Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (C) 2007 Oracle. All rights reserved. |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or |
| 5 | * modify it under the terms of the GNU General Public |
| 6 | * License v2 as published by the Free Software Foundation. |
| 7 | * |
| 8 | * This program is distributed in the hope that it will be useful, |
| 9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 11 | * General Public License for more details. |
| 12 | * |
| 13 | * You should have received a copy of the GNU General Public |
| 14 | * License along with this program; if not, write to the |
| 15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| 16 | * Boston, MA 021110-1307, USA. |
| 17 | */ |
| 18 | |
| 19 | #include <linux/slab.h> |
| 20 | #include <linux/blkdev.h> |
| 21 | #include <linux/writeback.h> |
| 22 | #include <linux/pagevec.h> |
| 23 | #include "ctree.h" |
| 24 | #include "transaction.h" |
| 25 | #include "btrfs_inode.h" |
| 26 | #include "extent_io.h" |
| 27 | #include "disk-io.h" |
| 28 | |
| 29 | static struct kmem_cache *btrfs_ordered_extent_cache; |
| 30 | |
| 31 | static u64 entry_end(struct btrfs_ordered_extent *entry) |
| 32 | { |
| 33 | if (entry->file_offset + entry->len < entry->file_offset) |
| 34 | return (u64)-1; |
| 35 | return entry->file_offset + entry->len; |
| 36 | } |
| 37 | |
| 38 | /* returns NULL if the insertion worked, or it returns the node it did find |
| 39 | * in the tree |
| 40 | */ |
| 41 | static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, |
| 42 | struct rb_node *node) |
| 43 | { |
| 44 | struct rb_node **p = &root->rb_node; |
| 45 | struct rb_node *parent = NULL; |
| 46 | struct btrfs_ordered_extent *entry; |
| 47 | |
| 48 | while (*p) { |
| 49 | parent = *p; |
| 50 | entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); |
| 51 | |
| 52 | if (file_offset < entry->file_offset) |
| 53 | p = &(*p)->rb_left; |
| 54 | else if (file_offset >= entry_end(entry)) |
| 55 | p = &(*p)->rb_right; |
| 56 | else |
| 57 | return parent; |
| 58 | } |
| 59 | |
| 60 | rb_link_node(node, parent, p); |
| 61 | rb_insert_color(node, root); |
| 62 | return NULL; |
| 63 | } |
| 64 | |
| 65 | static void ordered_data_tree_panic(struct inode *inode, int errno, |
| 66 | u64 offset) |
| 67 | { |
| 68 | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| 69 | btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset " |
| 70 | "%llu", offset); |
| 71 | } |
| 72 | |
| 73 | /* |
| 74 | * look for a given offset in the tree, and if it can't be found return the |
| 75 | * first lesser offset |
| 76 | */ |
| 77 | static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, |
| 78 | struct rb_node **prev_ret) |
| 79 | { |
| 80 | struct rb_node *n = root->rb_node; |
| 81 | struct rb_node *prev = NULL; |
| 82 | struct rb_node *test; |
| 83 | struct btrfs_ordered_extent *entry; |
| 84 | struct btrfs_ordered_extent *prev_entry = NULL; |
| 85 | |
| 86 | while (n) { |
| 87 | entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); |
| 88 | prev = n; |
| 89 | prev_entry = entry; |
| 90 | |
| 91 | if (file_offset < entry->file_offset) |
| 92 | n = n->rb_left; |
| 93 | else if (file_offset >= entry_end(entry)) |
| 94 | n = n->rb_right; |
| 95 | else |
| 96 | return n; |
| 97 | } |
| 98 | if (!prev_ret) |
| 99 | return NULL; |
| 100 | |
| 101 | while (prev && file_offset >= entry_end(prev_entry)) { |
| 102 | test = rb_next(prev); |
| 103 | if (!test) |
| 104 | break; |
| 105 | prev_entry = rb_entry(test, struct btrfs_ordered_extent, |
| 106 | rb_node); |
| 107 | if (file_offset < entry_end(prev_entry)) |
| 108 | break; |
| 109 | |
| 110 | prev = test; |
| 111 | } |
| 112 | if (prev) |
| 113 | prev_entry = rb_entry(prev, struct btrfs_ordered_extent, |
| 114 | rb_node); |
| 115 | while (prev && file_offset < entry_end(prev_entry)) { |
| 116 | test = rb_prev(prev); |
| 117 | if (!test) |
| 118 | break; |
| 119 | prev_entry = rb_entry(test, struct btrfs_ordered_extent, |
| 120 | rb_node); |
| 121 | prev = test; |
| 122 | } |
| 123 | *prev_ret = prev; |
| 124 | return NULL; |
| 125 | } |
| 126 | |
| 127 | /* |
| 128 | * helper to check if a given offset is inside a given entry |
| 129 | */ |
| 130 | static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) |
| 131 | { |
| 132 | if (file_offset < entry->file_offset || |
| 133 | entry->file_offset + entry->len <= file_offset) |
| 134 | return 0; |
| 135 | return 1; |
| 136 | } |
| 137 | |
| 138 | static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, |
| 139 | u64 len) |
| 140 | { |
| 141 | if (file_offset + len <= entry->file_offset || |
| 142 | entry->file_offset + entry->len <= file_offset) |
| 143 | return 0; |
| 144 | return 1; |
| 145 | } |
| 146 | |
| 147 | /* |
| 148 | * look find the first ordered struct that has this offset, otherwise |
| 149 | * the first one less than this offset |
| 150 | */ |
| 151 | static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, |
| 152 | u64 file_offset) |
| 153 | { |
