blob: a0189ba67fde721a824cc7c8db4b1f015197059e [file] [log] [blame]
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2001
19 *
20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
21 *
22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24 * Papers:
25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27 *
28 * For detailed explanation of Read-Copy Update mechanism see -
29 * http://lse.sourceforge.net/locking/rcupdate.html
30 *
31 */
32
33#ifndef __LINUX_RCUPDATE_H
34#define __LINUX_RCUPDATE_H
35
36#include <linux/types.h>
37#include <linux/cache.h>
38#include <linux/spinlock.h>
39#include <linux/threads.h>
40#include <linux/cpumask.h>
41#include <linux/seqlock.h>
42#include <linux/lockdep.h>
43#include <linux/completion.h>
44#include <linux/debugobjects.h>
45#include <linux/bug.h>
46#include <linux/compiler.h>
47#include <linux/ktime.h>
48
49#include <asm/barrier.h>
50
51extern int rcu_expedited; /* for sysctl */
52
53#ifdef CONFIG_TINY_RCU
54/* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
55static inline bool rcu_gp_is_expedited(void) /* Internal RCU use. */
56{
57 return false;
58}
59
60static inline void rcu_expedite_gp(void)
61{
62}
63
64static inline void rcu_unexpedite_gp(void)
65{
66}
67#else /* #ifdef CONFIG_TINY_RCU */
68bool rcu_gp_is_expedited(void); /* Internal RCU use. */
69void rcu_expedite_gp(void);
70void rcu_unexpedite_gp(void);
71#endif /* #else #ifdef CONFIG_TINY_RCU */
72
73enum rcutorture_type {
74 RCU_FLAVOR,
75 RCU_BH_FLAVOR,
76 RCU_SCHED_FLAVOR,
77 RCU_TASKS_FLAVOR,
78 SRCU_FLAVOR,
79 INVALID_RCU_FLAVOR
80};
81
82#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
83void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
84 unsigned long *gpnum, unsigned long *completed);
85void rcutorture_record_test_transition(void);
86void rcutorture_record_progress(unsigned long vernum);
87void do_trace_rcu_torture_read(const char *rcutorturename,
88 struct rcu_head *rhp,
89 unsigned long secs,
90 unsigned long c_old,
91 unsigned long c);
92#else
93static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
94 int *flags,
95 unsigned long *gpnum,
96 unsigned long *completed)
97{
98 *flags = 0;
99 *gpnum = 0;
100 *completed = 0;
101}
102static inline void rcutorture_record_test_transition(void)
103{
104}
105static inline void rcutorture_record_progress(unsigned long vernum)
106{
107}
108#ifdef CONFIG_RCU_TRACE
109void do_trace_rcu_torture_read(const char *rcutorturename,
110 struct rcu_head *rhp,
111 unsigned long secs,
112 unsigned long c_old,
113 unsigned long c);
114#else
115#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
116 do { } while (0)
117#endif
118#endif
119
120#define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b))
121#define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b))
122#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
123#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
124#define ulong2long(a) (*(long *)(&(a)))
125
126/* Exported common interfaces */
127
128#ifdef CONFIG_PREEMPT_RCU
129
130/**
131 * call_rcu() - Queue an RCU callback for invocation after a grace period.
132 * @head: structure to be used for queueing the RCU updates.
133 * @func: actual callback function to be invoked after the grace period
134 *
135 * The callback function will be invoked some time after a full grace
136 * period elapses, in other words after all pre-existing RCU read-side
137 * critical sections have completed. However, the callback function
138 * might well execute concurrently with RCU read-side critical sections
139 * that started after call_rcu() was invoked. RCU read-side critical
140 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
141 * and may be nested.
142 *
143 * Note that all CPUs must agree that the grace period extended beyond
144 * all pre-existing RCU read-side critical section. On systems with more
145 * than one CPU, this means that when "func()" is invoked, each CPU is
146 * guaranteed to have executed a full memory barrier since the end of its
147 * last RCU read-side critical section whose beginning preceded the call
148 * to call_rcu(). It also means that each CPU executing an RCU read-side
149 * critical section that continues beyond the start of "func()" must have
150 * executed a memory barrier after the call_rcu() but before the beginning
151 * of that RCU read-side critical section. Note that these guarantees
152 * include CPUs that are offline, idle, or executing in user mode, as
153 * well as CPUs that are executing in the kernel.
154 *
155 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
156 * resulting RCU callback function "func()", then both CPU A and CPU B are
157 * guaranteed to execute a full memory barrier during the time interval
158 * between the call to call_rcu() and the invocation of "func()" -- even
159 * if CPU A and CPU B are the same CPU (but again only if the system has
160 * more than one CPU).
