blob: 348e0a05bd18487b04faf5d170c6823c65af493c [file] [log] [blame]
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001/*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20#include <linux/module.h>
21#include <linux/time.h>
22#include <linux/errno.h>
23#include <linux/stat.h>
24#include <linux/fcntl.h>
25#include <linux/string.h>
26#include <linux/kernel.h>
27#include <linux/slab.h>
28#include <linux/mm.h>
29#include <linux/sunrpc/clnt.h>
30#include <linux/nfs_fs.h>
31#include <linux/nfs_mount.h>
32#include <linux/pagemap.h>
33#include <linux/pagevec.h>
34#include <linux/namei.h>
35#include <linux/mount.h>
36#include <linux/swap.h>
37#include <linux/sched.h>
38#include <linux/kmemleak.h>
39#include <linux/xattr.h>
40
41#include "delegation.h"
42#include "iostat.h"
43#include "internal.h"
44#include "fscache.h"
45
46#include "nfstrace.h"
47
48/* #define NFS_DEBUG_VERBOSE 1 */
49
50static int nfs_opendir(struct inode *, struct file *);
51static int nfs_closedir(struct inode *, struct file *);
52static int nfs_readdir(struct file *, struct dir_context *);
53static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55static void nfs_readdir_clear_array(struct page*);
56
57const struct file_operations nfs_dir_operations = {
58 .llseek = nfs_llseek_dir,
59 .read = generic_read_dir,
60 .iterate = nfs_readdir,
61 .open = nfs_opendir,
62 .release = nfs_closedir,
63 .fsync = nfs_fsync_dir,
64};
65
66const struct address_space_operations nfs_dir_aops = {
67 .freepage = nfs_readdir_clear_array,
68};
69
70static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71{
72 struct nfs_inode *nfsi = NFS_I(dir);
73 struct nfs_open_dir_context *ctx;
74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 if (ctx != NULL) {
76 ctx->duped = 0;
77 ctx->attr_gencount = nfsi->attr_gencount;
78 ctx->dir_cookie = 0;
79 ctx->dup_cookie = 0;
80 ctx->cred = get_rpccred(cred);
81 spin_lock(&dir->i_lock);
82 list_add(&ctx->list, &nfsi->open_files);
83 spin_unlock(&dir->i_lock);
84 return ctx;
85 }
86 return ERR_PTR(-ENOMEM);
87}
88
89static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90{
91 spin_lock(&dir->i_lock);
92 list_del(&ctx->list);
93 spin_unlock(&dir->i_lock);
94 put_rpccred(ctx->cred);
95 kfree(ctx);
96}
97
98/*
99 * Open file
100 */
101static int
102nfs_opendir(struct inode *inode, struct file *filp)
103{
104 int res = 0;
105 struct nfs_open_dir_context *ctx;
106 struct rpc_cred *cred;
107
108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109
110 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111
112 cred = rpc_lookup_cred();
113 if (IS_ERR(cred))
114 return PTR_ERR(cred);
115 ctx = alloc_nfs_open_dir_context(inode, cred);
116 if (IS_ERR(ctx)) {
117 res = PTR_ERR(ctx);
118 goto out;
119 }
120 filp->private_data = ctx;
121 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
122 /* This is a mountpoint, so d_revalidate will never
123 * have been called, so we need to refresh the
124 * inode (for close-open consistency) ourselves.
125 */
126 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
127 }
128out:
129 put_rpccred(cred);
130 return res;
131}
132
133static int
134nfs_closedir(struct inode *inode, struct file *filp)
135{
136 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
137 return 0;
138}
139
140struct nfs_cache_array_entry {
141 u64 cookie;
142 u64 ino;
143 struct qstr string;
144 unsigned char d_type;
145};
146
147struct nfs_cache_array {
148 int size;
149 int eof_index;
150 u64 last_cookie;
151 struct nfs_cache_array_entry array[0];
152};
153
154typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
155typedef struct {
156 struct file *file;
157 struct page *page;
158 struct dir_context *ctx;
159 unsigned long page_index;
160 u64 *dir_cookie;
161 u64 last_cookie;
162 loff_t current_index;
163 decode_dirent_t decode;
164
165 unsigned long timestamp;
166 unsigned long gencount;
167 unsigned int cache_entry_index;
168 unsigned int plus:1;
169 unsigned int eof:1;
170} nfs_readdir_descriptor_t;
171
172/*
173 * The caller is responsible for calling nfs_readdir_release_array(page)
174 */
175static
176struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
177{
178 void *ptr;
179 if (page == NULL)
180 return ERR_PTR(-EIO);
181 ptr = kmap(page);
182 if (ptr == NULL)
183 return ERR_PTR(-ENOMEM);
184 return ptr;
185}
186
187static
188void nfs_readdir_release_array(struct page *page)
189{
190 kunmap(page);
191}
192
193/*
194 * we are freeing strings created by nfs_add_to_readdir_array()
195 */
196static
197void nfs_readdir_clear_array(struct page *page)
198{
199 struct nfs_cache_array *array;
200 int i;
201
202 array = kmap_atomic(page);
203 for (i = 0; i < array->size; i++)
204 kfree(array->array[i].string.name);
205 kunmap_atomic(array);
206}
207
208/*
209 * the caller is responsible for freeing qstr.name
210 * when called by nfs_readdir_add_to_array, the strings will be freed in
211 * nfs_clear_readdir_array()
212 */
213static
214int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
215{
216 string->len = len;
217 string->name = kmemdup(name, len, GFP_KERNEL);
218 if (string->name == NULL)
219 return -ENOMEM;
220 /*
221 * Avoid a kmemleak false positive. The pointer to the name is stored
222 * in a page cache page which kmemleak does not scan.
223 */
224 kmemleak_not_leak(string->name);
225 string->hash = full_name_hash(name, len);
226 return 0;
227}
228
229static
230int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
231{
232 struct nfs_cache_array *array = nfs_readdir_get_array(page);
233 struct nfs_cache_array_entry *cache_entry;
234 int ret;
235
236 if (IS_ERR(array))
237 return PTR_ERR(array);
238
239 cache_entry = &array->array[array->size];
240
241 /* Check that this entry lies within the page bounds */
242 ret = -ENOSPC;
243 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
244 goto out;
245
246 cache_entry->cookie = entry->prev_cookie;
247 cache_entry->ino = entry->ino;
248 cache_entry->d_type = entry->d_type;
249 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
250 if (ret)
251 goto out;
252 array->last_cookie = entry->cookie;
253 array->size++;
254 if (entry->eof != 0)
255 array->eof_index = array->size;
256out:
257 nfs_readdir_release_array(page);
258 return ret;
259}
260
261static
262int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
263{
264 loff_t diff = desc->ctx->pos - desc->current_index;
265 unsigned int index;
266
267 if (diff < 0)
268 goto out_eof;
269 if (diff >= array->size) {
270 if (array->eof_index >= 0)
271 goto out_eof;
272 return -EAGAIN;
273 }
274
275 index = (unsigned int)diff;
276 *desc->dir_cookie = array->array[index].cookie;
277 desc->cache_entry_index = index;
278 return 0;
279out_eof:
280 desc->eof = 1;
281 return -EBADCOOKIE;
282}
283
284static bool
285nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
286{
287 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
288 return false;
289 smp_rmb();
290 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
291}
292
293static
294int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
295{
296 int i;
297 loff_t new_pos;
298 int status = -EAGAIN;
299
300 for (i = 0; i < array->size; i++) {
301 if (array->array[i].cookie == *desc->dir_cookie) {
302 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
303 struct nfs_open_dir_context *ctx = desc->file->private_data;
304
305 new_pos = desc->current_index + i;
306 if (ctx->attr_gencount != nfsi->attr_gencount ||
307 !nfs_readdir_inode_mapping_valid(nfsi)) {
308 ctx->duped = 0;
309 ctx->attr_gencount = nfsi->attr_gencount;
310 } else if (new_pos < desc->ctx->pos) {
311 if (ctx->duped > 0
312 && ctx->dup_cookie == *desc->dir_cookie) {
313 if (printk_ratelimit()) {
314 pr_notice("NFS: directory %pD2 contains a readdir loop."
