Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame^] | 1 | /* |
| 2 | * fs/f2fs/inode.c |
| 3 | * |
| 4 | * Copyright (c) 2012 Samsung Electronics Co., Ltd. |
| 5 | * http://www.samsung.com/ |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or modify |
| 8 | * it under the terms of the GNU General Public License version 2 as |
| 9 | * published by the Free Software Foundation. |
| 10 | */ |
| 11 | #include <linux/fs.h> |
| 12 | #include <linux/f2fs_fs.h> |
| 13 | #include <linux/buffer_head.h> |
| 14 | #include <linux/writeback.h> |
| 15 | |
| 16 | #include "f2fs.h" |
| 17 | #include "node.h" |
| 18 | |
| 19 | #include <trace/events/f2fs.h> |
| 20 | |
| 21 | void f2fs_set_inode_flags(struct inode *inode) |
| 22 | { |
| 23 | unsigned int flags = F2FS_I(inode)->i_flags; |
| 24 | unsigned int new_fl = 0; |
| 25 | |
| 26 | if (flags & FS_SYNC_FL) |
| 27 | new_fl |= S_SYNC; |
| 28 | if (flags & FS_APPEND_FL) |
| 29 | new_fl |= S_APPEND; |
| 30 | if (flags & FS_IMMUTABLE_FL) |
| 31 | new_fl |= S_IMMUTABLE; |
| 32 | if (flags & FS_NOATIME_FL) |
| 33 | new_fl |= S_NOATIME; |
| 34 | if (flags & FS_DIRSYNC_FL) |
| 35 | new_fl |= S_DIRSYNC; |
| 36 | inode_set_flags(inode, new_fl, |
| 37 | S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); |
| 38 | } |
| 39 | |
| 40 | static void __get_inode_rdev(struct inode *inode, struct f2fs_inode *ri) |
| 41 | { |
| 42 | if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || |
| 43 | S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { |
| 44 | if (ri->i_addr[0]) |
| 45 | inode->i_rdev = |
| 46 | old_decode_dev(le32_to_cpu(ri->i_addr[0])); |
| 47 | else |
| 48 | inode->i_rdev = |
| 49 | new_decode_dev(le32_to_cpu(ri->i_addr[1])); |
| 50 | } |
| 51 | } |
| 52 | |
| 53 | static bool __written_first_block(struct f2fs_inode *ri) |
| 54 | { |
| 55 | block_t addr = le32_to_cpu(ri->i_addr[0]); |
| 56 | |
| 57 | if (addr != NEW_ADDR && addr != NULL_ADDR) |
| 58 | return true; |
| 59 | return false; |
| 60 | } |
| 61 | |
| 62 | static void __set_inode_rdev(struct inode *inode, struct f2fs_inode *ri) |
| 63 | { |
| 64 | if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { |
| 65 | if (old_valid_dev(inode->i_rdev)) { |
| 66 | ri->i_addr[0] = |
| 67 | cpu_to_le32(old_encode_dev(inode->i_rdev)); |
| 68 | ri->i_addr[1] = 0; |
| 69 | } else { |
| 70 | ri->i_addr[0] = 0; |
| 71 | ri->i_addr[1] = |
| 72 | cpu_to_le32(new_encode_dev(inode->i_rdev)); |
| 73 | ri->i_addr[2] = 0; |
| 74 | } |
| 75 | } |
| 76 | } |
| 77 | |
| 78 | static void __recover_inline_status(struct inode *inode, struct page *ipage) |
| 79 | { |
| 80 | void *inline_data = inline_data_addr(ipage); |
| 81 | __le32 *start = inline_data; |
| 82 | __le32 *end = start + MAX_INLINE_DATA / sizeof(__le32); |
| 83 | |
| 84 | while (start < end) { |
| 85 | if (*start++) { |
| 86 | f2fs_wait_on_page_writeback(ipage, NODE); |
| 87 | |
| 88 | set_inode_flag(F2FS_I(inode), FI_DATA_EXIST); |
| 89 | set_raw_inline(F2FS_I(inode), F2FS_INODE(ipage)); |
| 90 | set_page_dirty(ipage); |
| 91 | return; |
| 92 | } |
| 93 | } |
| 94 | return; |
| 95 | } |
| 96 | |
