Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame^] | 1 | /* |
| 2 | * JFFS2 -- Journalling Flash File System, Version 2. |
| 3 | * |
| 4 | * Copyright © 2001-2007 Red Hat, Inc. |
| 5 | * |
| 6 | * Created by David Woodhouse <dwmw2@infradead.org> |
| 7 | * |
| 8 | * For licensing information, see the file 'LICENCE' in this directory. |
| 9 | * |
| 10 | */ |
| 11 | |
| 12 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 13 | |
| 14 | #include <linux/kernel.h> |
| 15 | #include <linux/sched.h> |
| 16 | #include <linux/slab.h> |
| 17 | #include <linux/fs.h> |
| 18 | #include <linux/crc32.h> |
| 19 | #include <linux/pagemap.h> |
| 20 | #include <linux/mtd/mtd.h> |
| 21 | #include <linux/compiler.h> |
| 22 | #include "nodelist.h" |
| 23 | |
| 24 | /* |
| 25 | * Check the data CRC of the node. |
| 26 | * |
| 27 | * Returns: 0 if the data CRC is correct; |
| 28 | * 1 - if incorrect; |
| 29 | * error code if an error occurred. |
| 30 | */ |
| 31 | static int check_node_data(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn) |
| 32 | { |
| 33 | struct jffs2_raw_node_ref *ref = tn->fn->raw; |
| 34 | int err = 0, pointed = 0; |
| 35 | struct jffs2_eraseblock *jeb; |
| 36 | unsigned char *buffer; |
| 37 | uint32_t crc, ofs, len; |
| 38 | size_t retlen; |
| 39 | |
| 40 | BUG_ON(tn->csize == 0); |
| 41 | |
| 42 | /* Calculate how many bytes were already checked */ |
| 43 | ofs = ref_offset(ref) + sizeof(struct jffs2_raw_inode); |
| 44 | len = tn->csize; |
| 45 | |
| 46 | if (jffs2_is_writebuffered(c)) { |
| 47 | int adj = ofs % c->wbuf_pagesize; |
| 48 | if (likely(adj)) |
| 49 | adj = c->wbuf_pagesize - adj; |
| 50 | |
| 51 | if (adj >= tn->csize) { |
| 52 | dbg_readinode("no need to check node at %#08x, data length %u, data starts at %#08x - it has already been checked.\n", |
| 53 | ref_offset(ref), tn->csize, ofs); |
| 54 | goto adj_acc; |
| 55 | } |
| 56 | |
| 57 | ofs += adj; |
| 58 | len -= adj; |
| 59 | } |
| 60 | |
| 61 | dbg_readinode("check node at %#08x, data length %u, partial CRC %#08x, correct CRC %#08x, data starts at %#08x, start checking from %#08x - %u bytes.\n", |
| 62 | ref_offset(ref), tn->csize, tn->partial_crc, tn->data_crc, ofs - len, ofs, len); |
| 63 | |
| 64 | #ifndef __ECOS |
| 65 | /* TODO: instead, incapsulate point() stuff to jffs2_flash_read(), |
| 66 | * adding and jffs2_flash_read_end() interface. */ |
| 67 | err = mtd_point(c->mtd, ofs, len, &retlen, (void **)&buffer, NULL); |
| 68 | if (!err && retlen < len) { |
| 69 | JFFS2_WARNING("MTD point returned len too short: %zu instead of %u.\n", retlen, tn->csize); |
| 70 | mtd_unpoint(c->mtd, ofs, retlen); |
| 71 | } else if (err) { |
| 72 | if (err != -EOPNOTSUPP) |
| 73 | JFFS2_WARNING("MTD point failed: error code %d.\n", err); |
| 74 | } else |
| 75 | pointed = 1; /* succefully pointed to device */ |
| 76 | #endif |
| 77 | |
| 78 | if (!pointed) { |
| 79 | buffer = kmalloc(len, GFP_KERNEL); |
| 80 | if (unlikely(!buffer)) |
| 81 | return -ENOMEM; |
| 82 | |
| 83 | /* TODO: this is very frequent pattern, make it a separate |
| 84 | * routine */ |
| 85 | err = jffs2_flash_read(c, ofs, len, &retlen, buffer); |
| 86 | if (err) { |
| 87 | JFFS2_ERROR("can not read %d bytes from 0x%08x, error code: %d.\n", len, ofs, err); |
| 88 | goto free_out; |
| 89 | } |
| 90 | |
| 91 | if (retlen != len) { |
| 92 | JFFS2_ERROR("short read at %#08x: %zd instead of %d.\n", ofs, retlen, len); |
| 93 | err = -EIO; |
| 94 | goto free_out; |
| 95 | } |
| 96 | } |
| 97 | |
| 98 | /* Continue calculating CRC */ |
| 99 | crc = crc32(tn->partial_crc, buffer, len); |
| 100 | if(!pointed) |
| 101 | kfree(buffer); |
| 102 | #ifndef __ECOS |
| 103 | else |
| 104 | mtd_unpoint(c->mtd, ofs, len); |
| 105 | #endif |
| 106 | |
| 107 | if (crc != tn->data_crc) { |
| 108 | JFFS2_NOTICE("wrong data CRC in data node at 0x%08x: read %#08x, calculated %#08x.\n", |
| 109 | ref_offset(ref), tn->data_crc, crc); |
| 110 | return 1; |
| 111 | } |
| 112 | |
| 113 | adj_acc: |
| 114 | jeb = &c->blocks[ref->flash_offset / c->sector_size]; |
| 115 | len = ref_totlen(c, jeb, ref); |
| 116 | /* If it should be REF_NORMAL, it'll get marked as such when |
| 117 | we build the fragtree, shortly. No need to worry about GC |
| 118 | moving it while it's marked REF_PRISTINE -- GC won't happen |
| 119 | till we've finished checking every inode anyway. */ |
| 120 | ref->flash_offset |= REF_PRISTINE; |
| 121 | /* |
| 122 | * Mark the node as having been checked and fix the |
| 123 | * accounting accordingly. |
| 124 | */ |
| 125 | spin_lock(&c->erase_completion_lock); |
| 126 | jeb->used_size += len; |
| 127 | jeb->unchecked_size -= len; |
| 128 | c->used_size += len; |
| 129 | c->unchecked_size -= len; |
| 130 | jffs2_dbg_acct_paranoia_check_nolock(c, jeb); |
| 131 | spin_unlock(&c->erase_completion_lock); |
| 132 | |
| 133 | return 0; |
| 134 | |
| 135 | free_out: |
| 136 | if(!pointed) |
| 137 | kfree(buffer); |
| 138 | #ifndef __ECOS |
| 139 | else |
| 140 | mtd_unpoint(c->mtd, ofs, len); |
| 141 | #endif |
| 142 | return err; |
| 143 | } |
| 144 | |
| 145 | /* |
| 146 | * Helper function for jffs2_add_older_frag_to_fragtree(). |
| 147 | * |
| 148 | * Checks the node if we are in the checking stage. |
| 149 | */ |
| 150 | static int check_tn_node(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn) |
| 151 | { |
| 152 | int ret; |
| 153 | |
| 154 | BUG_ON(ref_obsolete(tn->fn->raw)); |
| 155 | |
| 156 | /* We only check the data CRC of unchecked nodes */ |
| 157 | if (ref_flags(tn->fn->raw) != REF_UNCHECKED) |
| 158 | return 0; |
| 159 | |
| 160 | dbg_readinode("check node %#04x-%#04x, phys offs %#08x\n", |
| 161 | tn->fn->ofs, tn->fn->ofs + tn->fn->size, ref_offset(tn->fn->raw)); |
| 162 | |
| 163 | ret = check_node_data(c, tn); |
| 164 | if (unlikely(ret < 0)) { |
| 165 | JFFS2_ERROR("check_node_data() returned error: %d.\n", |
| 166 | ret); |
| 167 | } else if (unlikely(ret > 0)) { |
| 168 | dbg_readinode("CRC error, mark it obsolete.\n"); |
| 169 | jffs2_mark_node_obsolete(c, tn->fn->raw); |
| 170 | } |
| 171 | |
| 172 | return ret; |
| 173 | } |
| 174 | |
| 175 | static struct jffs2_tmp_dnode_info *jffs2_lookup_tn(struct rb_root *tn_root, uint32_t offset) |
| 176 | { |
| 177 | struct rb_node *next; |
| 178 | struct jffs2_tmp_dnode_info *tn = NULL; |
| 179 | |
| 180 | dbg_readinode("root %p, offset %d\n", tn_root, offset); |
| 181 | |
| 182 | next = tn_root->rb_node; |
| 183 | |
| 184 | while (next) { |
| 185 | tn = rb_entry(next, struct jffs2_tmp_dnode_info, rb); |
| 186 | |
| 187 | if (tn->fn->ofs < offset) |
| 188 | next = tn->rb.rb_right; |
| 189 | else if (tn->fn->ofs >= offset) |
| 190 | next = tn->rb.rb_left; |
| 191 | else |
| 192 | break; |
| 193 | } |
| 194 | |
| 195 | return tn; |
| 196 | } |
| 197 | |
| 198 | |
| 199 | static void jffs2_kill_tn(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn) |
| 200 | { |
| 201 | jffs2_mark_node_obsolete(c, tn->fn->raw); |
