Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame^] | 1 | /* |
| 2 | * This file is part of UBIFS. |
| 3 | * |
| 4 | * Copyright (C) 2006-2008 Nokia Corporation. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify it |
| 7 | * under the terms of the GNU General Public License version 2 as published by |
| 8 | * the Free Software Foundation. |
| 9 | * |
| 10 | * This program is distributed in the hope that it will be useful, but WITHOUT |
| 11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 13 | * more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License along with |
| 16 | * this program; if not, write to the Free Software Foundation, Inc., 51 |
| 17 | * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| 18 | * |
| 19 | * Authors: Artem Bityutskiy (Битюцкий Артём) |
| 20 | * Adrian Hunter |
| 21 | */ |
| 22 | |
| 23 | /* |
| 24 | * This file implements UBIFS initialization and VFS superblock operations. Some |
| 25 | * initialization stuff which is rather large and complex is placed at |
| 26 | * corresponding subsystems, but most of it is here. |
| 27 | */ |
| 28 | |
| 29 | #include <linux/init.h> |
| 30 | #include <linux/slab.h> |
| 31 | #include <linux/module.h> |
| 32 | #include <linux/ctype.h> |
| 33 | #include <linux/kthread.h> |
| 34 | #include <linux/parser.h> |
| 35 | #include <linux/seq_file.h> |
| 36 | #include <linux/mount.h> |
| 37 | #include <linux/math64.h> |
| 38 | #include <linux/writeback.h> |
| 39 | #include "ubifs.h" |
| 40 | |
| 41 | /* |
| 42 | * Maximum amount of memory we may 'kmalloc()' without worrying that we are |
| 43 | * allocating too much. |
| 44 | */ |
| 45 | #define UBIFS_KMALLOC_OK (128*1024) |
| 46 | |
| 47 | /* Slab cache for UBIFS inodes */ |
| 48 | struct kmem_cache *ubifs_inode_slab; |
| 49 | |
| 50 | /* UBIFS TNC shrinker description */ |
| 51 | static struct shrinker ubifs_shrinker_info = { |
| 52 | .scan_objects = ubifs_shrink_scan, |
| 53 | .count_objects = ubifs_shrink_count, |
| 54 | .seeks = DEFAULT_SEEKS, |
| 55 | }; |
| 56 | |
| 57 | /** |
| 58 | * validate_inode - validate inode. |
| 59 | * @c: UBIFS file-system description object |
| 60 | * @inode: the inode to validate |
| 61 | * |
| 62 | * This is a helper function for 'ubifs_iget()' which validates various fields |
| 63 | * of a newly built inode to make sure they contain sane values and prevent |
| 64 | * possible vulnerabilities. Returns zero if the inode is all right and |
| 65 | * a non-zero error code if not. |
| 66 | */ |
| 67 | static int validate_inode(struct ubifs_info *c, const struct inode *inode) |
| 68 | { |
| 69 | int err; |
| 70 | const struct ubifs_inode *ui = ubifs_inode(inode); |
| 71 | |
| 72 | if (inode->i_size > c->max_inode_sz) { |
| 73 | ubifs_err(c, "inode is too large (%lld)", |
| 74 | (long long)inode->i_size); |
| 75 | return 1; |
| 76 | } |
| 77 | |
| 78 | if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) { |
| 79 | ubifs_err(c, "unknown compression type %d", ui->compr_type); |
| 80 | return 2; |
| 81 | } |
| 82 | |
| 83 | if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX) |
| 84 | return 3; |
| 85 | |
| 86 | if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA) |
| 87 | return 4; |
| 88 | |
| 89 | if (ui->xattr && !S_ISREG(inode->i_mode)) |
| 90 | return 5; |
| 91 | |
| 92 | if (!ubifs_compr_present(ui->compr_type)) { |
| 93 | ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in", |
| 94 | inode->i_ino, ubifs_compr_name(ui->compr_type)); |
| 95 | } |
| 96 | |
| 97 | err = dbg_check_dir(c, inode); |
| 98 | return err; |
| 99 | } |
| 100 | |
| 101 | struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) |
| 102 | { |
| 103 | int err; |
| 104 | union ubifs_key key; |
| 105 | struct ubifs_ino_node *ino; |
| 106 | struct ubifs_info *c = sb->s_fs_info; |
| 107 | struct inode *inode; |
| 108 | struct ubifs_inode *ui; |
| 109 | |
| 110 | dbg_gen("inode %lu", inum); |
| 111 | |
| 112 | inode = iget_locked(sb, inum); |
| 113 | if (!inode) |
| 114 | return ERR_PTR(-ENOMEM); |
| 115 | if (!(inode->i_state & I_NEW)) |
| 116 | return inode; |
| 117 | ui = ubifs_inode(inode); |
| 118 | |
| 119 | ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); |
| 120 | if (!ino) { |
| 121 | err = -ENOMEM; |
| 122 | goto out; |
| 123 | } |
| 124 | |
| 125 | ino_key_init(c, &key, inode->i_ino); |
| 126 | |
| 127 | err = ubifs_tnc_lookup(c, &key, ino); |
| 128 | if (err) |
| 129 | goto out_ino; |
| 130 | |
| 131 | inode->i_flags |= S_NOCMTIME; |
| 132 | #ifndef CONFIG_UBIFS_ATIME_SUPPORT |
| 133 | inode->i_flags |= S_NOATIME; |
| 134 | #endif |
| 135 | set_nlink(inode, le32_to_cpu(ino->nlink)); |
| 136 | i_uid_write(inode, le32_to_cpu(ino->uid)); |
| 137 | i_gid_write(inode, le32_to_cpu(ino->gid)); |
| 138 | inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec); |
| 139 | inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec); |
| 140 | inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec); |
| 141 | inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec); |
| 142 | inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec); |
| 143 | inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec); |
| 144 | inode->i_mode = le32_to_cpu(ino->mode); |
| 145 | inode->i_size = le64_to_cpu(ino->size); |
| 146 | |
| 147 | ui->data_len = le32_to_cpu(ino->data_len); |
| 148 | ui->flags = le32_to_cpu(ino->flags); |
| 149 | ui->compr_type = le16_to_cpu(ino->compr_type); |
| 150 | ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum); |
| 151 | ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt); |
| 152 | ui->xattr_size = le32_to_cpu(ino->xattr_size); |
| 153 | ui->xattr_names = le32_to_cpu(ino->xattr_names); |
| 154 | ui->synced_i_size = ui->ui_size = inode->i_size; |
| 155 | |
| 156 | ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0; |
| 157 | |
| 158 | err = validate_inode(c, inode); |
| 159 | if (err) |
| 160 | goto out_invalid; |
| 161 | |
| 162 | switch (inode->i_mode & S_IFMT) { |
| 163 | case S_IFREG: |
| 164 | inode->i_mapping->a_ops = &ubifs_file_address_operations; |
| 165 | inode->i_op = &ubifs_file_inode_operations; |
| 166 | inode->i_fop = &ubifs_file_operations; |
| 167 | if (ui->xattr) { |
| 168 | ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); |
| 169 | if (!ui->data) { |
| 170 | err = -ENOMEM; |
| 171 | goto out_ino; |
| 172 | } |
| 173 | memcpy(ui->data, ino->data, ui->data_len); |
| 174 | ((char *)ui->data)[ui->data_len] = '\0'; |
| 175 | } else if (ui->data_len != 0) { |
| 176 | err = 10; |
| 177 | goto out_invalid; |
| 178 | } |
| 179 | break; |
| 180 | case S_IFDIR: |
| 181 | inode->i_op = &ubifs_dir_inode_operations; |
| 182 | inode->i_fop = &ubifs_dir_operations; |
| 183 | if (ui->data_len != 0) { |
| 184 | err = 11; |
| 185 | goto out_invalid; |
| 186 | } |
| 187 | break; |
| 188 | case S_IFLNK: |
| 189 | inode->i_op = &ubifs_symlink_inode_operations; |
| 190 | if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { |
| 191 | err = 12; |
| 192 | goto out_invalid; |
| 193 | } |
| 194 | ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); |
| 195 | if (!ui->data) { |
| 196 | err = -ENOMEM; |
| 197 | goto out_ino; |
| 198 | } |
| 199 | memcpy(ui->data, ino->data, ui->data_len); |
| 200 | ((char *)ui->data)[ui->data_len] = '\0'; |
| 201 | inode->i_link = ui->data; |
| 202 | break; |
| 203 | case S_IFBLK: |
| 204 | case S_IFCHR: |
| 205 | { |
| 206 | dev_t rdev; |
| 207 | union ubifs_dev_desc *dev; |
| 208 | |
| 209 | ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS); |
| 210 | if (!ui->data) { |
| 211 | err = -ENOMEM; |
| 212 | goto out_ino; |
| 213 | } |
| 214 | |
| 215 | dev = (union ubifs_dev_desc *)ino->data; |
| 216 | if (ui->data_len == sizeof(dev->new)) |
| 217 | rdev = new_decode_dev(le32_to_cpu(dev->new)); |
| 218 | else if (ui->data_len == sizeof(dev->huge)) |
| 219 | rdev = huge_decode_dev(le64_to_cpu(dev->huge)); |
| 220 | else { |
| 221 | err = 13; |
| 222 | goto out_invalid; |
| 223 | } |
| 224 | memcpy(ui->data, ino->data, ui->data_len); |
| 225 | inode->i_op = &ubifs_file_inode_operations; |
| 226 | init_special_inode(inode, inode->i_mode, rdev); |
| 227 | break; |
| 228 | } |
| 229 | case S_IFSOCK: |
| 230 | case S_IFIFO: |
| 231 | inode->i_op = &ubifs_file_inode_operations; |
| 232 | init_special_inode(inode, inode->i_mode, 0); |
| 233 | if (ui->data_len != 0) { |
| 234 | err = 14; |
| 235 | goto out_invalid; |
| 236 | } |
| 237 | break; |
| 238 | default: |
| 239 | err = 15; |
| 240 | goto out_invalid; |
| 241 | } |
| 242 | |
| 243 | kfree(ino); |
| 244 | ubifs_set_inode_flags(inode); |
| 245 | unlock_new_inode(inode); |
| 246 | return inode; |
| 247 | |
| 248 | out_invalid: |
| 249 | ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err); |
| 250 | ubifs_dump_node(c, ino); |
| 251 | ubifs_dump_inode(c, inode); |
| 252 | err = -EINVAL; |
| 253 | out_ino: |
| 254 | kfree(ino); |
| 255 | out: |
| 256 | ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err); |
| 257 | iget_failed(inode); |
| 258 | return ERR_PTR(err); |
| 259 | } |
| 260 | |
| 261 | static struct inode *ubifs_alloc_inode(struct super_block *sb) |
| 262 | { |
| 263 | struct ubifs_inode *ui; |
| 264 | |
| 265 | ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS); |
| 266 | if (!ui) |
| 267 | return NULL; |
| 268 | |
| 269 | memset((void *)ui + sizeof(struct inode), 0, |
| 270 | sizeof(struct ubifs_inode) - sizeof(struct inode)); |
| 271 | mutex_init(&ui->ui_mutex); |
| 272 | spin_lock_init(&ui->ui_lock); |
| 273 | return &ui->vfs_inode; |
| 274 | }; |
| 275 | |
| 276 | static void ubifs_i_callback(struct rcu_head *head) |
| 277 | { |
| 278 | struct inode *inode = container_of(head, struct inode, i_rcu); |
| 279 | struct ubifs_inode *ui = ubifs_inode(inode); |
| 280 | kmem_cache_free(ubifs_inode_slab, ui); |
| 281 | } |
| 282 | |
| 283 | static void ubifs_destroy_inode(struct inode *inode) |
| 284 | { |
| 285 | struct ubifs_inode *ui = ubifs_inode(inode); |
| 286 | |
| 287 | kfree(ui->data); |
| 288 | call_rcu(&inode->i_rcu, ubifs_i_callback); |
| 289 | } |
| 290 | |
| 291 | /* |
| 292 | * Note, Linux write-back code calls this without 'i_mutex'. |
| 293 | */ |
| 294 | static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc) |
| 295 | { |
| 296 | int err = 0; |
| 297 | struct ubifs_info *c = inode->i_sb->s_fs_info; |