| 97 | static int do_read_inode(struct inode *inode) |
| 98 | { |
| 99 | struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| 100 | struct f2fs_inode_info *fi = F2FS_I(inode); |
| 101 | struct page *node_page; |
| 102 | struct f2fs_inode *ri; |
| 103 | |
| 104 | /* Check if ino is within scope */ |
| 105 | if (check_nid_range(sbi, inode->i_ino)) { |
| 106 | f2fs_msg(inode->i_sb, KERN_ERR, "bad inode number: %lu", |
| 107 | (unsigned long) inode->i_ino); |
| 108 | WARN_ON(1); |
| 109 | return -EINVAL; |
| 110 | } |
| 111 | |
| 112 | node_page = get_node_page(sbi, inode->i_ino); |
| 113 | if (IS_ERR(node_page)) |
| 114 | return PTR_ERR(node_page); |
| 115 | |
| 116 | ri = F2FS_INODE(node_page); |
| 117 | |
| 118 | inode->i_mode = le16_to_cpu(ri->i_mode); |
| 119 | i_uid_write(inode, le32_to_cpu(ri->i_uid)); |
| 120 | i_gid_write(inode, le32_to_cpu(ri->i_gid)); |
| 121 | set_nlink(inode, le32_to_cpu(ri->i_links)); |
| 122 | inode->i_size = le64_to_cpu(ri->i_size); |
| 123 | inode->i_blocks = le64_to_cpu(ri->i_blocks); |
| 124 | |
| 125 | inode->i_atime.tv_sec = le64_to_cpu(ri->i_atime); |
| 126 | inode->i_ctime.tv_sec = le64_to_cpu(ri->i_ctime); |
| 127 | inode->i_mtime.tv_sec = le64_to_cpu(ri->i_mtime); |
| 128 | inode->i_atime.tv_nsec = le32_to_cpu(ri->i_atime_nsec); |
| 129 | inode->i_ctime.tv_nsec = le32_to_cpu(ri->i_ctime_nsec); |
| 130 | inode->i_mtime.tv_nsec = le32_to_cpu(ri->i_mtime_nsec); |
| 131 | inode->i_generation = le32_to_cpu(ri->i_generation); |
| 132 | |
| 133 | fi->i_current_depth = le32_to_cpu(ri->i_current_depth); |
| 134 | fi->i_xattr_nid = le32_to_cpu(ri->i_xattr_nid); |
| 135 | fi->i_flags = le32_to_cpu(ri->i_flags); |
| 136 | fi->flags = 0; |
| 137 | fi->i_advise = ri->i_advise; |
| 138 | fi->i_pino = le32_to_cpu(ri->i_pino); |
| 139 | fi->i_dir_level = ri->i_dir_level; |
| 140 | |
| 141 | f2fs_init_extent_tree(inode, &ri->i_ext); |
| 142 | |
| 143 | get_inline_info(fi, ri); |
| 144 | |
| 145 | /* check data exist */ |
| 146 | if (f2fs_has_inline_data(inode) && !f2fs_exist_data(inode)) |
| 147 | __recover_inline_status(inode, node_page); |
| 148 | |
| 149 | /* get rdev by using inline_info */ |
| 150 | __get_inode_rdev(inode, ri); |
| 151 | |
| 152 | if (__written_first_block(ri)) |
| 153 | set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN); |
| 154 | |
| 155 | f2fs_put_page(node_page, 1); |
| 156 | |
| 157 | stat_inc_inline_xattr(inode); |
| 158 | stat_inc_inline_inode(inode); |
| 159 | stat_inc_inline_dir(inode); |
| 160 | |
| 161 | return 0; |
| 162 | } |
| 163 | |
| 164 | struct inode *f2fs_iget(struct super_block *sb, unsigned long ino) |
| 165 | { |
| 166 | struct f2fs_sb_info *sbi = F2FS_SB(sb); |
| 167 | struct inode *inode; |
| 168 | int ret = 0; |
| 169 | |
| 170 | inode = iget_locked(sb, ino); |
| 171 | if (!inode) |
| 172 | return ERR_PTR(-ENOMEM); |
| 173 | |
| 174 | if (!(inode->i_state & I_NEW)) { |
| 175 | trace_f2fs_iget(inode); |
| 176 | return inode; |
| 177 | } |
| 178 | if (ino == F2FS_NODE_INO(sbi) || ino == F2FS_META_INO(sbi)) |
| 179 | goto make_now; |
| 180 | |
| 181 | ret = do_read_inode(inode); |