| 202 | jffs2_free_full_dnode(tn->fn); |
| 203 | jffs2_free_tmp_dnode_info(tn); |
| 204 | } |
| 205 | /* |
| 206 | * This function is used when we read an inode. Data nodes arrive in |
| 207 | * arbitrary order -- they may be older or newer than the nodes which |
| 208 | * are already in the tree. Where overlaps occur, the older node can |
| 209 | * be discarded as long as the newer passes the CRC check. We don't |
| 210 | * bother to keep track of holes in this rbtree, and neither do we deal |
| 211 | * with frags -- we can have multiple entries starting at the same |
| 212 | * offset, and the one with the smallest length will come first in the |
| 213 | * ordering. |
| 214 | * |
| 215 | * Returns 0 if the node was handled (including marking it obsolete) |
| 216 | * < 0 an if error occurred |
| 217 | */ |
| 218 | static int jffs2_add_tn_to_tree(struct jffs2_sb_info *c, |
| 219 | struct jffs2_readinode_info *rii, |
| 220 | struct jffs2_tmp_dnode_info *tn) |
| 221 | { |
| 222 | uint32_t fn_end = tn->fn->ofs + tn->fn->size; |
| 223 | struct jffs2_tmp_dnode_info *this, *ptn; |
| 224 | |
| 225 | dbg_readinode("insert fragment %#04x-%#04x, ver %u at %08x\n", tn->fn->ofs, fn_end, tn->version, ref_offset(tn->fn->raw)); |
| 226 | |
| 227 | /* If a node has zero dsize, we only have to keep it if it might be the |
| 228 | node with highest version -- i.e. the one which will end up as f->metadata. |
| 229 | Note that such nodes won't be REF_UNCHECKED since there are no data to |
| 230 | check anyway. */ |
| 231 | if (!tn->fn->size) { |
| 232 | if (rii->mdata_tn) { |
| 233 | if (rii->mdata_tn->version < tn->version) { |
| 234 | /* We had a candidate mdata node already */ |
| 235 | dbg_readinode("kill old mdata with ver %d\n", rii->mdata_tn->version); |
| 236 | jffs2_kill_tn(c, rii->mdata_tn); |
| 237 | } else { |
| 238 | dbg_readinode("kill new mdata with ver %d (older than existing %d\n", |
| 239 | tn->version, rii->mdata_tn->version); |
| 240 | jffs2_kill_tn(c, tn); |
| 241 | return 0; |
| 242 | } |
| 243 | } |
| 244 | rii->mdata_tn = tn; |
| 245 | dbg_readinode("keep new mdata with ver %d\n", tn->version); |
| 246 | return 0; |
| 247 | } |
| 248 | |
| 249 | /* Find the earliest node which _may_ be relevant to this one */ |
| 250 | this = jffs2_lookup_tn(&rii->tn_root, tn->fn->ofs); |
| 251 | if (this) { |
| 252 | /* If the node is coincident with another at a lower address, |
| 253 | back up until the other node is found. It may be relevant */ |
| 254 | while (this->overlapped) { |
| 255 | ptn = tn_prev(this); |
| 256 | if (!ptn) { |
| 257 | /* |
| 258 | * We killed a node which set the overlapped |
| 259 | * flags during the scan. Fix it up. |
| 260 | */ |
| 261 | this->overlapped = 0; |
| 262 | break; |
| 263 | } |
| 264 | this = ptn; |
| 265 | } |
| 266 | dbg_readinode("'this' found %#04x-%#04x (%s)\n", this->fn->ofs, this->fn->ofs + this->fn->size, this->fn ? "data" : "hole"); |
| 267 | } |
| 268 | |
| 269 | while (this) { |
| 270 | if (this->fn->ofs > fn_end) |
| 271 | break; |
| 272 | dbg_readinode("Ponder this ver %d, 0x%x-0x%x\n", |
| 273 | this->version, this->fn->ofs, this->fn->size); |
| 274 | |
| 275 | if (this->version == tn->version) { |
| 276 | /* Version number collision means REF_PRISTINE GC. Accept either of them |
| 277 | as long as the CRC is correct. Check the one we have already... */ |
| 278 | if (!check_tn_node(c, this)) { |
| 279 | /* The one we already had was OK. Keep it and throw away the new one */ |
| 280 | dbg_readinode("Like old node. Throw away new\n"); |
| 281 | jffs2_kill_tn(c, tn); |
| 282 | return 0; |
| 283 | } else { |
| 284 | /* Who cares if the new one is good; keep it for now anyway. */ |
| 285 | dbg_readinode("Like new node. Throw away old\n"); |
| 286 | rb_replace_node(&this->rb, &tn->rb, &rii->tn_root); |
| 287 | jffs2_kill_tn(c, this); |
| 288 | /* Same overlapping from in front and behind */ |
| 289 | return 0; |
| 290 | } |
| 291 | } |
| 292 | if (this->version < tn->version && |
| 293 | this->fn->ofs >= tn->fn->ofs && |
| 294 | this->fn->ofs + this->fn->size <= fn_end) { |
| 295 | /* New node entirely overlaps 'this' */ |
| 296 | if (check_tn_node(c, tn)) { |
| 297 | dbg_readinode("new node bad CRC\n"); |
| 298 | jffs2_kill_tn(c, tn); |
| 299 | return 0; |
| 300 | } |
| 301 | /* ... and is good. Kill 'this' and any subsequent nodes which are also overlapped */ |
| 302 | while (this && this->fn->ofs + this->fn->size <= fn_end) { |
| 303 | struct jffs2_tmp_dnode_info *next = tn_next(this); |
| 304 | if (this->version < tn->version) { |
| 305 | tn_erase(this, &rii->tn_root); |
| 306 | dbg_readinode("Kill overlapped ver %d, 0x%x-0x%x\n", |
| 307 | this->version, this->fn->ofs, |
| 308 | this->fn->ofs+this->fn->size); |
| 309 | jffs2_kill_tn(c, this); |
| 310 | } |
| 311 | this = next; |
| 312 | } |
| 313 | dbg_readinode("Done killing overlapped nodes\n"); |
| 314 | continue; |
| 315 | } |
| 316 | if (this->version > tn->version && |
| 317 | this->fn->ofs <= tn->fn->ofs && |
| 318 | this->fn->ofs+this->fn->size >= fn_end) { |
| 319 | /* New node entirely overlapped by 'this' */ |
| 320 | if (!check_tn_node(c, this)) { |
| 321 | dbg_readinode("Good CRC on old node. Kill new\n"); |
| 322 | jffs2_kill_tn(c, tn); |
| 323 | return 0; |
| 324 | } |
| 325 | /* ... but 'this' was bad. Replace it... */ |
| 326 | dbg_readinode("Bad CRC on old overlapping node. Kill it\n"); |
| 327 | tn_erase(this, &rii->tn_root); |
| 328 | jffs2_kill_tn(c, this); |
| 329 | break; |
| 330 | } |
| 331 | |
| 332 | this = tn_next(this); |
| 333 | } |
| 334 | |
| 335 | /* We neither completely obsoleted nor were completely |
| 336 | obsoleted by an earlier node. Insert into the tree */ |
| 337 | { |
| 338 | struct rb_node *parent; |
| 339 | struct rb_node **link = &rii->tn_root.rb_node; |
| 340 | struct jffs2_tmp_dnode_info *insert_point = NULL; |
| 341 | |
| 342 | while (*link) { |
| 343 | parent = *link; |
| 344 | insert_point = rb_entry(parent, struct jffs2_tmp_dnode_info, rb); |
| 345 | if (tn->fn->ofs > insert_point->fn->ofs) |
| 346 | link = &insert_point->rb.rb_right; |
| 347 | else if (tn->fn->ofs < insert_point->fn->ofs || |
| 348 | tn->fn->size < insert_point->fn->size) |
| 349 | link = &insert_point->rb.rb_left; |
| 350 | else |
| 351 | link = &insert_point->rb.rb_right; |
| 352 | } |
| 353 | rb_link_node(&tn->rb, &insert_point->rb, link); |
| 354 | rb_insert_color(&tn->rb, &rii->tn_root); |
| 355 | } |
| 356 | |
| 357 | /* If there's anything behind that overlaps us, note it */ |
| 358 | this = tn_prev(tn); |
| 359 | if (this) { |
| 360 | while (1) { |
| 361 | if (this->fn->ofs + this->fn->size > tn->fn->ofs) { |
| 362 | dbg_readinode("Node is overlapped by %p (v %d, 0x%x-0x%x)\n", |
| 363 | this, this->version, this->fn->ofs, |
| 364 | this->fn->ofs+this->fn->size); |
| 365 | tn->overlapped = 1; |
| 366 | break; |
| 367 | } |
| 368 | if (!this->overlapped) |