161 */
162void call_rcu(struct rcu_head *head,
163 rcu_callback_t func);
164
165#else /* #ifdef CONFIG_PREEMPT_RCU */
166
167/* In classic RCU, call_rcu() is just call_rcu_sched(). */
168#define call_rcu call_rcu_sched
169
170#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
171
172/**
173 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
174 * @head: structure to be used for queueing the RCU updates.
175 * @func: actual callback function to be invoked after the grace period
176 *
177 * The callback function will be invoked some time after a full grace
178 * period elapses, in other words after all currently executing RCU
179 * read-side critical sections have completed. call_rcu_bh() assumes
180 * that the read-side critical sections end on completion of a softirq
181 * handler. This means that read-side critical sections in process
182 * context must not be interrupted by softirqs. This interface is to be
183 * used when most of the read-side critical sections are in softirq context.
184 * RCU read-side critical sections are delimited by :
185 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
186 * OR
187 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
188 * These may be nested.
189 *
190 * See the description of call_rcu() for more detailed information on
191 * memory ordering guarantees.
192 */
193void call_rcu_bh(struct rcu_head *head,
194 rcu_callback_t func);
195
196/**
197 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
198 * @head: structure to be used for queueing the RCU updates.
199 * @func: actual callback function to be invoked after the grace period
200 *
201 * The callback function will be invoked some time after a full grace
202 * period elapses, in other words after all currently executing RCU
203 * read-side critical sections have completed. call_rcu_sched() assumes
204 * that the read-side critical sections end on enabling of preemption
205 * or on voluntary preemption.
206 * RCU read-side critical sections are delimited by :
207 * - rcu_read_lock_sched() and rcu_read_unlock_sched(),
208 * OR
209 * anything that disables preemption.
210 * These may be nested.
211 *
212 * See the description of call_rcu() for more detailed information on
213 * memory ordering guarantees.
214 */
215void call_rcu_sched(struct rcu_head *head,
216 rcu_callback_t func);
217
218void synchronize_sched(void);
219
220/*
221 * Structure allowing asynchronous waiting on RCU.
222 */
223struct rcu_synchronize {
224 struct rcu_head head;
225 struct completion completion;
226};
227void wakeme_after_rcu(struct rcu_head *head);
228
229void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
230 struct rcu_synchronize *rs_array);
231
232#define _wait_rcu_gp(checktiny, ...) \
233do { \
234 call_rcu_func_t __crcu_array[] = { __VA_ARGS__ }; \
235 struct rcu_synchronize __rs_array[ARRAY_SIZE(__crcu_array)]; \
236 __wait_rcu_gp(checktiny, ARRAY_SIZE(__crcu_array), \
237 __crcu_array, __rs_array); \
238} while (0)
239
240#define wait_rcu_gp(...) _wait_rcu_gp(false, __VA_ARGS__)
241
242/**
243 * synchronize_rcu_mult - Wait concurrently for multiple grace periods
244 * @...: List of call_rcu() functions for the flavors to wait on.
245 *
246 * This macro waits concurrently for multiple flavors of RCU grace periods.
247 * For example, synchronize_rcu_mult(call_rcu, call_rcu_bh) would wait
248 * on concurrent RCU and RCU-bh grace periods. Waiting on a give SRCU
249 * domain requires you to write a wrapper function for that SRCU domain's
250 * call_srcu() function, supplying the corresponding srcu_struct.
251 *
252 * If Tiny RCU, tell _wait_rcu_gp() not to bother waiting for RCU
253 * or RCU-bh, given that anywhere synchronize_rcu_mult() can be called
254 * is automatically a grace period.
255 */
256#define synchronize_rcu_mult(...) \
257 _wait_rcu_gp(IS_ENABLED(CONFIG_TINY_RCU), __VA_ARGS__)
258
259/**
260 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
261 * @head: structure to be used for queueing the RCU updates.
262 * @func: actual callback function to be invoked after the grace period
263 *
264 * The callback function will be invoked some time after a full grace
265 * period elapses, in other words after all currently executing RCU
266 * read-side critical sections have completed. call_rcu_tasks() assumes
267 * that the read-side critical sections end at a voluntary context
268 * switch (not a preemption!), entry into idle, or transition to usermode
269 * execution. As such, there are no read-side primitives analogous to
270 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended
271 * to determine that all tasks have passed through a safe state, not so
272 * much for data-strcuture synchronization.
273 *
274 * See the description of call_rcu() for more detailed information on
275 * memory ordering guarantees.