| 182 | if (ret) |
| 183 | goto bad_inode; |
| 184 | make_now: |
| 185 | if (ino == F2FS_NODE_INO(sbi)) { |
| 186 | inode->i_mapping->a_ops = &f2fs_node_aops; |
| 187 | mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO); |
| 188 | } else if (ino == F2FS_META_INO(sbi)) { |
| 189 | inode->i_mapping->a_ops = &f2fs_meta_aops; |
| 190 | mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO); |
| 191 | } else if (S_ISREG(inode->i_mode)) { |
| 192 | inode->i_op = &f2fs_file_inode_operations; |
| 193 | inode->i_fop = &f2fs_file_operations; |
| 194 | inode->i_mapping->a_ops = &f2fs_dblock_aops; |
| 195 | } else if (S_ISDIR(inode->i_mode)) { |
| 196 | inode->i_op = &f2fs_dir_inode_operations; |
| 197 | inode->i_fop = &f2fs_dir_operations; |
| 198 | inode->i_mapping->a_ops = &f2fs_dblock_aops; |
| 199 | mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_HIGH_ZERO); |
| 200 | } else if (S_ISLNK(inode->i_mode)) { |
| 201 | if (f2fs_encrypted_inode(inode)) |
| 202 | inode->i_op = &f2fs_encrypted_symlink_inode_operations; |
| 203 | else |
| 204 | inode->i_op = &f2fs_symlink_inode_operations; |
| 205 | inode->i_mapping->a_ops = &f2fs_dblock_aops; |
| 206 | } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || |
| 207 | S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { |
| 208 | inode->i_op = &f2fs_special_inode_operations; |
| 209 | init_special_inode(inode, inode->i_mode, inode->i_rdev); |
| 210 | } else { |
| 211 | ret = -EIO; |
| 212 | goto bad_inode; |
| 213 | } |
| 214 | unlock_new_inode(inode); |
| 215 | trace_f2fs_iget(inode); |
| 216 | return inode; |
| 217 | |
| 218 | bad_inode: |
| 219 | iget_failed(inode); |
| 220 | trace_f2fs_iget_exit(inode, ret); |
| 221 | return ERR_PTR(ret); |
| 222 | } |
| 223 | |
| 224 | void update_inode(struct inode *inode, struct page *node_page) |
| 225 | { |
| 226 | struct f2fs_inode *ri; |
| 227 | |
| 228 | f2fs_wait_on_page_writeback(node_page, NODE); |
| 229 | |
| 230 | ri = F2FS_INODE(node_page); |
| 231 | |
| 232 | ri->i_mode = cpu_to_le16(inode->i_mode); |
| 233 | ri->i_advise = F2FS_I(inode)->i_advise; |
| 234 | ri->i_uid = cpu_to_le32(i_uid_read(inode)); |
| 235 | ri->i_gid = cpu_to_le32(i_gid_read(inode)); |
| 236 | ri->i_links = cpu_to_le32(inode->i_nlink); |
| 237 | ri->i_size = cpu_to_le64(i_size_read(inode)); |
| 238 | ri->i_blocks = cpu_to_le64(inode->i_blocks); |
| 239 | |
| 240 | if (F2FS_I(inode)->extent_tree) |
| 241 | set_raw_extent(&F2FS_I(inode)->extent_tree->largest, |
| 242 | &ri->i_ext); |
| 243 | else |
| 244 | memset(&ri->i_ext, 0, sizeof(ri->i_ext)); |
| 245 | set_raw_inline(F2FS_I(inode), ri); |
| 246 | |
| 247 | ri->i_atime = cpu_to_le64(inode->i_atime.tv_sec); |
| 248 | ri->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec); |
| 249 | ri->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec); |
| 250 | ri->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); |
| 251 | ri->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); |
| 252 | ri->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); |
| 253 | ri->i_current_depth = cpu_to_le32(F2FS_I(inode)->i_current_depth); |