| 298 | struct ubifs_inode *ui = ubifs_inode(inode); |
| 299 | |
| 300 | ubifs_assert(!ui->xattr); |
| 301 | if (is_bad_inode(inode)) |
| 302 | return 0; |
| 303 | |
| 304 | mutex_lock(&ui->ui_mutex); |
| 305 | /* |
| 306 | * Due to races between write-back forced by budgeting |
| 307 | * (see 'sync_some_inodes()') and background write-back, the inode may |
| 308 | * have already been synchronized, do not do this again. This might |
| 309 | * also happen if it was synchronized in an VFS operation, e.g. |
| 310 | * 'ubifs_link()'. |
| 311 | */ |
| 312 | if (!ui->dirty) { |
| 313 | mutex_unlock(&ui->ui_mutex); |
| 314 | return 0; |
| 315 | } |
| 316 | |
| 317 | /* |
| 318 | * As an optimization, do not write orphan inodes to the media just |
| 319 | * because this is not needed. |
| 320 | */ |
| 321 | dbg_gen("inode %lu, mode %#x, nlink %u", |
| 322 | inode->i_ino, (int)inode->i_mode, inode->i_nlink); |
| 323 | if (inode->i_nlink) { |
| 324 | err = ubifs_jnl_write_inode(c, inode); |
| 325 | if (err) |
| 326 | ubifs_err(c, "can't write inode %lu, error %d", |
| 327 | inode->i_ino, err); |
| 328 | else |
| 329 | err = dbg_check_inode_size(c, inode, ui->ui_size); |
| 330 | } |
| 331 | |
| 332 | ui->dirty = 0; |
| 333 | mutex_unlock(&ui->ui_mutex); |
| 334 | ubifs_release_dirty_inode_budget(c, ui); |
| 335 | return err; |
| 336 | } |
| 337 | |
| 338 | static void ubifs_evict_inode(struct inode *inode) |
| 339 | { |
| 340 | int err; |
| 341 | struct ubifs_info *c = inode->i_sb->s_fs_info; |
| 342 | struct ubifs_inode *ui = ubifs_inode(inode); |
| 343 | |
| 344 | if (ui->xattr) |
| 345 | /* |
| 346 | * Extended attribute inode deletions are fully handled in |
| 347 | * 'ubifs_removexattr()'. These inodes are special and have |
| 348 | * limited usage, so there is nothing to do here. |
| 349 | */ |
| 350 | goto out; |
| 351 | |
| 352 | dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode); |
| 353 | ubifs_assert(!atomic_read(&inode->i_count)); |
| 354 | |
| 355 | truncate_inode_pages_final(&inode->i_data); |
| 356 | |
| 357 | if (inode->i_nlink) |
| 358 | goto done; |
| 359 | |
| 360 | if (is_bad_inode(inode)) |
| 361 | goto out; |
| 362 | |
| 363 | ui->ui_size = inode->i_size = 0; |
| 364 | err = ubifs_jnl_delete_inode(c, inode); |
| 365 | if (err) |
| 366 | /* |
| 367 | * Worst case we have a lost orphan inode wasting space, so a |
| 368 | * simple error message is OK here. |
| 369 | */ |
| 370 | ubifs_err(c, "can't delete inode %lu, error %d", |
| 371 | inode->i_ino, err); |
| 372 | |
| 373 | out: |
| 374 | if (ui->dirty) |
| 375 | ubifs_release_dirty_inode_budget(c, ui); |
| 376 | else { |
| 377 | /* We've deleted something - clean the "no space" flags */ |
| 378 | c->bi.nospace = c->bi.nospace_rp = 0; |
| 379 | smp_wmb(); |
| 380 | } |
| 381 | done: |
| 382 | clear_inode(inode); |
| 383 | } |
| 384 | |
| 385 | static void ubifs_dirty_inode(struct inode *inode, int flags) |
| 386 | { |
| 387 | struct ubifs_inode *ui = ubifs_inode(inode); |
| 388 | |
| 389 | ubifs_assert(mutex_is_locked(&ui->ui_mutex)); |
| 390 | if (!ui->dirty) { |
| 391 | ui->dirty = 1; |
| 392 | dbg_gen("inode %lu", inode->i_ino); |
| 393 | } |
| 394 | } |
| 395 | |
| 396 | static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf) |
| 397 | { |
| 398 | struct ubifs_info *c = dentry->d_sb->s_fs_info; |
| 399 | unsigned long long free; |
| 400 | __le32 *uuid = (__le32 *)c->uuid; |
| 401 | |
| 402 | free = ubifs_get_free_space(c); |
| 403 | dbg_gen("free space %lld bytes (%lld blocks)", |
| 404 | free, free >> UBIFS_BLOCK_SHIFT); |
| 405 | |
| 406 | buf->f_type = UBIFS_SUPER_MAGIC; |
| 407 | buf->f_bsize = UBIFS_BLOCK_SIZE; |
| 408 | buf->f_blocks = c->block_cnt; |
| 409 | buf->f_bfree = free >> UBIFS_BLOCK_SHIFT; |
| 410 | if (free > c->report_rp_size) |
| 411 | buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT; |
| 412 | else |
| 413 | buf->f_bavail = 0; |
| 414 | buf->f_files = 0; |
| 415 | buf->f_ffree = 0; |
| 416 | buf->f_namelen = UBIFS_MAX_NLEN; |
| 417 | buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]); |
| 418 | buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]); |
| 419 | ubifs_assert(buf->f_bfree <= c->block_cnt); |
| 420 | return 0; |
| 421 | } |
| 422 | |
| 423 | static int ubifs_show_options(struct seq_file *s, struct dentry *root) |
| 424 | { |
| 425 | struct ubifs_info *c = root->d_sb->s_fs_info; |
| 426 | |
| 427 | if (c->mount_opts.unmount_mode == 2) |
| 428 | seq_puts(s, ",fast_unmount"); |
| 429 | else if (c->mount_opts.unmount_mode == 1) |
| 430 | seq_puts(s, ",norm_unmount"); |
| 431 | |
| 432 | if (c->mount_opts.bulk_read == 2) |
| 433 | seq_puts(s, ",bulk_read"); |
| 434 | else if (c->mount_opts.bulk_read == 1) |
| 435 | seq_puts(s, ",no_bulk_read"); |
| 436 | |
| 437 | if (c->mount_opts.chk_data_crc == 2) |
| 438 | seq_puts(s, ",chk_data_crc"); |
| 439 | else if (c->mount_opts.chk_data_crc == 1) |
| 440 | seq_puts(s, ",no_chk_data_crc"); |
| 441 | |
| 442 | if (c->mount_opts.override_compr) { |
| 443 | seq_printf(s, ",compr=%s", |
| 444 | ubifs_compr_name(c->mount_opts.compr_type)); |
| 445 | } |
| 446 | |
| 447 | return 0; |
| 448 | } |
| 449 | |
| 450 | static int ubifs_sync_fs(struct super_block *sb, int wait) |
| 451 | { |
| 452 | int i, err; |
| 453 | struct ubifs_info *c = sb->s_fs_info; |
| 454 | |
| 455 | /* |
| 456 | * Zero @wait is just an advisory thing to help the file system shove |
| 457 | * lots of data into the queues, and there will be the second |
| 458 | * '->sync_fs()' call, with non-zero @wait. |
| 459 | */ |
| 460 | if (!wait) |
| 461 | return 0; |
| 462 | |
| 463 | /* |
| 464 | * Synchronize write buffers, because 'ubifs_run_commit()' does not |
| 465 | * do this if it waits for an already running commit. |
| 466 | */ |
| 467 | for (i = 0; i < c->jhead_cnt; i++) { |
| 468 | err = ubifs_wbuf_sync(&c->jheads[i].wbuf); |
| 469 | if (err) |
| 470 | return err; |
| 471 | } |
| 472 | |
| 473 | /* |
| 474 | * Strictly speaking, it is not necessary to commit the journal here, |
| 475 | * synchronizing write-buffers would be enough. But committing makes |
| 476 | * UBIFS free space predictions much more accurate, so we want to let |
| 477 | * the user be able to get more accurate results of 'statfs()' after |
| 478 | * they synchronize the file system. |
| 479 | */ |
| 480 | err = ubifs_run_commit(c); |
| 481 | if (err) |
| 482 | return err; |
| 483 | |
| 484 | return ubi_sync(c->vi.ubi_num); |
| 485 | } |
| 486 | |
| 487 | /** |
| 488 | * init_constants_early - initialize UBIFS constants. |
| 489 | * @c: UBIFS file-system description object |
| 490 | * |
| 491 | * This function initialize UBIFS constants which do not need the superblock to |
| 492 | * be read. It also checks that the UBI volume satisfies basic UBIFS |
| 493 | * requirements. Returns zero in case of success and a negative error code in |
| 494 | * case of failure. |
| 495 | */ |
| 496 | static int init_constants_early(struct ubifs_info *c) |
| 497 | { |
| 498 | if (c->vi.corrupted) { |
| 499 | ubifs_warn(c, "UBI volume is corrupted - read-only mode"); |
| 500 | c->ro_media = 1; |
| 501 | } |
| 502 | |
| 503 | if (c->di.ro_mode) { |
| 504 | ubifs_msg(c, "read-only UBI device"); |
| 505 | c->ro_media = 1; |
| 506 | } |
| 507 | |
| 508 | if (c->vi.vol_type == UBI_STATIC_VOLUME) { |
| 509 | ubifs_msg(c, "static UBI volume - read-only mode"); |
| 510 | c->ro_media = 1; |
| 511 | } |
| 512 | |
| 513 | c->leb_cnt = c->vi.size; |
| 514 | c->leb_size = c->vi.usable_leb_size; |
| 515 | c->leb_start = c->di.leb_start; |
| 516 | c->half_leb_size = c->leb_size / 2; |
| 517 | c->min_io_size = c->di.min_io_size; |
| 518 | c->min_io_shift = fls(c->min_io_size) - 1; |
| 519 | c->max_write_size = c->di.max_write_size; |
| 520 | c->max_write_shift = fls(c->max_write_size) - 1; |
| 521 | |
| 522 | if (c->leb_size < UBIFS_MIN_LEB_SZ) { |
| 523 | ubifs_err(c, "too small LEBs (%d bytes), min. is %d bytes", |
| 524 | c->leb_size, UBIFS_MIN_LEB_SZ); |
| 525 | return -EINVAL; |
| 526 | } |
| 527 | |
| 528 | if (c->leb_cnt < UBIFS_MIN_LEB_CNT) { |
| 529 | ubifs_err(c, "too few LEBs (%d), min. is %d", |
| 530 | c->leb_cnt, UBIFS_MIN_LEB_CNT); |
| 531 | return -EINVAL; |
| 532 | } |
| 533 | |
| 534 | if (!is_power_of_2(c->min_io_size)) { |
| 535 | ubifs_err(c, "bad min. I/O size %d", c->min_io_size); |
| 536 | return -EINVAL; |
| 537 | } |
| 538 | |
| 539 | /* |
| 540 | * Maximum write size has to be greater or equivalent to min. I/O |
| 541 | * size, and be multiple of min. I/O size. |
| 542 | */ |
| 543 | if (c->max_write_size < c->min_io_size || |
| 544 | c->max_write_size % c->min_io_size || |
| 545 | !is_power_of_2(c->max_write_size)) { |
| 546 | ubifs_err(c, "bad write buffer size %d for %d min. I/O unit", |
| 547 | c->max_write_size, c->min_io_size); |
| 548 | return -EINVAL; |
| 549 | } |
| 550 | |
| 551 | /* |
| 552 | * UBIFS aligns all node to 8-byte boundary, so to make function in |
| 553 | * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is |
| 554 | * less than 8. |
| 555 | */ |
| 556 | if (c->min_io_size < 8) { |
| 557 | c->min_io_size = 8; |
| 558 | c->min_io_shift = 3; |
| 559 | if (c->max_write_size < c->min_io_size) { |
| 560 | c->max_write_size = c->min_io_size; |
| 561 | c->max_write_shift = c->min_io_shift; |
| 562 | } |
| 563 | } |
| 564 | |
| 565 | c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size); |
| 566 | c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size); |
| 567 | |
| 568 | /* |
| 569 | * Initialize node length ranges which are mostly needed for node |
| 570 | * length validation. |
| 571 | */ |
| 572 | c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ; |
| 573 | c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ; |
| 574 | c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ; |
| 575 | c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ; |
| 576 | c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ; |
| 577 | c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ; |
| 578 | |
| 579 | c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ; |
| 580 | c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ; |
| 581 | c->ranges[UBIFS_ORPH_NODE].min_len = |
| 582 | UBIFS_ORPH_NODE_SZ + sizeof(__le64); |
| 583 | c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size; |