| 369 | break; |
| 370 | |
| 371 | ptn = tn_prev(this); |
| 372 | if (!ptn) { |
| 373 | /* |
| 374 | * We killed a node which set the overlapped |
| 375 | * flags during the scan. Fix it up. |
| 376 | */ |
| 377 | this->overlapped = 0; |
| 378 | break; |
| 379 | } |
| 380 | this = ptn; |
| 381 | } |
| 382 | } |
| 383 | |
| 384 | /* If the new node overlaps anything ahead, note it */ |
| 385 | this = tn_next(tn); |
| 386 | while (this && this->fn->ofs < fn_end) { |
| 387 | this->overlapped = 1; |
| 388 | dbg_readinode("Node ver %d, 0x%x-0x%x is overlapped\n", |
| 389 | this->version, this->fn->ofs, |
| 390 | this->fn->ofs+this->fn->size); |
| 391 | this = tn_next(this); |
| 392 | } |
| 393 | return 0; |
| 394 | } |
| 395 | |
| 396 | /* Trivial function to remove the last node in the tree. Which by definition |
| 397 | has no right-hand child — so can be removed just by making its left-hand |
| 398 | child (if any) take its place under its parent. Since this is only done |
| 399 | when we're consuming the whole tree, there's no need to use rb_erase() |
| 400 | and let it worry about adjusting colours and balancing the tree. That |
| 401 | would just be a waste of time. */ |
| 402 | static void eat_last(struct rb_root *root, struct rb_node *node) |
| 403 | { |
| 404 | struct rb_node *parent = rb_parent(node); |
| 405 | struct rb_node **link; |
| 406 | |
| 407 | /* LAST! */ |
| 408 | BUG_ON(node->rb_right); |
| 409 | |
| 410 | if (!parent) |
| 411 | link = &root->rb_node; |
| 412 | else if (node == parent->rb_left) |
| 413 | link = &parent->rb_left; |
| 414 | else |
| 415 | link = &parent->rb_right; |
| 416 | |
| 417 | *link = node->rb_left; |
| 418 | if (node->rb_left) |
| 419 | node->rb_left->__rb_parent_color = node->__rb_parent_color; |
| 420 | } |
| 421 | |
| 422 | /* We put the version tree in reverse order, so we can use the same eat_last() |
| 423 | function that we use to consume the tmpnode tree (tn_root). */ |
| 424 | static void ver_insert(struct rb_root *ver_root, struct jffs2_tmp_dnode_info *tn) |
| 425 | { |
| 426 | struct rb_node **link = &ver_root->rb_node; |
| 427 | struct rb_node *parent = NULL; |
| 428 | struct jffs2_tmp_dnode_info *this_tn; |
| 429 | |
| 430 | while (*link) { |
| 431 | parent = *link; |
| 432 | this_tn = rb_entry(parent, struct jffs2_tmp_dnode_info, rb); |
| 433 | |
| 434 | if (tn->version > this_tn->version) |
| 435 | link = &parent->rb_left; |
| 436 | else |
| 437 | link = &parent->rb_right; |
| 438 | } |
| 439 | dbg_readinode("Link new node at %p (root is %p)\n", link, ver_root); |
| 440 | rb_link_node(&tn->rb, parent, link); |
| 441 | rb_insert_color(&tn->rb, ver_root); |
| 442 | } |
| 443 | |
| 444 | /* Build final, normal fragtree from tn tree. It doesn't matter which order |
| 445 | we add nodes to the real fragtree, as long as they don't overlap. And |
| 446 | having thrown away the majority of overlapped nodes as we went, there |
| 447 | really shouldn't be many sets of nodes which do overlap. If we start at |
| 448 | the end, we can use the overlap markers -- we can just eat nodes which |
| 449 | aren't overlapped, and when we encounter nodes which _do_ overlap we |
| 450 | sort them all into a temporary tree in version order before replaying them. */ |
| 451 | static int jffs2_build_inode_fragtree(struct jffs2_sb_info *c, |
| 452 | struct jffs2_inode_info *f, |
| 453 | struct jffs2_readinode_info *rii) |
| 454 | { |
| 455 | struct jffs2_tmp_dnode_info *pen, *last, *this; |
| 456 | struct rb_root ver_root = RB_ROOT; |
| 457 | uint32_t high_ver = 0; |
| 458 | |
| 459 | if (rii->mdata_tn) { |
| 460 | dbg_readinode("potential mdata is ver %d at %p\n", rii->mdata_tn->version, rii->mdata_tn); |
| 461 | high_ver = rii->mdata_tn->version; |
| 462 | rii->latest_ref = rii->mdata_tn->fn->raw; |
| 463 | } |
| 464 | #ifdef JFFS2_DBG_READINODE_MESSAGES |
| 465 | this = tn_last(&rii->tn_root); |
| 466 | while (this) { |
| 467 | dbg_readinode("tn %p ver %d range 0x%x-0x%x ov %d\n", this, this->version, this->fn->ofs, |
| 468 | this->fn->ofs+this->fn->size, this->overlapped); |
| 469 | this = tn_prev(this); |
| 470 | } |
| 471 | #endif |
| 472 | pen = tn_last(&rii->tn_root); |
| 473 | while ((last = pen)) { |
| 474 | pen = tn_prev(last); |
| 475 | |
| 476 | eat_last(&rii->tn_root, &last->rb); |
| 477 | ver_insert(&ver_root, last); |
| 478 | |
| 479 | if (unlikely(last->overlapped)) { |
| 480 | if (pen) |
| 481 | continue; |
| 482 | /* |
| 483 | * We killed a node which set the overlapped |
| 484 | * flags during the scan. Fix it up. |
| 485 | */ |
| 486 | last->overlapped = 0; |
| 487 | } |
| 488 | |
| 489 | /* Now we have a bunch of nodes in reverse version |
| 490 | order, in the tree at ver_root. Most of the time, |
| 491 | there'll actually be only one node in the 'tree', |
| 492 | in fact. */ |
| 493 | this = tn_last(&ver_root); |
| 494 | |
| 495 | while (this) { |
| 496 | struct jffs2_tmp_dnode_info *vers_next; |
| 497 | int ret; |
| 498 | vers_next = tn_prev(this); |
| 499 | eat_last(&ver_root, &this->rb); |
| 500 | if (check_tn_node(c, this)) { |
| 501 | dbg_readinode("node ver %d, 0x%x-0x%x failed CRC\n", |
| 502 | this->version, this->fn->ofs, |
| 503 | this->fn->ofs+this->fn->size); |
| 504 | jffs2_kill_tn(c, this); |
| 505 | } else { |
| 506 | if (this->version > high_ver) { |
| 507 | /* Note that this is different from the other |
| 508 | highest_version, because this one is only |
| 509 | counting _valid_ nodes which could give the |
| 510 | latest inode metadata */ |
| 511 | high_ver = this->version; |
| 512 | rii->latest_ref = this->fn->raw; |
| 513 | } |
| 514 | dbg_readinode("Add %p (v %d, 0x%x-0x%x, ov %d) to fragtree\n", |
| 515 | this, this->version, this->fn->ofs, |
| 516 | this->fn->ofs+this->fn->size, this->overlapped); |
| 517 | |
| 518 | ret = jffs2_add_full_dnode_to_inode(c, f, this->fn); |
| 519 | if (ret) { |
| 520 | /* Free the nodes in vers_root; let the caller |
| 521 | deal with the rest */ |
| 522 | JFFS2_ERROR("Add node to tree failed %d\n", ret); |
| 523 | while (1) { |
| 524 | vers_next = tn_prev(this); |
| 525 | if (check_tn_node(c, this)) |
| 526 | jffs2_mark_node_obsolete(c, this->fn->raw); |
| 527 | jffs2_free_full_dnode(this->fn); |
| 528 | jffs2_free_tmp_dnode_info(this); |
| 529 | this = vers_next; |
| 530 | if (!this) |
| 531 | break; |
| 532 | eat_last(&ver_root, &vers_next->rb); |
| 533 | } |
| 534 | return ret; |
| 535 | } |
| 536 | jffs2_free_tmp_dnode_info(this); |
| 537 | } |
| 538 | this = vers_next; |
| 539 | } |
| 540 | } |
| 541 | return 0; |
| 542 | } |
| 543 | |
| 544 | static void jffs2_free_tmp_dnode_info_list(struct rb_root *list) |
| 545 | { |
| 546 | struct jffs2_tmp_dnode_info *tn, *next; |
| 547 | |
| 548 | rbtree_postorder_for_each_entry_safe(tn, next, list, rb) { |
| 549 | jffs2_free_full_dnode(tn->fn); |
| 550 | jffs2_free_tmp_dnode_info(tn); |
| 551 | } |
| 552 | |
| 553 | *list = RB_ROOT; |
| 554 | } |