315 "Please contact your server vendor. "
316 "The file: %.*s has duplicate cookie %llu\n",
317 desc->file, array->array[i].string.len,
318 array->array[i].string.name, *desc->dir_cookie);
319 }
320 status = -ELOOP;
321 goto out;
322 }
323 ctx->dup_cookie = *desc->dir_cookie;
324 ctx->duped = -1;
325 }
326 desc->ctx->pos = new_pos;
327 desc->cache_entry_index = i;
328 return 0;
329 }
330 }
331 if (array->eof_index >= 0) {
332 status = -EBADCOOKIE;
333 if (*desc->dir_cookie == array->last_cookie)
334 desc->eof = 1;
335 }
336out:
337 return status;
338}
339
340static
341int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
342{
343 struct nfs_cache_array *array;
344 int status;
345
346 array = nfs_readdir_get_array(desc->page);
347 if (IS_ERR(array)) {
348 status = PTR_ERR(array);
349 goto out;
350 }
351
352 if (*desc->dir_cookie == 0)
353 status = nfs_readdir_search_for_pos(array, desc);
354 else
355 status = nfs_readdir_search_for_cookie(array, desc);
356
357 if (status == -EAGAIN) {
358 desc->last_cookie = array->last_cookie;
359 desc->current_index += array->size;
360 desc->page_index++;
361 }
362 nfs_readdir_release_array(desc->page);
363out:
364 return status;
365}
366
367/* Fill a page with xdr information before transferring to the cache page */
368static
369int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
370 struct nfs_entry *entry, struct file *file, struct inode *inode)
371{
372 struct nfs_open_dir_context *ctx = file->private_data;
373 struct rpc_cred *cred = ctx->cred;
374 unsigned long timestamp, gencount;
375 int error;
376
377 again:
378 timestamp = jiffies;
379 gencount = nfs_inc_attr_generation_counter();
380 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
381 NFS_SERVER(inode)->dtsize, desc->plus);
382 if (error < 0) {
383 /* We requested READDIRPLUS, but the server doesn't grok it */
384 if (error == -ENOTSUPP && desc->plus) {
385 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
386 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
387 desc->plus = 0;
388 goto again;
389 }
390 goto error;
391 }
392 desc->timestamp = timestamp;
393 desc->gencount = gencount;
394error:
395 return error;
396}
397
398static int xdr_decode(nfs_readdir_descriptor_t *desc,
399 struct nfs_entry *entry, struct xdr_stream *xdr)
400{
401 int error;
402
403 error = desc->decode(xdr, entry, desc->plus);
404 if (error)
405 return error;
406 entry->fattr->time_start = desc->timestamp;
407 entry->fattr->gencount = desc->gencount;
408 return 0;
409}
410
411/* Match file and dirent using either filehandle or fileid
412 * Note: caller is responsible for checking the fsid
413 */
414static
415int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
416{
417 struct nfs_inode *nfsi;
418
419 if (d_really_is_negative(dentry))
420 return 0;
421
422 nfsi = NFS_I(d_inode(dentry));
423 if (entry->fattr->fileid == nfsi->fileid)
424 return 1;
425 if (nfs_compare_fh(entry->fh, &nfsi->fh) == 0)
426 return 1;
427 return 0;
428}
429
430static
431bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
432{
433 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
434 return false;
435 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
436 return true;
437 if (ctx->pos == 0)
438 return true;
439 return false;
440}
441
442/*
443 * This function is called by the lookup code to request the use of
444 * readdirplus to accelerate any future lookups in the same
445 * directory.
446 */
447static
448void nfs_advise_use_readdirplus(struct inode *dir)
449{
450 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
451}
452
453/*
454 * This function is mainly for use by nfs_getattr().
455 *
456 * If this is an 'ls -l', we want to force use of readdirplus.
457 * Do this by checking if there is an active file descriptor
458 * and calling nfs_advise_use_readdirplus, then forcing a
459 * cache flush.
460 */
461void nfs_force_use_readdirplus(struct inode *dir)
462{
463 if (!list_empty(&NFS_I(dir)->open_files)) {
464 nfs_advise_use_readdirplus(dir);
465 invalidate_mapping_pages(dir->i_mapping, 0, -1);
466 }
467}
468
469static
470void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
471{
472 struct qstr filename = QSTR_INIT(entry->name, entry->len);
473 struct dentry *dentry;
474 struct dentry *alias;
475 struct inode *dir = d_inode(parent);
476 struct inode *inode;
477 int status;
478
479 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
480 return;
481 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
482 return;
483 if (filename.name[0] == '.') {
484 if (filename.len == 1)
485 return;
486 if (filename.len == 2 && filename.name[1] == '.')
487 return;
488 }
489 filename.hash = full_name_hash(filename.name, filename.len);
490
491 dentry = d_lookup(parent, &filename);
492 if (dentry != NULL) {
493 /* Is there a mountpoint here? If so, just exit */
494 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
495 &entry->fattr->fsid))
496 goto out;
497 if (nfs_same_file(dentry, entry)) {
498 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
499 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
500 if (!status)
501 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
502 goto out;
503 } else {
504 d_invalidate(dentry);
505 dput(dentry);
506 }
507 }
508
509 dentry = d_alloc(parent, &filename);
510 if (dentry == NULL)
511 return;
512
513 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
514 if (IS_ERR(inode))
515 goto out;
516
517 alias = d_splice_alias(inode, dentry);
518 if (IS_ERR(alias))
519 goto out;
520 else if (alias) {
521 nfs_set_verifier(alias, nfs_save_change_attribute(dir));
522 dput(alias);
523 } else
524 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
525
526out:
527 dput(dentry);
528}
529
530/* Perform conversion from xdr to cache array */
531static
532int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
533 struct page **xdr_pages, struct page *page, unsigned int buflen)
534{
535 struct xdr_stream stream;
536 struct xdr_buf buf;
537 struct page *scratch;
538 struct nfs_cache_array *array;
539 unsigned int count = 0;
540 int status;
541
542 scratch = alloc_page(GFP_KERNEL);
543 if (scratch == NULL)
544 return -ENOMEM;
545
546 if (buflen == 0)
547 goto out_nopages;
548
549 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
550 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
551
552 do {
553 status = xdr_decode(desc, entry, &stream);
554 if (status != 0) {
555 if (status == -EAGAIN)
556 status = 0;
557 break;
558 }
559
560 count++;
561
562 if (desc->plus != 0)
563 nfs_prime_dcache(file_dentry(desc->file), entry);
564
565 status = nfs_readdir_add_to_array(entry, page);
566 if (status != 0)
567 break;
568 } while (!entry->eof);
569
570out_nopages:
571 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
572 array = nfs_readdir_get_array(page);
573 if (!IS_ERR(array)) {
574 array->eof_index = array->size;
575 status = 0;
576 nfs_readdir_release_array(page);
577 } else
578 status = PTR_ERR(array);
579 }
580
581 put_page(scratch);
582 return status;
583}
584
585static
586void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
587{
588 unsigned int i;
589 for (i = 0; i < npages; i++)
590 put_page(pages[i]);
591}
592
593/*
594 * nfs_readdir_large_page will allocate pages that must be freed with a call
595 * to nfs_readdir_free_pagearray
596 */
597static
598int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
599{
600 unsigned int i;
601
602 for (i = 0; i < npages; i++) {
603 struct page *page = alloc_page(GFP_KERNEL);
604 if (page == NULL)
605 goto out_freepages;
606 pages[i] = page;
607 }
608 return 0;
609
610out_freepages:
611 nfs_readdir_free_pages(pages, i);
612 return -ENOMEM;
613}
614
615static
616int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
617{
618 struct page *pages[NFS_MAX_READDIR_PAGES];
619 struct nfs_entry entry;
620 struct file *file = desc->file;
621 struct nfs_cache_array *array;
622 int status = -ENOMEM;
623 unsigned int array_size = ARRAY_SIZE(pages);
624
625 entry.prev_cookie = 0;
626 entry.cookie = desc->last_cookie;
627 entry.eof = 0;
628 entry.fh = nfs_alloc_fhandle();
629 entry.fattr = nfs_alloc_fattr();
630 entry.server = NFS_SERVER(inode);
631 if (entry.fh == NULL || entry.fattr == NULL)
632 goto out;
633
634 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
635 if (IS_ERR(entry.label)) {
636 status = PTR_ERR(entry.label);
637 goto out;
638 }
639
640 array = nfs_readdir_get_array(page);
641 if (IS_ERR(array)) {
642 status = PTR_ERR(array);
643 goto out_label_free;
644 }
645 memset(array, 0, sizeof(struct nfs_cache_array));
646 array->eof_index = -1;
647
648 status = nfs_readdir_alloc_pages(pages, array_size);
649 if (status < 0)
650 goto out_release_array;
651 do {
652 unsigned int pglen;
653 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
654
655 if (status < 0)
656 break;
657 pglen = status;
658 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
659 if (status < 0) {
660 if (status == -ENOSPC)
661 status = 0;
662 break;
663 }
664 } while (array->eof_index < 0);
665
666 nfs_readdir_free_pages(pages, array_size);
667out_release_array:
668 nfs_readdir_release_array(page);
669out_label_free:
670 nfs4_label_free(entry.label);
671out:
672 nfs_free_fattr(entry.fattr);
673 nfs_free_fhandle(entry.fh);
674 return status;
675}
676
677/*
678 * Now we cache directories properly, by converting xdr information
679 * to an array that can be used for lookups later. This results in
680 * fewer cache pages, since we can store more information on each page.