276 */
277void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
278void synchronize_rcu_tasks(void);
279void rcu_barrier_tasks(void);
280
281#ifdef CONFIG_PREEMPT_RCU
282
283void __rcu_read_lock(void);
284void __rcu_read_unlock(void);
285void rcu_read_unlock_special(struct task_struct *t);
286void synchronize_rcu(void);
287
288/*
289 * Defined as a macro as it is a very low level header included from
290 * areas that don't even know about current. This gives the rcu_read_lock()
291 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
292 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
293 */
294#define rcu_preempt_depth() (current->rcu_read_lock_nesting)
295
296#else /* #ifdef CONFIG_PREEMPT_RCU */
297
298static inline void __rcu_read_lock(void)
299{
300 if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
301 preempt_disable();
302}
303
304static inline void __rcu_read_unlock(void)
305{
306 if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
307 preempt_enable();
308}
309
310static inline void synchronize_rcu(void)
311{
312 synchronize_sched();
313}
314
315static inline int rcu_preempt_depth(void)
316{
317 return 0;
318}
319
320#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
321
322/* Internal to kernel */
323void rcu_init(void);
324void rcu_end_inkernel_boot(void);
325void rcu_sched_qs(void);
326void rcu_bh_qs(void);
327void rcu_check_callbacks(int user);
328struct notifier_block;
329int rcu_cpu_notify(struct notifier_block *self,
330 unsigned long action, void *hcpu);
331
332#ifdef CONFIG_RCU_STALL_COMMON
333void rcu_sysrq_start(void);
334void rcu_sysrq_end(void);
335#else /* #ifdef CONFIG_RCU_STALL_COMMON */
336static inline void rcu_sysrq_start(void)
337{
338}
339static inline void rcu_sysrq_end(void)
340{
341}
342#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
343
344#ifdef CONFIG_NO_HZ_FULL
345void rcu_user_enter(void);
346void rcu_user_exit(void);
347#else
348static inline void rcu_user_enter(void) { }
349static inline void rcu_user_exit(void) { }
350static inline void rcu_user_hooks_switch(struct task_struct *prev,
351 struct task_struct *next) { }
352#endif /* CONFIG_NO_HZ_FULL */
353
354#ifdef CONFIG_RCU_NOCB_CPU
355void rcu_init_nohz(void);
356#else /* #ifdef CONFIG_RCU_NOCB_CPU */
357static inline void rcu_init_nohz(void)
358{
359}
360#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
361
362/**
363 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
364 * @a: Code that RCU needs to pay attention to.
365 *
366 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
367 * in the inner idle loop, that is, between the rcu_idle_enter() and
368 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
369 * critical sections. However, things like powertop need tracepoints
370 * in the inner idle loop.
371 *
372 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
373 * will tell RCU that it needs to pay attending, invoke its argument
374 * (in this example, a call to the do_something_with_RCU() function),
375 * and then tell RCU to go back to ignoring this CPU. It is permissible
376 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
377 * quite limited. If deeper nesting is required, it will be necessary
378 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
379 */
380#define RCU_NONIDLE(a) \
381 do { \
382 rcu_irq_enter(); \
383 do { a; } while (0); \
384 rcu_irq_exit(); \
385 } while (0)
386
387/*
388 * Note a voluntary context switch for RCU-tasks benefit. This is a
389 * macro rather than an inline function to avoid #include hell.
390 */
391#ifdef CONFIG_TASKS_RCU
392#define TASKS_RCU(x) x
393extern struct srcu_struct tasks_rcu_exit_srcu;
394#define rcu_note_voluntary_context_switch(t) \
395 do { \
396 rcu_all_qs(); \
397 if (READ_ONCE((t)->rcu_tasks_holdout)) \
398 WRITE_ONCE((t)->rcu_tasks_holdout, false); \
399 } while (0)
400#else /* #ifdef CONFIG_TASKS_RCU */
401#define TASKS_RCU(x) do { } while (0)
402#define rcu_note_voluntary_context_switch(t) rcu_all_qs()
403#endif /* #else #ifdef CONFIG_TASKS_RCU */
404
405/**
406 * cond_resched_rcu_qs - Report potential quiescent states to RCU
407 *
408 * This macro resembles cond_resched(), except that it is defined to
409 * report potential quiescent states to RCU-tasks even if the cond_resched()
410 * machinery were to be shut off, as some advocate for PREEMPT kernels.
411 */
412#define cond_resched_rcu_qs() \
413do { \
414 if (!cond_resched()) \
415 rcu_note_voluntary_context_switch(current); \
416} while (0)
417
418#if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
419bool __rcu_is_watching(void);
420#endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */
421
422/*
423 * Infrastructure to implement the synchronize_() primitives in
424 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
425 */
426
427#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
428#include <linux/rcutree.h>
429#elif defined(CONFIG_TINY_RCU)
430#include <linux/rcutiny.h>
431#else
432#error "Unknown RCU implementation specified to kernel configuration"
433#endif
434
435/*
436 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
437 * initialization and destruction of rcu_head on the stack. rcu_head structures
438 * allocated dynamically in the heap or defined statically don't need any
439 * initialization.