| 584 | c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ; |
| 585 | c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ; |
| 586 | c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ; |
| 587 | c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ; |
| 588 | c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ; |
| 589 | c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ; |
| 590 | /* |
| 591 | * Minimum indexing node size is amended later when superblock is |
| 592 | * read and the key length is known. |
| 593 | */ |
| 594 | c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ; |
| 595 | /* |
| 596 | * Maximum indexing node size is amended later when superblock is |
| 597 | * read and the fanout is known. |
| 598 | */ |
| 599 | c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX; |
| 600 | |
| 601 | /* |
| 602 | * Initialize dead and dark LEB space watermarks. See gc.c for comments |
| 603 | * about these values. |
| 604 | */ |
| 605 | c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size); |
| 606 | c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size); |
| 607 | |
| 608 | /* |
| 609 | * Calculate how many bytes would be wasted at the end of LEB if it was |
| 610 | * fully filled with data nodes of maximum size. This is used in |
| 611 | * calculations when reporting free space. |
| 612 | */ |
| 613 | c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ; |
| 614 | |
| 615 | /* Buffer size for bulk-reads */ |
| 616 | c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ; |
| 617 | if (c->max_bu_buf_len > c->leb_size) |
| 618 | c->max_bu_buf_len = c->leb_size; |
| 619 | return 0; |
| 620 | } |
| 621 | |
| 622 | /** |
| 623 | * bud_wbuf_callback - bud LEB write-buffer synchronization call-back. |
| 624 | * @c: UBIFS file-system description object |
| 625 | * @lnum: LEB the write-buffer was synchronized to |
| 626 | * @free: how many free bytes left in this LEB |
| 627 | * @pad: how many bytes were padded |
| 628 | * |
| 629 | * This is a callback function which is called by the I/O unit when the |
| 630 | * write-buffer is synchronized. We need this to correctly maintain space |
| 631 | * accounting in bud logical eraseblocks. This function returns zero in case of |
| 632 | * success and a negative error code in case of failure. |
| 633 | * |
| 634 | * This function actually belongs to the journal, but we keep it here because |
| 635 | * we want to keep it static. |
| 636 | */ |
| 637 | static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad) |
| 638 | { |
| 639 | return ubifs_update_one_lp(c, lnum, free, pad, 0, 0); |
| 640 | } |
| 641 | |
| 642 | /* |
| 643 | * init_constants_sb - initialize UBIFS constants. |
| 644 | * @c: UBIFS file-system description object |
| 645 | * |
| 646 | * This is a helper function which initializes various UBIFS constants after |
| 647 | * the superblock has been read. It also checks various UBIFS parameters and |
| 648 | * makes sure they are all right. Returns zero in case of success and a |
| 649 | * negative error code in case of failure. |
| 650 | */ |
| 651 | static int init_constants_sb(struct ubifs_info *c) |
| 652 | { |
| 653 | int tmp, err; |
| 654 | long long tmp64; |
| 655 | |
| 656 | c->main_bytes = (long long)c->main_lebs * c->leb_size; |
| 657 | c->max_znode_sz = sizeof(struct ubifs_znode) + |
| 658 | c->fanout * sizeof(struct ubifs_zbranch); |
| 659 | |
| 660 | tmp = ubifs_idx_node_sz(c, 1); |
| 661 | c->ranges[UBIFS_IDX_NODE].min_len = tmp; |
| 662 | c->min_idx_node_sz = ALIGN(tmp, 8); |
| 663 | |
| 664 | tmp = ubifs_idx_node_sz(c, c->fanout); |
| 665 | c->ranges[UBIFS_IDX_NODE].max_len = tmp; |
| 666 | c->max_idx_node_sz = ALIGN(tmp, 8); |
| 667 | |
| 668 | /* Make sure LEB size is large enough to fit full commit */ |
| 669 | tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt; |
| 670 | tmp = ALIGN(tmp, c->min_io_size); |
| 671 | if (tmp > c->leb_size) { |
| 672 | ubifs_err(c, "too small LEB size %d, at least %d needed", |
| 673 | c->leb_size, tmp); |
| 674 | return -EINVAL; |
| 675 | } |
| 676 | |
| 677 | /* |
| 678 | * Make sure that the log is large enough to fit reference nodes for |
| 679 | * all buds plus one reserved LEB. |
| 680 | */ |
| 681 | tmp64 = c->max_bud_bytes + c->leb_size - 1; |
| 682 | c->max_bud_cnt = div_u64(tmp64, c->leb_size); |
| 683 | tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1); |
| 684 | tmp /= c->leb_size; |
| 685 | tmp += 1; |
| 686 | if (c->log_lebs < tmp) { |
| 687 | ubifs_err(c, "too small log %d LEBs, required min. %d LEBs", |
| 688 | c->log_lebs, tmp); |
| 689 | return -EINVAL; |
| 690 | } |
| 691 | |
| 692 | /* |
| 693 | * When budgeting we assume worst-case scenarios when the pages are not |
| 694 | * be compressed and direntries are of the maximum size. |
| 695 | * |
| 696 | * Note, data, which may be stored in inodes is budgeted separately, so |
| 697 | * it is not included into 'c->bi.inode_budget'. |
| 698 | */ |
| 699 | c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE; |
| 700 | c->bi.inode_budget = UBIFS_INO_NODE_SZ; |
| 701 | c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ; |
| 702 | |
| 703 | /* |
| 704 | * When the amount of flash space used by buds becomes |
| 705 | * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit. |
| 706 | * The writers are unblocked when the commit is finished. To avoid |
| 707 | * writers to be blocked UBIFS initiates background commit in advance, |
| 708 | * when number of bud bytes becomes above the limit defined below. |
| 709 | */ |
| 710 | c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4; |
| 711 | |
| 712 | /* |
| 713 | * Ensure minimum journal size. All the bytes in the journal heads are |
| 714 | * considered to be used, when calculating the current journal usage. |
| 715 | * Consequently, if the journal is too small, UBIFS will treat it as |
| 716 | * always full. |
| 717 | */ |
| 718 | tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1; |
| 719 | if (c->bg_bud_bytes < tmp64) |
| 720 | c->bg_bud_bytes = tmp64; |
| 721 | if (c->max_bud_bytes < tmp64 + c->leb_size) |
| 722 | c->max_bud_bytes = tmp64 + c->leb_size; |
| 723 | |
| 724 | err = ubifs_calc_lpt_geom(c); |
| 725 | if (err) |
| 726 | return err; |
| 727 | |
| 728 | /* Initialize effective LEB size used in budgeting calculations */ |
| 729 | c->idx_leb_size = c->leb_size - c->max_idx_node_sz; |
| 730 | return 0; |
| 731 | } |
| 732 | |
| 733 | /* |
| 734 | * init_constants_master - initialize UBIFS constants. |
| 735 | * @c: UBIFS file-system description object |
| 736 | * |
| 737 | * This is a helper function which initializes various UBIFS constants after |
| 738 | * the master node has been read. It also checks various UBIFS parameters and |
| 739 | * makes sure they are all right. |
| 740 | */ |
| 741 | static void init_constants_master(struct ubifs_info *c) |
| 742 | { |
| 743 | long long tmp64; |
| 744 | |
| 745 | c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); |
| 746 | c->report_rp_size = ubifs_reported_space(c, c->rp_size); |
| 747 | |
| 748 | /* |
| 749 | * Calculate total amount of FS blocks. This number is not used |
| 750 | * internally because it does not make much sense for UBIFS, but it is |
| 751 | * necessary to report something for the 'statfs()' call. |
| 752 | * |
| 753 | * Subtract the LEB reserved for GC, the LEB which is reserved for |
| 754 | * deletions, minimum LEBs for the index, and assume only one journal |
| 755 | * head is available. |
| 756 | */ |
| 757 | tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1; |
| 758 | tmp64 *= (long long)c->leb_size - c->leb_overhead; |
| 759 | tmp64 = ubifs_reported_space(c, tmp64); |
| 760 | c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT; |
| 761 | } |
| 762 | |
| 763 | /** |
| 764 | * take_gc_lnum - reserve GC LEB. |
| 765 | * @c: UBIFS file-system description object |
| 766 | * |
| 767 | * This function ensures that the LEB reserved for garbage collection is marked |
| 768 | * as "taken" in lprops. We also have to set free space to LEB size and dirty |
| 769 | * space to zero, because lprops may contain out-of-date information if the |
| 770 | * file-system was un-mounted before it has been committed. This function |
| 771 | * returns zero in case of success and a negative error code in case of |
| 772 | * failure. |
| 773 | */ |
| 774 | static int take_gc_lnum(struct ubifs_info *c) |
| 775 | { |
| 776 | int err; |
| 777 | |
| 778 | if (c->gc_lnum == -1) { |
| 779 | ubifs_err(c, "no LEB for GC"); |
| 780 | return -EINVAL; |
| 781 | } |
| 782 | |
| 783 | /* And we have to tell lprops that this LEB is taken */ |
| 784 | err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0, |
| 785 | LPROPS_TAKEN, 0, 0); |
| 786 | return err; |
| 787 | } |
| 788 | |
| 789 | /** |
| 790 | * alloc_wbufs - allocate write-buffers. |
| 791 | * @c: UBIFS file-system description object |
| 792 | * |
| 793 | * This helper function allocates and initializes UBIFS write-buffers. Returns |
| 794 | * zero in case of success and %-ENOMEM in case of failure. |
| 795 | */ |
| 796 | static int alloc_wbufs(struct ubifs_info *c) |
| 797 | { |
| 798 | int i, err; |
| 799 | |
| 800 | c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead), |
| 801 | GFP_KERNEL); |
| 802 | if (!c->jheads) |
| 803 | return -ENOMEM; |
| 804 | |
| 805 | /* Initialize journal heads */ |
| 806 | for (i = 0; i < c->jhead_cnt; i++) { |
| 807 | INIT_LIST_HEAD(&c->jheads[i].buds_list); |
| 808 | err = ubifs_wbuf_init(c, &c->jheads[i].wbuf); |
| 809 | if (err) |
| 810 | return err; |
| 811 | |
| 812 | c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback; |
| 813 | c->jheads[i].wbuf.jhead = i; |
| 814 | c->jheads[i].grouped = 1; |
| 815 | } |
| 816 | |
| 817 | /* |
| 818 | * Garbage Collector head does not need to be synchronized by timer. |
| 819 | * Also GC head nodes are not grouped. |
| 820 | */ |
| 821 | c->jheads[GCHD].wbuf.no_timer = 1; |
| 822 | c->jheads[GCHD].grouped = 0; |
| 823 | |
| 824 | return 0; |
| 825 | } |
| 826 | |
| 827 | /** |
| 828 | * free_wbufs - free write-buffers. |
| 829 | * @c: UBIFS file-system description object |
| 830 | */ |
| 831 | static void free_wbufs(struct ubifs_info *c) |
| 832 | { |
| 833 | int i; |
| 834 | |
| 835 | if (c->jheads) { |
| 836 | for (i = 0; i < c->jhead_cnt; i++) { |