681 * We only need to convert from xdr once so future lookups are much simpler
682 */
683static
684int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
685{
686 struct inode *inode = file_inode(desc->file);
687 int ret;
688
689 ret = nfs_readdir_xdr_to_array(desc, page, inode);
690 if (ret < 0)
691 goto error;
692 SetPageUptodate(page);
693
694 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
695 /* Should never happen */
696 nfs_zap_mapping(inode, inode->i_mapping);
697 }
698 unlock_page(page);
699 return 0;
700 error:
701 unlock_page(page);
702 return ret;
703}
704
705static
706void cache_page_release(nfs_readdir_descriptor_t *desc)
707{
708 if (!desc->page->mapping)
709 nfs_readdir_clear_array(desc->page);
710 page_cache_release(desc->page);
711 desc->page = NULL;
712}
713
714static
715struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
716{
717 return read_cache_page(file_inode(desc->file)->i_mapping,
718 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
719}
720
721/*
722 * Returns 0 if desc->dir_cookie was found on page desc->page_index
723 */
724static
725int find_cache_page(nfs_readdir_descriptor_t *desc)
726{
727 int res;
728
729 desc->page = get_cache_page(desc);
730 if (IS_ERR(desc->page))
731 return PTR_ERR(desc->page);
732
733 res = nfs_readdir_search_array(desc);
734 if (res != 0)
735 cache_page_release(desc);
736 return res;
737}
738
739/* Search for desc->dir_cookie from the beginning of the page cache */
740static inline
741int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
742{
743 int res;
744
745 if (desc->page_index == 0) {
746 desc->current_index = 0;
747 desc->last_cookie = 0;
748 }
749 do {
750 res = find_cache_page(desc);
751 } while (res == -EAGAIN);
752 return res;
753}
754
755/*
756 * Once we've found the start of the dirent within a page: fill 'er up...
757 */
758static
759int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
760{
761 struct file *file = desc->file;
762 int i = 0;
763 int res = 0;
764 struct nfs_cache_array *array = NULL;
765 struct nfs_open_dir_context *ctx = file->private_data;
766
767 array = nfs_readdir_get_array(desc->page);
768 if (IS_ERR(array)) {
769 res = PTR_ERR(array);
770 goto out;
771 }
772
773 for (i = desc->cache_entry_index; i < array->size; i++) {
774 struct nfs_cache_array_entry *ent;
775
776 ent = &array->array[i];
777 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
778 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
779 desc->eof = 1;
780 break;
781 }
782 desc->ctx->pos++;
783 if (i < (array->size-1))
784 *desc->dir_cookie = array->array[i+1].cookie;
785 else
786 *desc->dir_cookie = array->last_cookie;
787 if (ctx->duped != 0)
788 ctx->duped = 1;
789 }
790 if (array->eof_index >= 0)
791 desc->eof = 1;
792
793 nfs_readdir_release_array(desc->page);
794out:
795 cache_page_release(desc);
796 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
797 (unsigned long long)*desc->dir_cookie, res);
798 return res;
799}
800
801/*
802 * If we cannot find a cookie in our cache, we suspect that this is
803 * because it points to a deleted file, so we ask the server to return
804 * whatever it thinks is the next entry. We then feed this to filldir.
805 * If all goes well, we should then be able to find our way round the
806 * cache on the next call to readdir_search_pagecache();
807 *
808 * NOTE: we cannot add the anonymous page to the pagecache because
809 * the data it contains might not be page aligned. Besides,
810 * we should already have a complete representation of the
811 * directory in the page cache by the time we get here.
812 */
813static inline
814int uncached_readdir(nfs_readdir_descriptor_t *desc)
815{
816 struct page *page = NULL;
817 int status;
818 struct inode *inode = file_inode(desc->file);
819 struct nfs_open_dir_context *ctx = desc->file->private_data;
820
821 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
822 (unsigned long long)*desc->dir_cookie);
823
824 page = alloc_page(GFP_HIGHUSER);
825 if (!page) {
826 status = -ENOMEM;
827 goto out;
828 }
829
830 desc->page_index = 0;
831 desc->last_cookie = *desc->dir_cookie;
832 desc->page = page;
833 ctx->duped = 0;
834
835 status = nfs_readdir_xdr_to_array(desc, page, inode);
836 if (status < 0)
837 goto out_release;
838
839 status = nfs_do_filldir(desc);
840
841 out:
842 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
843 __func__, status);
844 return status;
845 out_release:
846 cache_page_release(desc);
847 goto out;
848}
849
850/* The file offset position represents the dirent entry number. A
851 last cookie cache takes care of the common case of reading the
852 whole directory.
853 */
854static int nfs_readdir(struct file *file, struct dir_context *ctx)
855{
856 struct dentry *dentry = file_dentry(file);
857 struct inode *inode = d_inode(dentry);
858 nfs_readdir_descriptor_t my_desc,
859 *desc = &my_desc;
860 struct nfs_open_dir_context *dir_ctx = file->private_data;
861 int res = 0;
862
863 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
864 file, (long long)ctx->pos);
865 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
866
867 /*
868 * ctx->pos points to the dirent entry number.
869 * *desc->dir_cookie has the cookie for the next entry. We have
870 * to either find the entry with the appropriate number or
871 * revalidate the cookie.
872 */
873 memset(desc, 0, sizeof(*desc));
874
875 desc->file = file;
876 desc->ctx = ctx;
877 desc->dir_cookie = &dir_ctx->dir_cookie;
878 desc->decode = NFS_PROTO(inode)->decode_dirent;
879 desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
880
881 nfs_block_sillyrename(dentry);
882 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
883 res = nfs_revalidate_mapping(inode, file->f_mapping);
884 if (res < 0)
885 goto out;
886
887 do {
888 res = readdir_search_pagecache(desc);
889
890 if (res == -EBADCOOKIE) {
891 res = 0;
892 /* This means either end of directory */
893 if (*desc->dir_cookie && desc->eof == 0) {
894 /* Or that the server has 'lost' a cookie */
895 res = uncached_readdir(desc);
896 if (res == 0)
897 continue;
898 }
899 break;
900 }
901 if (res == -ETOOSMALL && desc->plus) {
902 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
903 nfs_zap_caches(inode);
904 desc->page_index = 0;
905 desc->plus = 0;
906 desc->eof = 0;
907 continue;
908 }
909 if (res < 0)
910 break;
911
912 res = nfs_do_filldir(desc);
913 if (res < 0)
914 break;
915 } while (!desc->eof);
916out:
917 nfs_unblock_sillyrename(dentry);
918 if (res > 0)
919 res = 0;
920 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
921 return res;
922}
923
924static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
925{
926 struct inode *inode = file_inode(filp);
927 struct nfs_open_dir_context *dir_ctx = filp->private_data;
928
929 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
930 filp, offset, whence);
931
932 mutex_lock(&inode->i_mutex);
933 switch (whence) {
934 case 1:
935 offset += filp->f_pos;
936 case 0:
937 if (offset >= 0)
938 break;
939 default:
940 offset = -EINVAL;
941 goto out;
942 }
943 if (offset != filp->f_pos) {
944 filp->f_pos = offset;
945 dir_ctx->dir_cookie = 0;
946 dir_ctx->duped = 0;
947 }
948out:
949 mutex_unlock(&inode->i_mutex);
950 return offset;
951}
952
953/*
954 * All directory operations under NFS are synchronous, so fsync()
955 * is a dummy operation.
956 */
957static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
958 int datasync)
959{
960 struct inode *inode = file_inode(filp);
961
962 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
963
964 mutex_lock(&inode->i_mutex);
965 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
966 mutex_unlock(&inode->i_mutex);
967 return 0;
968}
969
970/**
971 * nfs_force_lookup_revalidate - Mark the directory as having changed
972 * @dir - pointer to directory inode
973 *
974 * This forces the revalidation code in nfs_lookup_revalidate() to do a
975 * full lookup on all child dentries of 'dir' whenever a change occurs
976 * on the server that might have invalidated our dcache.
977 *
978 * The caller should be holding dir->i_lock
979 */
980void nfs_force_lookup_revalidate(struct inode *dir)
981{
982 NFS_I(dir)->cache_change_attribute++;
983}
984EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
985
986/*
987 * A check for whether or not the parent directory has changed.
988 * In the case it has, we assume that the dentries are untrustworthy
989 * and may need to be looked up again.
990 * If rcu_walk prevents us from performing a full check, return 0.
991 */
992static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
993 int rcu_walk)
994{
995 int ret;
996
997 if (IS_ROOT(dentry))
998 return 1;
999 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1000 return 0;
1001 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1002 return 0;
1003 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1004 if (rcu_walk)
1005 ret = nfs_revalidate_inode_rcu(NFS_SERVER(dir), dir);
1006 else
1007 ret = nfs_revalidate_inode(NFS_SERVER(dir), dir);
1008 if (ret < 0)
1009 return 0;
1010 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1011 return 0;
1012 return 1;
1013}
1014
1015/*
1016 * Use intent information to check whether or not we're going to do
1017 * an O_EXCL create using this path component.
1018 */
1019static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1020{
1021 if (NFS_PROTO(dir)->version == 2)
1022 return 0;
1023 return flags & LOOKUP_EXCL;
1024}
1025
1026/*
1027 * Inode and filehandle revalidation for lookups.