440 */
441#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
442void init_rcu_head(struct rcu_head *head);
443void destroy_rcu_head(struct rcu_head *head);
444void init_rcu_head_on_stack(struct rcu_head *head);
445void destroy_rcu_head_on_stack(struct rcu_head *head);
446#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
447static inline void init_rcu_head(struct rcu_head *head)
448{
449}
450
451static inline void destroy_rcu_head(struct rcu_head *head)
452{
453}
454
455static inline void init_rcu_head_on_stack(struct rcu_head *head)
456{
457}
458
459static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
460{
461}
462#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
463
464#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
465bool rcu_lockdep_current_cpu_online(void);
466#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
467static inline bool rcu_lockdep_current_cpu_online(void)
468{
469 return true;
470}
471#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
472
473#ifdef CONFIG_DEBUG_LOCK_ALLOC
474
475static inline void rcu_lock_acquire(struct lockdep_map *map)
476{
477 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
478}
479
480static inline void rcu_lock_release(struct lockdep_map *map)
481{
482 lock_release(map, 1, _THIS_IP_);
483}
484
485extern struct lockdep_map rcu_lock_map;
486extern struct lockdep_map rcu_bh_lock_map;
487extern struct lockdep_map rcu_sched_lock_map;
488extern struct lockdep_map rcu_callback_map;
489int debug_lockdep_rcu_enabled(void);
490
491int rcu_read_lock_held(void);
492int rcu_read_lock_bh_held(void);
493
494/**
495 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
496 *
497 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
498 * RCU-sched read-side critical section. In absence of
499 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
500 * critical section unless it can prove otherwise.
501 */
502#ifdef CONFIG_PREEMPT_COUNT
503int rcu_read_lock_sched_held(void);
504#else /* #ifdef CONFIG_PREEMPT_COUNT */
505static inline int rcu_read_lock_sched_held(void)
506{
507 return 1;
508}
509#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
510
511#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
512
513# define rcu_lock_acquire(a) do { } while (0)
514# define rcu_lock_release(a) do { } while (0)
515
516static inline int rcu_read_lock_held(void)
517{
518 return 1;
519}
520
521static inline int rcu_read_lock_bh_held(void)
522{
523 return 1;
524}
525
526#ifdef CONFIG_PREEMPT_COUNT
527static inline int rcu_read_lock_sched_held(void)
528{
529 return preempt_count() != 0 || irqs_disabled();
530}
531#else /* #ifdef CONFIG_PREEMPT_COUNT */
532static inline int rcu_read_lock_sched_held(void)
533{
534 return 1;
535}
536#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
537
538#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
539
540#ifdef CONFIG_PROVE_RCU
541
542/**
543 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
544 * @c: condition to check
545 * @s: informative message
546 */
547#define RCU_LOCKDEP_WARN(c, s) \
548 do { \
549 static bool __section(.data.unlikely) __warned; \
550 if (debug_lockdep_rcu_enabled() && !__warned && (c)) { \
551 __warned = true; \
552 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
553 } \
554 } while (0)
555
556#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
557static inline void rcu_preempt_sleep_check(void)
558{
559 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
560 "Illegal context switch in RCU read-side critical section");
561}
562#else /* #ifdef CONFIG_PROVE_RCU */
563static inline void rcu_preempt_sleep_check(void)
564{
565}
566#endif /* #else #ifdef CONFIG_PROVE_RCU */
567
568#define rcu_sleep_check() \
569 do { \
570 rcu_preempt_sleep_check(); \
571 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \
572 "Illegal context switch in RCU-bh read-side critical section"); \
573 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \
574 "Illegal context switch in RCU-sched read-side critical section"); \
575 } while (0)
576
577#else /* #ifdef CONFIG_PROVE_RCU */
578
579#define RCU_LOCKDEP_WARN(c, s) do { } while (0)
580#define rcu_sleep_check() do { } while (0)
581
582#endif /* #else #ifdef CONFIG_PROVE_RCU */
583
584/*
585 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
586 * and rcu_assign_pointer(). Some of these could be folded into their
587 * callers, but they are left separate in order to ease introduction of
588 * multiple flavors of pointers to match the multiple flavors of RCU
589 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
590 * the future.
591 */
592
593#ifdef __CHECKER__
594#define rcu_dereference_sparse(p, space) \
595 ((void)(((typeof(*p) space *)p) == p))
596#else /* #ifdef __CHECKER__ */
597#define rcu_dereference_sparse(p, space)
598#endif /* #else #ifdef __CHECKER__ */
599
600#define __rcu_access_pointer(p, space) \
601({ \
602 typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
603 rcu_dereference_sparse(p, space); \
604 ((typeof(*p) __force __kernel *)(_________p1)); \
605})
606#define __rcu_dereference_check(p, c, space) \
607({ \
608 /* Dependency order vs. p above. */ \
609 typeof(*p) *________p1 = (typeof(*p) *__force)lockless_dereference(p); \
610 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
611 rcu_dereference_sparse(p, space); \
612 ((typeof(*p) __force __kernel *)(________p1)); \
613})
614#define __rcu_dereference_protected(p, c, space) \
615({ \
616 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
617 rcu_dereference_sparse(p, space); \
618 ((typeof(*p) __force __kernel *)(p)); \
619})
620
621/**
622 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
623 * @v: The value to statically initialize with.