| 837 | kfree(c->jheads[i].wbuf.buf); |
| 838 | kfree(c->jheads[i].wbuf.inodes); |
| 839 | } |
| 840 | kfree(c->jheads); |
| 841 | c->jheads = NULL; |
| 842 | } |
| 843 | } |
| 844 | |
| 845 | /** |
| 846 | * free_orphans - free orphans. |
| 847 | * @c: UBIFS file-system description object |
| 848 | */ |
| 849 | static void free_orphans(struct ubifs_info *c) |
| 850 | { |
| 851 | struct ubifs_orphan *orph; |
| 852 | |
| 853 | while (c->orph_dnext) { |
| 854 | orph = c->orph_dnext; |
| 855 | c->orph_dnext = orph->dnext; |
| 856 | list_del(&orph->list); |
| 857 | kfree(orph); |
| 858 | } |
| 859 | |
| 860 | while (!list_empty(&c->orph_list)) { |
| 861 | orph = list_entry(c->orph_list.next, struct ubifs_orphan, list); |
| 862 | list_del(&orph->list); |
| 863 | kfree(orph); |
| 864 | ubifs_err(c, "orphan list not empty at unmount"); |
| 865 | } |
| 866 | |
| 867 | vfree(c->orph_buf); |
| 868 | c->orph_buf = NULL; |
| 869 | } |
| 870 | |
| 871 | /** |
| 872 | * free_buds - free per-bud objects. |
| 873 | * @c: UBIFS file-system description object |
| 874 | */ |
| 875 | static void free_buds(struct ubifs_info *c) |
| 876 | { |
| 877 | struct ubifs_bud *bud, *n; |
| 878 | |
| 879 | rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb) |
| 880 | kfree(bud); |
| 881 | } |
| 882 | |
| 883 | /** |
| 884 | * check_volume_empty - check if the UBI volume is empty. |
| 885 | * @c: UBIFS file-system description object |
| 886 | * |
| 887 | * This function checks if the UBIFS volume is empty by looking if its LEBs are |
| 888 | * mapped or not. The result of checking is stored in the @c->empty variable. |
| 889 | * Returns zero in case of success and a negative error code in case of |
| 890 | * failure. |
| 891 | */ |
| 892 | static int check_volume_empty(struct ubifs_info *c) |
| 893 | { |
| 894 | int lnum, err; |
| 895 | |
| 896 | c->empty = 1; |
| 897 | for (lnum = 0; lnum < c->leb_cnt; lnum++) { |
| 898 | err = ubifs_is_mapped(c, lnum); |
| 899 | if (unlikely(err < 0)) |
| 900 | return err; |
| 901 | if (err == 1) { |
| 902 | c->empty = 0; |
| 903 | break; |
| 904 | } |
| 905 | |
| 906 | cond_resched(); |
| 907 | } |
| 908 | |
| 909 | return 0; |
| 910 | } |
| 911 | |
| 912 | /* |
| 913 | * UBIFS mount options. |
| 914 | * |
| 915 | * Opt_fast_unmount: do not run a journal commit before un-mounting |
| 916 | * Opt_norm_unmount: run a journal commit before un-mounting |
| 917 | * Opt_bulk_read: enable bulk-reads |
| 918 | * Opt_no_bulk_read: disable bulk-reads |
| 919 | * Opt_chk_data_crc: check CRCs when reading data nodes |
| 920 | * Opt_no_chk_data_crc: do not check CRCs when reading data nodes |
| 921 | * Opt_override_compr: override default compressor |
| 922 | * Opt_err: just end of array marker |
| 923 | */ |
| 924 | enum { |
| 925 | Opt_fast_unmount, |
| 926 | Opt_norm_unmount, |
| 927 | Opt_bulk_read, |
| 928 | Opt_no_bulk_read, |
| 929 | Opt_chk_data_crc, |
| 930 | Opt_no_chk_data_crc, |
| 931 | Opt_override_compr, |
| 932 | Opt_err, |
| 933 | }; |
| 934 | |
| 935 | static const match_table_t tokens = { |
| 936 | {Opt_fast_unmount, "fast_unmount"}, |
| 937 | {Opt_norm_unmount, "norm_unmount"}, |
| 938 | {Opt_bulk_read, "bulk_read"}, |
| 939 | {Opt_no_bulk_read, "no_bulk_read"}, |
| 940 | {Opt_chk_data_crc, "chk_data_crc"}, |
| 941 | {Opt_no_chk_data_crc, "no_chk_data_crc"}, |
| 942 | {Opt_override_compr, "compr=%s"}, |
| 943 | {Opt_err, NULL}, |
| 944 | }; |
| 945 | |
| 946 | /** |
| 947 | * parse_standard_option - parse a standard mount option. |
| 948 | * @option: the option to parse |
| 949 | * |
| 950 | * Normally, standard mount options like "sync" are passed to file-systems as |
| 951 | * flags. However, when a "rootflags=" kernel boot parameter is used, they may |
| 952 | * be present in the options string. This function tries to deal with this |
| 953 | * situation and parse standard options. Returns 0 if the option was not |
| 954 | * recognized, and the corresponding integer flag if it was. |
| 955 | * |
| 956 | * UBIFS is only interested in the "sync" option, so do not check for anything |
| 957 | * else. |
| 958 | */ |
| 959 | static int parse_standard_option(const char *option) |
| 960 | { |
| 961 | |
| 962 | pr_notice("UBIFS: parse %s\n", option); |
| 963 | if (!strcmp(option, "sync")) |
| 964 | return MS_SYNCHRONOUS; |
| 965 | return 0; |
| 966 | } |
| 967 | |
| 968 | /** |
| 969 | * ubifs_parse_options - parse mount parameters. |
| 970 | * @c: UBIFS file-system description object |
| 971 | * @options: parameters to parse |
| 972 | * @is_remount: non-zero if this is FS re-mount |
| 973 | * |
| 974 | * This function parses UBIFS mount options and returns zero in case success |
| 975 | * and a negative error code in case of failure. |
| 976 | */ |
| 977 | static int ubifs_parse_options(struct ubifs_info *c, char *options, |
| 978 | int is_remount) |
| 979 | { |
| 980 | char *p; |
| 981 | substring_t args[MAX_OPT_ARGS]; |
| 982 | |
| 983 | if (!options) |
| 984 | return 0; |
| 985 | |
| 986 | while ((p = strsep(&options, ","))) { |
| 987 | int token; |
| 988 | |
| 989 | if (!*p) |
| 990 | continue; |
| 991 | |
| 992 | token = match_token(p, tokens, args); |
| 993 | switch (token) { |
| 994 | /* |
| 995 | * %Opt_fast_unmount and %Opt_norm_unmount options are ignored. |
| 996 | * We accept them in order to be backward-compatible. But this |
| 997 | * should be removed at some point. |
| 998 | */ |
| 999 | case Opt_fast_unmount: |
| 1000 | c->mount_opts.unmount_mode = 2; |
| 1001 | break; |
| 1002 | case Opt_norm_unmount: |
| 1003 | c->mount_opts.unmount_mode = 1; |
| 1004 | break; |
| 1005 | case Opt_bulk_read: |
| 1006 | c->mount_opts.bulk_read = 2; |
| 1007 | c->bulk_read = 1; |
| 1008 | break; |
| 1009 | case Opt_no_bulk_read: |
| 1010 | c->mount_opts.bulk_read = 1; |
| 1011 | c->bulk_read = 0; |
| 1012 | break; |
| 1013 | case Opt_chk_data_crc: |
| 1014 | c->mount_opts.chk_data_crc = 2; |
| 1015 | c->no_chk_data_crc = 0; |
| 1016 | break; |
| 1017 | case Opt_no_chk_data_crc: |
| 1018 | c->mount_opts.chk_data_crc = 1; |
| 1019 | c->no_chk_data_crc = 1; |
| 1020 | break; |
| 1021 | case Opt_override_compr: |
| 1022 | { |
| 1023 | char *name = match_strdup(&args[0]); |
| 1024 | |
| 1025 | if (!name) |
| 1026 | return -ENOMEM; |
| 1027 | if (!strcmp(name, "none")) |
| 1028 | c->mount_opts.compr_type = UBIFS_COMPR_NONE; |
| 1029 | else if (!strcmp(name, "lzo")) |
| 1030 | c->mount_opts.compr_type = UBIFS_COMPR_LZO; |
| 1031 | else if (!strcmp(name, "zlib")) |
| 1032 | c->mount_opts.compr_type = UBIFS_COMPR_ZLIB; |
| 1033 | else { |
| 1034 | ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready? |
| 1035 | kfree(name); |
| 1036 | return -EINVAL; |
| 1037 | } |
| 1038 | kfree(name); |
| 1039 | c->mount_opts.override_compr = 1; |
| 1040 | c->default_compr = c->mount_opts.compr_type; |
| 1041 | break; |
| 1042 | } |
| 1043 | default: |
| 1044 | { |
| 1045 | unsigned long flag; |
| 1046 | struct super_block *sb = c->vfs_sb; |
| 1047 | |
| 1048 | flag = parse_standard_option(p); |
| 1049 | if (!flag) { |
| 1050 | ubifs_err(c, "unrecognized mount option \"%s\" or missing value", |
| 1051 | p); |
| 1052 | return -EINVAL; |
| 1053 | } |
| 1054 | sb->s_flags |= flag; |
| 1055 | break; |
| 1056 | } |
| 1057 | } |
| 1058 | } |
| 1059 | |
| 1060 | return 0; |
| 1061 | } |
| 1062 | |
| 1063 | /** |
| 1064 | * destroy_journal - destroy journal data structures. |
| 1065 | * @c: UBIFS file-system description object |
| 1066 | * |
| 1067 | * This function destroys journal data structures including those that may have |
| 1068 | * been created by recovery functions. |
| 1069 | */ |
| 1070 | static void destroy_journal(struct ubifs_info *c) |
| 1071 | { |
| 1072 | while (!list_empty(&c->unclean_leb_list)) { |
| 1073 | struct ubifs_unclean_leb *ucleb; |
| 1074 | |
| 1075 | ucleb = list_entry(c->unclean_leb_list.next, |
| 1076 | struct ubifs_unclean_leb, list); |
| 1077 | list_del(&ucleb->list); |
| 1078 | kfree(ucleb); |
| 1079 | } |
| 1080 | while (!list_empty(&c->old_buds)) { |
| 1081 | struct ubifs_bud *bud; |
| 1082 | |
| 1083 | bud = list_entry(c->old_buds.next, struct ubifs_bud, list); |
| 1084 | list_del(&bud->list); |
| 1085 | kfree(bud); |
| 1086 | } |
| 1087 | ubifs_destroy_idx_gc(c); |
| 1088 | ubifs_destroy_size_tree(c); |
| 1089 | ubifs_tnc_close(c); |
| 1090 | free_buds(c); |
| 1091 | } |
| 1092 | |
| 1093 | /** |
| 1094 | * bu_init - initialize bulk-read information. |
| 1095 | * @c: UBIFS file-system description object |
| 1096 | */ |
| 1097 | static void bu_init(struct ubifs_info *c) |
| 1098 | { |
| 1099 | ubifs_assert(c->bulk_read == 1); |
| 1100 | |
| 1101 | if (c->bu.buf) |
| 1102 | return; /* Already initialized */ |
| 1103 | |
| 1104 | again: |
| 1105 | c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN); |
| 1106 | if (!c->bu.buf) { |
| 1107 | if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) { |
| 1108 | c->max_bu_buf_len = UBIFS_KMALLOC_OK; |
| 1109 | goto again; |
| 1110 | } |
| 1111 | |
| 1112 | /* Just disable bulk-read */ |
| 1113 | ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it", |
| 1114 | c->max_bu_buf_len); |
| 1115 | c->mount_opts.bulk_read = 1; |
| 1116 | c->bulk_read = 0; |
| 1117 | return; |
| 1118 | } |
| 1119 | } |
| 1120 | |
| 1121 | /** |
| 1122 | * check_free_space - check if there is enough free space to mount. |
| 1123 | * @c: UBIFS file-system description object |
| 1124 | * |
| 1125 | * This function makes sure UBIFS has enough free space to be mounted in |
| 1126 | * read/write mode. UBIFS must always have some free space to allow deletions. |
| 1127 | */ |
| 1128 | static int check_free_space(struct ubifs_info *c) |
| 1129 | { |
| 1130 | ubifs_assert(c->dark_wm > 0); |
| 1131 | if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) { |
| 1132 | ubifs_err(c, "insufficient free space to mount in R/W mode"); |
| 1133 | ubifs_dump_budg(c, &c->bi); |
| 1134 | ubifs_dump_lprops(c); |
| 1135 | return -ENOSPC; |
| 1136 | } |
| 1137 | return 0; |
| 1138 | } |
| 1139 | |
| 1140 | /** |
| 1141 | * mount_ubifs - mount UBIFS file-system. |
| 1142 | * @c: UBIFS file-system description object |
| 1143 | * |
| 1144 | * This function mounts UBIFS file system. Returns zero in case of success and |
| 1145 | * a negative error code in case of failure. |
| 1146 | */ |