| 555 | |
| 556 | static void jffs2_free_full_dirent_list(struct jffs2_full_dirent *fd) |
| 557 | { |
| 558 | struct jffs2_full_dirent *next; |
| 559 | |
| 560 | while (fd) { |
| 561 | next = fd->next; |
| 562 | jffs2_free_full_dirent(fd); |
| 563 | fd = next; |
| 564 | } |
| 565 | } |
| 566 | |
| 567 | /* Returns first valid node after 'ref'. May return 'ref' */ |
| 568 | static struct jffs2_raw_node_ref *jffs2_first_valid_node(struct jffs2_raw_node_ref *ref) |
| 569 | { |
| 570 | while (ref && ref->next_in_ino) { |
| 571 | if (!ref_obsolete(ref)) |
| 572 | return ref; |
| 573 | dbg_noderef("node at 0x%08x is obsoleted. Ignoring.\n", ref_offset(ref)); |
| 574 | ref = ref->next_in_ino; |
| 575 | } |
| 576 | return NULL; |
| 577 | } |
| 578 | |
| 579 | /* |
| 580 | * Helper function for jffs2_get_inode_nodes(). |
| 581 | * It is called every time an directory entry node is found. |
| 582 | * |
| 583 | * Returns: 0 on success; |
| 584 | * negative error code on failure. |
| 585 | */ |
| 586 | static inline int read_direntry(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref, |
| 587 | struct jffs2_raw_dirent *rd, size_t read, |
| 588 | struct jffs2_readinode_info *rii) |
| 589 | { |
| 590 | struct jffs2_full_dirent *fd; |
| 591 | uint32_t crc; |
| 592 | |
| 593 | /* Obsoleted. This cannot happen, surely? dwmw2 20020308 */ |
| 594 | BUG_ON(ref_obsolete(ref)); |
| 595 | |
| 596 | crc = crc32(0, rd, sizeof(*rd) - 8); |
| 597 | if (unlikely(crc != je32_to_cpu(rd->node_crc))) { |
| 598 | JFFS2_NOTICE("header CRC failed on dirent node at %#08x: read %#08x, calculated %#08x\n", |
| 599 | ref_offset(ref), je32_to_cpu(rd->node_crc), crc); |
| 600 | jffs2_mark_node_obsolete(c, ref); |
| 601 | return 0; |
| 602 | } |
| 603 | |
| 604 | /* If we've never checked the CRCs on this node, check them now */ |
| 605 | if (ref_flags(ref) == REF_UNCHECKED) { |
| 606 | struct jffs2_eraseblock *jeb; |
| 607 | int len; |
| 608 | |
| 609 | /* Sanity check */ |
| 610 | if (unlikely(PAD((rd->nsize + sizeof(*rd))) != PAD(je32_to_cpu(rd->totlen)))) { |
| 611 | JFFS2_ERROR("illegal nsize in node at %#08x: nsize %#02x, totlen %#04x\n", |
| 612 | ref_offset(ref), rd->nsize, je32_to_cpu(rd->totlen)); |
| 613 | jffs2_mark_node_obsolete(c, ref); |
| 614 | return 0; |
| 615 | } |
| 616 | |
| 617 | jeb = &c->blocks[ref->flash_offset / c->sector_size]; |
| 618 | len = ref_totlen(c, jeb, ref); |
| 619 | |
| 620 | spin_lock(&c->erase_completion_lock); |
| 621 | jeb->used_size += len; |
| 622 | jeb->unchecked_size -= len; |
| 623 | c->used_size += len; |
| 624 | c->unchecked_size -= len; |
| 625 | ref->flash_offset = ref_offset(ref) | dirent_node_state(rd); |
| 626 | spin_unlock(&c->erase_completion_lock); |
| 627 | } |
| 628 | |
| 629 | fd = jffs2_alloc_full_dirent(rd->nsize + 1); |
| 630 | if (unlikely(!fd)) |
| 631 | return -ENOMEM; |
| 632 | |
| 633 | fd->raw = ref; |
| 634 | fd->version = je32_to_cpu(rd->version); |
| 635 | fd->ino = je32_to_cpu(rd->ino); |
| 636 | fd->type = rd->type; |
| 637 | |
| 638 | if (fd->version > rii->highest_version) |
| 639 | rii->highest_version = fd->version; |
| 640 | |
| 641 | /* Pick out the mctime of the latest dirent */ |
| 642 | if(fd->version > rii->mctime_ver && je32_to_cpu(rd->mctime)) { |
| 643 | rii->mctime_ver = fd->version; |
| 644 | rii->latest_mctime = je32_to_cpu(rd->mctime); |
| 645 | } |
| 646 | |
| 647 | /* |
| 648 | * Copy as much of the name as possible from the raw |
| 649 | * dirent we've already read from the flash. |
| 650 | */ |
| 651 | if (read > sizeof(*rd)) |
| 652 | memcpy(&fd->name[0], &rd->name[0], |
| 653 | min_t(uint32_t, rd->nsize, (read - sizeof(*rd)) )); |
| 654 | |
| 655 | /* Do we need to copy any more of the name directly from the flash? */ |
| 656 | if (rd->nsize + sizeof(*rd) > read) { |
| 657 | /* FIXME: point() */ |
| 658 | int err; |
| 659 | int already = read - sizeof(*rd); |
| 660 | |
| 661 | err = jffs2_flash_read(c, (ref_offset(ref)) + read, |
| 662 | rd->nsize - already, &read, &fd->name[already]); |
| 663 | if (unlikely(read != rd->nsize - already) && likely(!err)) { |
| 664 | jffs2_free_full_dirent(fd); |
| 665 | JFFS2_ERROR("short read: wanted %d bytes, got %zd\n", |
| 666 | rd->nsize - already, read); |
| 667 | return -EIO; |
| 668 | } |
| 669 | |
| 670 | if (unlikely(err)) { |
| 671 | JFFS2_ERROR("read remainder of name: error %d\n", err); |
| 672 | jffs2_free_full_dirent(fd); |
| 673 | return -EIO; |
| 674 | } |
| 675 | } |
| 676 | |
| 677 | fd->nhash = full_name_hash(fd->name, rd->nsize); |
| 678 | fd->next = NULL; |
| 679 | fd->name[rd->nsize] = '\0'; |
| 680 | |
| 681 | /* |
| 682 | * Wheee. We now have a complete jffs2_full_dirent structure, with |
| 683 | * the name in it and everything. Link it into the list |
| 684 | */ |
| 685 | jffs2_add_fd_to_list(c, fd, &rii->fds); |
| 686 | |
| 687 | return 0; |
| 688 | } |
| 689 | |
| 690 | /* |
| 691 | * Helper function for jffs2_get_inode_nodes(). |
| 692 | * It is called every time an inode node is found. |
| 693 | * |
| 694 | * Returns: 0 on success (possibly after marking a bad node obsolete); |
| 695 | * negative error code on failure. |
| 696 | */ |
| 697 | static inline int read_dnode(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref, |
| 698 | struct jffs2_raw_inode *rd, int rdlen, |
| 699 | struct jffs2_readinode_info *rii) |
| 700 | { |
| 701 | struct jffs2_tmp_dnode_info *tn; |
| 702 | uint32_t len, csize; |
| 703 | int ret = 0; |
| 704 | uint32_t crc; |
| 705 | |
| 706 | /* Obsoleted. This cannot happen, surely? dwmw2 20020308 */ |
| 707 | BUG_ON(ref_obsolete(ref)); |
| 708 | |
| 709 | crc = crc32(0, rd, sizeof(*rd) - 8); |
| 710 | if (unlikely(crc != je32_to_cpu(rd->node_crc))) { |
| 711 | JFFS2_NOTICE("node CRC failed on dnode at %#08x: read %#08x, calculated %#08x\n", |
| 712 | ref_offset(ref), je32_to_cpu(rd->node_crc), crc); |
| 713 | jffs2_mark_node_obsolete(c, ref); |
| 714 | return 0; |
| 715 | } |
| 716 | |
| 717 | tn = jffs2_alloc_tmp_dnode_info(); |
| 718 | if (!tn) { |
| 719 | JFFS2_ERROR("failed to allocate tn (%zu bytes).\n", sizeof(*tn)); |
| 720 | return -ENOMEM; |
| 721 | } |
| 722 | |
| 723 | tn->partial_crc = 0; |
| 724 | csize = je32_to_cpu(rd->csize); |
| 725 | |
| 726 | /* If we've never checked the CRCs on this node, check them now */ |
| 727 | if (ref_flags(ref) == REF_UNCHECKED) { |
| 728 | |
| 729 | /* Sanity checks */ |
| 730 | if (unlikely(je32_to_cpu(rd->offset) > je32_to_cpu(rd->isize)) || |
| 731 | unlikely(PAD(je32_to_cpu(rd->csize) + sizeof(*rd)) != PAD(je32_to_cpu(rd->totlen)))) { |
| 732 | JFFS2_WARNING("inode node header CRC is corrupted at %#08x\n", ref_offset(ref)); |
| 733 | jffs2_dbg_dump_node(c, ref_offset(ref)); |
| 734 | jffs2_mark_node_obsolete(c, ref); |
| 735 | goto free_out; |
| 736 | } |
| 737 | |
| 738 | if (jffs2_is_writebuffered(c) && csize != 0) { |
| 739 | /* At this point we are supposed to check the data CRC |