| 154 | struct rb_root *root = &tree->tree; |
| 155 | struct rb_node *prev = NULL; |
| 156 | struct rb_node *ret; |
| 157 | struct btrfs_ordered_extent *entry; |
| 158 | |
| 159 | if (tree->last) { |
| 160 | entry = rb_entry(tree->last, struct btrfs_ordered_extent, |
| 161 | rb_node); |
| 162 | if (offset_in_entry(entry, file_offset)) |
| 163 | return tree->last; |
| 164 | } |
| 165 | ret = __tree_search(root, file_offset, &prev); |
| 166 | if (!ret) |
| 167 | ret = prev; |
| 168 | if (ret) |
| 169 | tree->last = ret; |
| 170 | return ret; |
| 171 | } |
| 172 | |
| 173 | /* allocate and add a new ordered_extent into the per-inode tree. |
| 174 | * file_offset is the logical offset in the file |
| 175 | * |
| 176 | * start is the disk block number of an extent already reserved in the |
| 177 | * extent allocation tree |
| 178 | * |
| 179 | * len is the length of the extent |
| 180 | * |
| 181 | * The tree is given a single reference on the ordered extent that was |
| 182 | * inserted. |
| 183 | */ |
| 184 | static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, |
| 185 | u64 start, u64 len, u64 disk_len, |
| 186 | int type, int dio, int compress_type) |
| 187 | { |
| 188 | struct btrfs_root *root = BTRFS_I(inode)->root; |
| 189 | struct btrfs_ordered_inode_tree *tree; |
| 190 | struct rb_node *node; |
| 191 | struct btrfs_ordered_extent *entry; |
| 192 | |
| 193 | tree = &BTRFS_I(inode)->ordered_tree; |
| 194 | entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); |
| 195 | if (!entry) |
| 196 | return -ENOMEM; |
| 197 | |
| 198 | entry->file_offset = file_offset; |
| 199 | entry->start = start; |
| 200 | entry->len = len; |
| 201 | entry->disk_len = disk_len; |
| 202 | entry->bytes_left = len; |
| 203 | entry->inode = igrab(inode); |
| 204 | entry->compress_type = compress_type; |
| 205 | entry->truncated_len = (u64)-1; |
| 206 | if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) |
| 207 | set_bit(type, &entry->flags); |
| 208 | |
| 209 | if (dio) |
| 210 | set_bit(BTRFS_ORDERED_DIRECT, &entry->flags); |
| 211 | |
| 212 | /* one ref for the tree */ |
| 213 | atomic_set(&entry->refs, 1); |
| 214 | init_waitqueue_head(&entry->wait); |
| 215 | INIT_LIST_HEAD(&entry->list); |
| 216 | INIT_LIST_HEAD(&entry->root_extent_list); |
| 217 | INIT_LIST_HEAD(&entry->work_list); |
| 218 | init_completion(&entry->completion); |
| 219 | INIT_LIST_HEAD(&entry->log_list); |
| 220 | INIT_LIST_HEAD(&entry->trans_list); |
| 221 | |
| 222 | trace_btrfs_ordered_extent_add(inode, entry); |
| 223 | |
| 224 | spin_lock_irq(&tree->lock); |
| 225 | node = tree_insert(&tree->tree, file_offset, |
| 226 | &entry->rb_node); |
| 227 | if (node) |
| 228 | ordered_data_tree_panic(inode, -EEXIST, file_offset); |
| 229 | spin_unlock_irq(&tree->lock); |
| 230 | |
| 231 | spin_lock(&root->ordered_extent_lock); |
| 232 | list_add_tail(&entry->root_extent_list, |
| 233 | &root->ordered_extents); |
| 234 | root->nr_ordered_extents++; |
| 235 | if (root->nr_ordered_extents == 1) { |
| 236 | spin_lock(&root->fs_info->ordered_root_lock); |
| 237 | BUG_ON(!list_empty(&root->ordered_root)); |
| 238 | list_add_tail(&root->ordered_root, |
| 239 | &root->fs_info->ordered_roots); |
| 240 | spin_unlock(&root->fs_info->ordered_root_lock); |
| 241 | } |
| 242 | spin_unlock(&root->ordered_extent_lock); |
| 243 | |
| 244 | return 0; |
| 245 | } |
| 246 | |
| 247 | int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, |
| 248 | u64 start, u64 len, u64 disk_len, int type) |
| 249 | { |
| 250 | return __btrfs_add_ordered_extent(inode, file_offset, start, len, |
| 251 | disk_len, type, 0, |
| 252 | BTRFS_COMPRESS_NONE); |
| 253 | } |
| 254 | |
| 255 | int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset, |
| 256 | u64 start, u64 len, u64 disk_len, int type) |
| 257 | { |
| 258 | return __btrfs_add_ordered_extent(inode, file_offset, start, len, |
| 259 | disk_len, type, 1, |
| 260 | BTRFS_COMPRESS_NONE); |
| 261 | } |
| 262 | |
| 263 | int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset, |
| 264 | u64 start, u64 len, u64 disk_len, |
| 265 | int type, int compress_type) |
| 266 | { |
| 267 | return __btrfs_add_ordered_extent(inode, file_offset, start, len, |
| 268 | disk_len, type, 0, |
| 269 | compress_type); |
| 270 | } |
| 271 | |
| 272 | /* |
| 273 | * Add a struct btrfs_ordered_sum into the list of checksums to be inserted |
| 274 | * when an ordered extent is finished. If the list covers more than one |
| 275 | * ordered extent, it is split across multiples. |
| 276 | */ |
| 277 | void btrfs_add_ordered_sum(struct inode *inode, |
| 278 | struct btrfs_ordered_extent *entry, |
| 279 | struct btrfs_ordered_sum *sum) |
| 280 | { |
| 281 | struct btrfs_ordered_inode_tree *tree; |
| 282 | |
| 283 | tree = &BTRFS_I(inode)->ordered_tree; |
| 284 | spin_lock_irq(&tree->lock); |
| 285 | list_add_tail(&sum->list, &entry->list); |
| 286 | spin_unlock_irq(&tree->lock); |
| 287 | } |
| 288 | |
| 289 | /* |
