (rw == WRITE)
1463 file_end_write(file);
1464 kfree(iovec);
1465 break;
1466
1467 case IOCB_CMD_FDSYNC:
1468 if (!file->f_op->aio_fsync)
1469 return -EINVAL;
1470
1471 ret = file->f_op->aio_fsync(req, 1);
1472 break;
1473
1474 case IOCB_CMD_FSYNC:
1475 if (!file->f_op->aio_fsync)
1476 return -EINVAL;
1477
1478 ret = file->f_op->aio_fsync(req, 0);
1479 break;
1480
1481 default:
1482 pr_debug("EINVAL: no operation provided\n");
1483 return -EINVAL;
1484 }
1485
1486 if (ret != -EIOCBQUEUED) {
1487 /*
1488 * There's no easy way to restart the syscall since other AIO's
1489 * may be already running. Just fail this IO with EINTR.
1490 */
1491 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1492 ret == -ERESTARTNOHAND ||
1493 ret == -ERESTART_RESTARTBLOCK))
1494 ret = -EINTR;
1495 aio_complete(req, ret, 0);
1496 }
1497
1498 return 0;
1499}
1500
1501static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1502 struct iocb *iocb, bool compat)
1503{
1504 struct aio_kiocb *req;
1505 ssize_t ret;
1506
1507 /* enforce forwards compatibility on users */
1508 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1509 pr_debug("EINVAL: reserve field set\n");
1510 return -EINVAL;
1511 }
1512
1513 /* prevent overflows */
1514 if (unlikely(
1515 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1516 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1517 ((ssize_t)iocb->aio_nbytes < 0)
1518 )) {
1519 pr_debug("EINVAL: overflow check\n");
1520 return -EINVAL;
1521 }
1522
1523 req = aio_get_req(ctx);
1524 if (unlikely(!req))
1525 return -EAGAIN;
1526
1527 req->common.ki_filp = fget(iocb->aio_fildes);
1528 if (unlikely(!req->common.ki_filp)) {
1529 ret = -EBADF;
1530 goto out_put_req;
1531 }
1532 req->common.ki_pos = iocb->aio_offset;
1533 req->common.ki_complete = aio_complete;
1534 req->common.ki_flags = iocb_flags(req->common.ki_filp);
1535
1536 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1537 /*
1538 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1539 * instance of the file* now. The file descriptor must be
1540 * an eventfd() fd, and will be signaled for each completed
1541 * event using the eventfd_signal() function.
1542 */
1543 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1544 if (IS_ERR(req->ki_eventfd)) {
1545 ret = PTR_ERR(req->ki_eventfd);
1546 req->ki_eventfd = NULL;
1547 goto out_put_req;
1548 }
1549
1550 req->common.ki_flags |= IOCB_EVENTFD;
1551 }
1552
1553 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1554 if (unlikely(ret)) {
1555 pr_debug("EFAULT: aio_key\n");
1556 goto out_put_req;
1557 }
1558
1559 req->ki_user_iocb = user_iocb;
1560 req->ki_user_data = iocb->aio_data;
1561
1562 ret = aio_run_iocb(&req->common, iocb->aio_lio_opcode,
1563 (char __user *)(unsigned long)iocb->aio_buf,
1564 iocb->aio_nbytes,
1565 compat);
1566 if (ret)
1567 goto out_put_req;
1568
1569 return 0;
1570out_put_req:
1571 put_reqs_available(ctx, 1);
1572 percpu_ref_put(&ctx->reqs);
1573 kiocb_free(req);
1574 return ret;
1575}
1576
1577long do_io_submit(aio_context_t ctx_id, long nr,
1578 struct iocb __user *__user *iocbpp, bool compat)
1579{
1580 struct kioctx *ctx;
1581 long ret = 0;
1582 int i = 0;
1583 struct blk_plug plug;
1584
1585 if (unlikely(nr < 0))
1586 return -EINVAL;
1587
1588 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1589 nr = LONG_MAX/sizeof(*iocbpp);
1590
1591 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1592 return -EFAULT;
1593
1594 ctx = lookup_ioctx(ctx_id);
1595 if (unlikely(!ctx)) {
1596 pr_debug("EINVAL: invalid context id\n");
1597 return -EINVAL;
1598 }
1599
1600 blk_start_plug(&plug);
1601
1602 /*
1603 * AKPM: should this return a partial result if some of the IOs were
1604 * successfully submitted?
