Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame^] | 1 | /* |
| 2 | * Read-Copy Update mechanism for mutual exclusion |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify |
| 5 | * it under the terms of the GNU General Public License as published by |
| 6 | * the Free Software Foundation; either version 2 of the License, or |
| 7 | * (at your option) any later version. |
| 8 | * |
| 9 | * This program is distributed in the hope that it will be useful, |
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 | * GNU General Public License for more details. |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public License |
| 15 | * along with this program; if not, you can access it online at |
| 16 | * http://www.gnu.org/licenses/gpl-2.0.html. |
| 17 | * |
| 18 | * Copyright IBM Corporation, 2001 |
| 19 | * |
| 20 | * Author: Dipankar Sarma <dipankar@in.ibm.com> |
| 21 | * |
| 22 | * Based on the original work by Paul McKenney <paulmck@us.ibm.com> |
| 23 | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. |
| 24 | * Papers: |
| 25 | * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf |
| 26 | * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) |
| 27 | * |
| 28 | * For detailed explanation of Read-Copy Update mechanism see - |
| 29 | * http://lse.sourceforge.net/locking/rcupdate.html |
| 30 | * |
| 31 | */ |
| 32 | |
| 33 | #ifndef __LINUX_RCUPDATE_H |
| 34 | #define __LINUX_RCUPDATE_H |
| 35 | |
| 36 | #include <linux/types.h> |
| 37 | #include <linux/cache.h> |
| 38 | #include <linux/spinlock.h> |
| 39 | #include <linux/threads.h> |
| 40 | #include <linux/cpumask.h> |
| 41 | #include <linux/seqlock.h> |
| 42 | #include <linux/lockdep.h> |
| 43 | #include <linux/completion.h> |
| 44 | #include <linux/debugobjects.h> |
| 45 | #include <linux/bug.h> |
| 46 | #include <linux/compiler.h> |
| 47 | #include <linux/ktime.h> |
| 48 | |
| 49 | #include <asm/barrier.h> |
| 50 | |
| 51 | extern int rcu_expedited; /* for sysctl */ |
| 52 | |
| 53 | #ifdef CONFIG_TINY_RCU |
| 54 | /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */ |
| 55 | static inline bool rcu_gp_is_expedited(void) /* Internal RCU use. */ |
| 56 | { |
| 57 | return false; |
| 58 | } |
| 59 | |
| 60 | static inline void rcu_expedite_gp(void) |
| 61 | { |
| 62 | } |
| 63 | |
| 64 | static inline void rcu_unexpedite_gp(void) |
| 65 | { |
| 66 | } |
| 67 | #else /* #ifdef CONFIG_TINY_RCU */ |
| 68 | bool rcu_gp_is_expedited(void); /* Internal RCU use. */ |
| 69 | void rcu_expedite_gp(void); |
| 70 | void rcu_unexpedite_gp(void); |
| 71 | #endif /* #else #ifdef CONFIG_TINY_RCU */ |
| 72 | |
| 73 | enum rcutorture_type { |
| 74 | RCU_FLAVOR, |
| 75 | RCU_BH_FLAVOR, |
| 76 | RCU_SCHED_FLAVOR, |
| 77 | RCU_TASKS_FLAVOR, |
| 78 | SRCU_FLAVOR, |
| 79 | INVALID_RCU_FLAVOR |
| 80 | }; |
| 81 | |
| 82 | #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) |
| 83 | void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, |
| 84 | unsigned long *gpnum, unsigned long *completed); |
| 85 | void rcutorture_record_test_transition(void); |
| 86 | void rcutorture_record_progress(unsigned long vernum); |
| 87 | void do_trace_rcu_torture_read(const char *rcutorturename, |
| 88 | struct rcu_head *rhp, |
| 89 | unsigned long secs, |
| 90 | unsigned long c_old, |
| 91 | unsigned long c); |
| 92 | #else |
| 93 | static inline void rcutorture_get_gp_data(enum rcutorture_type test_type, |
| 94 | int *flags, |
| 95 | unsigned long *gpnum, |
| 96 | unsigned long *completed) |
| 97 | { |
| 98 | *flags = 0; |
| 99 | *gpnum = 0; |
| 100 | *completed = 0; |
| 101 | } |
| 102 | static inline void rcutorture_record_test_transition(void) |
| 103 | { |
| 104 | } |
| 105 | static inline void rcutorture_record_progress(unsigned long vernum) |
| 106 | { |
| 107 | } |
| 108 | #ifdef CONFIG_RCU_TRACE |
| 109 | void do_trace_rcu_torture_read(const char *rcutorturename, |
| 110 | struct rcu_head *rhp, |
| 111 | unsigned long secs, |
| 112 | unsigned long c_old, |
| 113 | unsigned long c); |
| 114 | #else |