| 740 | * of our unchecked node. But thus far, we do not |
| 741 | * know whether the node is valid or obsolete. To |
| 742 | * figure this out, we need to walk all the nodes of |
| 743 | * the inode and build the inode fragtree. We don't |
| 744 | * want to spend time checking data of nodes which may |
| 745 | * later be found to be obsolete. So we put off the full |
| 746 | * data CRC checking until we have read all the inode |
| 747 | * nodes and have started building the fragtree. |
| 748 | * |
| 749 | * The fragtree is being built starting with nodes |
| 750 | * having the highest version number, so we'll be able |
| 751 | * to detect whether a node is valid (i.e., it is not |
| 752 | * overlapped by a node with higher version) or not. |
| 753 | * And we'll be able to check only those nodes, which |
| 754 | * are not obsolete. |
| 755 | * |
| 756 | * Of course, this optimization only makes sense in case |
| 757 | * of NAND flashes (or other flashes with |
| 758 | * !jffs2_can_mark_obsolete()), since on NOR flashes |
| 759 | * nodes are marked obsolete physically. |
| 760 | * |
| 761 | * Since NAND flashes (or other flashes with |
| 762 | * jffs2_is_writebuffered(c)) are anyway read by |
| 763 | * fractions of c->wbuf_pagesize, and we have just read |
| 764 | * the node header, it is likely that the starting part |
| 765 | * of the node data is also read when we read the |
| 766 | * header. So we don't mind to check the CRC of the |
| 767 | * starting part of the data of the node now, and check |
| 768 | * the second part later (in jffs2_check_node_data()). |
| 769 | * Of course, we will not need to re-read and re-check |
| 770 | * the NAND page which we have just read. This is why we |
| 771 | * read the whole NAND page at jffs2_get_inode_nodes(), |
| 772 | * while we needed only the node header. |
| 773 | */ |
| 774 | unsigned char *buf; |
| 775 | |
| 776 | /* 'buf' will point to the start of data */ |
| 777 | buf = (unsigned char *)rd + sizeof(*rd); |
| 778 | /* len will be the read data length */ |
| 779 | len = min_t(uint32_t, rdlen - sizeof(*rd), csize); |
| 780 | tn->partial_crc = crc32(0, buf, len); |
| 781 | |
| 782 | dbg_readinode("Calculates CRC (%#08x) for %d bytes, csize %d\n", tn->partial_crc, len, csize); |
| 783 | |
| 784 | /* If we actually calculated the whole data CRC |
| 785 | * and it is wrong, drop the node. */ |
| 786 | if (len >= csize && unlikely(tn->partial_crc != je32_to_cpu(rd->data_crc))) { |
| 787 | JFFS2_NOTICE("wrong data CRC in data node at 0x%08x: read %#08x, calculated %#08x.\n", |
| 788 | ref_offset(ref), tn->partial_crc, je32_to_cpu(rd->data_crc)); |
| 789 | jffs2_mark_node_obsolete(c, ref); |
| 790 | goto free_out; |
| 791 | } |
| 792 | |
| 793 | } else if (csize == 0) { |
| 794 | /* |
| 795 | * We checked the header CRC. If the node has no data, adjust |
| 796 | * the space accounting now. For other nodes this will be done |
| 797 | * later either when the node is marked obsolete or when its |
| 798 | * data is checked. |
| 799 | */ |
| 800 | struct jffs2_eraseblock *jeb; |
| 801 | |
| 802 | dbg_readinode("the node has no data.\n"); |
| 803 | jeb = &c->blocks[ref->flash_offset / c->sector_size]; |
| 804 | len = ref_totlen(c, jeb, ref); |
| 805 | |
| 806 | spin_lock(&c->erase_completion_lock); |
| 807 | jeb->used_size += len; |
| 808 | jeb->unchecked_size -= len; |
| 809 | c->used_size += len; |
| 810 | c->unchecked_size -= len; |
| 811 | ref->flash_offset = ref_offset(ref) | REF_NORMAL; |
| 812 | spin_unlock(&c->erase_completion_lock); |
| 813 | } |
| 814 | } |
| 815 | |
| 816 | tn->fn = jffs2_alloc_full_dnode(); |
| 817 | if (!tn->fn) { |
| 818 | JFFS2_ERROR("alloc fn failed\n"); |
| 819 | ret = -ENOMEM; |
| 820 | goto free_out; |
| 821 | } |
| 822 | |
| 823 | tn->version = je32_to_cpu(rd->version); |
| 824 | tn->fn->ofs = je32_to_cpu(rd->offset); |
| 825 | tn->data_crc = je32_to_cpu(rd->data_crc); |
| 826 | tn->csize = csize; |
| 827 | tn->fn->raw = ref; |
| 828 | tn->overlapped = 0; |
| 829 | |
| 830 | if (tn->version > rii->highest_version) |
| 831 | rii->highest_version = tn->version; |
| 832 | |
| 833 | /* There was a bug where we wrote hole nodes out with |
| 834 | csize/dsize swapped. Deal with it */ |
| 835 | if (rd->compr == JFFS2_COMPR_ZERO && !je32_to_cpu(rd->dsize) && csize) |
| 836 | tn->fn->size = csize; |
| 837 | else // normal case... |
| 838 | tn->fn->size = je32_to_cpu(rd->dsize); |
| 839 | |
| 840 | dbg_readinode2("dnode @%08x: ver %u, offset %#04x, dsize %#04x, csize %#04x\n", |
| 841 | ref_offset(ref), je32_to_cpu(rd->version), |
| 842 | je32_to_cpu(rd->offset), je32_to_cpu(rd->dsize), csize); |
| 843 | |
| 844 | ret = jffs2_add_tn_to_tree(c, rii, tn); |
| 845 | |
| 846 | if (ret) { |
| 847 | jffs2_free_full_dnode(tn->fn); |
| 848 | free_out: |
| 849 | jffs2_free_tmp_dnode_info(tn); |
| 850 | return ret; |
| 851 | } |
| 852 | #ifdef JFFS2_DBG_READINODE2_MESSAGES |
| 853 | dbg_readinode2("After adding ver %d:\n", je32_to_cpu(rd->version)); |
| 854 | tn = tn_first(&rii->tn_root); |
| 855 | while (tn) { |
| 856 | dbg_readinode2("%p: v %d r 0x%x-0x%x ov %d\n", |
| 857 | tn, tn->version, tn->fn->ofs, |
| 858 | tn->fn->ofs+tn->fn->size, tn->overlapped); |
| 859 | tn = tn_next(tn); |
| 860 | } |
| 861 | #endif |
| 862 | return 0; |
| 863 | } |
| 864 | |
| 865 | /* |
| 866 | * Helper function for jffs2_get_inode_nodes(). |
| 867 | * It is called every time an unknown node is found. |
| 868 | * |
| 869 | * Returns: 0 on success; |
| 870 | * negative error code on failure. |
| 871 | */ |
| 872 | static inline int read_unknown(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref, struct jffs2_unknown_node *un) |
| 873 | { |
| 874 | /* We don't mark unknown nodes as REF_UNCHECKED */ |
| 875 | if (ref_flags(ref) == REF_UNCHECKED) { |
| 876 | JFFS2_ERROR("REF_UNCHECKED but unknown node at %#08x\n", |
| 877 | ref_offset(ref)); |
| 878 | JFFS2_ERROR("Node is {%04x,%04x,%08x,%08x}. Please report this error.\n", |
| 879 | je16_to_cpu(un->magic), je16_to_cpu(un->nodetype), |
| 880 | je32_to_cpu(un->totlen), je32_to_cpu(un->hdr_crc)); |
| 881 | jffs2_mark_node_obsolete(c, ref); |
| 882 | return 0; |
| 883 | } |
| 884 | |
| 885 | un->nodetype = cpu_to_je16(JFFS2_NODE_ACCURATE | je16_to_cpu(un->nodetype)); |
| 886 | |
| 887 | switch(je16_to_cpu(un->nodetype) & JFFS2_COMPAT_MASK) { |
| 888 | |
| 889 | case JFFS2_FEATURE_INCOMPAT: |
| 890 | JFFS2_ERROR("unknown INCOMPAT nodetype %#04X at %#08x\n", |
| 891 | je16_to_cpu(un->nodetype), ref_offset(ref)); |
| 892 | /* EEP */ |
| 893 | BUG(); |
| 894 | break; |
| 895 | |
| 896 | case JFFS2_FEATURE_ROCOMPAT: |
| 897 | JFFS2_ERROR("unknown ROCOMPAT nodetype %#04X at %#08x\n", |
| 898 | je16_to_cpu(un->nodetype), ref_offset(ref)); |
| 899 | BUG_ON(!(c->flags & JFFS2_SB_FLAG_RO)); |
| 900 | break; |
| 901 | |
| 902 | case JFFS2_FEATURE_RWCOMPAT_COPY: |
| 903 | JFFS2_NOTICE("unknown RWCOMPAT_COPY nodetype %#04X at %#08x\n", |