| 290 | * this is used to account for finished IO across a given range |
| 291 | * of the file. The IO may span ordered extents. If |
| 292 | * a given ordered_extent is completely done, 1 is returned, otherwise |
| 293 | * 0. |
| 294 | * |
| 295 | * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used |
| 296 | * to make sure this function only returns 1 once for a given ordered extent. |
| 297 | * |
| 298 | * file_offset is updated to one byte past the range that is recorded as |
| 299 | * complete. This allows you to walk forward in the file. |
| 300 | */ |
| 301 | int btrfs_dec_test_first_ordered_pending(struct inode *inode, |
| 302 | struct btrfs_ordered_extent **cached, |
| 303 | u64 *file_offset, u64 io_size, int uptodate) |
| 304 | { |
| 305 | struct btrfs_ordered_inode_tree *tree; |
| 306 | struct rb_node *node; |
| 307 | struct btrfs_ordered_extent *entry = NULL; |
| 308 | int ret; |
| 309 | unsigned long flags; |
| 310 | u64 dec_end; |
| 311 | u64 dec_start; |
| 312 | u64 to_dec; |
| 313 | |
| 314 | tree = &BTRFS_I(inode)->ordered_tree; |
| 315 | spin_lock_irqsave(&tree->lock, flags); |
| 316 | node = tree_search(tree, *file_offset); |
| 317 | if (!node) { |
| 318 | ret = 1; |
| 319 | goto out; |
| 320 | } |
| 321 | |
| 322 | entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); |
| 323 | if (!offset_in_entry(entry, *file_offset)) { |
| 324 | ret = 1; |
| 325 | goto out; |
| 326 | } |
| 327 | |
| 328 | dec_start = max(*file_offset, entry->file_offset); |
| 329 | dec_end = min(*file_offset + io_size, entry->file_offset + |
| 330 | entry->len); |
| 331 | *file_offset = dec_end; |
| 332 | if (dec_start > dec_end) { |
| 333 | btrfs_crit(BTRFS_I(inode)->root->fs_info, |
| 334 | "bad ordering dec_start %llu end %llu", dec_start, dec_end); |
| 335 | } |
| 336 | to_dec = dec_end - dec_start; |
| 337 | if (to_dec > entry->bytes_left) { |
| 338 | btrfs_crit(BTRFS_I(inode)->root->fs_info, |
| 339 | "bad ordered accounting left %llu size %llu", |
| 340 | entry->bytes_left, to_dec); |
| 341 | } |
| 342 | entry->bytes_left -= to_dec; |
| 343 | if (!uptodate) |
| 344 | set_bit(BTRFS_ORDERED_IOERR, &entry->flags); |
| 345 | |
| 346 | if (entry->bytes_left == 0) { |
| 347 | ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); |
| 348 | /* |
| 349 | * Implicit memory barrier after test_and_set_bit |
| 350 | */ |
| 351 | if (waitqueue_active(&entry->wait)) |
| 352 | wake_up(&entry->wait); |
| 353 | } else { |
| 354 | ret = 1; |
| 355 | } |
| 356 | out: |
| 357 | if (!ret && cached && entry) { |
| 358 | *cached = entry; |
| 359 | atomic_inc(&entry->refs); |
| 360 | } |
| 361 | spin_unlock_irqrestore(&tree->lock, flags); |
| 362 | return ret == 0; |
| 363 | } |
| 364 | |
| 365 | /* |
| 366 | * this is used to account for finished IO across a given range |
| 367 | * of the file. The IO should not span ordered extents. If |
| 368 | * a given ordered_extent is completely done, 1 is returned, otherwise |
| 369 | * 0. |
| 370 | * |
| 371 | * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used |
| 372 | * to make sure this function only returns 1 once for a given ordered extent. |
| 373 | */ |
| 374 | int btrfs_dec_test_ordered_pending(struct inode *inode, |
| 375 | struct btrfs_ordered_extent **cached, |
| 376 | u64 file_offset, u64 io_size, int uptodate) |
| 377 | { |
| 378 | struct btrfs_ordered_inode_tree *tree; |
| 379 | struct rb_node *node; |
| 380 | struct btrfs_ordered_extent *entry = NULL; |
| 381 | unsigned long flags; |
| 382 | int ret; |
| 383 | |
| 384 | tree = &BTRFS_I(inode)->ordered_tree; |
| 385 | spin_lock_irqsave(&tree->lock, flags); |
| 386 | if (cached && *cached) { |
| 387 | entry = *cached; |
| 388 | goto have_entry; |
| 389 | } |
| 390 | |
| 391 | node = tree_search(tree, file_offset); |
| 392 | if (!node) { |
| 393 | ret = 1; |
| 394 | goto out; |
| 395 | } |
| 396 | |
| 397 | entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); |
| 398 | have_entry: |
| 399 | if (!offset_in_entry(entry, file_offset)) { |
| 400 | ret = 1; |
| 401 | goto out; |
| 402 | } |
| 403 | |
| 404 | if (io_size > entry->bytes_left) { |
| 405 | btrfs_crit(BTRFS_I(inode)->root->fs_info, |
| 406 | "bad ordered accounting left %llu size %llu", |
| 407 | entry->bytes_left, io_size); |
| 408 | } |
| 409 | entry->bytes_left -= io_size; |
| 410 | if (!uptodate) |
| 411 | set_bit(BTRFS_ORDERED_IOERR, &entry->flags); |
| 412 | |
| 413 | if (entry->bytes_left == 0) { |
| 414 | ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); |
| 415 | /* |
| 416 | * Implicit memory barrier after test_and_set_bit |
| 417 | */ |
| 418 | if (waitqueue_active(&entry->wait)) |
| 419 | wake_up(&entry->wait); |
| 420 | } else { |
| 421 | ret = 1; |
| 422 | } |
| 423 | out: |
| 424 | if (!ret && cached && entry) { |
| 425 | *cached = entry; |
| 426 | atomic_inc(&entry->refs); |
| 427 | } |
| 428 | spin_unlock_irqrestore(&tree->lock, flags); |
| 429 | return ret == 0; |
| 430 | } |
| 431 | |
| 432 | /* Needs to either be called under a log transaction or the log_mutex */ |