624 */
625#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
626
627/**
628 * rcu_assign_pointer() - assign to RCU-protected pointer
629 * @p: pointer to assign to
630 * @v: value to assign (publish)
631 *
632 * Assigns the specified value to the specified RCU-protected
633 * pointer, ensuring that any concurrent RCU readers will see
634 * any prior initialization.
635 *
636 * Inserts memory barriers on architectures that require them
637 * (which is most of them), and also prevents the compiler from
638 * reordering the code that initializes the structure after the pointer
639 * assignment. More importantly, this call documents which pointers
640 * will be dereferenced by RCU read-side code.
641 *
642 * In some special cases, you may use RCU_INIT_POINTER() instead
643 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
644 * to the fact that it does not constrain either the CPU or the compiler.
645 * That said, using RCU_INIT_POINTER() when you should have used
646 * rcu_assign_pointer() is a very bad thing that results in
647 * impossible-to-diagnose memory corruption. So please be careful.
648 * See the RCU_INIT_POINTER() comment header for details.
649 *
650 * Note that rcu_assign_pointer() evaluates each of its arguments only
651 * once, appearances notwithstanding. One of the "extra" evaluations
652 * is in typeof() and the other visible only to sparse (__CHECKER__),
653 * neither of which actually execute the argument. As with most cpp
654 * macros, this execute-arguments-only-once property is important, so
655 * please be careful when making changes to rcu_assign_pointer() and the
656 * other macros that it invokes.
657 */
658#define rcu_assign_pointer(p, v) smp_store_release(&p, RCU_INITIALIZER(v))
659
660/**
661 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
662 * @p: The pointer to read
663 *
664 * Return the value of the specified RCU-protected pointer, but omit the
665 * smp_read_barrier_depends() and keep the READ_ONCE(). This is useful
666 * when the value of this pointer is accessed, but the pointer is not
667 * dereferenced, for example, when testing an RCU-protected pointer against
668 * NULL. Although rcu_access_pointer() may also be used in cases where
669 * update-side locks prevent the value of the pointer from changing, you
670 * should instead use rcu_dereference_protected() for this use case.
671 *
672 * It is also permissible to use rcu_access_pointer() when read-side
673 * access to the pointer was removed at least one grace period ago, as
674 * is the case in the context of the RCU callback that is freeing up
675 * the data, or after a synchronize_rcu() returns. This can be useful
676 * when tearing down multi-linked structures after a grace period
677 * has elapsed.
678 */
679#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
680
681/**
682 * rcu_dereference_check() - rcu_dereference with debug checking
683 * @p: The pointer to read, prior to dereferencing
684 * @c: The conditions under which the dereference will take place
685 *
686 * Do an rcu_dereference(), but check that the conditions under which the
687 * dereference will take place are correct. Typically the conditions
688 * indicate the various locking conditions that should be held at that
689 * point. The check should return true if the conditions are satisfied.
690 * An implicit check for being in an RCU read-side critical section
691 * (rcu_read_lock()) is included.
692 *
693 * For example:
694 *
695 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
696 *
697 * could be used to indicate to lockdep that foo->bar may only be dereferenced
698 * if either rcu_read_lock() is held, or that the lock required to replace
699 * the bar struct at foo->bar is held.
700 *
701 * Note that the list of conditions may also include indications of when a lock
702 * need not be held, for example during initialisation or destruction of the
703 * target struct:
704 *
705 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
706 * atomic_read(&foo->usage) == 0);
707 *
708 * Inserts memory barriers on architectures that require them
709 * (currently only the Alpha), prevents the compiler from refetching
710 * (and from merging fetches), and, more importantly, documents exactly
711 * which pointers are protected by RCU and checks that the pointer is
712 * annotated as __rcu.
713 */
714#define rcu_dereference_check(p, c) \
715 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
716
717/**
718 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
719 * @p: The pointer to read, prior to dereferencing
720 * @c: The conditions under which the dereference will take place
721 *
722 * This is the RCU-bh counterpart to rcu_dereference_check().
723 */
724#define rcu_dereference_bh_check(p, c) \
725 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
726
727/**
728 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
729 * @p: The pointer to read, prior to dereferencing
730 * @c: The conditions under which the dereference will take place
731 *
732 * This is the RCU-sched counterpart to rcu_dereference_check().
733 */
734#define rcu_dereference_sched_check(p, c) \
735 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
736 __rcu)
737
738#define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
739
740/*
741 * The tracing infrastructure traces RCU (we want that), but unfortunately
742 * some of the RCU checks causes tracing to lock up the system.