| 115 | #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \ |
| 116 | do { } while (0) |
| 117 | #endif |
| 118 | #endif |
| 119 | |
| 120 | #define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b)) |
| 121 | #define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b)) |
| 122 | #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) |
| 123 | #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) |
| 124 | #define ulong2long(a) (*(long *)(&(a))) |
| 125 | |
| 126 | /* Exported common interfaces */ |
| 127 | |
| 128 | #ifdef CONFIG_PREEMPT_RCU |
| 129 | |
| 130 | /** |
| 131 | * call_rcu() - Queue an RCU callback for invocation after a grace period. |
| 132 | * @head: structure to be used for queueing the RCU updates. |
| 133 | * @func: actual callback function to be invoked after the grace period |
| 134 | * |
| 135 | * The callback function will be invoked some time after a full grace |
| 136 | * period elapses, in other words after all pre-existing RCU read-side |
| 137 | * critical sections have completed. However, the callback function |
| 138 | * might well execute concurrently with RCU read-side critical sections |
| 139 | * that started after call_rcu() was invoked. RCU read-side critical |
| 140 | * sections are delimited by rcu_read_lock() and rcu_read_unlock(), |
| 141 | * and may be nested. |
| 142 | * |
| 143 | * Note that all CPUs must agree that the grace period extended beyond |
| 144 | * all pre-existing RCU read-side critical section. On systems with more |
| 145 | * than one CPU, this means that when "func()" is invoked, each CPU is |
| 146 | * guaranteed to have executed a full memory barrier since the end of its |
| 147 | * last RCU read-side critical section whose beginning preceded the call |
| 148 | * to call_rcu(). It also means that each CPU executing an RCU read-side |
| 149 | * critical section that continues beyond the start of "func()" must have |
| 150 | * executed a memory barrier after the call_rcu() but before the beginning |
| 151 | * of that RCU read-side critical section. Note that these guarantees |
| 152 | * include CPUs that are offline, idle, or executing in user mode, as |
| 153 | * well as CPUs that are executing in the kernel. |
| 154 | * |
| 155 | * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the |
| 156 | * resulting RCU callback function "func()", then both CPU A and CPU B are |
| 157 | * guaranteed to execute a full memory barrier during the time interval |
| 158 | * between the call to call_rcu() and the invocation of "func()" -- even |
| 159 | * if CPU A and CPU B are the same CPU (but again only if the system has |
| 160 | * more than one CPU). |
| 161 | */ |
| 162 | void call_rcu(struct rcu_head *head, |
| 163 | rcu_callback_t func); |
| 164 | |
| 165 | #else /* #ifdef CONFIG_PREEMPT_RCU */ |
| 166 | |
| 167 | /* In classic RCU, call_rcu() is just call_rcu_sched(). */ |
| 168 | #define call_rcu call_rcu_sched |
| 169 | |
| 170 | #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ |
| 171 | |
| 172 | /** |
| 173 | * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period. |
| 174 | * @head: structure to be used for queueing the RCU updates. |
| 175 | * @func: actual callback function to be invoked after the grace period |
| 176 | * |
| 177 | * The callback function will be invoked some time after a full grace |
| 178 | * period elapses, in other words after all currently executing RCU |
| 179 | * read-side critical sections have completed. call_rcu_bh() assumes |
| 180 | * that the read-side critical sections end on completion of a softirq |
| 181 | * handler. This means that read-side critical sections in process |
| 182 | * context must not be interrupted by softirqs. This interface is to be |
| 183 | * used when most of the read-side critical sections are in softirq context. |
| 184 | * RCU read-side critical sections are delimited by : |
| 185 | * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context. |
| 186 | * OR |
| 187 | * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context. |