1028 *
1029 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1030 * or if the intent information indicates that we're about to open this
1031 * particular file and the "nocto" mount flag is not set.
1032 *
1033 */
1034static
1035int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1036{
1037 struct nfs_server *server = NFS_SERVER(inode);
1038 int ret;
1039
1040 if (IS_AUTOMOUNT(inode))
1041 return 0;
1042 /* VFS wants an on-the-wire revalidation */
1043 if (flags & LOOKUP_REVAL)
1044 goto out_force;
1045 /* This is an open(2) */
1046 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1047 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1048 goto out_force;
1049out:
1050 return (inode->i_nlink == 0) ? -ENOENT : 0;
1051out_force:
1052 if (flags & LOOKUP_RCU)
1053 return -ECHILD;
1054 ret = __nfs_revalidate_inode(server, inode);
1055 if (ret != 0)
1056 return ret;
1057 goto out;
1058}
1059
1060/*
1061 * We judge how long we want to trust negative
1062 * dentries by looking at the parent inode mtime.
1063 *
1064 * If parent mtime has changed, we revalidate, else we wait for a
1065 * period corresponding to the parent's attribute cache timeout value.
1066 *
1067 * If LOOKUP_RCU prevents us from performing a full check, return 1
1068 * suggesting a reval is needed.
1069 */
1070static inline
1071int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1072 unsigned int flags)
1073{
1074 /* Don't revalidate a negative dentry if we're creating a new file */
1075 if (flags & LOOKUP_CREATE)
1076 return 0;
1077 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1078 return 1;
1079 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1080}
1081
1082/*
1083 * This is called every time the dcache has a lookup hit,
1084 * and we should check whether we can really trust that
1085 * lookup.
1086 *
1087 * NOTE! The hit can be a negative hit too, don't assume
1088 * we have an inode!
1089 *
1090 * If the parent directory is seen to have changed, we throw out the
1091 * cached dentry and do a new lookup.
1092 */
1093static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1094{
1095 struct inode *dir;
1096 struct inode *inode;
1097 struct dentry *parent;
1098 struct nfs_fh *fhandle = NULL;
1099 struct nfs_fattr *fattr = NULL;
1100 struct nfs4_label *label = NULL;
1101 int error;
1102
1103 if (flags & LOOKUP_RCU) {
1104 parent = ACCESS_ONCE(dentry->d_parent);
1105 dir = d_inode_rcu(parent);
1106 if (!dir)
1107 return -ECHILD;
1108 } else {
1109 parent = dget_parent(dentry);
1110 dir = d_inode(parent);
1111 }
1112 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1113 inode = d_inode(dentry);
1114
1115 if (!inode) {
1116 if (nfs_neg_need_reval(dir, dentry, flags)) {
1117 if (flags & LOOKUP_RCU)
1118 return -ECHILD;
1119 goto out_bad;
1120 }
1121 goto out_valid_noent;
1122 }
1123
1124 if (is_bad_inode(inode)) {
1125 if (flags & LOOKUP_RCU)
1126 return -ECHILD;
1127 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1128 __func__, dentry);
1129 goto out_bad;
1130 }
1131
1132 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1133 goto out_set_verifier;
1134
1135 /* Force a full look up iff the parent directory has changed */
1136 if (!nfs_is_exclusive_create(dir, flags) &&
1137 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1138 error = nfs_lookup_verify_inode(inode, flags);
1139 if (error) {
1140 if (flags & LOOKUP_RCU)
1141 return -ECHILD;
1142 if (error == -ESTALE)
1143 goto out_zap_parent;
1144 goto out_error;
1145 }
1146 goto out_valid;
1147 }
1148
1149 if (flags & LOOKUP_RCU)
1150 return -ECHILD;
1151
1152 if (NFS_STALE(inode))
1153 goto out_bad;
1154
1155 error = -ENOMEM;
1156 fhandle = nfs_alloc_fhandle();
1157 fattr = nfs_alloc_fattr();
1158 if (fhandle == NULL || fattr == NULL)
1159 goto out_error;
1160
1161 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1162 if (IS_ERR(label))
1163 goto out_error;
1164
1165 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1166 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1167 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1168 if (error == -ESTALE || error == -ENOENT)
1169 goto out_bad;
1170 if (error)
1171 goto out_error;
1172 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1173 goto out_bad;
1174 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1175 goto out_bad;
1176
1177 nfs_setsecurity(inode, fattr, label);
1178
1179 nfs_free_fattr(fattr);
1180 nfs_free_fhandle(fhandle);
1181 nfs4_label_free(label);
1182
1183out_set_verifier:
1184 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1185 out_valid:
1186 /* Success: notify readdir to use READDIRPLUS */
1187 nfs_advise_use_readdirplus(dir);
1188 out_valid_noent:
1189 if (flags & LOOKUP_RCU) {
1190 if (parent != ACCESS_ONCE(dentry->d_parent))
1191 return -ECHILD;
1192 } else
1193 dput(parent);
1194 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1195 __func__, dentry);
1196 return 1;
1197out_zap_parent:
1198 nfs_zap_caches(dir);
1199 out_bad:
1200 WARN_ON(flags & LOOKUP_RCU);
1201 nfs_free_fattr(fattr);
1202 nfs_free_fhandle(fhandle);
1203 nfs4_label_free(label);
1204 nfs_mark_for_revalidate(dir);
1205 if (inode && S_ISDIR(inode->i_mode)) {
1206 /* Purge readdir caches. */
1207 nfs_zap_caches(inode);
1208 /*
1209 * We can't d_drop the root of a disconnected tree:
1210 * its d_hash is on the s_anon list and d_drop() would hide
1211 * it from shrink_dcache_for_unmount(), leading to busy
1212 * inodes on unmount and further oopses.
1213 */
1214 if (IS_ROOT(dentry))
1215 goto out_valid;
1216 }
1217 dput(parent);
1218 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1219 __func__, dentry);
1220 return 0;
1221out_error:
1222 WARN_ON(flags & LOOKUP_RCU);
1223 nfs_free_fattr(fattr);
1224 nfs_free_fhandle(fhandle);
1225 nfs4_label_free(label);
1226 dput(parent);
1227 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1228 __func__, dentry, error);
1229 return error;
1230}
1231
1232/*
1233 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1234 * when we don't really care about the dentry name. This is called when a
1235 * pathwalk ends on a dentry that was not found via a normal lookup in the
1236 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1237 *
1238 * In this situation, we just want to verify that the inode itself is OK
1239 * since the dentry might have changed on the server.
1240 */
1241static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1242{
1243 int error;
1244 struct inode *inode = d_inode(dentry);
1245
1246 /*
1247 * I believe we can only get a negative dentry here in the case of a
1248 * procfs-style symlink. Just assume it's correct for now, but we may
1249 * eventually need to do something more here.
1250 */
1251 if (!inode) {
1252 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1253 __func__, dentry);
1254 return 1;
1255 }
1256
1257 if (is_bad_inode(inode)) {
1258 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1259 __func__, dentry);
1260 return 0;
1261 }
1262
1263 error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1264 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1265 __func__, inode->i_ino, error ? "invalid" : "valid");
1266 return !error;
1267}
1268
1269/*
1270 * This is called from dput() when d_count is going to 0.
1271 */
1272static int nfs_dentry_delete(const struct dentry *dentry)
1273{
1274 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1275 dentry, dentry->d_flags);
1276
1277 /* Unhash any dentry with a stale inode */
1278 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1279 return 1;
1280
1281 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1282 /* Unhash it, so that ->d_iput() would be called */
1283 return 1;
1284 }
1285 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1286 /* Unhash it, so that ancestors of killed async unlink
1287 * files will be cleaned up during umount */
1288 return 1;
1289 }
1290 return 0;
1291
1292}
1293
1294/* Ensure that we revalidate inode->i_nlink */
1295static void nfs_drop_nlink(struct inode *inode)
1296{
1297 spin_lock(&inode->i_lock);
1298 /* drop the inode if we're reasonably sure this is the last link */
1299 if (inode->i_nlink == 1)
1300 clear_nlink(inode);
1301 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1302 spin_unlock(&inode->i_lock);
1303}
1304
1305/*
1306 * Called when the dentry loses inode.
1307 * We use it to clean up silly-renamed files.