743 *
744 * The tracing version of rcu_dereference_raw() must not call
745 * rcu_read_lock_held().
746 */
747#define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
748
749/**
750 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
751 * @p: The pointer to read, prior to dereferencing
752 * @c: The conditions under which the dereference will take place
753 *
754 * Return the value of the specified RCU-protected pointer, but omit
755 * both the smp_read_barrier_depends() and the READ_ONCE(). This
756 * is useful in cases where update-side locks prevent the value of the
757 * pointer from changing. Please note that this primitive does -not-
758 * prevent the compiler from repeating this reference or combining it
759 * with other references, so it should not be used without protection
760 * of appropriate locks.
761 *
762 * This function is only for update-side use. Using this function
763 * when protected only by rcu_read_lock() will result in infrequent
764 * but very ugly failures.
765 */
766#define rcu_dereference_protected(p, c) \
767 __rcu_dereference_protected((p), (c), __rcu)
768
769
770/**
771 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
772 * @p: The pointer to read, prior to dereferencing
773 *
774 * This is a simple wrapper around rcu_dereference_check().
775 */
776#define rcu_dereference(p) rcu_dereference_check(p, 0)
777
778/**
779 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
780 * @p: The pointer to read, prior to dereferencing
781 *
782 * Makes rcu_dereference_check() do the dirty work.
783 */
784#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
785
786/**
787 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
788 * @p: The pointer to read, prior to dereferencing
789 *
790 * Makes rcu_dereference_check() do the dirty work.
791 */
792#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
793
794/**
795 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
796 * @p: The pointer to hand off
797 *
798 * This is simply an identity function, but it documents where a pointer
799 * is handed off from RCU to some other synchronization mechanism, for
800 * example, reference counting or locking. In C11, it would map to
801 * kill_dependency(). It could be used as follows:
802 *
803 * rcu_read_lock();
804 * p = rcu_dereference(gp);
805 * long_lived = is_long_lived(p);
806 * if (long_lived) {
807 * if (!atomic_inc_not_zero(p->refcnt))
808 * long_lived = false;
809 * else
810 * p = rcu_pointer_handoff(p);
811 * }
812 * rcu_read_unlock();
813 */
814#define rcu_pointer_handoff(p) (p)
815
816/**
817 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
818 *
819 * When synchronize_rcu() is invoked on one CPU while other CPUs
820 * are within RCU read-side critical sections, then the
821 * synchronize_rcu() is guaranteed to block until after all the other
822 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
823 * on one CPU while other CPUs are within RCU read-side critical
824 * sections, invocation of the corresponding RCU callback is deferred
825 * until after the all the other CPUs exit their critical sections.
826 *
827 * Note, however, that RCU callbacks are permitted to run concurrently
828 * with new RCU read-side critical sections. One way that this can happen
829 * is via the following sequence of events: (1) CPU 0 enters an RCU
830 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
831 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
832 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
833 * callback is invoked. This is legal, because the RCU read-side critical
834 * section that was running concurrently with the call_rcu() (and which
835 * therefore might be referencing something that the corresponding RCU
836 * callback would free up) has completed before the corresponding
837 * RCU callback is invoked.
838 *
839 * RCU read-side critical sections may be nested. Any deferred actions
840 * will be deferred until the outermost RCU read-side critical section
841 * completes.
842 *
843 * You can avoid reading and understanding the next paragraph by
844 * following this rule: don't put anything in an rcu_read_lock() RCU
845 * read-side critical section that would block in a !PREEMPT kernel.
846 * But if you want the full story, read on!
847 *
848 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
849 * it is illegal to block while in an RCU read-side critical section.
850 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
851 * kernel builds, RCU read-side critical sections may be preempted,
852 * but explicit blocking is illegal. Finally, in preemptible RCU
853 * implementations in real-time (with -rt patchset) kernel builds, RCU
854 * read-side critical sections may be preempted and they may also block, but
855 * only when acquiring spinlocks that are subject to priority inheritance.
856 */
857static inline void rcu_read_lock(void)
858{
859 __rcu_read_lock();
860 __acquire(RCU);
861 rcu_lock_acquire(&rcu_lock_map);
862 RCU_LOCKDEP_WARN(!rcu_is_watching(),
863 "rcu_read_lock() used illegally while idle");
864}
865
866/*
867 * So where is rcu_write_lock()? It does not exist, as there is no
868 * way for writers to lock out RCU readers. This is a feature, not
869 * a bug -- this property is what provides RCU's performance benefits.
870 * Of course, writers must coordinate with each other. The normal
871 * spinlock primitives work well for this, but any other technique may be
872 * used as well. RCU does not care how the writers keep out of each
873 * others' way, as long as they do so.