| 433 | void btrfs_get_logged_extents(struct inode *inode, |
| 434 | struct list_head *logged_list, |
| 435 | const loff_t start, |
| 436 | const loff_t end) |
| 437 | { |
| 438 | struct btrfs_ordered_inode_tree *tree; |
| 439 | struct btrfs_ordered_extent *ordered; |
| 440 | struct rb_node *n; |
| 441 | struct rb_node *prev; |
| 442 | |
| 443 | tree = &BTRFS_I(inode)->ordered_tree; |
| 444 | spin_lock_irq(&tree->lock); |
| 445 | n = __tree_search(&tree->tree, end, &prev); |
| 446 | if (!n) |
| 447 | n = prev; |
| 448 | for (; n; n = rb_prev(n)) { |
| 449 | ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node); |
| 450 | if (ordered->file_offset > end) |
| 451 | continue; |
| 452 | if (entry_end(ordered) <= start) |
| 453 | break; |
| 454 | if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags)) |
| 455 | continue; |
| 456 | list_add(&ordered->log_list, logged_list); |
| 457 | atomic_inc(&ordered->refs); |
| 458 | } |
| 459 | spin_unlock_irq(&tree->lock); |
| 460 | } |
| 461 | |
| 462 | void btrfs_put_logged_extents(struct list_head *logged_list) |
| 463 | { |
| 464 | struct btrfs_ordered_extent *ordered; |
| 465 | |
| 466 | while (!list_empty(logged_list)) { |
| 467 | ordered = list_first_entry(logged_list, |
| 468 | struct btrfs_ordered_extent, |
| 469 | log_list); |
| 470 | list_del_init(&ordered->log_list); |
| 471 | btrfs_put_ordered_extent(ordered); |
| 472 | } |
| 473 | } |
| 474 | |
| 475 | void btrfs_submit_logged_extents(struct list_head *logged_list, |
| 476 | struct btrfs_root *log) |
| 477 | { |
| 478 | int index = log->log_transid % 2; |
| 479 | |
| 480 | spin_lock_irq(&log->log_extents_lock[index]); |
| 481 | list_splice_tail(logged_list, &log->logged_list[index]); |
| 482 | spin_unlock_irq(&log->log_extents_lock[index]); |
| 483 | } |
| 484 | |
| 485 | void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans, |
| 486 | struct btrfs_root *log, u64 transid) |
| 487 | { |
| 488 | struct btrfs_ordered_extent *ordered; |
| 489 | int index = transid % 2; |
| 490 | |
| 491 | spin_lock_irq(&log->log_extents_lock[index]); |
| 492 | while (!list_empty(&log->logged_list[index])) { |
| 493 | struct inode *inode; |
| 494 | ordered = list_first_entry(&log->logged_list[index], |
| 495 | struct btrfs_ordered_extent, |
| 496 | log_list); |
| 497 | list_del_init(&ordered->log_list); |
| 498 | inode = ordered->inode; |
| 499 | spin_unlock_irq(&log->log_extents_lock[index]); |
| 500 | |
| 501 | if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) && |
| 502 | !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) { |
| 503 | u64 start = ordered->file_offset; |
| 504 | u64 end = ordered->file_offset + ordered->len - 1; |
| 505 | |
| 506 | WARN_ON(!inode); |
| 507 | filemap_fdatawrite_range(inode->i_mapping, start, end); |
| 508 | } |
| 509 | wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE, |
| 510 | &ordered->flags)); |
| 511 | |
| 512 | /* |
| 513 | * In order to keep us from losing our ordered extent |
| 514 | * information when committing the transaction we have to make |
| 515 | * sure that any logged extents are completed when we go to |
| 516 | * commit the transaction. To do this we simply increase the |
| 517 | * current transactions pending_ordered counter and decrement it |
| 518 | * when the ordered extent completes. |
| 519 | */ |
| 520 | if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { |
| 521 | struct btrfs_ordered_inode_tree *tree; |
| 522 | |
| 523 | tree = &BTRFS_I(inode)->ordered_tree; |
| 524 | spin_lock_irq(&tree->lock); |
| 525 | if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) { |
| 526 | set_bit(BTRFS_ORDERED_PENDING, &ordered->flags); |
| 527 | atomic_inc(&trans->transaction->pending_ordered); |
| 528 | } |
| 529 | spin_unlock_irq(&tree->lock); |
| 530 | } |
| 531 | btrfs_put_ordered_extent(ordered); |
| 532 | spin_lock_irq(&log->log_extents_lock[index]); |
| 533 | } |
| 534 | spin_unlock_irq(&log->log_extents_lock[index]); |
| 535 | } |
| 536 | |
| 537 | void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid) |
| 538 | { |
| 539 | struct btrfs_ordered_extent *ordered; |
| 540 | int index = transid % 2; |
| 541 | |
| 542 | spin_lock_irq(&log->log_extents_lock[index]); |
| 543 | while (!list_empty(&log->logged_list[index])) { |
| 544 | ordered = list_first_entry(&log->logged_list[index], |
| 545 | struct btrfs_ordered_extent, |
| 546 | log_list); |
| 547 | list_del_init(&ordered->log_list); |
| 548 | spin_unlock_irq(&log->log_extents_lock[index]); |
| 549 | btrfs_put_ordered_extent(ordered); |
| 550 | spin_lock_irq(&log->log_extents_lock[index]); |
| 551 | } |
| 552 | spin_unlock_irq(&log->log_extents_lock[index]); |
| 553 | } |
| 554 | |
| 555 | /* |
| 556 | * used to drop a reference on an ordered extent. This will free |
| 557 | * the extent if the last reference is dropped |
| 558 | */ |
| 559 | void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) |
| 560 | { |
| 561 | struct list_head *cur; |
| 562 | struct btrfs_ordered_sum *sum; |