| 1147 | static int mount_ubifs(struct ubifs_info *c) |
| 1148 | { |
| 1149 | int err; |
| 1150 | long long x, y; |
| 1151 | size_t sz; |
| 1152 | |
| 1153 | c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY); |
| 1154 | /* Suppress error messages while probing if MS_SILENT is set */ |
| 1155 | c->probing = !!(c->vfs_sb->s_flags & MS_SILENT); |
| 1156 | |
| 1157 | err = init_constants_early(c); |
| 1158 | if (err) |
| 1159 | return err; |
| 1160 | |
| 1161 | err = ubifs_debugging_init(c); |
| 1162 | if (err) |
| 1163 | return err; |
| 1164 | |
| 1165 | err = check_volume_empty(c); |
| 1166 | if (err) |
| 1167 | goto out_free; |
| 1168 | |
| 1169 | if (c->empty && (c->ro_mount || c->ro_media)) { |
| 1170 | /* |
| 1171 | * This UBI volume is empty, and read-only, or the file system |
| 1172 | * is mounted read-only - we cannot format it. |
| 1173 | */ |
| 1174 | ubifs_err(c, "can't format empty UBI volume: read-only %s", |
| 1175 | c->ro_media ? "UBI volume" : "mount"); |
| 1176 | err = -EROFS; |
| 1177 | goto out_free; |
| 1178 | } |
| 1179 | |
| 1180 | if (c->ro_media && !c->ro_mount) { |
| 1181 | ubifs_err(c, "cannot mount read-write - read-only media"); |
| 1182 | err = -EROFS; |
| 1183 | goto out_free; |
| 1184 | } |
| 1185 | |
| 1186 | /* |
| 1187 | * The requirement for the buffer is that it should fit indexing B-tree |
| 1188 | * height amount of integers. We assume the height if the TNC tree will |
| 1189 | * never exceed 64. |
| 1190 | */ |
| 1191 | err = -ENOMEM; |
| 1192 | c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL); |
| 1193 | if (!c->bottom_up_buf) |
| 1194 | goto out_free; |
| 1195 | |
| 1196 | c->sbuf = vmalloc(c->leb_size); |
| 1197 | if (!c->sbuf) |
| 1198 | goto out_free; |
| 1199 | |
| 1200 | if (!c->ro_mount) { |
| 1201 | c->ileb_buf = vmalloc(c->leb_size); |
| 1202 | if (!c->ileb_buf) |
| 1203 | goto out_free; |
| 1204 | } |
| 1205 | |
| 1206 | if (c->bulk_read == 1) |
| 1207 | bu_init(c); |
| 1208 | |
| 1209 | if (!c->ro_mount) { |
| 1210 | c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, |
| 1211 | GFP_KERNEL); |
| 1212 | if (!c->write_reserve_buf) |
| 1213 | goto out_free; |
| 1214 | } |
| 1215 | |
| 1216 | c->mounting = 1; |
| 1217 | |
| 1218 | err = ubifs_read_superblock(c); |
| 1219 | if (err) |
| 1220 | goto out_free; |
| 1221 | |
| 1222 | c->probing = 0; |
| 1223 | |
| 1224 | /* |
| 1225 | * Make sure the compressor which is set as default in the superblock |
| 1226 | * or overridden by mount options is actually compiled in. |
| 1227 | */ |
| 1228 | if (!ubifs_compr_present(c->default_compr)) { |
| 1229 | ubifs_err(c, "'compressor \"%s\" is not compiled in", |
| 1230 | ubifs_compr_name(c->default_compr)); |
| 1231 | err = -ENOTSUPP; |
| 1232 | goto out_free; |
| 1233 | } |
| 1234 | |
| 1235 | err = init_constants_sb(c); |
| 1236 | if (err) |
| 1237 | goto out_free; |
| 1238 | |
| 1239 | sz = ALIGN(c->max_idx_node_sz, c->min_io_size); |
| 1240 | sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size); |
| 1241 | c->cbuf = kmalloc(sz, GFP_NOFS); |
| 1242 | if (!c->cbuf) { |
| 1243 | err = -ENOMEM; |
| 1244 | goto out_free; |
| 1245 | } |
| 1246 | |
| 1247 | err = alloc_wbufs(c); |
| 1248 | if (err) |
| 1249 | goto out_cbuf; |
| 1250 | |
| 1251 | sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id); |
| 1252 | if (!c->ro_mount) { |
| 1253 | /* Create background thread */ |
| 1254 | c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); |
| 1255 | if (IS_ERR(c->bgt)) { |
| 1256 | err = PTR_ERR(c->bgt); |
| 1257 | c->bgt = NULL; |
| 1258 | ubifs_err(c, "cannot spawn \"%s\", error %d", |
| 1259 | c->bgt_name, err); |
| 1260 | goto out_wbufs; |
| 1261 | } |
| 1262 | wake_up_process(c->bgt); |
| 1263 | } |
| 1264 | |
| 1265 | err = ubifs_read_master(c); |
| 1266 | if (err) |
| 1267 | goto out_master; |
| 1268 | |
| 1269 | init_constants_master(c); |
| 1270 | |
| 1271 | if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) { |
| 1272 | ubifs_msg(c, "recovery needed"); |
| 1273 | c->need_recovery = 1; |
| 1274 | } |
| 1275 | |
| 1276 | if (c->need_recovery && !c->ro_mount) { |
| 1277 | err = ubifs_recover_inl_heads(c, c->sbuf); |
| 1278 | if (err) |
| 1279 | goto out_master; |
| 1280 | } |
| 1281 | |
| 1282 | err = ubifs_lpt_init(c, 1, !c->ro_mount); |
| 1283 | if (err) |
| 1284 | goto out_master; |
| 1285 | |
| 1286 | if (!c->ro_mount && c->space_fixup) { |
| 1287 | err = ubifs_fixup_free_space(c); |
| 1288 | if (err) |
| 1289 | goto out_lpt; |
| 1290 | } |
| 1291 | |
| 1292 | if (!c->ro_mount && !c->need_recovery) { |
| 1293 | /* |
| 1294 | * Set the "dirty" flag so that if we reboot uncleanly we |
| 1295 | * will notice this immediately on the next mount. |
| 1296 | */ |
| 1297 | c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); |
| 1298 | err = ubifs_write_master(c); |
| 1299 | if (err) |
| 1300 | goto out_lpt; |
| 1301 | } |
| 1302 | |
| 1303 | err = dbg_check_idx_size(c, c->bi.old_idx_sz); |
| 1304 | if (err) |
| 1305 | goto out_lpt; |
| 1306 | |
| 1307 | err = ubifs_replay_journal(c); |
| 1308 | if (err) |
| 1309 | goto out_journal; |
| 1310 | |
| 1311 | /* Calculate 'min_idx_lebs' after journal replay */ |
| 1312 | c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); |
| 1313 | |
| 1314 | err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount); |
| 1315 | if (err) |
| 1316 | goto out_orphans; |
| 1317 | |
| 1318 | if (!c->ro_mount) { |
| 1319 | int lnum; |
| 1320 | |
| 1321 | err = check_free_space(c); |
| 1322 | if (err) |
| 1323 | goto out_orphans; |
| 1324 | |
| 1325 | /* Check for enough log space */ |
| 1326 | lnum = c->lhead_lnum + 1; |
| 1327 | if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) |
| 1328 | lnum = UBIFS_LOG_LNUM; |
| 1329 | if (lnum == c->ltail_lnum) { |
| 1330 | err = ubifs_consolidate_log(c); |
| 1331 | if (err) |
| 1332 | goto out_orphans; |
| 1333 | } |
| 1334 | |
| 1335 | if (c->need_recovery) { |
| 1336 | err = ubifs_recover_size(c); |
| 1337 | if (err) |
| 1338 | goto out_orphans; |
| 1339 | err = ubifs_rcvry_gc_commit(c); |
| 1340 | if (err) |
| 1341 | goto out_orphans; |
| 1342 | } else { |
| 1343 | err = take_gc_lnum(c); |
| 1344 | if (err) |
| 1345 | goto out_orphans; |
| 1346 | |
| 1347 | /* |
| 1348 | * GC LEB may contain garbage if there was an unclean |
| 1349 | * reboot, and it should be un-mapped. |
| 1350 | */ |
| 1351 | err = ubifs_leb_unmap(c, c->gc_lnum); |
| 1352 | if (err) |
| 1353 | goto out_orphans; |
| 1354 | } |
| 1355 | |
| 1356 | err = dbg_check_lprops(c); |
| 1357 | if (err) |
| 1358 | goto out_orphans; |
| 1359 | } else if (c->need_recovery) { |
| 1360 | err = ubifs_recover_size(c); |
| 1361 | if (err) |
| 1362 | goto out_orphans; |
| 1363 | } else { |
| 1364 | /* |
| 1365 | * Even if we mount read-only, we have to set space in GC LEB |
| 1366 | * to proper value because this affects UBIFS free space |
| 1367 | * reporting. We do not want to have a situation when |
| 1368 | * re-mounting from R/O to R/W changes amount of free space. |
| 1369 | */ |
| 1370 | err = take_gc_lnum(c); |
| 1371 | if (err) |
| 1372 | goto out_orphans; |
| 1373 | } |
| 1374 | |
| 1375 | spin_lock(&ubifs_infos_lock); |
| 1376 | list_add_tail(&c->infos_list, &ubifs_infos); |
| 1377 | spin_unlock(&ubifs_infos_lock); |
| 1378 | |
| 1379 | if (c->need_recovery) { |
| 1380 | if (c->ro_mount) |
| 1381 | ubifs_msg(c, "recovery deferred"); |
| 1382 | else { |
| 1383 | c->need_recovery = 0; |
| 1384 | ubifs_msg(c, "recovery completed"); |
| 1385 | /* |
| 1386 | * GC LEB has to be empty and taken at this point. But |
| 1387 | * the journal head LEBs may also be accounted as |
| 1388 | * "empty taken" if they are empty. |
| 1389 | */ |
| 1390 | ubifs_assert(c->lst.taken_empty_lebs > 0); |
| 1391 | } |
| 1392 | } else |
| 1393 | ubifs_assert(c->lst.taken_empty_lebs > 0); |
| 1394 | |
| 1395 | err = dbg_check_filesystem(c); |
| 1396 | if (err) |
| 1397 | goto out_infos; |
| 1398 | |
| 1399 | err = dbg_debugfs_init_fs(c); |
| 1400 | if (err) |
| 1401 | goto out_infos; |
| 1402 | |
| 1403 | c->mounting = 0; |
| 1404 | |
| 1405 | ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s", |
| 1406 | c->vi.ubi_num, c->vi.vol_id, c->vi.name, |
| 1407 | c->ro_mount ? ", R/O mode" : ""); |
| 1408 | x = (long long)c->main_lebs * c->leb_size; |
| 1409 | y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes; |
| 1410 | ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes", |
| 1411 | c->leb_size, c->leb_size >> 10, c->min_io_size, |
| 1412 | c->max_write_size); |
| 1413 | ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)", |
| 1414 | x, x >> 20, c->main_lebs, |
| 1415 | y, y >> 20, c->log_lebs + c->max_bud_cnt); |
| 1416 | ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)", |
| 1417 | c->report_rp_size, c->report_rp_size >> 10); |
| 1418 | ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s", |
| 1419 | c->fmt_version, c->ro_compat_version, |
| 1420 | UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid, |
| 1421 | c->big_lpt ? ", big LPT model" : ", small LPT model"); |
| 1422 | |
| 1423 | dbg_gen("default compressor: %s", ubifs_compr_name(c->default_compr)); |
| 1424 | dbg_gen("data journal heads: %d", |
| 1425 | c->jhead_cnt - NONDATA_JHEADS_CNT); |
| 1426 | dbg_gen("log LEBs: %d (%d - %d)", |
| 1427 | c->log_lebs, UBIFS_LOG_LNUM, c->log_last); |
| 1428 | dbg_gen("LPT area LEBs: %d (%d - %d)", |
| 1429 | c->lpt_lebs, c->lpt_first, c->lpt_last); |
| 1430 | dbg_gen("orphan area LEBs: %d (%d - %d)", |
| 1431 | c->orph_lebs, c->orph_first, c->orph_last); |
| 1432 | dbg_gen("main area LEBs: %d (%d - %d)", |
| 1433 | c->main_lebs, c->main_first, c->leb_cnt - 1); |
| 1434 | dbg_gen("index LEBs: %d", c->lst.idx_lebs); |
| 1435 | dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)", |
| 1436 | c->bi.old_idx_sz, c->bi.old_idx_sz >> 10, |
| 1437 | c->bi.old_idx_sz >> 20); |
| 1438 | dbg_gen("key hash type: %d", c->key_hash_type); |
| 1439 | dbg_gen("tree fanout: %d", c->fanout); |
| 1440 | dbg_gen("reserved GC LEB: %d", c->gc_lnum); |
| 1441 | dbg_gen("max. znode size %d", c->max_znode_sz); |
| 1442 | dbg_gen("max. index node size %d", c->max_idx_node_sz); |
| 1443 | dbg_gen("node sizes: data %zu, inode %zu, dentry %zu", |
| 1444 | UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ); |