| 254 | ri->i_xattr_nid = cpu_to_le32(F2FS_I(inode)->i_xattr_nid); |
| 255 | ri->i_flags = cpu_to_le32(F2FS_I(inode)->i_flags); |
| 256 | ri->i_pino = cpu_to_le32(F2FS_I(inode)->i_pino); |
| 257 | ri->i_generation = cpu_to_le32(inode->i_generation); |
| 258 | ri->i_dir_level = F2FS_I(inode)->i_dir_level; |
| 259 | |
| 260 | __set_inode_rdev(inode, ri); |
| 261 | set_cold_node(inode, node_page); |
| 262 | set_page_dirty(node_page); |
| 263 | |
| 264 | clear_inode_flag(F2FS_I(inode), FI_DIRTY_INODE); |
| 265 | } |
| 266 | |
| 267 | void update_inode_page(struct inode *inode) |
| 268 | { |
| 269 | struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| 270 | struct page *node_page; |
| 271 | retry: |
| 272 | node_page = get_node_page(sbi, inode->i_ino); |
| 273 | if (IS_ERR(node_page)) { |
| 274 | int err = PTR_ERR(node_page); |
| 275 | if (err == -ENOMEM) { |
| 276 | cond_resched(); |
| 277 | goto retry; |
| 278 | } else if (err != -ENOENT) { |
| 279 | f2fs_stop_checkpoint(sbi); |
| 280 | } |
| 281 | return; |
| 282 | } |
| 283 | update_inode(inode, node_page); |
| 284 | f2fs_put_page(node_page, 1); |
| 285 | } |
| 286 | |
| 287 | int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc) |
| 288 | { |
| 289 | struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| 290 | |
| 291 | if (inode->i_ino == F2FS_NODE_INO(sbi) || |
| 292 | inode->i_ino == F2FS_META_INO(sbi)) |
| 293 | return 0; |
| 294 | |
| 295 | if (!is_inode_flag_set(F2FS_I(inode), FI_DIRTY_INODE)) |
| 296 | return 0; |
| 297 | |
| 298 | /* |
| 299 | * We need to balance fs here to prevent from producing dirty node pages |
| 300 | * during the urgent cleaning time when runing out of free sections. |
| 301 | */ |
| 302 | update_inode_page(inode); |
| 303 | |
| 304 | f2fs_balance_fs(sbi); |
| 305 | return 0; |
| 306 | } |
| 307 | |
| 308 | /* |
| 309 | * Called at the last iput() if i_nlink is zero |
| 310 | */ |
| 311 | void f2fs_evict_inode(struct inode *inode) |
| 312 | { |
| 313 | struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| 314 | struct f2fs_inode_info *fi = F2FS_I(inode); |
| 315 | nid_t xnid = fi->i_xattr_nid; |
| 316 | int err = 0; |
| 317 | |
| 318 | /* some remained atomic pages should discarded */ |
| 319 | if (f2fs_is_atomic_file(inode)) |
| 320 | commit_inmem_pages(inode, true); |
| 321 | |
| 322 | trace_f2fs_evict_inode(inode); |
| 323 | truncate_inode_pages_final(&inode->i_data); |
| 324 | |
| 325 | if (inode->i_ino == F2FS_NODE_INO(sbi) || |
| 326 | inode->i_ino == F2FS_META_INO(sbi)) |
| 327 | goto out_clear; |
| 328 | |
| 329 | f2fs_bug_on(sbi, get_dirty_pages(inode)); |
| 330 | remove_dirty_dir_inode(inode); |
| 331 | |
| 332 | f2fs_destroy_extent_tree(inode); |
| 333 | |
| 334 | if (inode->i_nlink || is_bad_inode(inode)) |
| 335 | goto no_delete; |
| 336 | |
| 337 | sb_start_intwrite(inode->i_sb); |
| 338 | set_inode_flag(fi, FI_NO_ALLOC); |
| 339 | i_size_write(inode, 0); |
| 340 | |
| 341 | if (F2FS_HAS_BLOCKS(inode)) |
| 342 | err = f2fs_truncate(inode, true); |
| 343 | |
| 344 | if (!err) { |
| 345 | f2fs_lock_op(sbi); |