1605 */
1606 for (i=0; i<nr; i++) {
1607 struct iocb __user *user_iocb;
1608 struct iocb tmp;
1609
1610 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1611 ret = -EFAULT;
1612 break;
1613 }
1614
1615 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1616 ret = -EFAULT;
1617 break;
1618 }
1619
1620 ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1621 if (ret)
1622 break;
1623 }
1624 blk_finish_plug(&plug);
1625
1626 percpu_ref_put(&ctx->users);
1627 return i ? i : ret;
1628}
1629
1630/* sys_io_submit:
1631 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1632 * the number of iocbs queued. May return -EINVAL if the aio_context
1633 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1634 * *iocbpp[0] is not properly initialized, if the operation specified
1635 * is invalid for the file descriptor in the iocb. May fail with
1636 * -EFAULT if any of the data structures point to invalid data. May
1637 * fail with -EBADF if the file descriptor specified in the first
1638 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1639 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1640 * fail with -ENOSYS if not implemented.
1641 */
1642SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1643 struct iocb __user * __user *, iocbpp)
1644{
1645 return do_io_submit(ctx_id, nr, iocbpp, 0);
1646}
1647
1648/* lookup_kiocb
1649 * Finds a given iocb for cancellation.
1650 */
1651static struct aio_kiocb *
1652lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key)
1653{
1654 struct aio_kiocb *kiocb;
1655
1656 assert_spin_locked(&ctx->ctx_lock);
1657
1658 if (key != KIOCB_KEY)
1659 return NULL;
1660
1661 /* TODO: use a hash or array, this sucks. */
1662 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1663 if (kiocb->ki_user_iocb == iocb)
1664 return kiocb;
1665 }
1666 return NULL;
1667}
1668
1669/* sys_io_cancel:
1670 * Attempts to cancel an iocb previously passed to io_submit. If
1671 * the operation is successfully cancelled, the resulting event is
1672 * copied into the memory pointed to by result without being placed
1673 * into the completion queue and 0 is returned. May fail with
1674 * -EFAULT if any of the data structures pointed to are invalid.
1675 * May fail with -EINVAL if aio_context specified by ctx_id is
1676 * invalid. May fail with -EAGAIN if the iocb specified was not
1677 * cancelled. Will fail with -ENOSYS if not implemented.
1678 */
1679SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1680 struct io_event __user *, result)
1681{
1682 struct kioctx *ctx;
1683 struct aio_kiocb *kiocb;
1684 u32 key;
1685 int ret;
1686
1687 ret = get_user(key, &iocb->aio_key);
1688 if (unlikely(ret))
1689 return -EFAULT;
1690
1691 ctx = lookup_ioctx(ctx_id);
1692 if (unlikely(!ctx))
1693 return -EINVAL;
1694
1695 spin_lock_irq(&ctx->ctx_lock);
1696
1697 kiocb = lookup_kiocb(ctx, iocb, key);
1698 if (kiocb)
1699 ret = kiocb_cancel(kiocb);
1700 else
1701 ret = -EINVAL;
1702
1703 spin_unlock_irq(&ctx->ctx_lock);
1704
1705 if (!ret) {
1706 /*
1707 * The result argument is no longer used - the io_event is
1708 * always delivered via the ring buffer. -EINPROGRESS indicates
1709 * cancellation is progress:
1710 */
1711 ret = -EINPROGRESS;
1712 }
1713
1714 percpu_ref_put(&ctx->users);
1715
1716 return ret;
1717}
1718
1719/* io_getevents:
1720 * Attempts to read at least min_nr events and up to nr events from
1721 * the completion queue for the aio_context specified by ctx_id. If
1722 * it succeeds, the number of read events is returned. May fail with
1723 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1724 * out of range, if timeout is out of range. May fail with -EFAULT
1725 * if any of the memory specified is invalid. May return 0 or
1726 * < min_nr if the timeout specified by timeout has elapsed
1727 * before sufficient events are available, where timeout == NULL
1728 * specifies an infinite timeout. Note that the timeout pointed to by
1729 * timeout is relative. Will fail with -ENOSYS if not implemented.
1730 */
1731SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1732 long, min_nr,
1733 long, nr,
1734 struct io_event __user *, events,
1735 struct timespec __user *, timeout)
1736{
1737 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1738 long ret = -EINVAL;
1739
1740 if (likely(ioctx)) {
1741 if (likely(min_nr <= nr && min_nr >= 0))
1742 ret = read_events(ioctx, min_nr, nr, events, timeout);
1743 percpu_ref_put(&ioctx->users);
1744 }
1745 return ret;
1746}