| 1445 | dbg_gen("node sizes: trun %zu, sb %zu, master %zu", |
| 1446 | UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ); |
| 1447 | dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu", |
| 1448 | UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ); |
| 1449 | dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d", |
| 1450 | UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ, |
| 1451 | UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout)); |
| 1452 | dbg_gen("dead watermark: %d", c->dead_wm); |
| 1453 | dbg_gen("dark watermark: %d", c->dark_wm); |
| 1454 | dbg_gen("LEB overhead: %d", c->leb_overhead); |
| 1455 | x = (long long)c->main_lebs * c->dark_wm; |
| 1456 | dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)", |
| 1457 | x, x >> 10, x >> 20); |
| 1458 | dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)", |
| 1459 | c->max_bud_bytes, c->max_bud_bytes >> 10, |
| 1460 | c->max_bud_bytes >> 20); |
| 1461 | dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)", |
| 1462 | c->bg_bud_bytes, c->bg_bud_bytes >> 10, |
| 1463 | c->bg_bud_bytes >> 20); |
| 1464 | dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)", |
| 1465 | c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20); |
| 1466 | dbg_gen("max. seq. number: %llu", c->max_sqnum); |
| 1467 | dbg_gen("commit number: %llu", c->cmt_no); |
| 1468 | |
| 1469 | return 0; |
| 1470 | |
| 1471 | out_infos: |
| 1472 | spin_lock(&ubifs_infos_lock); |
| 1473 | list_del(&c->infos_list); |
| 1474 | spin_unlock(&ubifs_infos_lock); |
| 1475 | out_orphans: |
| 1476 | free_orphans(c); |
| 1477 | out_journal: |
| 1478 | destroy_journal(c); |
| 1479 | out_lpt: |
| 1480 | ubifs_lpt_free(c, 0); |
| 1481 | out_master: |
| 1482 | kfree(c->mst_node); |
| 1483 | kfree(c->rcvrd_mst_node); |
| 1484 | if (c->bgt) |
| 1485 | kthread_stop(c->bgt); |
| 1486 | out_wbufs: |
| 1487 | free_wbufs(c); |
| 1488 | out_cbuf: |
| 1489 | kfree(c->cbuf); |
| 1490 | out_free: |
| 1491 | kfree(c->write_reserve_buf); |
| 1492 | kfree(c->bu.buf); |
| 1493 | vfree(c->ileb_buf); |
| 1494 | vfree(c->sbuf); |
| 1495 | kfree(c->bottom_up_buf); |
| 1496 | ubifs_debugging_exit(c); |
| 1497 | return err; |
| 1498 | } |
| 1499 | |
| 1500 | /** |
| 1501 | * ubifs_umount - un-mount UBIFS file-system. |
| 1502 | * @c: UBIFS file-system description object |
| 1503 | * |
| 1504 | * Note, this function is called to free allocated resourced when un-mounting, |
| 1505 | * as well as free resources when an error occurred while we were half way |
| 1506 | * through mounting (error path cleanup function). So it has to make sure the |
| 1507 | * resource was actually allocated before freeing it. |
| 1508 | */ |
| 1509 | static void ubifs_umount(struct ubifs_info *c) |
| 1510 | { |
| 1511 | dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num, |
| 1512 | c->vi.vol_id); |
| 1513 | |
| 1514 | dbg_debugfs_exit_fs(c); |
| 1515 | spin_lock(&ubifs_infos_lock); |
| 1516 | list_del(&c->infos_list); |
| 1517 | spin_unlock(&ubifs_infos_lock); |
| 1518 | |
| 1519 | if (c->bgt) |
| 1520 | kthread_stop(c->bgt); |
| 1521 | |
| 1522 | destroy_journal(c); |
| 1523 | free_wbufs(c); |
| 1524 | free_orphans(c); |
| 1525 | ubifs_lpt_free(c, 0); |
| 1526 | |
| 1527 | kfree(c->cbuf); |
| 1528 | kfree(c->rcvrd_mst_node); |
| 1529 | kfree(c->mst_node); |
| 1530 | kfree(c->write_reserve_buf); |
| 1531 | kfree(c->bu.buf); |
| 1532 | vfree(c->ileb_buf); |
| 1533 | vfree(c->sbuf); |
| 1534 | kfree(c->bottom_up_buf); |
| 1535 | ubifs_debugging_exit(c); |
| 1536 | } |
| 1537 | |
| 1538 | /** |
| 1539 | * ubifs_remount_rw - re-mount in read-write mode. |
| 1540 | * @c: UBIFS file-system description object |
| 1541 | * |
| 1542 | * UBIFS avoids allocating many unnecessary resources when mounted in read-only |
| 1543 | * mode. This function allocates the needed resources and re-mounts UBIFS in |
| 1544 | * read-write mode. |
| 1545 | */ |
| 1546 | static int ubifs_remount_rw(struct ubifs_info *c) |
| 1547 | { |
| 1548 | int err, lnum; |
| 1549 | |
| 1550 | if (c->rw_incompat) { |
| 1551 | ubifs_err(c, "the file-system is not R/W-compatible"); |
| 1552 | ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d", |
| 1553 | c->fmt_version, c->ro_compat_version, |
| 1554 | UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION); |
| 1555 | return -EROFS; |
| 1556 | } |
| 1557 | |
| 1558 | mutex_lock(&c->umount_mutex); |
| 1559 | dbg_save_space_info(c); |
| 1560 | c->remounting_rw = 1; |
| 1561 | c->ro_mount = 0; |
| 1562 | |
| 1563 | if (c->space_fixup) { |
| 1564 | err = ubifs_fixup_free_space(c); |
| 1565 | if (err) |
| 1566 | goto out; |
| 1567 | } |
| 1568 | |
| 1569 | err = check_free_space(c); |
| 1570 | if (err) |
| 1571 | goto out; |
| 1572 | |
| 1573 | if (c->old_leb_cnt != c->leb_cnt) { |
| 1574 | struct ubifs_sb_node *sup; |
| 1575 | |
| 1576 | sup = ubifs_read_sb_node(c); |
| 1577 | if (IS_ERR(sup)) { |
| 1578 | err = PTR_ERR(sup); |
| 1579 | goto out; |
| 1580 | } |
| 1581 | sup->leb_cnt = cpu_to_le32(c->leb_cnt); |
| 1582 | err = ubifs_write_sb_node(c, sup); |
| 1583 | kfree(sup); |
| 1584 | if (err) |
| 1585 | goto out; |
| 1586 | } |
| 1587 | |
| 1588 | if (c->need_recovery) { |
| 1589 | ubifs_msg(c, "completing deferred recovery"); |
| 1590 | err = ubifs_write_rcvrd_mst_node(c); |
| 1591 | if (err) |
| 1592 | goto out; |
| 1593 | err = ubifs_recover_size(c); |
| 1594 | if (err) |
| 1595 | goto out; |
| 1596 | err = ubifs_clean_lebs(c, c->sbuf); |
| 1597 | if (err) |
| 1598 | goto out; |
| 1599 | err = ubifs_recover_inl_heads(c, c->sbuf); |
| 1600 | if (err) |
| 1601 | goto out; |
| 1602 | } else { |
| 1603 | /* A readonly mount is not allowed to have orphans */ |
| 1604 | ubifs_assert(c->tot_orphans == 0); |
| 1605 | err = ubifs_clear_orphans(c); |
| 1606 | if (err) |
| 1607 | goto out; |
| 1608 | } |
| 1609 | |
| 1610 | if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) { |
| 1611 | c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); |
| 1612 | err = ubifs_write_master(c); |
| 1613 | if (err) |
| 1614 | goto out; |
| 1615 | } |
| 1616 | |
| 1617 | c->ileb_buf = vmalloc(c->leb_size); |
| 1618 | if (!c->ileb_buf) { |
| 1619 | err = -ENOMEM; |
| 1620 | goto out; |
| 1621 | } |
| 1622 | |
| 1623 | c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL); |
| 1624 | if (!c->write_reserve_buf) { |
| 1625 | err = -ENOMEM; |
| 1626 | goto out; |
| 1627 | } |
| 1628 | |
| 1629 | err = ubifs_lpt_init(c, 0, 1); |
| 1630 | if (err) |
| 1631 | goto out; |
| 1632 | |
| 1633 | /* Create background thread */ |
| 1634 | c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); |
| 1635 | if (IS_ERR(c->bgt)) { |
| 1636 | err = PTR_ERR(c->bgt); |
| 1637 | c->bgt = NULL; |
| 1638 | ubifs_err(c, "cannot spawn \"%s\", error %d", |
| 1639 | c->bgt_name, err); |
| 1640 | goto out; |
| 1641 | } |
| 1642 | wake_up_process(c->bgt); |
| 1643 | |
| 1644 | c->orph_buf = vmalloc(c->leb_size); |
| 1645 | if (!c->orph_buf) { |
| 1646 | err = -ENOMEM; |
| 1647 | goto out; |
| 1648 | } |
| 1649 | |
| 1650 | /* Check for enough log space */ |
| 1651 | lnum = c->lhead_lnum + 1; |
| 1652 | if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) |
| 1653 | lnum = UBIFS_LOG_LNUM; |
| 1654 | if (lnum == c->ltail_lnum) { |
| 1655 | err = ubifs_consolidate_log(c); |
| 1656 | if (err) |
| 1657 | goto out; |
| 1658 | } |
| 1659 | |
| 1660 | if (c->need_recovery) |
| 1661 | err = ubifs_rcvry_gc_commit(c); |
| 1662 | else |
| 1663 | err = ubifs_leb_unmap(c, c->gc_lnum); |
| 1664 | if (err) |
| 1665 | goto out; |
| 1666 | |
| 1667 | dbg_gen("re-mounted read-write"); |
| 1668 | c->remounting_rw = 0; |
| 1669 | |
| 1670 | if (c->need_recovery) { |
| 1671 | c->need_recovery = 0; |
| 1672 | ubifs_msg(c, "deferred recovery completed"); |
| 1673 | } else { |
| 1674 | /* |
| 1675 | * Do not run the debugging space check if the were doing |
| 1676 | * recovery, because when we saved the information we had the |
| 1677 | * file-system in a state where the TNC and lprops has been |
| 1678 | * modified in memory, but all the I/O operations (including a |
| 1679 | * commit) were deferred. So the file-system was in |
| 1680 | * "non-committed" state. Now the file-system is in committed |
| 1681 | * state, and of course the amount of free space will change |
| 1682 | * because, for example, the old index size was imprecise. |
| 1683 | */ |
| 1684 | err = dbg_check_space_info(c); |
| 1685 | } |
| 1686 | |
| 1687 | mutex_unlock(&c->umount_mutex); |
| 1688 | return err; |
| 1689 | |
| 1690 | out: |
| 1691 | c->ro_mount = 1; |
| 1692 | vfree(c->orph_buf); |
| 1693 | c->orph_buf = NULL; |
| 1694 | if (c->bgt) { |
| 1695 | kthread_stop(c->bgt); |
| 1696 | c->bgt = NULL; |
| 1697 | } |
| 1698 | free_wbufs(c); |
| 1699 | kfree(c->write_reserve_buf); |
| 1700 | c->write_reserve_buf = NULL; |
| 1701 | vfree(c->ileb_buf); |
| 1702 | c->ileb_buf = NULL; |
| 1703 | ubifs_lpt_free(c, 1); |
| 1704 | c->remounting_rw = 0; |
| 1705 | mutex_unlock(&c->umount_mutex); |
| 1706 | return err; |
| 1707 | } |
| 1708 | |
| 1709 | /** |
| 1710 | * ubifs_remount_ro - re-mount in read-only mode. |
| 1711 | * @c: UBIFS file-system description object |
| 1712 | * |
| 1713 | * We assume VFS has stopped writing. Possibly the background thread could be |
| 1714 | * running a commit, however kthread_stop will wait in that case. |
| 1715 | */ |
| 1716 | static void ubifs_remount_ro(struct ubifs_info *c) |
| 1717 | { |
| 1718 | int i, err; |
| 1719 | |
| 1720 | ubifs_assert(!c->need_recovery); |
| 1721 | ubifs_assert(!c->ro_mount); |
| 1722 | |
| 1723 | mutex_lock(&c->umount_mutex); |
| 1724 | if (c->bgt) { |
| 1725 | kthread_stop(c->bgt); |
| 1726 | c->bgt = NULL; |
| 1727 | } |
| 1728 | |
| 1729 | dbg_save_space_info(c); |
| 1730 | |
| 1731 | for (i = 0; i < c->jhead_cnt; i++) |
| 1732 | ubifs_wbuf_sync(&c->jheads[i].wbuf); |
| 1733 | |
| 1734 | c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); |
| 1735 | c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); |
| 1736 | c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); |
| 1737 | err = ubifs_write_master(c); |
| 1738 | if (err) |
| 1739 | ubifs_ro_mode(c, err); |
| 1740 | |
| 1741 | vfree(c->orph_buf); |
| 1742 | c->orph_buf = NULL; |
| 1743 | kfree(c->write_reserve_buf); |
| 1744 | c->write_reserve_buf = NULL; |
| 1745 | vfree(c->ileb_buf); |