| 563 | |
| 564 | trace_btrfs_ordered_extent_put(entry->inode, entry); |
| 565 | |
| 566 | if (atomic_dec_and_test(&entry->refs)) { |
| 567 | ASSERT(list_empty(&entry->log_list)); |
| 568 | ASSERT(list_empty(&entry->trans_list)); |
| 569 | ASSERT(list_empty(&entry->root_extent_list)); |
| 570 | ASSERT(RB_EMPTY_NODE(&entry->rb_node)); |
| 571 | if (entry->inode) |
| 572 | btrfs_add_delayed_iput(entry->inode); |
| 573 | while (!list_empty(&entry->list)) { |
| 574 | cur = entry->list.next; |
| 575 | sum = list_entry(cur, struct btrfs_ordered_sum, list); |
| 576 | list_del(&sum->list); |
| 577 | kfree(sum); |
| 578 | } |
| 579 | kmem_cache_free(btrfs_ordered_extent_cache, entry); |
| 580 | } |
| 581 | } |
| 582 | |
| 583 | /* |
| 584 | * remove an ordered extent from the tree. No references are dropped |
| 585 | * and waiters are woken up. |
| 586 | */ |
| 587 | void btrfs_remove_ordered_extent(struct inode *inode, |
| 588 | struct btrfs_ordered_extent *entry) |
| 589 | { |
| 590 | struct btrfs_ordered_inode_tree *tree; |
| 591 | struct btrfs_root *root = BTRFS_I(inode)->root; |
| 592 | struct rb_node *node; |
| 593 | bool dec_pending_ordered = false; |
| 594 | |
| 595 | tree = &BTRFS_I(inode)->ordered_tree; |
| 596 | spin_lock_irq(&tree->lock); |
| 597 | node = &entry->rb_node; |
| 598 | rb_erase(node, &tree->tree); |
| 599 | RB_CLEAR_NODE(node); |
| 600 | if (tree->last == node) |
| 601 | tree->last = NULL; |
| 602 | set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); |
| 603 | if (test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags)) |
| 604 | dec_pending_ordered = true; |
| 605 | spin_unlock_irq(&tree->lock); |
| 606 | |
| 607 | /* |
| 608 | * The current running transaction is waiting on us, we need to let it |
| 609 | * know that we're complete and wake it up. |
| 610 | */ |
| 611 | if (dec_pending_ordered) { |
| 612 | struct btrfs_transaction *trans; |
| 613 | |
| 614 | /* |
| 615 | * The checks for trans are just a formality, it should be set, |
| 616 | * but if it isn't we don't want to deref/assert under the spin |
| 617 | * lock, so be nice and check if trans is set, but ASSERT() so |
| 618 | * if it isn't set a developer will notice. |
| 619 | */ |
| 620 | spin_lock(&root->fs_info->trans_lock); |
| 621 | trans = root->fs_info->running_transaction; |
| 622 | if (trans) |
| 623 | atomic_inc(&trans->use_count); |
| 624 | spin_unlock(&root->fs_info->trans_lock); |
| 625 | |
| 626 | ASSERT(trans); |
| 627 | if (trans) { |
| 628 | if (atomic_dec_and_test(&trans->pending_ordered)) |
| 629 | wake_up(&trans->pending_wait); |
| 630 | btrfs_put_transaction(trans); |
| 631 | } |
| 632 | } |
| 633 | |
| 634 | spin_lock(&root->ordered_extent_lock); |
| 635 | list_del_init(&entry->root_extent_list); |
| 636 | root->nr_ordered_extents--; |
| 637 | |
| 638 | trace_btrfs_ordered_extent_remove(inode, entry); |
| 639 | |
| 640 | if (!root->nr_ordered_extents) { |
| 641 | spin_lock(&root->fs_info->ordered_root_lock); |
| 642 | BUG_ON(list_empty(&root->ordered_root)); |
| 643 | list_del_init(&root->ordered_root); |
| 644 | spin_unlock(&root->fs_info->ordered_root_lock); |
| 645 | } |
| 646 | spin_unlock(&root->ordered_extent_lock); |
| 647 | wake_up(&entry->wait); |
| 648 | } |
| 649 | |
| 650 | static void btrfs_run_ordered_extent_work(struct btrfs_work *work) |
| 651 | { |
| 652 | struct btrfs_ordered_extent *ordered; |
| 653 | |
| 654 | ordered = container_of(work, struct btrfs_ordered_extent, flush_work); |
| 655 | btrfs_start_ordered_extent(ordered->inode, ordered, 1); |
| 656 | complete(&ordered->completion); |
| 657 | } |
| 658 | |
| 659 | /* |
| 660 | * wait for all the ordered extents in a root. This is done when balancing |
| 661 | * space between drives. |
| 662 | */ |
| 663 | int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr) |
| 664 | { |
| 665 | struct list_head splice, works; |
| 666 | struct btrfs_ordered_extent *ordered, *next; |
| 667 | int count = 0; |
| 668 | |
| 669 | INIT_LIST_HEAD(&splice); |
| 670 | INIT_LIST_HEAD(&works); |
| 671 | |
| 672 | mutex_lock(&root->ordered_extent_mutex); |
| 673 | spin_lock(&root->ordered_extent_lock); |
| 674 | list_splice_init(&root->ordered_extents, &splice); |
| 675 | while (!list_empty(&splice) && nr) { |
| 676 | ordered = list_first_entry(&splice, struct btrfs_ordered_extent, |
| 677 | root_extent_list); |
| 678 | list_move_tail(&ordered->root_extent_list, |
| 679 | &root->ordered_extents); |
| 680 | atomic_inc(&ordered->refs); |
| 681 | spin_unlock(&root->ordered_extent_lock); |
| 682 | |
| 683 | btrfs_init_work(&ordered->flush_work, |
| 684 | btrfs_flush_delalloc_helper, |
| 685 | btrfs_run_ordered_extent_work, NULL, NULL); |
| 686 | list_add_tail(&ordered->work_list, &works); |
| 687 | btrfs_queue_work(root->fs_info->flush_workers, |
| 688 | &ordered->flush_work); |
| 689 | |
| 690 | cond_resched(); |
| 691 | spin_lock(&root->ordered_extent_lock); |
| 692 | if (nr != -1) |
| 693 | nr--; |
| 694 | count++; |
| 695 | } |