874 */
875
876/**
877 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
878 *
879 * In most situations, rcu_read_unlock() is immune from deadlock.
880 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
881 * is responsible for deboosting, which it does via rt_mutex_unlock().
882 * Unfortunately, this function acquires the scheduler's runqueue and
883 * priority-inheritance spinlocks. This means that deadlock could result
884 * if the caller of rcu_read_unlock() already holds one of these locks or
885 * any lock that is ever acquired while holding them; or any lock which
886 * can be taken from interrupt context because rcu_boost()->rt_mutex_lock()
887 * does not disable irqs while taking ->wait_lock.
888 *
889 * That said, RCU readers are never priority boosted unless they were
890 * preempted. Therefore, one way to avoid deadlock is to make sure
891 * that preemption never happens within any RCU read-side critical
892 * section whose outermost rcu_read_unlock() is called with one of
893 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in
894 * a number of ways, for example, by invoking preempt_disable() before
895 * critical section's outermost rcu_read_lock().
896 *
897 * Given that the set of locks acquired by rt_mutex_unlock() might change
898 * at any time, a somewhat more future-proofed approach is to make sure
899 * that that preemption never happens within any RCU read-side critical
900 * section whose outermost rcu_read_unlock() is called with irqs disabled.
901 * This approach relies on the fact that rt_mutex_unlock() currently only
902 * acquires irq-disabled locks.
903 *
904 * The second of these two approaches is best in most situations,
905 * however, the first approach can also be useful, at least to those
906 * developers willing to keep abreast of the set of locks acquired by
907 * rt_mutex_unlock().
908 *
909 * See rcu_read_lock() for more information.
910 */
911static inline void rcu_read_unlock(void)
912{
913 RCU_LOCKDEP_WARN(!rcu_is_watching(),
914 "rcu_read_unlock() used illegally while idle");
915 __release(RCU);
916 __rcu_read_unlock();
917 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
918}
919
920/**
921 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
922 *
923 * This is equivalent of rcu_read_lock(), but to be used when updates
924 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
925 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
926 * softirq handler to be a quiescent state, a process in RCU read-side
927 * critical section must be protected by disabling softirqs. Read-side
928 * critical sections in interrupt context can use just rcu_read_lock(),
929 * though this should at least be commented to avoid confusing people
930 * reading the code.
931 *
932 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
933 * must occur in the same context, for example, it is illegal to invoke
934 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
935 * was invoked from some other task.
936 */
937static inline void rcu_read_lock_bh(void)
938{
939 local_bh_disable();
940 __acquire(RCU_BH);
941 rcu_lock_acquire(&rcu_bh_lock_map);
942 RCU_LOCKDEP_WARN(!rcu_is_watching(),
943 "rcu_read_lock_bh() used illegally while idle");
944}
945
946/*
947 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
948 *
949 * See rcu_read_lock_bh() for more information.
950 */
951static inline void rcu_read_unlock_bh(void)
952{
953 RCU_LOCKDEP_WARN(!rcu_is_watching(),
954 "rcu_read_unlock_bh() used illegally while idle");
955 rcu_lock_release(&rcu_bh_lock_map);
956 __release(RCU_BH);
957 local_bh_enable();
958}
959
960/**
961 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
962 *
963 * This is equivalent of rcu_read_lock(), but to be used when updates
964 * are being done using call_rcu_sched() or synchronize_rcu_sched().
965 * Read-side critical sections can also be introduced by anything that
966 * disables preemption, including local_irq_disable() and friends.
967 *
968 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
969 * must occur in the same context, for example, it is illegal to invoke
970 * rcu_read_unlock_sched() from process context if the matching
971 * rcu_read_lock_sched() was invoked from an NMI handler.
972 */
973static inline void rcu_read_lock_sched(void)
974{
975 preempt_disable();
976 __acquire(RCU_SCHED);
977 rcu_lock_acquire(&rcu_sched_lock_map);
978 RCU_LOCKDEP_WARN(!rcu_is_watching(),
979 "rcu_read_lock_sched() used illegally while idle");
980}
981
982/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
983static inline notrace void rcu_read_lock_sched_notrace(void)
984{
985 preempt_disable_notrace();
986 __acquire(RCU_SCHED);
987}
988
989/*
990 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
991 *
992 * See rcu_read_lock_sched for more information.