| 904 | je16_to_cpu(un->nodetype), ref_offset(ref)); |
| 905 | break; |
| 906 | |
| 907 | case JFFS2_FEATURE_RWCOMPAT_DELETE: |
| 908 | JFFS2_NOTICE("unknown RWCOMPAT_DELETE nodetype %#04X at %#08x\n", |
| 909 | je16_to_cpu(un->nodetype), ref_offset(ref)); |
| 910 | jffs2_mark_node_obsolete(c, ref); |
| 911 | return 0; |
| 912 | } |
| 913 | |
| 914 | return 0; |
| 915 | } |
| 916 | |
| 917 | /* |
| 918 | * Helper function for jffs2_get_inode_nodes(). |
| 919 | * The function detects whether more data should be read and reads it if yes. |
| 920 | * |
| 921 | * Returns: 0 on success; |
| 922 | * negative error code on failure. |
| 923 | */ |
| 924 | static int read_more(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref, |
| 925 | int needed_len, int *rdlen, unsigned char *buf) |
| 926 | { |
| 927 | int err, to_read = needed_len - *rdlen; |
| 928 | size_t retlen; |
| 929 | uint32_t offs; |
| 930 | |
| 931 | if (jffs2_is_writebuffered(c)) { |
| 932 | int rem = to_read % c->wbuf_pagesize; |
| 933 | |
| 934 | if (rem) |
| 935 | to_read += c->wbuf_pagesize - rem; |
| 936 | } |
| 937 | |
| 938 | /* We need to read more data */ |
| 939 | offs = ref_offset(ref) + *rdlen; |
| 940 | |
| 941 | dbg_readinode("read more %d bytes\n", to_read); |
| 942 | |
| 943 | err = jffs2_flash_read(c, offs, to_read, &retlen, buf + *rdlen); |
| 944 | if (err) { |
| 945 | JFFS2_ERROR("can not read %d bytes from 0x%08x, " |
| 946 | "error code: %d.\n", to_read, offs, err); |
| 947 | return err; |
| 948 | } |
| 949 | |
| 950 | if (retlen < to_read) { |
| 951 | JFFS2_ERROR("short read at %#08x: %zu instead of %d.\n", |
| 952 | offs, retlen, to_read); |
| 953 | return -EIO; |
| 954 | } |
| 955 | |
| 956 | *rdlen += to_read; |
| 957 | return 0; |
| 958 | } |
| 959 | |
| 960 | /* Get tmp_dnode_info and full_dirent for all non-obsolete nodes associated |
| 961 | with this ino. Perform a preliminary ordering on data nodes, throwing away |
| 962 | those which are completely obsoleted by newer ones. The naïve approach we |
| 963 | use to take of just returning them _all_ in version order will cause us to |
| 964 | run out of memory in certain degenerate cases. */ |
| 965 | static int jffs2_get_inode_nodes(struct jffs2_sb_info *c, struct jffs2_inode_info *f, |
| 966 | struct jffs2_readinode_info *rii) |
| 967 | { |
| 968 | struct jffs2_raw_node_ref *ref, *valid_ref; |
| 969 | unsigned char *buf = NULL; |
| 970 | union jffs2_node_union *node; |
| 971 | size_t retlen; |
| 972 | int len, err; |
| 973 | |
| 974 | rii->mctime_ver = 0; |
| 975 | |
| 976 | dbg_readinode("ino #%u\n", f->inocache->ino); |
| 977 | |
| 978 | /* FIXME: in case of NOR and available ->point() this |
| 979 | * needs to be fixed. */ |
| 980 | len = sizeof(union jffs2_node_union) + c->wbuf_pagesize; |
| 981 | buf = kmalloc(len, GFP_KERNEL); |
| 982 | if (!buf) |
| 983 | return -ENOMEM; |
| 984 | |
| 985 | spin_lock(&c->erase_completion_lock); |
| 986 | valid_ref = jffs2_first_valid_node(f->inocache->nodes); |
| 987 | if (!valid_ref && f->inocache->ino != 1) |
| 988 | JFFS2_WARNING("Eep. No valid nodes for ino #%u.\n", f->inocache->ino); |
| 989 | while (valid_ref) { |
| 990 | /* We can hold a pointer to a non-obsolete node without the spinlock, |
| 991 | but _obsolete_ nodes may disappear at any time, if the block |
| 992 | they're in gets erased. So if we mark 'ref' obsolete while we're |
| 993 | not holding the lock, it can go away immediately. For that reason, |
| 994 | we find the next valid node first, before processing 'ref'. |
| 995 | */ |
| 996 | ref = valid_ref; |
| 997 | valid_ref = jffs2_first_valid_node(ref->next_in_ino); |
| 998 | spin_unlock(&c->erase_completion_lock); |
| 999 | |
| 1000 | cond_resched(); |
| 1001 | |
| 1002 | /* |
| 1003 | * At this point we don't know the type of the node we're going |
| 1004 | * to read, so we do not know the size of its header. In order |
| 1005 | * to minimize the amount of flash IO we assume the header is |
| 1006 | * of size = JFFS2_MIN_NODE_HEADER. |
| 1007 | */ |
| 1008 | len = JFFS2_MIN_NODE_HEADER; |
| 1009 | if (jffs2_is_writebuffered(c)) { |
| 1010 | int end, rem; |
| 1011 | |
| 1012 | /* |
| 1013 | * We are about to read JFFS2_MIN_NODE_HEADER bytes, |
| 1014 | * but this flash has some minimal I/O unit. It is |
| 1015 | * possible that we'll need to read more soon, so read |
| 1016 | * up to the next min. I/O unit, in order not to |
| 1017 | * re-read the same min. I/O unit twice. |
| 1018 | */ |
| 1019 | end = ref_offset(ref) + len; |
| 1020 | rem = end % c->wbuf_pagesize; |
| 1021 | if (rem) |
| 1022 | end += c->wbuf_pagesize - rem; |
| 1023 | len = end - ref_offset(ref); |
| 1024 | } |
| 1025 | |
| 1026 | dbg_readinode("read %d bytes at %#08x(%d).\n", len, ref_offset(ref), ref_flags(ref)); |
| 1027 | |
| 1028 | /* FIXME: point() */ |
| 1029 | err = jffs2_flash_read(c, ref_offset(ref), len, &retlen, buf); |
| 1030 | if (err) { |
| 1031 | JFFS2_ERROR("can not read %d bytes from 0x%08x, error code: %d.\n", len, ref_offset(ref), err); |
| 1032 | goto free_out; |
| 1033 | } |
| 1034 | |
| 1035 | if (retlen < len) { |
| 1036 | JFFS2_ERROR("short read at %#08x: %zu instead of %d.\n", ref_offset(ref), retlen, len); |
| 1037 | err = -EIO; |
| 1038 | goto free_out; |
| 1039 | } |
| 1040 | |
| 1041 | node = (union jffs2_node_union *)buf; |
| 1042 | |
| 1043 | /* No need to mask in the valid bit; it shouldn't be invalid */ |
| 1044 | if (je32_to_cpu(node->u.hdr_crc) != crc32(0, node, sizeof(node->u)-4)) { |
| 1045 | JFFS2_NOTICE("Node header CRC failed at %#08x. {%04x,%04x,%08x,%08x}\n", |
| 1046 | ref_offset(ref), je16_to_cpu(node->u.magic), |
| 1047 | je16_to_cpu(node->u.nodetype), |
| 1048 | je32_to_cpu(node->u.totlen), |
| 1049 | je32_to_cpu(node->u.hdr_crc)); |
| 1050 | jffs2_dbg_dump_node(c, ref_offset(ref)); |
| 1051 | jffs2_mark_node_obsolete(c, ref); |
| 1052 | goto cont; |
| 1053 | } |
| 1054 | if (je16_to_cpu(node->u.magic) != JFFS2_MAGIC_BITMASK) { |
| 1055 | /* Not a JFFS2 node, whinge and move on */ |
| 1056 | JFFS2_NOTICE("Wrong magic bitmask 0x%04x in node header at %#08x.\n", |
| 1057 | je16_to_cpu(node->u.magic), ref_offset(ref)); |
| 1058 | jffs2_mark_node_obsolete(c, ref); |
| 1059 | goto cont; |
| 1060 | } |
| 1061 | |
| 1062 | switch (je16_to_cpu(node->u.nodetype)) { |
| 1063 | |
| 1064 | case JFFS2_NODETYPE_DIRENT: |
| 1065 | |
| 1066 | if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_raw_dirent) && |
| 1067 | len < sizeof(struct jffs2_raw_dirent)) { |
| 1068 | err = read_more(c, ref, sizeof(struct jffs2_raw_dirent), &len, buf); |
| 1069 | if (unlikely(err)) |
| 1070 | goto free_out; |
| 1071 | } |
| 1072 | |
| 1073 | err = read_direntry(c, ref, &node->d, retlen, rii); |
| 1074 | if (unlikely(err)) |
| 1075 | goto free_out; |
| 1076 | |
| 1077 | break; |
| 1078 | |
| 1079 | case JFFS2_NODETYPE_INODE: |
| 1080 | |
| 1081 | if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_raw_inode) && |