| 696 | list_splice_tail(&splice, &root->ordered_extents); |
| 697 | spin_unlock(&root->ordered_extent_lock); |
| 698 | |
| 699 | list_for_each_entry_safe(ordered, next, &works, work_list) { |
| 700 | list_del_init(&ordered->work_list); |
| 701 | wait_for_completion(&ordered->completion); |
| 702 | btrfs_put_ordered_extent(ordered); |
| 703 | cond_resched(); |
| 704 | } |
| 705 | mutex_unlock(&root->ordered_extent_mutex); |
| 706 | |
| 707 | return count; |
| 708 | } |
| 709 | |
| 710 | void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr) |
| 711 | { |
| 712 | struct btrfs_root *root; |
| 713 | struct list_head splice; |
| 714 | int done; |
| 715 | |
| 716 | INIT_LIST_HEAD(&splice); |
| 717 | |
| 718 | mutex_lock(&fs_info->ordered_operations_mutex); |
| 719 | spin_lock(&fs_info->ordered_root_lock); |
| 720 | list_splice_init(&fs_info->ordered_roots, &splice); |
| 721 | while (!list_empty(&splice) && nr) { |
| 722 | root = list_first_entry(&splice, struct btrfs_root, |
| 723 | ordered_root); |
| 724 | root = btrfs_grab_fs_root(root); |
| 725 | BUG_ON(!root); |
| 726 | list_move_tail(&root->ordered_root, |
| 727 | &fs_info->ordered_roots); |
| 728 | spin_unlock(&fs_info->ordered_root_lock); |
| 729 | |
| 730 | done = btrfs_wait_ordered_extents(root, nr); |
| 731 | btrfs_put_fs_root(root); |
| 732 | |
| 733 | spin_lock(&fs_info->ordered_root_lock); |
| 734 | if (nr != -1) { |
| 735 | nr -= done; |
| 736 | WARN_ON(nr < 0); |
| 737 | } |
| 738 | } |
| 739 | list_splice_tail(&splice, &fs_info->ordered_roots); |
| 740 | spin_unlock(&fs_info->ordered_root_lock); |
| 741 | mutex_unlock(&fs_info->ordered_operations_mutex); |
| 742 | } |
| 743 | |
| 744 | /* |
| 745 | * Used to start IO or wait for a given ordered extent to finish. |
| 746 | * |
| 747 | * If wait is one, this effectively waits on page writeback for all the pages |
| 748 | * in the extent, and it waits on the io completion code to insert |
| 749 | * metadata into the btree corresponding to the extent |
| 750 | */ |
| 751 | void btrfs_start_ordered_extent(struct inode *inode, |
| 752 | struct btrfs_ordered_extent *entry, |
| 753 | int wait) |
| 754 | { |
| 755 | u64 start = entry->file_offset; |
| 756 | u64 end = start + entry->len - 1; |
| 757 | |
| 758 | trace_btrfs_ordered_extent_start(inode, entry); |
| 759 | |
| 760 | /* |
| 761 | * pages in the range can be dirty, clean or writeback. We |
| 762 | * start IO on any dirty ones so the wait doesn't stall waiting |
| 763 | * for the flusher thread to find them |
| 764 | */ |
| 765 | if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) |
| 766 | filemap_fdatawrite_range(inode->i_mapping, start, end); |
| 767 | if (wait) { |
| 768 | wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, |
| 769 | &entry->flags)); |
| 770 | } |
| 771 | } |
| 772 | |
| 773 | /* |
| 774 | * Used to wait on ordered extents across a large range of bytes. |
| 775 | */ |
| 776 | int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) |
| 777 | { |
| 778 | int ret = 0; |
| 779 | int ret_wb = 0; |
| 780 | u64 end; |
| 781 | u64 orig_end; |
| 782 | struct btrfs_ordered_extent *ordered; |
| 783 | |
| 784 | if (start + len < start) { |
| 785 | orig_end = INT_LIMIT(loff_t); |
| 786 | } else { |
| 787 | orig_end = start + len - 1; |
| 788 | if (orig_end > INT_LIMIT(loff_t)) |
| 789 | orig_end = INT_LIMIT(loff_t); |
| 790 | } |
| 791 | |
| 792 | /* start IO across the range first to instantiate any delalloc |
| 793 | * extents |
| 794 | */ |
| 795 | ret = btrfs_fdatawrite_range(inode, start, orig_end); |
| 796 | if (ret) |
| 797 | return ret; |
| 798 | |
| 799 | /* |
| 800 | * If we have a writeback error don't return immediately. Wait first |
| 801 | * for any ordered extents that haven't completed yet. This is to make |
| 802 | * sure no one can dirty the same page ranges and call writepages() |
| 803 | * before the ordered extents complete - to avoid failures (-EEXIST) |
| 804 | * when adding the new ordered extents to the ordered tree. |
| 805 | */ |
| 806 | ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end); |
| 807 | |
| 808 | end = orig_end; |
| 809 | while (1) { |
| 810 | ordered = btrfs_lookup_first_ordered_extent(inode, end); |
| 811 | if (!ordered) |
| 812 | break; |
| 813 | if (ordered->file_offset > orig_end) { |
| 814 | btrfs_put_ordered_extent(ordered); |
| 815 | break; |
| 816 | } |
| 817 | if (ordered->file_offset + ordered->len <= start) { |
| 818 | btrfs_put_ordered_extent(ordered); |
| 819 | break; |
| 820 | } |
| 821 | btrfs_start_ordered_extent(inode, ordered, 1); |
| 822 | end = ordered->file_offset; |
| 823 | if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) |
| 824 | ret = -EIO; |
| 825 | btrfs_put_ordered_extent(ordered); |
| 826 | if (ret || end == 0 || end == start) |
| 827 | break; |
| 828 | end--; |
| 829 | } |
| 830 | return ret_wb ? ret_wb : ret; |
| 831 | } |
| 832 | |
| 833 | /* |
| 834 | * find an ordered extent corresponding to file_offset. return NULL if |