1308 */
1309static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1310{
1311 if (S_ISDIR(inode->i_mode))
1312 /* drop any readdir cache as it could easily be old */
1313 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1314
1315 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1316 nfs_complete_unlink(dentry, inode);
1317 nfs_drop_nlink(inode);
1318 }
1319 iput(inode);
1320}
1321
1322static void nfs_d_release(struct dentry *dentry)
1323{
1324 /* free cached devname value, if it survived that far */
1325 if (unlikely(dentry->d_fsdata)) {
1326 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1327 WARN_ON(1);
1328 else
1329 kfree(dentry->d_fsdata);
1330 }
1331}
1332
1333const struct dentry_operations nfs_dentry_operations = {
1334 .d_revalidate = nfs_lookup_revalidate,
1335 .d_weak_revalidate = nfs_weak_revalidate,
1336 .d_delete = nfs_dentry_delete,
1337 .d_iput = nfs_dentry_iput,
1338 .d_automount = nfs_d_automount,
1339 .d_release = nfs_d_release,
1340};
1341EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1342
1343struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1344{
1345 struct dentry *res;
1346 struct dentry *parent;
1347 struct inode *inode = NULL;
1348 struct nfs_fh *fhandle = NULL;
1349 struct nfs_fattr *fattr = NULL;
1350 struct nfs4_label *label = NULL;
1351 int error;
1352
1353 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1354 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1355
1356 res = ERR_PTR(-ENAMETOOLONG);
1357 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1358 goto out;
1359
1360 /*
1361 * If we're doing an exclusive create, optimize away the lookup
1362 * but don't hash the dentry.
1363 */
1364 if (nfs_is_exclusive_create(dir, flags)) {
1365 d_instantiate(dentry, NULL);
1366 res = NULL;
1367 goto out;
1368 }
1369
1370 res = ERR_PTR(-ENOMEM);
1371 fhandle = nfs_alloc_fhandle();
1372 fattr = nfs_alloc_fattr();
1373 if (fhandle == NULL || fattr == NULL)
1374 goto out;
1375
1376 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1377 if (IS_ERR(label))
1378 goto out;
1379
1380 parent = dentry->d_parent;
1381 /* Protect against concurrent sillydeletes */
1382 trace_nfs_lookup_enter(dir, dentry, flags);
1383 nfs_block_sillyrename(parent);
1384 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1385 if (error == -ENOENT)
1386 goto no_entry;
1387 if (error < 0) {
1388 res = ERR_PTR(error);
1389 goto out_unblock_sillyrename;
1390 }
1391 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1392 res = ERR_CAST(inode);
1393 if (IS_ERR(res))
1394 goto out_unblock_sillyrename;
1395
1396 /* Success: notify readdir to use READDIRPLUS */
1397 nfs_advise_use_readdirplus(dir);
1398
1399no_entry:
1400 res = d_splice_alias(inode, dentry);
1401 if (res != NULL) {
1402 if (IS_ERR(res))
1403 goto out_unblock_sillyrename;
1404 dentry = res;
1405 }
1406 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1407out_unblock_sillyrename:
1408 nfs_unblock_sillyrename(parent);
1409 trace_nfs_lookup_exit(dir, dentry, flags, error);
1410 nfs4_label_free(label);
1411out:
1412 nfs_free_fattr(fattr);
1413 nfs_free_fhandle(fhandle);
1414 return res;
1415}
1416EXPORT_SYMBOL_GPL(nfs_lookup);
1417
1418#if IS_ENABLED(CONFIG_NFS_V4)
1419static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1420
1421const struct dentry_operations nfs4_dentry_operations = {
1422 .d_revalidate = nfs4_lookup_revalidate,
1423 .d_delete = nfs_dentry_delete,
1424 .d_iput = nfs_dentry_iput,
1425 .d_automount = nfs_d_automount,
1426 .d_release = nfs_d_release,
1427};
1428EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1429
1430static fmode_t flags_to_mode(int flags)
1431{
1432 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1433 if ((flags & O_ACCMODE) != O_WRONLY)
1434 res |= FMODE_READ;
1435 if ((flags & O_ACCMODE) != O_RDONLY)
1436 res |= FMODE_WRITE;
1437 return res;
1438}
1439
1440static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1441{
1442 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1443}
1444
1445static int do_open(struct inode *inode, struct file *filp)
1446{
1447 nfs_fscache_open_file(inode, filp);
1448 return 0;
1449}
1450
1451static int nfs_finish_open(struct nfs_open_context *ctx,
1452 struct dentry *dentry,
1453 struct file *file, unsigned open_flags,
1454 int *opened)
1455{
1456 int err;
1457
1458 err = finish_open(file, dentry, do_open, opened);
1459 if (err)
1460 goto out;
1461 nfs_file_set_open_context(file, ctx);
1462
1463out:
1464 return err;
1465}
1466
1467int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1468 struct file *file, unsigned open_flags,
1469 umode_t mode, int *opened)
1470{
1471 struct nfs_open_context *ctx;
1472 struct dentry *res;
1473 struct iattr attr = { .ia_valid = ATTR_OPEN };
1474 struct inode *inode;
1475 unsigned int lookup_flags = 0;
1476 int err;
1477
1478 /* Expect a negative dentry */
1479 BUG_ON(d_inode(dentry));
1480
1481 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1482 dir->i_sb->s_id, dir->i_ino, dentry);
1483
1484 err = nfs_check_flags(open_flags);
1485 if (err)
1486 return err;
1487
1488 /* NFS only supports OPEN on regular files */
1489 if ((open_flags & O_DIRECTORY)) {
1490 if (!d_unhashed(dentry)) {
1491 /*
1492 * Hashed negative dentry with O_DIRECTORY: dentry was
1493 * revalidated and is fine, no need to perform lookup
1494 * again
1495 */
1496 return -ENOENT;
1497 }
1498 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1499 goto no_open;
1500 }
1501
1502 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1503 return -ENAMETOOLONG;
1504
1505 if (open_flags & O_CREAT) {
1506 attr.ia_valid |= ATTR_MODE;
1507 attr.ia_mode = mode & ~current_umask();
1508 }
1509 if (open_flags & O_TRUNC) {
1510 attr.ia_valid |= ATTR_SIZE;
1511 attr.ia_size = 0;
1512 }
1513
1514 ctx = create_nfs_open_context(dentry, open_flags);
1515 err = PTR_ERR(ctx);
1516 if (IS_ERR(ctx))
1517 goto out;
1518
1519 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1520 nfs_block_sillyrename(dentry->d_parent);
1521 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1522 nfs_unblock_sillyrename(dentry->d_parent);
1523 if (IS_ERR(inode)) {
1524 err = PTR_ERR(inode);
1525 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1526 put_nfs_open_context(ctx);
1527 d_drop(dentry);
1528 switch (err) {
1529 case -ENOENT:
1530 d_add(dentry, NULL);
1531 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1532 break;
1533 case -EISDIR:
1534 case -ENOTDIR:
1535 goto no_open;
1536 case -ELOOP:
1537 if (!(open_flags & O_NOFOLLOW))
1538 goto no_open;
1539 break;
1540 /* case -EINVAL: */
1541 default:
1542 break;
1543 }
1544 goto out;
1545 }
1546
1547 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1548 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1549 put_nfs_open_context(ctx);
1550out:
1551 return err;
1552
1553no_open:
1554 res = nfs_lookup(dir, dentry, lookup_flags);
1555 err = PTR_ERR(res);
1556 if (IS_ERR(res))
1557 goto out;
1558
1559 return finish_no_open(file, res);
1560}
1561EXPORT_SYMBOL_GPL(nfs_atomic_open);
1562
1563static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1564{
1565 struct inode *inode;
1566 int ret = 0;
1567
1568 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1569 goto no_open;
1570 if (d_mountpoint(dentry))
1571 goto no_open;
1572 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1573 goto no_open;
1574
1575 inode = d_inode(dentry);
1576
1577 /* We can't create new files in nfs_open_revalidate(), so we
1578 * optimize away revalidation of negative dentries.
1579 */
1580 if (inode == NULL) {
1581 struct dentry *parent;
1582 struct inode *dir;
1583
1584 if (flags & LOOKUP_RCU) {
1585 parent = ACCESS_ONCE(dentry->d_parent);
1586 dir = d_inode_rcu(parent);
1587 if (!dir)
1588 return -ECHILD;
1589 } else {
1590 parent = dget_parent(dentry);
1591 dir = d_inode(parent);
1592 }
1593 if (!nfs_neg_need_reval(dir, dentry, flags))
1594 ret = 1;
1595 else if (flags & LOOKUP_RCU)
1596 ret = -ECHILD;
1597 if (!(flags & LOOKUP_RCU))
1598 dput(parent);
1599 else if (parent != ACCESS_ONCE(dentry->d_parent))
1600 return -ECHILD;
1601 goto out;
1602 }
1603
1604 /* NFS only supports OPEN on regular files */
1605 if (!S_ISREG(inode->i_mode))
1606 goto no_open;
1607 /* We cannot do exclusive creation on a positive dentry */
1608 if (flags & LOOKUP_EXCL)
1609 goto no_open;
1610
1611 /* Let f_op->open() actually open (and revalidate) the file */
1612 ret = 1;
1613
1614out:
1615 return ret;
1616
1617no_open:
1618 return nfs_lookup_revalidate(dentry, flags);
1619}
1620
1621#endif /* CONFIG_NFSV4 */
1622
1623/*
1624 * Code common to create, mkdir, and mknod.