| 1746 | c->ileb_buf = NULL; |
| 1747 | ubifs_lpt_free(c, 1); |
| 1748 | c->ro_mount = 1; |
| 1749 | err = dbg_check_space_info(c); |
| 1750 | if (err) |
| 1751 | ubifs_ro_mode(c, err); |
| 1752 | mutex_unlock(&c->umount_mutex); |
| 1753 | } |
| 1754 | |
| 1755 | static void ubifs_put_super(struct super_block *sb) |
| 1756 | { |
| 1757 | int i; |
| 1758 | struct ubifs_info *c = sb->s_fs_info; |
| 1759 | |
| 1760 | ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num); |
| 1761 | |
| 1762 | /* |
| 1763 | * The following asserts are only valid if there has not been a failure |
| 1764 | * of the media. For example, there will be dirty inodes if we failed |
| 1765 | * to write them back because of I/O errors. |
| 1766 | */ |
| 1767 | if (!c->ro_error) { |
| 1768 | ubifs_assert(c->bi.idx_growth == 0); |
| 1769 | ubifs_assert(c->bi.dd_growth == 0); |
| 1770 | ubifs_assert(c->bi.data_growth == 0); |
| 1771 | } |
| 1772 | |
| 1773 | /* |
| 1774 | * The 'c->umount_lock' prevents races between UBIFS memory shrinker |
| 1775 | * and file system un-mount. Namely, it prevents the shrinker from |
| 1776 | * picking this superblock for shrinking - it will be just skipped if |
| 1777 | * the mutex is locked. |
| 1778 | */ |
| 1779 | mutex_lock(&c->umount_mutex); |
| 1780 | if (!c->ro_mount) { |
| 1781 | /* |
| 1782 | * First of all kill the background thread to make sure it does |
| 1783 | * not interfere with un-mounting and freeing resources. |
| 1784 | */ |
| 1785 | if (c->bgt) { |
| 1786 | kthread_stop(c->bgt); |
| 1787 | c->bgt = NULL; |
| 1788 | } |
| 1789 | |
| 1790 | /* |
| 1791 | * On fatal errors c->ro_error is set to 1, in which case we do |
| 1792 | * not write the master node. |
| 1793 | */ |
| 1794 | if (!c->ro_error) { |
| 1795 | int err; |
| 1796 | |
| 1797 | /* Synchronize write-buffers */ |
| 1798 | for (i = 0; i < c->jhead_cnt; i++) |
| 1799 | ubifs_wbuf_sync(&c->jheads[i].wbuf); |
| 1800 | |
| 1801 | /* |
| 1802 | * We are being cleanly unmounted which means the |
| 1803 | * orphans were killed - indicate this in the master |
| 1804 | * node. Also save the reserved GC LEB number. |
| 1805 | */ |
| 1806 | c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); |
| 1807 | c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); |
| 1808 | c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); |
| 1809 | err = ubifs_write_master(c); |
| 1810 | if (err) |
| 1811 | /* |
| 1812 | * Recovery will attempt to fix the master area |
| 1813 | * next mount, so we just print a message and |
| 1814 | * continue to unmount normally. |
| 1815 | */ |
| 1816 | ubifs_err(c, "failed to write master node, error %d", |
| 1817 | err); |
| 1818 | } else { |
| 1819 | for (i = 0; i < c->jhead_cnt; i++) |
| 1820 | /* Make sure write-buffer timers are canceled */ |
| 1821 | hrtimer_cancel(&c->jheads[i].wbuf.timer); |
| 1822 | } |
| 1823 | } |
| 1824 | |
| 1825 | ubifs_umount(c); |
| 1826 | bdi_destroy(&c->bdi); |
| 1827 | ubi_close_volume(c->ubi); |
| 1828 | mutex_unlock(&c->umount_mutex); |
| 1829 | } |
| 1830 | |
| 1831 | static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data) |
| 1832 | { |
| 1833 | int err; |
| 1834 | struct ubifs_info *c = sb->s_fs_info; |
| 1835 | |
| 1836 | sync_filesystem(sb); |
| 1837 | dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags); |
| 1838 | |
| 1839 | err = ubifs_parse_options(c, data, 1); |
| 1840 | if (err) { |
| 1841 | ubifs_err(c, "invalid or unknown remount parameter"); |
| 1842 | return err; |
| 1843 | } |
| 1844 | |
| 1845 | if (c->ro_mount && !(*flags & MS_RDONLY)) { |
| 1846 | if (c->ro_error) { |
| 1847 | ubifs_msg(c, "cannot re-mount R/W due to prior errors"); |
| 1848 | return -EROFS; |
| 1849 | } |
| 1850 | if (c->ro_media) { |
| 1851 | ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O"); |
| 1852 | return -EROFS; |
| 1853 | } |
| 1854 | err = ubifs_remount_rw(c); |
| 1855 | if (err) |
| 1856 | return err; |
| 1857 | } else if (!c->ro_mount && (*flags & MS_RDONLY)) { |
| 1858 | if (c->ro_error) { |
| 1859 | ubifs_msg(c, "cannot re-mount R/O due to prior errors"); |
| 1860 | return -EROFS; |
| 1861 | } |
| 1862 | ubifs_remount_ro(c); |
| 1863 | } |
| 1864 | |
| 1865 | if (c->bulk_read == 1) |
| 1866 | bu_init(c); |
| 1867 | else { |
| 1868 | dbg_gen("disable bulk-read"); |
| 1869 | kfree(c->bu.buf); |
| 1870 | c->bu.buf = NULL; |
| 1871 | } |
| 1872 | |
| 1873 | ubifs_assert(c->lst.taken_empty_lebs > 0); |
| 1874 | return 0; |
| 1875 | } |
| 1876 | |
| 1877 | const struct super_operations ubifs_super_operations = { |
| 1878 | .alloc_inode = ubifs_alloc_inode, |
| 1879 | .destroy_inode = ubifs_destroy_inode, |
| 1880 | .put_super = ubifs_put_super, |
| 1881 | .write_inode = ubifs_write_inode, |
| 1882 | .evict_inode = ubifs_evict_inode, |
| 1883 | .statfs = ubifs_statfs, |
| 1884 | .dirty_inode = ubifs_dirty_inode, |
| 1885 | .remount_fs = ubifs_remount_fs, |
| 1886 | .show_options = ubifs_show_options, |
| 1887 | .sync_fs = ubifs_sync_fs, |
| 1888 | }; |
| 1889 | |
| 1890 | /** |
| 1891 | * open_ubi - parse UBI device name string and open the UBI device. |
| 1892 | * @name: UBI volume name |
| 1893 | * @mode: UBI volume open mode |
| 1894 | * |
| 1895 | * The primary method of mounting UBIFS is by specifying the UBI volume |
| 1896 | * character device node path. However, UBIFS may also be mounted withoug any |
| 1897 | * character device node using one of the following methods: |
| 1898 | * |
| 1899 | * o ubiX_Y - mount UBI device number X, volume Y; |
| 1900 | * o ubiY - mount UBI device number 0, volume Y; |
| 1901 | * o ubiX:NAME - mount UBI device X, volume with name NAME; |
| 1902 | * o ubi:NAME - mount UBI device 0, volume with name NAME. |
| 1903 | * |
| 1904 | * Alternative '!' separator may be used instead of ':' (because some shells |
| 1905 | * like busybox may interpret ':' as an NFS host name separator). This function |
| 1906 | * returns UBI volume description object in case of success and a negative |
| 1907 | * error code in case of failure. |
| 1908 | */ |
| 1909 | static struct ubi_volume_desc *open_ubi(const char *name, int mode) |
| 1910 | { |
| 1911 | struct ubi_volume_desc *ubi; |
| 1912 | int dev, vol; |
| 1913 | char *endptr; |
| 1914 | |
| 1915 | /* First, try to open using the device node path method */ |
| 1916 | ubi = ubi_open_volume_path(name, mode); |
| 1917 | if (!IS_ERR(ubi)) |
| 1918 | return ubi; |
| 1919 | |
| 1920 | /* Try the "nodev" method */ |
| 1921 | if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i') |
| 1922 | return ERR_PTR(-EINVAL); |
| 1923 | |
| 1924 | /* ubi:NAME method */ |
| 1925 | if ((name[3] == ':' || name[3] == '!') && name[4] != '\0') |
| 1926 | return ubi_open_volume_nm(0, name + 4, mode); |
| 1927 | |
| 1928 | if (!isdigit(name[3])) |
| 1929 | return ERR_PTR(-EINVAL); |
| 1930 | |
| 1931 | dev = simple_strtoul(name + 3, &endptr, 0); |
| 1932 | |
| 1933 | /* ubiY method */ |
| 1934 | if (*endptr == '\0') |
| 1935 | return ubi_open_volume(0, dev, mode); |
| 1936 | |
| 1937 | /* ubiX_Y method */ |
| 1938 | if (*endptr == '_' && isdigit(endptr[1])) { |
| 1939 | vol = simple_strtoul(endptr + 1, &endptr, 0); |
| 1940 | if (*endptr != '\0') |
| 1941 | return ERR_PTR(-EINVAL); |
| 1942 | return ubi_open_volume(dev, vol, mode); |
| 1943 | } |
| 1944 | |
| 1945 | /* ubiX:NAME method */ |
| 1946 | if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0') |
| 1947 | return ubi_open_volume_nm(dev, ++endptr, mode); |
| 1948 | |
| 1949 | return ERR_PTR(-EINVAL); |
| 1950 | } |
| 1951 | |
| 1952 | static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi) |
| 1953 | { |
| 1954 | struct ubifs_info *c; |
| 1955 | |
| 1956 | c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL); |
| 1957 | if (c) { |
| 1958 | spin_lock_init(&c->cnt_lock); |
| 1959 | spin_lock_init(&c->cs_lock); |
| 1960 | spin_lock_init(&c->buds_lock); |
| 1961 | spin_lock_init(&c->space_lock); |
| 1962 | spin_lock_init(&c->orphan_lock); |
| 1963 | init_rwsem(&c->commit_sem); |
| 1964 | mutex_init(&c->lp_mutex); |
| 1965 | mutex_init(&c->tnc_mutex); |
| 1966 | mutex_init(&c->log_mutex); |
| 1967 | mutex_init(&c->umount_mutex); |
| 1968 | mutex_init(&c->bu_mutex); |
| 1969 | mutex_init(&c->write_reserve_mutex); |
| 1970 | init_waitqueue_head(&c->cmt_wq); |
| 1971 | c->buds = RB_ROOT; |
| 1972 | c->old_idx = RB_ROOT; |
| 1973 | c->size_tree = RB_ROOT; |
| 1974 | c->orph_tree = RB_ROOT; |
| 1975 | INIT_LIST_HEAD(&c->infos_list); |
| 1976 | INIT_LIST_HEAD(&c->idx_gc); |
| 1977 | INIT_LIST_HEAD(&c->replay_list); |
| 1978 | INIT_LIST_HEAD(&c->replay_buds); |
| 1979 | INIT_LIST_HEAD(&c->uncat_list); |
| 1980 | INIT_LIST_HEAD(&c->empty_list); |
| 1981 | INIT_LIST_HEAD(&c->freeable_list); |
| 1982 | INIT_LIST_HEAD(&c->frdi_idx_list); |
| 1983 | INIT_LIST_HEAD(&c->unclean_leb_list); |
| 1984 | INIT_LIST_HEAD(&c->old_buds); |
| 1985 | INIT_LIST_HEAD(&c->orph_list); |
| 1986 | INIT_LIST_HEAD(&c->orph_new); |
| 1987 | c->no_chk_data_crc = 1; |
| 1988 | |
| 1989 | c->highest_inum = UBIFS_FIRST_INO; |
| 1990 | c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM; |
| 1991 | |
| 1992 | ubi_get_volume_info(ubi, &c->vi); |
| 1993 | ubi_get_device_info(c->vi.ubi_num, &c->di); |
| 1994 | } |
| 1995 | return c; |
| 1996 | } |
| 1997 | |
| 1998 | static int ubifs_fill_super(struct super_block *sb, void *data, int silent) |
| 1999 | { |
| 2000 | struct ubifs_info *c = sb->s_fs_info; |
| 2001 | struct inode *root; |
| 2002 | int err; |
| 2003 | |
| 2004 | c->vfs_sb = sb; |
| 2005 | /* Re-open the UBI device in read-write mode */ |
| 2006 | c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE); |
| 2007 | if (IS_ERR(c->ubi)) { |
| 2008 | err = PTR_ERR(c->ubi); |
| 2009 | goto out; |
| 2010 | } |
| 2011 | |
| 2012 | /* |
| 2013 | * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For |
| 2014 | * UBIFS, I/O is not deferred, it is done immediately in readpage, |
| 2015 | * which means the user would have to wait not just for their own I/O |
| 2016 | * but the read-ahead I/O as well i.e. completely pointless. |
| 2017 | * |
| 2018 | * Read-ahead will be disabled because @c->bdi.ra_pages is 0. |
| 2019 | */ |
| 2020 | c->bdi.name = "ubifs", |
| 2021 | c->bdi.capabilities = 0; |
| 2022 | err = bdi_init(&c->bdi); |
| 2023 | if (err) |
| 2024 | goto out_close; |