| 1082 | len < sizeof(struct jffs2_raw_inode)) { |
| 1083 | err = read_more(c, ref, sizeof(struct jffs2_raw_inode), &len, buf); |
| 1084 | if (unlikely(err)) |
| 1085 | goto free_out; |
| 1086 | } |
| 1087 | |
| 1088 | err = read_dnode(c, ref, &node->i, len, rii); |
| 1089 | if (unlikely(err)) |
| 1090 | goto free_out; |
| 1091 | |
| 1092 | break; |
| 1093 | |
| 1094 | default: |
| 1095 | if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_unknown_node) && |
| 1096 | len < sizeof(struct jffs2_unknown_node)) { |
| 1097 | err = read_more(c, ref, sizeof(struct jffs2_unknown_node), &len, buf); |
| 1098 | if (unlikely(err)) |
| 1099 | goto free_out; |
| 1100 | } |
| 1101 | |
| 1102 | err = read_unknown(c, ref, &node->u); |
| 1103 | if (unlikely(err)) |
| 1104 | goto free_out; |
| 1105 | |
| 1106 | } |
| 1107 | cont: |
| 1108 | spin_lock(&c->erase_completion_lock); |
| 1109 | } |
| 1110 | |
| 1111 | spin_unlock(&c->erase_completion_lock); |
| 1112 | kfree(buf); |
| 1113 | |
| 1114 | f->highest_version = rii->highest_version; |
| 1115 | |
| 1116 | dbg_readinode("nodes of inode #%u were read, the highest version is %u, latest_mctime %u, mctime_ver %u.\n", |
| 1117 | f->inocache->ino, rii->highest_version, rii->latest_mctime, |
| 1118 | rii->mctime_ver); |
| 1119 | return 0; |
| 1120 | |
| 1121 | free_out: |
| 1122 | jffs2_free_tmp_dnode_info_list(&rii->tn_root); |
| 1123 | jffs2_free_full_dirent_list(rii->fds); |
| 1124 | rii->fds = NULL; |
| 1125 | kfree(buf); |
| 1126 | return err; |
| 1127 | } |
| 1128 | |
| 1129 | static int jffs2_do_read_inode_internal(struct jffs2_sb_info *c, |
| 1130 | struct jffs2_inode_info *f, |
| 1131 | struct jffs2_raw_inode *latest_node) |
| 1132 | { |
| 1133 | struct jffs2_readinode_info rii; |
| 1134 | uint32_t crc, new_size; |
| 1135 | size_t retlen; |
| 1136 | int ret; |
| 1137 | |
| 1138 | dbg_readinode("ino #%u pino/nlink is %d\n", f->inocache->ino, |
| 1139 | f->inocache->pino_nlink); |
| 1140 | |
| 1141 | memset(&rii, 0, sizeof(rii)); |
| 1142 | |
| 1143 | /* Grab all nodes relevant to this ino */ |
| 1144 | ret = jffs2_get_inode_nodes(c, f, &rii); |
| 1145 | |
| 1146 | if (ret) { |
| 1147 | JFFS2_ERROR("cannot read nodes for ino %u, returned error is %d\n", f->inocache->ino, ret); |
| 1148 | if (f->inocache->state == INO_STATE_READING) |
| 1149 | jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT); |
| 1150 | return ret; |
| 1151 | } |
| 1152 | |
| 1153 | ret = jffs2_build_inode_fragtree(c, f, &rii); |
| 1154 | if (ret) { |
| 1155 | JFFS2_ERROR("Failed to build final fragtree for inode #%u: error %d\n", |
| 1156 | f->inocache->ino, ret); |
| 1157 | if (f->inocache->state == INO_STATE_READING) |
| 1158 | jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT); |
| 1159 | jffs2_free_tmp_dnode_info_list(&rii.tn_root); |
| 1160 | /* FIXME: We could at least crc-check them all */ |
| 1161 | if (rii.mdata_tn) { |
| 1162 | jffs2_free_full_dnode(rii.mdata_tn->fn); |
| 1163 | jffs2_free_tmp_dnode_info(rii.mdata_tn); |
| 1164 | rii.mdata_tn = NULL; |
| 1165 | } |
| 1166 | return ret; |
| 1167 | } |
| 1168 | |
| 1169 | if (rii.mdata_tn) { |
| 1170 | if (rii.mdata_tn->fn->raw == rii.latest_ref) { |
| 1171 | f->metadata = rii.mdata_tn->fn; |
| 1172 | jffs2_free_tmp_dnode_info(rii.mdata_tn); |
| 1173 | } else { |
| 1174 | jffs2_kill_tn(c, rii.mdata_tn); |
| 1175 | } |
| 1176 | rii.mdata_tn = NULL; |
| 1177 | } |
| 1178 | |
| 1179 | f->dents = rii.fds; |
| 1180 | |
| 1181 | jffs2_dbg_fragtree_paranoia_check_nolock(f); |
| 1182 | |
| 1183 | if (unlikely(!rii.latest_ref)) { |
| 1184 | /* No data nodes for this inode. */ |
| 1185 | if (f->inocache->ino != 1) { |
| 1186 | JFFS2_WARNING("no data nodes found for ino #%u\n", f->inocache->ino); |
| 1187 | if (!rii.fds) { |
| 1188 | if (f->inocache->state == INO_STATE_READING) |
| 1189 | jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT); |
| 1190 | return -EIO; |
| 1191 | } |
| 1192 | JFFS2_NOTICE("but it has children so we fake some modes for it\n"); |
| 1193 | } |
| 1194 | latest_node->mode = cpu_to_jemode(S_IFDIR|S_IRUGO|S_IWUSR|S_IXUGO); |
| 1195 | latest_node->version = cpu_to_je32(0); |
| 1196 | latest_node->atime = latest_node->ctime = latest_node->mtime = cpu_to_je32(0); |
| 1197 | latest_node->isize = cpu_to_je32(0); |
| 1198 | latest_node->gid = cpu_to_je16(0); |
| 1199 | latest_node->uid = cpu_to_je16(0); |
| 1200 | if (f->inocache->state == INO_STATE_READING) |
| 1201 | jffs2_set_inocache_state(c, f->inocache, INO_STATE_PRESENT); |
| 1202 | return 0; |
| 1203 | } |
| 1204 | |
| 1205 | ret = jffs2_flash_read(c, ref_offset(rii.latest_ref), sizeof(*latest_node), &retlen, (void *)latest_node); |
| 1206 | if (ret || retlen != sizeof(*latest_node)) { |
| 1207 | JFFS2_ERROR("failed to read from flash: error %d, %zd of %zd bytes read\n", |
| 1208 | ret, retlen, sizeof(*latest_node)); |
| 1209 | /* FIXME: If this fails, there seems to be a memory leak. Find it. */ |
| 1210 | return ret ? ret : -EIO; |
| 1211 | } |
| 1212 | |
| 1213 | crc = crc32(0, latest_node, sizeof(*latest_node)-8); |
| 1214 | if (crc != je32_to_cpu(latest_node->node_crc)) { |
| 1215 | JFFS2_ERROR("CRC failed for read_inode of inode %u at physical location 0x%x\n", |
| 1216 | f->inocache->ino, ref_offset(rii.latest_ref)); |
| 1217 | return -EIO; |
| 1218 | } |
| 1219 | |
| 1220 | switch(jemode_to_cpu(latest_node->mode) & S_IFMT) { |
| 1221 | case S_IFDIR: |
| 1222 | if (rii.mctime_ver > je32_to_cpu(latest_node->version)) { |
| 1223 | /* The times in the latest_node are actually older than |
| 1224 | mctime in the latest dirent. Cheat. */ |
| 1225 | latest_node->ctime = latest_node->mtime = cpu_to_je32(rii.latest_mctime); |
| 1226 | } |
| 1227 | break; |
| 1228 | |
| 1229 | |
| 1230 | case S_IFREG: |
| 1231 | /* If it was a regular file, truncate it to the latest node's isize */ |
| 1232 | new_size = jffs2_truncate_fragtree(c, &f->fragtree, je32_to_cpu(latest_node->isize)); |
| 1233 | if (new_size != je32_to_cpu(latest_node->isize)) { |
| 1234 | JFFS2_WARNING("Truncating ino #%u to %d bytes failed because it only had %d bytes to start with!\n", |
| 1235 | f->inocache->ino, je32_to_cpu(latest_node->isize), new_size); |
| 1236 | latest_node->isize = cpu_to_je32(new_size); |
| 1237 | } |
| 1238 | break; |
| 1239 | |
| 1240 | case S_IFLNK: |
| 1241 | /* Hack to work around broken isize in old symlink code. |
| 1242 | Remove this when dwmw2 comes to his senses and stops |
| 1243 | symlinks from being an entirely gratuitous special |
| 1244 | case. */ |
| 1245 | if (!je32_to_cpu(latest_node->isize)) |
| 1246 | latest_node->isize = latest_node->dsize; |
| 1247 | |
| 1248 | if (f->inocache->state != INO_STATE_CHECKING) { |
| 1249 | /* Symlink's inode data is the target path. Read it and |
| 1250 | * keep in RAM to facilitate quick follow symlink |
| 1251 | * operation. */ |
| 1252 | uint32_t csize = je32_to_cpu(latest_node->csize); |