| 346 | err = remove_inode_page(inode); |
| 347 | f2fs_unlock_op(sbi); |
| 348 | } |
| 349 | |
| 350 | sb_end_intwrite(inode->i_sb); |
| 351 | no_delete: |
| 352 | stat_dec_inline_xattr(inode); |
| 353 | stat_dec_inline_dir(inode); |
| 354 | stat_dec_inline_inode(inode); |
| 355 | |
| 356 | invalidate_mapping_pages(NODE_MAPPING(sbi), inode->i_ino, inode->i_ino); |
| 357 | if (xnid) |
| 358 | invalidate_mapping_pages(NODE_MAPPING(sbi), xnid, xnid); |
| 359 | if (is_inode_flag_set(fi, FI_APPEND_WRITE)) |
| 360 | add_dirty_inode(sbi, inode->i_ino, APPEND_INO); |
| 361 | if (is_inode_flag_set(fi, FI_UPDATE_WRITE)) |
| 362 | add_dirty_inode(sbi, inode->i_ino, UPDATE_INO); |
| 363 | if (is_inode_flag_set(fi, FI_FREE_NID)) { |
| 364 | if (err && err != -ENOENT) |
| 365 | alloc_nid_done(sbi, inode->i_ino); |
| 366 | else |
| 367 | alloc_nid_failed(sbi, inode->i_ino); |
| 368 | clear_inode_flag(fi, FI_FREE_NID); |
| 369 | } |
| 370 | |
| 371 | if (err && err != -ENOENT) { |
| 372 | if (!exist_written_data(sbi, inode->i_ino, ORPHAN_INO)) { |
| 373 | /* |
| 374 | * get here because we failed to release resource |
| 375 | * of inode previously, reminder our user to run fsck |
| 376 | * for fixing. |
| 377 | */ |
| 378 | set_sbi_flag(sbi, SBI_NEED_FSCK); |
| 379 | f2fs_msg(sbi->sb, KERN_WARNING, |
| 380 | "inode (ino:%lu) resource leak, run fsck " |
| 381 | "to fix this issue!", inode->i_ino); |
| 382 | } |
| 383 | } |
| 384 | out_clear: |
| 385 | #ifdef CONFIG_F2FS_FS_ENCRYPTION |
| 386 | if (fi->i_crypt_info) |
| 387 | f2fs_free_encryption_info(inode, fi->i_crypt_info); |
| 388 | #endif |
| 389 | clear_inode(inode); |
| 390 | } |
| 391 | |
| 392 | /* caller should call f2fs_lock_op() */ |
| 393 | void handle_failed_inode(struct inode *inode) |
| 394 | { |
| 395 | struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| 396 | int err = 0; |
| 397 | |
| 398 | clear_nlink(inode); |
| 399 | make_bad_inode(inode); |
| 400 | unlock_new_inode(inode); |
| 401 | |
| 402 | i_size_write(inode, 0); |
| 403 | if (F2FS_HAS_BLOCKS(inode)) |
| 404 | err = f2fs_truncate(inode, false); |
| 405 | |
| 406 | if (!err) |
| 407 | err = remove_inode_page(inode); |
| 408 | |
| 409 | /* |
| 410 | * if we skip truncate_node in remove_inode_page bacause we failed |
| 411 | * before, it's better to find another way to release resource of |
| 412 | * this inode (e.g. valid block count, node block or nid). Here we |
| 413 | * choose to add this inode to orphan list, so that we can call iput |
| 414 | * for releasing in orphan recovery flow. |
| 415 | * |
| 416 | * Note: we should add inode to orphan list before f2fs_unlock_op() |
| 417 | * so we can prevent losing this orphan when encoutering checkpoint |
| 418 | * and following suddenly power-off. |
| 419 | */ |
| 420 | if (err && err != -ENOENT) { |
| 421 | err = acquire_orphan_inode(sbi); |
| 422 | if (!err) |
| 423 | add_orphan_inode(sbi, inode->i_ino); |
| 424 | } |
| 425 | |
| 426 | set_inode_flag(F2FS_I(inode), FI_FREE_NID); |
| 427 | f2fs_unlock_op(sbi); |
| 428 | |
| 429 | /* iput will drop the inode object */ |
| 430 | iput(inode); |
| 431 | } |