1625 */
1626int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1627 struct nfs_fattr *fattr,
1628 struct nfs4_label *label)
1629{
1630 struct dentry *parent = dget_parent(dentry);
1631 struct inode *dir = d_inode(parent);
1632 struct inode *inode;
1633 int error = -EACCES;
1634
1635 d_drop(dentry);
1636
1637 /* We may have been initialized further down */
1638 if (d_really_is_positive(dentry))
1639 goto out;
1640 if (fhandle->size == 0) {
1641 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1642 if (error)
1643 goto out_error;
1644 }
1645 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1646 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1647 struct nfs_server *server = NFS_SB(dentry->d_sb);
1648 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1649 if (error < 0)
1650 goto out_error;
1651 }
1652 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1653 error = PTR_ERR(inode);
1654 if (IS_ERR(inode))
1655 goto out_error;
1656 d_add(dentry, inode);
1657out:
1658 dput(parent);
1659 return 0;
1660out_error:
1661 nfs_mark_for_revalidate(dir);
1662 dput(parent);
1663 return error;
1664}
1665EXPORT_SYMBOL_GPL(nfs_instantiate);
1666
1667/*
1668 * Following a failed create operation, we drop the dentry rather
1669 * than retain a negative dentry. This avoids a problem in the event
1670 * that the operation succeeded on the server, but an error in the
1671 * reply path made it appear to have failed.
1672 */
1673int nfs_create(struct inode *dir, struct dentry *dentry,
1674 umode_t mode, bool excl)
1675{
1676 struct iattr attr;
1677 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1678 int error;
1679
1680 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1681 dir->i_sb->s_id, dir->i_ino, dentry);
1682
1683 attr.ia_mode = mode;
1684 attr.ia_valid = ATTR_MODE;
1685
1686 trace_nfs_create_enter(dir, dentry, open_flags);
1687 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1688 trace_nfs_create_exit(dir, dentry, open_flags, error);
1689 if (error != 0)
1690 goto out_err;
1691 return 0;
1692out_err:
1693 d_drop(dentry);
1694 return error;
1695}
1696EXPORT_SYMBOL_GPL(nfs_create);
1697
1698/*
1699 * See comments for nfs_proc_create regarding failed operations.
1700 */
1701int
1702nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1703{
1704 struct iattr attr;
1705 int status;
1706
1707 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1708 dir->i_sb->s_id, dir->i_ino, dentry);
1709
1710 attr.ia_mode = mode;
1711 attr.ia_valid = ATTR_MODE;
1712
1713 trace_nfs_mknod_enter(dir, dentry);
1714 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1715 trace_nfs_mknod_exit(dir, dentry, status);
1716 if (status != 0)
1717 goto out_err;
1718 return 0;
1719out_err:
1720 d_drop(dentry);
1721 return status;
1722}
1723EXPORT_SYMBOL_GPL(nfs_mknod);
1724
1725/*
1726 * See comments for nfs_proc_create regarding failed operations.
1727 */
1728int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1729{
1730 struct iattr attr;
1731 int error;
1732
1733 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1734 dir->i_sb->s_id, dir->i_ino, dentry);
1735
1736 attr.ia_valid = ATTR_MODE;
1737 attr.ia_mode = mode | S_IFDIR;
1738
1739 trace_nfs_mkdir_enter(dir, dentry);
1740 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1741 trace_nfs_mkdir_exit(dir, dentry, error);
1742 if (error != 0)
1743 goto out_err;
1744 return 0;
1745out_err:
1746 d_drop(dentry);
1747 return error;
1748}
1749EXPORT_SYMBOL_GPL(nfs_mkdir);
1750
1751static void nfs_dentry_handle_enoent(struct dentry *dentry)
1752{
1753 if (simple_positive(dentry))
1754 d_delete(dentry);
1755}
1756
1757int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1758{
1759 int error;
1760
1761 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1762 dir->i_sb->s_id, dir->i_ino, dentry);
1763
1764 trace_nfs_rmdir_enter(dir, dentry);
1765 if (d_really_is_positive(dentry)) {
1766 nfs_wait_on_sillyrename(dentry);
1767 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1768 /* Ensure the VFS deletes this inode */
1769 switch (error) {
1770 case 0:
1771 clear_nlink(d_inode(dentry));
1772 break;
1773 case -ENOENT:
1774 nfs_dentry_handle_enoent(dentry);
1775 }
1776 } else
1777 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1778 trace_nfs_rmdir_exit(dir, dentry, error);
1779
1780 return error;
1781}
1782EXPORT_SYMBOL_GPL(nfs_rmdir);
1783
1784/*
1785 * Remove a file after making sure there are no pending writes,
1786 * and after checking that the file has only one user.
1787 *
1788 * We invalidate the attribute cache and free the inode prior to the operation
1789 * to avoid possible races if the server reuses the inode.
1790 */
1791static int nfs_safe_remove(struct dentry *dentry)
1792{
1793 struct inode *dir = d_inode(dentry->d_parent);
1794 struct inode *inode = d_inode(dentry);
1795 int error = -EBUSY;
1796
1797 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1798
1799 /* If the dentry was sillyrenamed, we simply call d_delete() */
1800 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1801 error = 0;
1802 goto out;
1803 }
1804
1805 trace_nfs_remove_enter(dir, dentry);
1806 if (inode != NULL) {
1807 NFS_PROTO(inode)->return_delegation(inode);
1808 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1809 if (error == 0)
1810 nfs_drop_nlink(inode);
1811 } else
1812 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1813 if (error == -ENOENT)
1814 nfs_dentry_handle_enoent(dentry);
1815 trace_nfs_remove_exit(dir, dentry, error);
1816out:
1817 return error;
1818}
1819
1820/* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1821 * belongs to an active ".nfs..." file and we return -EBUSY.
1822 *
1823 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1824 */
1825int nfs_unlink(struct inode *dir, struct dentry *dentry)
1826{
1827 int error;
1828 int need_rehash = 0;
1829
1830 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1831 dir->i_ino, dentry);
1832
1833 trace_nfs_unlink_enter(dir, dentry);
1834 spin_lock(&dentry->d_lock);
1835 if (d_count(dentry) > 1) {
1836 spin_unlock(&dentry->d_lock);
1837 /* Start asynchronous writeout of the inode */
1838 write_inode_now(d_inode(dentry), 0);
1839 error = nfs_sillyrename(dir, dentry);
1840 goto out;
1841 }
1842 if (!d_unhashed(dentry)) {
1843 __d_drop(dentry);
1844 need_rehash = 1;
1845 }
1846 spin_unlock(&dentry->d_lock);
1847 error = nfs_safe_remove(dentry);
1848 if (!error || error == -ENOENT) {
1849 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1850 } else if (need_rehash)
1851 d_rehash(dentry);
1852out:
1853 trace_nfs_unlink_exit(dir, dentry, error);
1854 return error;
1855}
1856EXPORT_SYMBOL_GPL(nfs_unlink);
1857
1858/*
1859 * To create a symbolic link, most file systems instantiate a new inode,
1860 * add a page to it containing the path, then write it out to the disk
1861 * using prepare_write/commit_write.
1862 *
1863 * Unfortunately the NFS client can't create the in-core inode first
1864 * because it needs a file handle to create an in-core inode (see
1865 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1866 * symlink request has completed on the server.
1867 *
1868 * So instead we allocate a raw page, copy the symname into it, then do
1869 * the SYMLINK request with the page as the buffer. If it succeeds, we
1870 * now have a new file handle and can instantiate an in-core NFS inode
1871 * and move the raw page into its mapping.
1872 */
1873int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1874{
1875 struct page *page;
1876 char *kaddr;
1877 struct iattr attr;
1878 unsigned int pathlen = strlen(symname);
1879 int error;
1880
1881 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1882 dir->i_ino, dentry, symname);
1883
1884 if (pathlen > PAGE_SIZE)
1885 return -ENAMETOOLONG;
1886
1887 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1888 attr.ia_valid = ATTR_MODE;
1889
1890 page = alloc_page(GFP_HIGHUSER);
1891 if (!page)
1892 return -ENOMEM;
1893
1894 kaddr = kmap_atomic(page);
1895 memcpy(kaddr, symname, pathlen);
1896 if (pathlen < PAGE_SIZE)
1897 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1898 kunmap_atomic(kaddr);
1899
1900 trace_nfs_symlink_enter(dir, dentry);
1901 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1902 trace_nfs_symlink_exit(dir, dentry, error);
1903 if (error != 0) {
1904 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1905 dir->i_sb->s_id, dir->i_ino,
1906 dentry, symname, error);
1907 d_drop(dentry);
1908 __free_page(page);
1909 return error;
1910 }
1911
1912 /*
1913 * No big deal if we can't add this page to the page cache here.
1914 * READLINK will get the missing page from the server if needed.
1915 */
1916 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1917 GFP_KERNEL)) {
1918 SetPageUptodate(page);
1919 unlock_page(page);
1920 /*
1921 * add_to_page_cache_lru() grabs an extra page refcount.
1922 * Drop it here to avoid leaking this page later.