| 1253 | if (csize > JFFS2_MAX_NAME_LEN) |
| 1254 | return -ENAMETOOLONG; |
| 1255 | f->target = kmalloc(csize + 1, GFP_KERNEL); |
| 1256 | if (!f->target) { |
| 1257 | JFFS2_ERROR("can't allocate %u bytes of memory for the symlink target path cache\n", csize); |
| 1258 | return -ENOMEM; |
| 1259 | } |
| 1260 | |
| 1261 | ret = jffs2_flash_read(c, ref_offset(rii.latest_ref) + sizeof(*latest_node), |
| 1262 | csize, &retlen, (char *)f->target); |
| 1263 | |
| 1264 | if (ret || retlen != csize) { |
| 1265 | if (retlen != csize) |
| 1266 | ret = -EIO; |
| 1267 | kfree(f->target); |
| 1268 | f->target = NULL; |
| 1269 | return ret; |
| 1270 | } |
| 1271 | |
| 1272 | f->target[csize] = '\0'; |
| 1273 | dbg_readinode("symlink's target '%s' cached\n", f->target); |
| 1274 | } |
| 1275 | |
| 1276 | /* fall through... */ |
| 1277 | |
| 1278 | case S_IFBLK: |
| 1279 | case S_IFCHR: |
| 1280 | /* Certain inode types should have only one data node, and it's |
| 1281 | kept as the metadata node */ |
| 1282 | if (f->metadata) { |
| 1283 | JFFS2_ERROR("Argh. Special inode #%u with mode 0%o had metadata node\n", |
| 1284 | f->inocache->ino, jemode_to_cpu(latest_node->mode)); |
| 1285 | return -EIO; |
| 1286 | } |
| 1287 | if (!frag_first(&f->fragtree)) { |
| 1288 | JFFS2_ERROR("Argh. Special inode #%u with mode 0%o has no fragments\n", |
| 1289 | f->inocache->ino, jemode_to_cpu(latest_node->mode)); |
| 1290 | return -EIO; |
| 1291 | } |
| 1292 | /* ASSERT: f->fraglist != NULL */ |
| 1293 | if (frag_next(frag_first(&f->fragtree))) { |
| 1294 | JFFS2_ERROR("Argh. Special inode #%u with mode 0x%x had more than one node\n", |
| 1295 | f->inocache->ino, jemode_to_cpu(latest_node->mode)); |
| 1296 | /* FIXME: Deal with it - check crc32, check for duplicate node, check times and discard the older one */ |
| 1297 | return -EIO; |
| 1298 | } |
| 1299 | /* OK. We're happy */ |
| 1300 | f->metadata = frag_first(&f->fragtree)->node; |
| 1301 | jffs2_free_node_frag(frag_first(&f->fragtree)); |
| 1302 | f->fragtree = RB_ROOT; |
| 1303 | break; |
| 1304 | } |
| 1305 | if (f->inocache->state == INO_STATE_READING) |
| 1306 | jffs2_set_inocache_state(c, f->inocache, INO_STATE_PRESENT); |
| 1307 | |
| 1308 | return 0; |
| 1309 | } |
| 1310 | |
| 1311 | /* Scan the list of all nodes present for this ino, build map of versions, etc. */ |
| 1312 | int jffs2_do_read_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, |
| 1313 | uint32_t ino, struct jffs2_raw_inode *latest_node) |
| 1314 | { |
| 1315 | dbg_readinode("read inode #%u\n", ino); |
| 1316 | |
| 1317 | retry_inocache: |
| 1318 | spin_lock(&c->inocache_lock); |
| 1319 | f->inocache = jffs2_get_ino_cache(c, ino); |
| 1320 | |
| 1321 | if (f->inocache) { |
| 1322 | /* Check its state. We may need to wait before we can use it */ |
| 1323 | switch(f->inocache->state) { |
| 1324 | case INO_STATE_UNCHECKED: |
| 1325 | case INO_STATE_CHECKEDABSENT: |
| 1326 | f->inocache->state = INO_STATE_READING; |
| 1327 | break; |
| 1328 | |
| 1329 | case INO_STATE_CHECKING: |
| 1330 | case INO_STATE_GC: |
| 1331 | /* If it's in either of these states, we need |
| 1332 | to wait for whoever's got it to finish and |
| 1333 | put it back. */ |
| 1334 | dbg_readinode("waiting for ino #%u in state %d\n", ino, f->inocache->state); |
| 1335 | sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock); |
| 1336 | goto retry_inocache; |
| 1337 | |
| 1338 | case INO_STATE_READING: |
| 1339 | case INO_STATE_PRESENT: |
| 1340 | /* Eep. This should never happen. It can |
| 1341 | happen if Linux calls read_inode() again |
| 1342 | before clear_inode() has finished though. */ |
| 1343 | JFFS2_ERROR("Eep. Trying to read_inode #%u when it's already in state %d!\n", ino, f->inocache->state); |
| 1344 | /* Fail. That's probably better than allowing it to succeed */ |
| 1345 | f->inocache = NULL; |
| 1346 | break; |
| 1347 | |
| 1348 | default: |
| 1349 | BUG(); |
| 1350 | } |
| 1351 | } |
| 1352 | spin_unlock(&c->inocache_lock); |
| 1353 | |
| 1354 | if (!f->inocache && ino == 1) { |
| 1355 | /* Special case - no root inode on medium */ |
| 1356 | f->inocache = jffs2_alloc_inode_cache(); |
| 1357 | if (!f->inocache) { |
| 1358 | JFFS2_ERROR("cannot allocate inocache for root inode\n"); |
| 1359 | return -ENOMEM; |
| 1360 | } |
| 1361 | dbg_readinode("creating inocache for root inode\n"); |
| 1362 | memset(f->inocache, 0, sizeof(struct jffs2_inode_cache)); |
| 1363 | f->inocache->ino = f->inocache->pino_nlink = 1; |
| 1364 | f->inocache->nodes = (struct jffs2_raw_node_ref *)f->inocache; |
| 1365 | f->inocache->state = INO_STATE_READING; |
| 1366 | jffs2_add_ino_cache(c, f->inocache); |
| 1367 | } |
| 1368 | if (!f->inocache) { |
| 1369 | JFFS2_ERROR("requestied to read an nonexistent ino %u\n", ino); |
| 1370 | return -ENOENT; |
| 1371 | } |
| 1372 | |
| 1373 | return jffs2_do_read_inode_internal(c, f, latest_node); |
| 1374 | } |
| 1375 | |
| 1376 | int jffs2_do_crccheck_inode(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic) |
| 1377 | { |
| 1378 | struct jffs2_raw_inode n; |
| 1379 | struct jffs2_inode_info *f = kzalloc(sizeof(*f), GFP_KERNEL); |
| 1380 | int ret; |
| 1381 | |
| 1382 | if (!f) |
| 1383 | return -ENOMEM; |
| 1384 | |
| 1385 | mutex_init(&f->sem); |
| 1386 | mutex_lock(&f->sem); |
| 1387 | f->inocache = ic; |
| 1388 | |
| 1389 | ret = jffs2_do_read_inode_internal(c, f, &n); |
| 1390 | mutex_unlock(&f->sem); |
| 1391 | jffs2_do_clear_inode(c, f); |
| 1392 | jffs2_xattr_do_crccheck_inode(c, ic); |
| 1393 | kfree (f); |
| 1394 | return ret; |
| 1395 | } |
| 1396 | |
| 1397 | void jffs2_do_clear_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f) |
| 1398 | { |
| 1399 | struct jffs2_full_dirent *fd, *fds; |
| 1400 | int deleted; |
| 1401 | |
| 1402 | jffs2_xattr_delete_inode(c, f->inocache); |
| 1403 | mutex_lock(&f->sem); |
| 1404 | deleted = f->inocache && !f->inocache->pino_nlink; |
| 1405 | |
| 1406 | if (f->inocache && f->inocache->state != INO_STATE_CHECKING) |
| 1407 | jffs2_set_inocache_state(c, f->inocache, INO_STATE_CLEARING); |
| 1408 | |
| 1409 | if (f->metadata) { |
| 1410 | if (deleted) |
| 1411 | jffs2_mark_node_obsolete(c, f->metadata->raw); |
| 1412 | jffs2_free_full_dnode(f->metadata); |
| 1413 | } |
| 1414 | |
| 1415 | jffs2_kill_fragtree(&f->fragtree, deleted?c:NULL); |
| 1416 | |
| 1417 | if (f->target) { |
| 1418 | kfree(f->target); |
| 1419 | f->target = NULL; |
| 1420 | } |
| 1421 | |
| 1422 | fds = f->dents; |
| 1423 | while(fds) { |
| 1424 | fd = fds; |
| 1425 | fds = fd->next; |
| 1426 | jffs2_free_full_dirent(fd); |
| 1427 | } |
| 1428 | |
| 1429 | if (f->inocache && f->inocache->state != INO_STATE_CHECKING) { |
| 1430 | jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT); |
| 1431 | if (f->inocache->nodes == (void *)f->inocache) |
| 1432 | jffs2_del_ino_cache(c, f->inocache); |
| 1433 | } |
| 1434 | |
| 1435 | mutex_unlock(&f->sem); |
| 1436 | } |