| 835 | * nothing is found, otherwise take a reference on the extent and return it |
| 836 | */ |
| 837 | struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, |
| 838 | u64 file_offset) |
| 839 | { |
| 840 | struct btrfs_ordered_inode_tree *tree; |
| 841 | struct rb_node *node; |
| 842 | struct btrfs_ordered_extent *entry = NULL; |
| 843 | |
| 844 | tree = &BTRFS_I(inode)->ordered_tree; |
| 845 | spin_lock_irq(&tree->lock); |
| 846 | node = tree_search(tree, file_offset); |
| 847 | if (!node) |
| 848 | goto out; |
| 849 | |
| 850 | entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); |
| 851 | if (!offset_in_entry(entry, file_offset)) |
| 852 | entry = NULL; |
| 853 | if (entry) |
| 854 | atomic_inc(&entry->refs); |
| 855 | out: |
| 856 | spin_unlock_irq(&tree->lock); |
| 857 | return entry; |
| 858 | } |
| 859 | |
| 860 | /* Since the DIO code tries to lock a wide area we need to look for any ordered |
| 861 | * extents that exist in the range, rather than just the start of the range. |
| 862 | */ |
| 863 | struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode, |
| 864 | u64 file_offset, |
| 865 | u64 len) |
| 866 | { |
| 867 | struct btrfs_ordered_inode_tree *tree; |
| 868 | struct rb_node *node; |
| 869 | struct btrfs_ordered_extent *entry = NULL; |
| 870 | |
| 871 | tree = &BTRFS_I(inode)->ordered_tree; |
| 872 | spin_lock_irq(&tree->lock); |
| 873 | node = tree_search(tree, file_offset); |
| 874 | if (!node) { |
| 875 | node = tree_search(tree, file_offset + len); |
| 876 | if (!node) |
| 877 | goto out; |
| 878 | } |
| 879 | |
| 880 | while (1) { |
| 881 | entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); |
| 882 | if (range_overlaps(entry, file_offset, len)) |
| 883 | break; |
| 884 | |
| 885 | if (entry->file_offset >= file_offset + len) { |
| 886 | entry = NULL; |
| 887 | break; |
| 888 | } |
| 889 | entry = NULL; |
| 890 | node = rb_next(node); |
| 891 | if (!node) |
| 892 | break; |
| 893 | } |
| 894 | out: |
| 895 | if (entry) |
| 896 | atomic_inc(&entry->refs); |
| 897 | spin_unlock_irq(&tree->lock); |
| 898 | return entry; |
| 899 | } |
| 900 | |
| 901 | bool btrfs_have_ordered_extents_in_range(struct inode *inode, |
| 902 | u64 file_offset, |
| 903 | u64 len) |
| 904 | { |
| 905 | struct btrfs_ordered_extent *oe; |
| 906 | |
| 907 | oe = btrfs_lookup_ordered_range(inode, file_offset, len); |
| 908 | if (oe) { |
| 909 | btrfs_put_ordered_extent(oe); |
| 910 | return true; |
| 911 | } |
| 912 | return false; |
| 913 | } |
| 914 | |
| 915 | /* |
| 916 | * lookup and return any extent before 'file_offset'. NULL is returned |
| 917 | * if none is found |
| 918 | */ |
| 919 | struct btrfs_ordered_extent * |
| 920 | btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) |
| 921 | { |
| 922 | struct btrfs_ordered_inode_tree *tree; |
| 923 | struct rb_node *node; |
| 924 | struct btrfs_ordered_extent *entry = NULL; |
| 925 | |
| 926 | tree = &BTRFS_I(inode)->ordered_tree; |
| 927 | spin_lock_irq(&tree->lock); |
| 928 | node = tree_search(tree, file_offset); |
| 929 | if (!node) |
| 930 | goto out; |
| 931 | |
| 932 | entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); |
| 933 | atomic_inc(&entry->refs); |
| 934 | out: |
| 935 | spin_unlock_irq(&tree->lock); |
| 936 | return entry; |
| 937 | } |
| 938 | |
| 939 | /* |
| 940 | * After an extent is done, call this to conditionally update the on disk |
| 941 | * i_size. i_size is updated to cover any fully written part of the file. |
| 942 | */ |
| 943 | int btrfs_ordered_update_i_size(struct inode *inode, u64 offset, |
| 944 | struct btrfs_ordered_extent *ordered) |
| 945 | { |
| 946 | struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; |
| 947 | u64 disk_i_size; |
| 948 | u64 new_i_size; |
| 949 | u64 i_size = i_size_read(inode); |
| 950 | struct rb_node *node; |
| 951 | struct rb_node *prev = NULL; |
| 952 | struct btrfs_ordered_extent *test; |
| 953 | int ret = 1; |
| 954 | |
| 955 | spin_lock_irq(&tree->lock); |
| 956 | if (ordered) { |
| 957 | offset = entry_end(ordered); |
| 958 | if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) |
| 959 | offset = min(offset, |
| 960 | ordered->file_offset + |
| 961 | ordered->truncated_len); |
| 962 | } else { |
| 963 | offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize); |
| 964 | } |
| 965 | disk_i_size = BTRFS_I(inode)->disk_i_size; |
| 966 | |
| 967 | /* truncate file */ |
| 968 | if (disk_i_size > i_size) { |
| 969 | BTRFS_I(inode)->disk_i_size = i_size; |
| 970 | ret = 0; |
| 971 | goto out; |
| 972 | } |
| 973 | |
| 974 | /* |
| 975 | * if the disk i_size is already at the inode->i_size, or |
| 976 | * this ordered extent is inside the disk i_size, we're done |
| 977 | */ |
| 978 | if (disk_i_size == i_size) |
| 979 | goto out; |
| 980 | |
| 981 | /* |
| 982 | * We still need to update disk_i_size if outstanding_isize is greater |
| 983 | * than disk_i_size. |
| 984 | */ |
| 985 | if (offset <= disk_i_size && |
| 986 | (!ordered || ordered->outstanding_isize <= disk_i_size)) |