1923 */
1924 page_cache_release(page);
1925 } else
1926 __free_page(page);
1927
1928 return 0;
1929}
1930EXPORT_SYMBOL_GPL(nfs_symlink);
1931
1932int
1933nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1934{
1935 struct inode *inode = d_inode(old_dentry);
1936 int error;
1937
1938 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1939 old_dentry, dentry);
1940
1941 trace_nfs_link_enter(inode, dir, dentry);
1942 NFS_PROTO(inode)->return_delegation(inode);
1943
1944 d_drop(dentry);
1945 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1946 if (error == 0) {
1947 ihold(inode);
1948 d_add(dentry, inode);
1949 }
1950 trace_nfs_link_exit(inode, dir, dentry, error);
1951 return error;
1952}
1953EXPORT_SYMBOL_GPL(nfs_link);
1954
1955/*
1956 * RENAME
1957 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1958 * different file handle for the same inode after a rename (e.g. when
1959 * moving to a different directory). A fail-safe method to do so would
1960 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1961 * rename the old file using the sillyrename stuff. This way, the original
1962 * file in old_dir will go away when the last process iput()s the inode.
1963 *
1964 * FIXED.
1965 *
1966 * It actually works quite well. One needs to have the possibility for
1967 * at least one ".nfs..." file in each directory the file ever gets
1968 * moved or linked to which happens automagically with the new
1969 * implementation that only depends on the dcache stuff instead of
1970 * using the inode layer
1971 *
1972 * Unfortunately, things are a little more complicated than indicated
1973 * above. For a cross-directory move, we want to make sure we can get
1974 * rid of the old inode after the operation. This means there must be
1975 * no pending writes (if it's a file), and the use count must be 1.
1976 * If these conditions are met, we can drop the dentries before doing
1977 * the rename.
1978 */
1979int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1980 struct inode *new_dir, struct dentry *new_dentry)
1981{
1982 struct inode *old_inode = d_inode(old_dentry);
1983 struct inode *new_inode = d_inode(new_dentry);
1984 struct dentry *dentry = NULL, *rehash = NULL;
1985 struct rpc_task *task;
1986 int error = -EBUSY;
1987
1988 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
1989 old_dentry, new_dentry,
1990 d_count(new_dentry));
1991
1992 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
1993 /*
1994 * For non-directories, check whether the target is busy and if so,
1995 * make a copy of the dentry and then do a silly-rename. If the
1996 * silly-rename succeeds, the copied dentry is hashed and becomes
1997 * the new target.
1998 */
1999 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2000 /*
2001 * To prevent any new references to the target during the
2002 * rename, we unhash the dentry in advance.
2003 */
2004 if (!d_unhashed(new_dentry)) {
2005 d_drop(new_dentry);
2006 rehash = new_dentry;
2007 }
2008
2009 if (d_count(new_dentry) > 2) {
2010 int err;
2011
2012 /* copy the target dentry's name */
2013 dentry = d_alloc(new_dentry->d_parent,
2014 &new_dentry->d_name);
2015 if (!dentry)
2016 goto out;
2017
2018 /* silly-rename the existing target ... */
2019 err = nfs_sillyrename(new_dir, new_dentry);
2020 if (err)
2021 goto out;
2022
2023 new_dentry = dentry;
2024 rehash = NULL;
2025 new_inode = NULL;
2026 }
2027 }
2028
2029 NFS_PROTO(old_inode)->return_delegation(old_inode);
2030 if (new_inode != NULL)
2031 NFS_PROTO(new_inode)->return_delegation(new_inode);
2032
2033 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2034 if (IS_ERR(task)) {
2035 error = PTR_ERR(task);
2036 goto out;
2037 }
2038
2039 error = rpc_wait_for_completion_task(task);
2040 if (error == 0)
2041 error = task->tk_status;
2042 rpc_put_task(task);
2043 nfs_mark_for_revalidate(old_inode);
2044out:
2045 if (rehash)
2046 d_rehash(rehash);
2047 trace_nfs_rename_exit(old_dir, old_dentry,
2048 new_dir, new_dentry, error);
2049 if (!error) {
2050 if (new_inode != NULL)
2051 nfs_drop_nlink(new_inode);
2052 d_move(old_dentry, new_dentry);
2053 nfs_set_verifier(new_dentry,
2054 nfs_save_change_attribute(new_dir));
2055 } else if (error == -ENOENT)
2056 nfs_dentry_handle_enoent(old_dentry);
2057
2058 /* new dentry created? */
2059 if (dentry)
2060 dput(dentry);
2061 return error;
2062}
2063EXPORT_SYMBOL_GPL(nfs_rename);
2064
2065static DEFINE_SPINLOCK(nfs_access_lru_lock);
2066static LIST_HEAD(nfs_access_lru_list);
2067static atomic_long_t nfs_access_nr_entries;
2068
2069static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2070module_param(nfs_access_max_cachesize, ulong, 0644);
2071MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2072
2073static void nfs_access_free_entry(struct nfs_access_entry *entry)
2074{
2075 put_rpccred(entry->cred);
2076 kfree_rcu(entry, rcu_head);
2077 smp_mb__before_atomic();
2078 atomic_long_dec(&nfs_access_nr_entries);
2079 smp_mb__after_atomic();
2080}
2081
2082static void nfs_access_free_list(struct list_head *head)
2083{
2084 struct nfs_access_entry *cache;
2085
2086 while (!list_empty(head)) {
2087 cache = list_entry(head->next, struct nfs_access_entry, lru);
2088 list_del(&cache->lru);
2089 nfs_access_free_entry(cache);
2090 }
2091}
2092
2093static unsigned long
2094nfs_do_access_cache_scan(unsigned int nr_to_scan)
2095{
2096 LIST_HEAD(head);
2097 struct nfs_inode *nfsi, *next;
2098 struct nfs_access_entry *cache;
2099 long freed = 0;
2100
2101 spin_lock(&nfs_access_lru_lock);
2102 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2103 struct inode *inode;
2104
2105 if (nr_to_scan-- == 0)
2106 break;
2107 inode = &nfsi->vfs_inode;
2108 spin_lock(&inode->i_lock);
2109 if (list_empty(&nfsi->access_cache_entry_lru))
2110 goto remove_lru_entry;
2111 cache = list_entry(nfsi->access_cache_entry_lru.next,
2112 struct nfs_access_entry, lru);
2113 list_move(&cache->lru, &head);
2114 rb_erase(&cache->rb_node, &nfsi->access_cache);
2115 freed++;
2116 if (!list_empty(&nfsi->access_cache_entry_lru))
2117 list_move_tail(&nfsi->access_cache_inode_lru,
2118 &nfs_access_lru_list);
2119 else {
2120remove_lru_entry:
2121 list_del_init(&nfsi->access_cache_inode_lru);
2122 smp_mb__before_atomic();
2123 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2124 smp_mb__after_atomic();
2125 }
2126 spin_unlock(&inode->i_lock);
2127 }
2128 spin_unlock(&nfs_access_lru_lock);
2129 nfs_access_free_list(&head);
2130 return freed;
2131}
2132
2133unsigned long
2134nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2135{
2136 int nr_to_scan = sc->nr_to_scan;
2137 gfp_t gfp_mask = sc->gfp_mask;
2138
2139 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2140 return SHRINK_STOP;
2141 return nfs_do_access_cache_scan(nr_to_scan);
2142}
2143
2144
2145unsigned long
2146nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2147{
2148 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2149}
2150
2151static void
2152nfs_access_cache_enforce_limit(void)
2153{
2154 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2155 unsigned long diff;
2156 unsigned int nr_to_scan;
2157
2158 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2159 return;
2160 nr_to_scan = 100;
2161 diff = nr_entries - nfs_access_max_cachesize;
2162 if (diff < nr_to_scan)
2163 nr_to_scan = diff;
2164 nfs_do_access_cache_scan(nr_to_scan);
2165}
2166
2167static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2168{
2169 struct rb_root *root_node = &nfsi->access_cache;
2170 struct rb_node *n;
2171 struct nfs_access_entry *entry;
2172
2173 /* Unhook entries from the cache */
2174 while ((n = rb_first(root_node)) != NULL) {
2175 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2176 rb_erase(n, root_node);
2177 list_move(&entry->lru, head);
2178 }
2179 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2180}
2181
2182void nfs_access_zap_cache(struct inode *inode)
2183{
2184 LIST_HEAD(head);
2185
2186 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2187 return;
2188 /* Remove from global LRU init */
2189 spin_lock(&nfs_access_lru_lock);
2190 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2191 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2192
2193 spin_lock(&inode->i_lock);
2194 __nfs_access_zap_cache(NFS_I(inode), &head);
2195 spin_unlock(&inode->i_lock);
2196 spin_unlock(&nfs_access_lru_lock);
2197 nfs_access_free_list(&head);
2198}
2199EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2200
2201static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2202{
2203 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2204 struct nfs_access_entry *entry;
2205
2206 while (n != NULL) {
2207 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2208
2209 if (cred < entry->cred)
2210 n = n->rb_left;
2211 else if (cred > entry->cred)
2212 n = n->rb_right;
2213 else
2214 return entry;
2215 }
2216 return NULL;
2217}
2218
2219static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2220{
2221 struct nfs_inode *nfsi = NFS_I(inode);
2222 struct nfs_access_entry *cache;
2223 int err = -ENOENT;
2224
2225 spin_lock(&inode->i_lock);
2226 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2227 goto out_zap;
2228 cache = nfs_access_search_rbtree(inode, cred);
2229 if (cache == NULL)
2230 goto out;
2231 if (!nfs_have_delegated_attributes(inode) &&
2232 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2233 goto out_stale;
2234 res->jiffies = cache->jiffies;
2235 res->cred = cache->cred;
2236 res->mask = cache->mask;
2237 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2238 err = 0;
2239out:
2240 spin_unlock(&inode->i_lock);
2241 return err;
2242out_stale:
2243 rb_erase(&cache->rb_node, &nfsi->access_cache);
2244 list_del(&cache->lru);
2245 spin_unlock(&inode->i_lock);
2246 nfs_access_free_entry(cache);
2247 return -ENOENT;
2248out_zap:
2249 spin_unlock(&inode->i_lock);
2250 nfs_access_zap_cache(inode);
2251 return -ENOENT;
2252}
2253
2254static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2255{
2256 /* Only check the most recently returned cache entry,
2257 * but do it without locking.