993 */
994static inline void rcu_read_unlock_sched(void)
995{
996 RCU_LOCKDEP_WARN(!rcu_is_watching(),
997 "rcu_read_unlock_sched() used illegally while idle");
998 rcu_lock_release(&rcu_sched_lock_map);
999 __release(RCU_SCHED);
1000 preempt_enable();
1001}
1002
1003/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
1004static inline notrace void rcu_read_unlock_sched_notrace(void)
1005{
1006 __release(RCU_SCHED);
1007 preempt_enable_notrace();
1008}
1009
1010/**
1011 * RCU_INIT_POINTER() - initialize an RCU protected pointer
1012 *
1013 * Initialize an RCU-protected pointer in special cases where readers
1014 * do not need ordering constraints on the CPU or the compiler. These
1015 * special cases are:
1016 *
1017 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
1018 * 2. The caller has taken whatever steps are required to prevent
1019 * RCU readers from concurrently accessing this pointer -or-
1020 * 3. The referenced data structure has already been exposed to
1021 * readers either at compile time or via rcu_assign_pointer() -and-
1022 * a. You have not made -any- reader-visible changes to
1023 * this structure since then -or-
1024 * b. It is OK for readers accessing this structure from its
1025 * new location to see the old state of the structure. (For
1026 * example, the changes were to statistical counters or to
1027 * other state where exact synchronization is not required.)
1028 *
1029 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
1030 * result in impossible-to-diagnose memory corruption. As in the structures
1031 * will look OK in crash dumps, but any concurrent RCU readers might
1032 * see pre-initialized values of the referenced data structure. So
1033 * please be very careful how you use RCU_INIT_POINTER()!!!
1034 *
1035 * If you are creating an RCU-protected linked structure that is accessed
1036 * by a single external-to-structure RCU-protected pointer, then you may
1037 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
1038 * pointers, but you must use rcu_assign_pointer() to initialize the
1039 * external-to-structure pointer -after- you have completely initialized
1040 * the reader-accessible portions of the linked structure.
1041 *
1042 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
1043 * ordering guarantees for either the CPU or the compiler.
1044 */
1045#define RCU_INIT_POINTER(p, v) \
1046 do { \
1047 rcu_dereference_sparse(p, __rcu); \
1048 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
1049 } while (0)
1050
1051/**
1052 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
1053 *
1054 * GCC-style initialization for an RCU-protected pointer in a structure field.
1055 */
1056#define RCU_POINTER_INITIALIZER(p, v) \
1057 .p = RCU_INITIALIZER(v)
1058
1059/*
1060 * Does the specified offset indicate that the corresponding rcu_head
1061 * structure can be handled by kfree_rcu()?
1062 */
1063#define __is_kfree_rcu_offset(offset) ((offset) < 4096)
1064
1065/*
1066 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
1067 */
1068#define __kfree_rcu(head, offset) \
1069 do { \
1070 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
1071 kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
1072 } while (0)
1073
1074/**
1075 * kfree_rcu() - kfree an object after a grace period.
1076 * @ptr: pointer to kfree
1077 * @rcu_head: the name of the struct rcu_head within the type of @ptr.
1078 *
1079 * Many rcu callbacks functions just call kfree() on the base structure.
1080 * These functions are trivial, but their size adds up, and furthermore
1081 * when they are used in a kernel module, that module must invoke the
1082 * high-latency rcu_barrier() function at module-unload time.
1083 *
1084 * The kfree_rcu() function handles this issue. Rather than encoding a
1085 * function address in the embedded rcu_head structure, kfree_rcu() instead
1086 * encodes the offset of the rcu_head structure within the base structure.
1087 * Because the functions are not allowed in the low-order 4096 bytes of
1088 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
1089 * If the offset is larger than 4095 bytes, a compile-time error will
1090 * be generated in __kfree_rcu(). If this error is triggered, you can
1091 * either fall back to use of call_rcu() or rearrange the structure to
1092 * position the rcu_head structure into the first 4096 bytes.
1093 *
1094 * Note that the allowable offset might decrease in the future, for example,
1095 * to allow something like kmem_cache_free_rcu().
1096 *
1097 * The BUILD_BUG_ON check must not involve any function calls, hence the
1098 * checks are done in macros here.
1099 */
1100#define kfree_rcu(ptr, rcu_head) \
1101 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
1102
1103#ifdef CONFIG_TINY_RCU
1104static inline int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1105{
1106 *nextevt = KTIME_MAX;
1107 return 0;
1108}
1109#endif /* #ifdef CONFIG_TINY_RCU */
1110
1111#if defined(CONFIG_RCU_NOCB_CPU_ALL)
1112static inline bool rcu_is_nocb_cpu(int cpu) { return true; }
1113#elif defined(CONFIG_RCU_NOCB_CPU)
1114bool rcu_is_nocb_cpu(int cpu);
1115#else
1116static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
1117#endif
1118
1119
1120/* Only for use by adaptive-ticks code. */
1121#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
1122bool rcu_sys_is_idle(void);
1123void rcu_sysidle_force_exit(void);
1124#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1125
1126static inline bool rcu_sys_is_idle(void)
1127{
1128 return false;
1129}
1130
1131static inline void rcu_sysidle_force_exit(void)
1132{
1133}
1134
1135#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1136
1137
1138#endif /* __LINUX_RCUPDATE_H */