| 987 | goto out; |
| 988 | |
| 989 | /* |
| 990 | * walk backward from this ordered extent to disk_i_size. |
| 991 | * if we find an ordered extent then we can't update disk i_size |
| 992 | * yet |
| 993 | */ |
| 994 | if (ordered) { |
| 995 | node = rb_prev(&ordered->rb_node); |
| 996 | } else { |
| 997 | prev = tree_search(tree, offset); |
| 998 | /* |
| 999 | * we insert file extents without involving ordered struct, |
| 1000 | * so there should be no ordered struct cover this offset |
| 1001 | */ |
| 1002 | if (prev) { |
| 1003 | test = rb_entry(prev, struct btrfs_ordered_extent, |
| 1004 | rb_node); |
| 1005 | BUG_ON(offset_in_entry(test, offset)); |
| 1006 | } |
| 1007 | node = prev; |
| 1008 | } |
| 1009 | for (; node; node = rb_prev(node)) { |
| 1010 | test = rb_entry(node, struct btrfs_ordered_extent, rb_node); |
| 1011 | |
| 1012 | /* We treat this entry as if it doesnt exist */ |
| 1013 | if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags)) |
| 1014 | continue; |
| 1015 | if (test->file_offset + test->len <= disk_i_size) |
| 1016 | break; |
| 1017 | if (test->file_offset >= i_size) |
| 1018 | break; |
| 1019 | if (entry_end(test) > disk_i_size) { |
| 1020 | /* |
| 1021 | * we don't update disk_i_size now, so record this |
| 1022 | * undealt i_size. Or we will not know the real |
| 1023 | * i_size. |
| 1024 | */ |
| 1025 | if (test->outstanding_isize < offset) |
| 1026 | test->outstanding_isize = offset; |
| 1027 | if (ordered && |
| 1028 | ordered->outstanding_isize > |
| 1029 | test->outstanding_isize) |
| 1030 | test->outstanding_isize = |
| 1031 | ordered->outstanding_isize; |
| 1032 | goto out; |
| 1033 | } |
| 1034 | } |
| 1035 | new_i_size = min_t(u64, offset, i_size); |
| 1036 | |
| 1037 | /* |
| 1038 | * Some ordered extents may completed before the current one, and |
| 1039 | * we hold the real i_size in ->outstanding_isize. |
| 1040 | */ |
| 1041 | if (ordered && ordered->outstanding_isize > new_i_size) |
| 1042 | new_i_size = min_t(u64, ordered->outstanding_isize, i_size); |
| 1043 | BTRFS_I(inode)->disk_i_size = new_i_size; |
| 1044 | ret = 0; |
| 1045 | out: |
| 1046 | /* |
| 1047 | * We need to do this because we can't remove ordered extents until |
| 1048 | * after the i_disk_size has been updated and then the inode has been |
| 1049 | * updated to reflect the change, so we need to tell anybody who finds |
| 1050 | * this ordered extent that we've already done all the real work, we |
| 1051 | * just haven't completed all the other work. |
| 1052 | */ |
| 1053 | if (ordered) |
| 1054 | set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags); |
| 1055 | spin_unlock_irq(&tree->lock); |
| 1056 | return ret; |
| 1057 | } |
| 1058 | |
| 1059 | /* |
| 1060 | * search the ordered extents for one corresponding to 'offset' and |
| 1061 | * try to find a checksum. This is used because we allow pages to |
| 1062 | * be reclaimed before their checksum is actually put into the btree |
| 1063 | */ |
| 1064 | int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, |
| 1065 | u32 *sum, int len) |
| 1066 | { |
| 1067 | struct btrfs_ordered_sum *ordered_sum; |
| 1068 | struct btrfs_ordered_extent *ordered; |
| 1069 | struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; |
| 1070 | unsigned long num_sectors; |
| 1071 | unsigned long i; |
| 1072 | u32 sectorsize = BTRFS_I(inode)->root->sectorsize; |
| 1073 | int index = 0; |
| 1074 | |
| 1075 | ordered = btrfs_lookup_ordered_extent(inode, offset); |
| 1076 | if (!ordered) |
| 1077 | return 0; |
| 1078 | |
| 1079 | spin_lock_irq(&tree->lock); |
| 1080 | list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { |
| 1081 | if (disk_bytenr >= ordered_sum->bytenr && |
| 1082 | disk_bytenr < ordered_sum->bytenr + ordered_sum->len) { |
| 1083 | i = (disk_bytenr - ordered_sum->bytenr) >> |
| 1084 | inode->i_sb->s_blocksize_bits; |
| 1085 | num_sectors = ordered_sum->len >> |
| 1086 | inode->i_sb->s_blocksize_bits; |
| 1087 | num_sectors = min_t(int, len - index, num_sectors - i); |
| 1088 | memcpy(sum + index, ordered_sum->sums + i, |
| 1089 | num_sectors); |
| 1090 | |
| 1091 | index += (int)num_sectors; |
| 1092 | if (index == len) |
| 1093 | goto out; |
| 1094 | disk_bytenr += num_sectors * sectorsize; |
| 1095 | } |
| 1096 | } |
| 1097 | out: |
| 1098 | spin_unlock_irq(&tree->lock); |
| 1099 | btrfs_put_ordered_extent(ordered); |
| 1100 | return index; |
| 1101 | } |
| 1102 | |
| 1103 | int __init ordered_data_init(void) |
| 1104 | { |
| 1105 | btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", |
| 1106 | sizeof(struct btrfs_ordered_extent), 0, |
| 1107 | SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, |
| 1108 | NULL); |
| 1109 | if (!btrfs_ordered_extent_cache) |
| 1110 | return -ENOMEM; |
| 1111 | |
| 1112 | return 0; |
| 1113 | } |
| 1114 | |
| 1115 | void ordered_data_exit(void) |
| 1116 | { |
| 1117 | if (btrfs_ordered_extent_cache) |
| 1118 | kmem_cache_destroy(btrfs_ordered_extent_cache); |
| 1119 | } |