| 2025 | err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d", |
| 2026 | c->vi.ubi_num, c->vi.vol_id); |
| 2027 | if (err) |
| 2028 | goto out_bdi; |
| 2029 | |
| 2030 | err = ubifs_parse_options(c, data, 0); |
| 2031 | if (err) |
| 2032 | goto out_bdi; |
| 2033 | |
| 2034 | sb->s_bdi = &c->bdi; |
| 2035 | sb->s_fs_info = c; |
| 2036 | sb->s_magic = UBIFS_SUPER_MAGIC; |
| 2037 | sb->s_blocksize = UBIFS_BLOCK_SIZE; |
| 2038 | sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT; |
| 2039 | sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c); |
| 2040 | if (c->max_inode_sz > MAX_LFS_FILESIZE) |
| 2041 | sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE; |
| 2042 | sb->s_op = &ubifs_super_operations; |
| 2043 | |
| 2044 | mutex_lock(&c->umount_mutex); |
| 2045 | err = mount_ubifs(c); |
| 2046 | if (err) { |
| 2047 | ubifs_assert(err < 0); |
| 2048 | goto out_unlock; |
| 2049 | } |
| 2050 | |
| 2051 | /* Read the root inode */ |
| 2052 | root = ubifs_iget(sb, UBIFS_ROOT_INO); |
| 2053 | if (IS_ERR(root)) { |
| 2054 | err = PTR_ERR(root); |
| 2055 | goto out_umount; |
| 2056 | } |
| 2057 | |
| 2058 | sb->s_root = d_make_root(root); |
| 2059 | if (!sb->s_root) { |
| 2060 | err = -ENOMEM; |
| 2061 | goto out_umount; |
| 2062 | } |
| 2063 | |
| 2064 | mutex_unlock(&c->umount_mutex); |
| 2065 | return 0; |
| 2066 | |
| 2067 | out_umount: |
| 2068 | ubifs_umount(c); |
| 2069 | out_unlock: |
| 2070 | mutex_unlock(&c->umount_mutex); |
| 2071 | out_bdi: |
| 2072 | bdi_destroy(&c->bdi); |
| 2073 | out_close: |
| 2074 | ubi_close_volume(c->ubi); |
| 2075 | out: |
| 2076 | return err; |
| 2077 | } |
| 2078 | |
| 2079 | static int sb_test(struct super_block *sb, void *data) |
| 2080 | { |
| 2081 | struct ubifs_info *c1 = data; |
| 2082 | struct ubifs_info *c = sb->s_fs_info; |
| 2083 | |
| 2084 | return c->vi.cdev == c1->vi.cdev; |
| 2085 | } |
| 2086 | |
| 2087 | static int sb_set(struct super_block *sb, void *data) |
| 2088 | { |
| 2089 | sb->s_fs_info = data; |
| 2090 | return set_anon_super(sb, NULL); |
| 2091 | } |
| 2092 | |
| 2093 | static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags, |
| 2094 | const char *name, void *data) |
| 2095 | { |
| 2096 | struct ubi_volume_desc *ubi; |
| 2097 | struct ubifs_info *c; |
| 2098 | struct super_block *sb; |
| 2099 | int err; |
| 2100 | |
| 2101 | dbg_gen("name %s, flags %#x", name, flags); |
| 2102 | |
| 2103 | /* |
| 2104 | * Get UBI device number and volume ID. Mount it read-only so far |
| 2105 | * because this might be a new mount point, and UBI allows only one |
| 2106 | * read-write user at a time. |
| 2107 | */ |
| 2108 | ubi = open_ubi(name, UBI_READONLY); |
| 2109 | if (IS_ERR(ubi)) { |
| 2110 | pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d", |
| 2111 | current->pid, name, (int)PTR_ERR(ubi)); |
| 2112 | return ERR_CAST(ubi); |
| 2113 | } |
| 2114 | |
| 2115 | c = alloc_ubifs_info(ubi); |
| 2116 | if (!c) { |
| 2117 | err = -ENOMEM; |
| 2118 | goto out_close; |
| 2119 | } |
| 2120 | |
| 2121 | dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id); |
| 2122 | |
| 2123 | sb = sget(fs_type, sb_test, sb_set, flags, c); |
| 2124 | if (IS_ERR(sb)) { |
| 2125 | err = PTR_ERR(sb); |
| 2126 | kfree(c); |
| 2127 | goto out_close; |
| 2128 | } |
| 2129 | |
| 2130 | if (sb->s_root) { |
| 2131 | struct ubifs_info *c1 = sb->s_fs_info; |
| 2132 | kfree(c); |
| 2133 | /* A new mount point for already mounted UBIFS */ |
| 2134 | dbg_gen("this ubi volume is already mounted"); |
| 2135 | if (!!(flags & MS_RDONLY) != c1->ro_mount) { |
| 2136 | err = -EBUSY; |
| 2137 | goto out_deact; |
| 2138 | } |
| 2139 | } else { |
| 2140 | err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0); |
| 2141 | if (err) |
| 2142 | goto out_deact; |
| 2143 | /* We do not support atime */ |
| 2144 | sb->s_flags |= MS_ACTIVE; |
| 2145 | #ifndef CONFIG_UBIFS_ATIME_SUPPORT |
| 2146 | sb->s_flags |= MS_NOATIME; |
| 2147 | #else |
| 2148 | ubifs_msg(c, "full atime support is enabled."); |
| 2149 | #endif |
| 2150 | } |
| 2151 | |
| 2152 | /* 'fill_super()' opens ubi again so we must close it here */ |
| 2153 | ubi_close_volume(ubi); |
| 2154 | |
| 2155 | return dget(sb->s_root); |
| 2156 | |
| 2157 | out_deact: |
| 2158 | deactivate_locked_super(sb); |
| 2159 | out_close: |
| 2160 | ubi_close_volume(ubi); |
| 2161 | return ERR_PTR(err); |
| 2162 | } |
| 2163 | |
| 2164 | static void kill_ubifs_super(struct super_block *s) |
| 2165 | { |
| 2166 | struct ubifs_info *c = s->s_fs_info; |
| 2167 | kill_anon_super(s); |
| 2168 | kfree(c); |
| 2169 | } |
| 2170 | |
| 2171 | static struct file_system_type ubifs_fs_type = { |
| 2172 | .name = "ubifs", |
| 2173 | .owner = THIS_MODULE, |
| 2174 | .mount = ubifs_mount, |
| 2175 | .kill_sb = kill_ubifs_super, |
| 2176 | }; |
| 2177 | MODULE_ALIAS_FS("ubifs"); |
| 2178 | |
| 2179 | /* |
| 2180 | * Inode slab cache constructor. |
| 2181 | */ |
| 2182 | static void inode_slab_ctor(void *obj) |
| 2183 | { |
| 2184 | struct ubifs_inode *ui = obj; |
| 2185 | inode_init_once(&ui->vfs_inode); |
| 2186 | } |
| 2187 | |
| 2188 | static int __init ubifs_init(void) |
| 2189 | { |
| 2190 | int err; |
| 2191 | |
| 2192 | BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24); |
| 2193 | |
| 2194 | /* Make sure node sizes are 8-byte aligned */ |
| 2195 | BUILD_BUG_ON(UBIFS_CH_SZ & 7); |
| 2196 | BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7); |
| 2197 | BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7); |
| 2198 | BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7); |
| 2199 | BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7); |
| 2200 | BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7); |
| 2201 | BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7); |
| 2202 | BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7); |
| 2203 | BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7); |
| 2204 | BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7); |
| 2205 | BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7); |
| 2206 | |
| 2207 | BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7); |
| 2208 | BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7); |
| 2209 | BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7); |
| 2210 | BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7); |
| 2211 | BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7); |
| 2212 | BUILD_BUG_ON(MIN_WRITE_SZ & 7); |
| 2213 | |
| 2214 | /* Check min. node size */ |
| 2215 | BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ); |
| 2216 | BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ); |
| 2217 | BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ); |
| 2218 | BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ); |
| 2219 | |
| 2220 | BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ); |
| 2221 | BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ); |
| 2222 | BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ); |
| 2223 | BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ); |
| 2224 | |
| 2225 | /* Defined node sizes */ |
| 2226 | BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096); |
| 2227 | BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512); |
| 2228 | BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160); |
| 2229 | BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64); |
| 2230 | |
| 2231 | /* |
| 2232 | * We use 2 bit wide bit-fields to store compression type, which should |
| 2233 | * be amended if more compressors are added. The bit-fields are: |
| 2234 | * @compr_type in 'struct ubifs_inode', @default_compr in |
| 2235 | * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'. |
| 2236 | */ |
| 2237 | BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4); |
| 2238 | |
| 2239 | /* |
| 2240 | * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to |
| 2241 | * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2. |
| 2242 | */ |
| 2243 | if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) { |
| 2244 | pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes", |
| 2245 | current->pid, (unsigned int)PAGE_CACHE_SIZE); |
| 2246 | return -EINVAL; |
| 2247 | } |
| 2248 | |
| 2249 | ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab", |
| 2250 | sizeof(struct ubifs_inode), 0, |
| 2251 | SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT, |
| 2252 | &inode_slab_ctor); |
| 2253 | if (!ubifs_inode_slab) |
| 2254 | return -ENOMEM; |
| 2255 | |
| 2256 | err = register_shrinker(&ubifs_shrinker_info); |
| 2257 | if (err) |
| 2258 | goto out_slab; |
| 2259 | |
| 2260 | err = ubifs_compressors_init(); |
| 2261 | if (err) |
| 2262 | goto out_shrinker; |
| 2263 | |
| 2264 | err = dbg_debugfs_init(); |
| 2265 | if (err) |
| 2266 | goto out_compr; |
| 2267 | |
| 2268 | err = register_filesystem(&ubifs_fs_type); |
| 2269 | if (err) { |
| 2270 | pr_err("UBIFS error (pid %d): cannot register file system, error %d", |
| 2271 | current->pid, err); |
| 2272 | goto out_dbg; |
| 2273 | } |
| 2274 | return 0; |
| 2275 | |
| 2276 | out_dbg: |
| 2277 | dbg_debugfs_exit(); |
| 2278 | out_compr: |
| 2279 | ubifs_compressors_exit(); |
| 2280 | out_shrinker: |
| 2281 | unregister_shrinker(&ubifs_shrinker_info); |
| 2282 | out_slab: |
| 2283 | kmem_cache_destroy(ubifs_inode_slab); |
| 2284 | return err; |
| 2285 | } |
| 2286 | /* late_initcall to let compressors initialize first */ |
| 2287 | late_initcall(ubifs_init); |
| 2288 | |
| 2289 | static void __exit ubifs_exit(void) |
| 2290 | { |
| 2291 | ubifs_assert(list_empty(&ubifs_infos)); |
| 2292 | ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0); |
| 2293 | |
| 2294 | dbg_debugfs_exit(); |
| 2295 | ubifs_compressors_exit(); |
| 2296 | unregister_shrinker(&ubifs_shrinker_info); |
| 2297 | |
| 2298 | /* |
| 2299 | * Make sure all delayed rcu free inodes are flushed before we |
| 2300 | * destroy cache. |
| 2301 | */ |
| 2302 | rcu_barrier(); |
| 2303 | kmem_cache_destroy(ubifs_inode_slab); |
| 2304 | unregister_filesystem(&ubifs_fs_type); |
| 2305 | } |
| 2306 | module_exit(ubifs_exit); |
| 2307 | |
| 2308 | MODULE_LICENSE("GPL"); |
| 2309 | MODULE_VERSION(__stringify(UBIFS_VERSION)); |
| 2310 | MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter"); |
| 2311 | MODULE_DESCRIPTION("UBIFS - UBI File System"); |