2258 */
2259 struct nfs_inode *nfsi = NFS_I(inode);
2260 struct nfs_access_entry *cache;
2261 int err = -ECHILD;
2262 struct list_head *lh;
2263
2264 rcu_read_lock();
2265 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2266 goto out;
2267 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2268 cache = list_entry(lh, struct nfs_access_entry, lru);
2269 if (lh == &nfsi->access_cache_entry_lru ||
2270 cred != cache->cred)
2271 cache = NULL;
2272 if (cache == NULL)
2273 goto out;
2274 if (!nfs_have_delegated_attributes(inode) &&
2275 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2276 goto out;
2277 res->jiffies = cache->jiffies;
2278 res->cred = cache->cred;
2279 res->mask = cache->mask;
2280 err = 0;
2281out:
2282 rcu_read_unlock();
2283 return err;
2284}
2285
2286static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2287{
2288 struct nfs_inode *nfsi = NFS_I(inode);
2289 struct rb_root *root_node = &nfsi->access_cache;
2290 struct rb_node **p = &root_node->rb_node;
2291 struct rb_node *parent = NULL;
2292 struct nfs_access_entry *entry;
2293
2294 spin_lock(&inode->i_lock);
2295 while (*p != NULL) {
2296 parent = *p;
2297 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2298
2299 if (set->cred < entry->cred)
2300 p = &parent->rb_left;
2301 else if (set->cred > entry->cred)
2302 p = &parent->rb_right;
2303 else
2304 goto found;
2305 }
2306 rb_link_node(&set->rb_node, parent, p);
2307 rb_insert_color(&set->rb_node, root_node);
2308 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2309 spin_unlock(&inode->i_lock);
2310 return;
2311found:
2312 rb_replace_node(parent, &set->rb_node, root_node);
2313 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2314 list_del(&entry->lru);
2315 spin_unlock(&inode->i_lock);
2316 nfs_access_free_entry(entry);
2317}
2318
2319void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2320{
2321 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2322 if (cache == NULL)
2323 return;
2324 RB_CLEAR_NODE(&cache->rb_node);
2325 cache->jiffies = set->jiffies;
2326 cache->cred = get_rpccred(set->cred);
2327 cache->mask = set->mask;
2328
2329 /* The above field assignments must be visible
2330 * before this item appears on the lru. We cannot easily
2331 * use rcu_assign_pointer, so just force the memory barrier.
2332 */
2333 smp_wmb();
2334 nfs_access_add_rbtree(inode, cache);
2335
2336 /* Update accounting */
2337 smp_mb__before_atomic();
2338 atomic_long_inc(&nfs_access_nr_entries);
2339 smp_mb__after_atomic();
2340
2341 /* Add inode to global LRU list */
2342 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2343 spin_lock(&nfs_access_lru_lock);
2344 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2345 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2346 &nfs_access_lru_list);
2347 spin_unlock(&nfs_access_lru_lock);
2348 }
2349 nfs_access_cache_enforce_limit();
2350}
2351EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2352
2353void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2354{
2355 entry->mask = 0;
2356 if (access_result & NFS4_ACCESS_READ)
2357 entry->mask |= MAY_READ;
2358 if (access_result &
2359 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2360 entry->mask |= MAY_WRITE;
2361 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2362 entry->mask |= MAY_EXEC;
2363}
2364EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2365
2366static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2367{
2368 struct nfs_access_entry cache;
2369 int status;
2370
2371 trace_nfs_access_enter(inode);
2372
2373 status = nfs_access_get_cached_rcu(inode, cred, &cache);
2374 if (status != 0)
2375 status = nfs_access_get_cached(inode, cred, &cache);
2376 if (status == 0)
2377 goto out_cached;
2378
2379 status = -ECHILD;
2380 if (mask & MAY_NOT_BLOCK)
2381 goto out;
2382
2383 /* Be clever: ask server to check for all possible rights */
2384 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2385 cache.cred = cred;
2386 cache.jiffies = jiffies;
2387 status = NFS_PROTO(inode)->access(inode, &cache);
2388 if (status != 0) {
2389 if (status == -ESTALE) {
2390 nfs_zap_caches(inode);
2391 if (!S_ISDIR(inode->i_mode))
2392 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2393 }
2394 goto out;
2395 }
2396 nfs_access_add_cache(inode, &cache);
2397out_cached:
2398 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2399 status = -EACCES;
2400out:
2401 trace_nfs_access_exit(inode, status);
2402 return status;
2403}
2404
2405static int nfs_open_permission_mask(int openflags)
2406{
2407 int mask = 0;
2408
2409 if (openflags & __FMODE_EXEC) {
2410 /* ONLY check exec rights */
2411 mask = MAY_EXEC;
2412 } else {
2413 if ((openflags & O_ACCMODE) != O_WRONLY)
2414 mask |= MAY_READ;
2415 if ((openflags & O_ACCMODE) != O_RDONLY)
2416 mask |= MAY_WRITE;
2417 }
2418
2419 return mask;
2420}
2421
2422int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2423{
2424 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2425}
2426EXPORT_SYMBOL_GPL(nfs_may_open);
2427
2428static int nfs_execute_ok(struct inode *inode, int mask)
2429{
2430 struct nfs_server *server = NFS_SERVER(inode);
2431 int ret;
2432
2433 if (mask & MAY_NOT_BLOCK)
2434 ret = nfs_revalidate_inode_rcu(server, inode);
2435 else
2436 ret = nfs_revalidate_inode(server, inode);
2437 if (ret == 0 && !execute_ok(inode))
2438 ret = -EACCES;
2439 return ret;
2440}
2441
2442int nfs_permission(struct inode *inode, int mask)
2443{
2444 struct rpc_cred *cred;
2445 int res = 0;
2446
2447 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2448
2449 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2450 goto out;
2451 /* Is this sys_access() ? */
2452 if (mask & (MAY_ACCESS | MAY_CHDIR))
2453 goto force_lookup;
2454
2455 switch (inode->i_mode & S_IFMT) {
2456 case S_IFLNK:
2457 goto out;
2458 case S_IFREG:
2459 if ((mask & MAY_OPEN) &&
2460 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2461 return 0;
2462 break;
2463 case S_IFDIR:
2464 /*
2465 * Optimize away all write operations, since the server
2466 * will check permissions when we perform the op.
2467 */
2468 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2469 goto out;
2470 }
2471
2472force_lookup:
2473 if (!NFS_PROTO(inode)->access)
2474 goto out_notsup;
2475
2476 /* Always try fast lookups first */
2477 rcu_read_lock();
2478 cred = rpc_lookup_cred_nonblock();
2479 if (!IS_ERR(cred))
2480 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2481 else
2482 res = PTR_ERR(cred);
2483 rcu_read_unlock();
2484 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2485 /* Fast lookup failed, try the slow way */
2486 cred = rpc_lookup_cred();
2487 if (!IS_ERR(cred)) {
2488 res = nfs_do_access(inode, cred, mask);
2489 put_rpccred(cred);
2490 } else
2491 res = PTR_ERR(cred);
2492 }
2493out:
2494 if (!res && (mask & MAY_EXEC))
2495 res = nfs_execute_ok(inode, mask);
2496
2497 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2498 inode->i_sb->s_id, inode->i_ino, mask, res);
2499 return res;
2500out_notsup:
2501 if (mask & MAY_NOT_BLOCK)
2502 return -ECHILD;
2503
2504 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2505 if (res == 0)
2506 res = generic_permission(inode, mask);
2507 goto out;
2508}
2509EXPORT_SYMBOL_GPL(nfs_permission);
2510
2511/*
2512 * Local variables:
2513 * version-control: t
2514 * kept-new-versions: 5
2515 * End:
2516 */