| 188 | * These may be nested. |
| 189 | * |
| 190 | * See the description of call_rcu() for more detailed information on |
| 191 | * memory ordering guarantees. |
| 192 | */ |
| 193 | void call_rcu_bh(struct rcu_head *head, |
| 194 | rcu_callback_t func); |
| 195 | |
| 196 | /** |
| 197 | * call_rcu_sched() - Queue an RCU for invocation after sched grace period. |
| 198 | * @head: structure to be used for queueing the RCU updates. |
| 199 | * @func: actual callback function to be invoked after the grace period |
| 200 | * |
| 201 | * The callback function will be invoked some time after a full grace |
| 202 | * period elapses, in other words after all currently executing RCU |
| 203 | * read-side critical sections have completed. call_rcu_sched() assumes |
| 204 | * that the read-side critical sections end on enabling of preemption |
| 205 | * or on voluntary preemption. |
| 206 | * RCU read-side critical sections are delimited by : |
| 207 | * - rcu_read_lock_sched() and rcu_read_unlock_sched(), |
| 208 | * OR |
| 209 | * anything that disables preemption. |
| 210 | * These may be nested. |
| 211 | * |
| 212 | * See the description of call_rcu() for more detailed information on |
| 213 | * memory ordering guarantees. |
| 214 | */ |
| 215 | void call_rcu_sched(struct rcu_head *head, |
| 216 | rcu_callback_t func); |
| 217 | |
| 218 | void synchronize_sched(void); |
| 219 | |
| 220 | /* |
| 221 | * Structure allowing asynchronous waiting on RCU. |
| 222 | */ |
| 223 | struct rcu_synchronize { |
| 224 | struct rcu_head head; |
| 225 | struct completion completion; |
| 226 | }; |
| 227 | void wakeme_after_rcu(struct rcu_head *head); |
| 228 | |
| 229 | void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array, |
| 230 | struct rcu_synchronize *rs_array); |
| 231 | |
| 232 | #define _wait_rcu_gp(checktiny, ...) \ |
| 233 | do { \ |
| 234 | call_rcu_func_t __crcu_array[] = { __VA_ARGS__ }; \ |
| 235 | struct rcu_synchronize __rs_array[ARRAY_SIZE(__crcu_array)]; \ |
| 236 | __wait_rcu_gp(checktiny, ARRAY_SIZE(__crcu_array), \ |
| 237 | __crcu_array, __rs_array); \ |
| 238 | } while (0) |
| 239 | |
| 240 | #define wait_rcu_gp(...) _wait_rcu_gp(false, __VA_ARGS__) |
| 241 | |
| 242 | /** |
| 243 | * synchronize_rcu_mult - Wait concurrently for multiple grace periods |
| 244 | * @...: List of call_rcu() functions for the flavors to wait on. |
| 245 | * |
| 246 | * This macro waits concurrently for multiple flavors of RCU grace periods. |
| 247 | * For example, synchronize_rcu_mult(call_rcu, call_rcu_bh) would wait |
| 248 | * on concurrent RCU and RCU-bh grace periods. Waiting on a give SRCU |
| 249 | * domain requires you to write a wrapper function for that SRCU domain's |
| 250 | * call_srcu() function, supplying the corresponding srcu_struct. |
| 251 | * |
| 252 | * If Tiny RCU, tell _wait_rcu_gp() not to bother waiting for RCU |
| 253 | * or RCU-bh, given that anywhere synchronize_rcu_mult() can be called |
| 254 | * is automatically a grace period. |
| 255 | */ |
| 256 | #define synchronize_rcu_mult(...) \ |
| 257 | _wait_rcu_gp(IS_ENABLED(CONFIG_TINY_RCU), __VA_ARGS__) |
| 258 | |
| 259 | /** |
| 260 | * call_rcu_tasks() - Queue an RCU for invocation task-based grace period |
| 261 | * @head: structure to be used for queueing the RCU updates. |
| 262 | * @func: actual callback function to be invoked after the grace period |
| 263 | * |
| 264 | * The callback function will be invoked some time after a full grace |
| 265 | * period elapses, in other words after all currently executing RCU |
| 266 | * read-side critical sections have completed. call_rcu_tasks() assumes |
| 267 | * that the read-side critical sections end at a voluntary context |
| 268 | * switch (not a preemption!), entry into idle, or transition to usermode |
| 269 | * execution. As such, there are no read-side primitives analogous to |
| 270 | * rcu_read_lock() and rcu_read_unlock() because this primitive is intended |
| 271 | * to determine that all tasks have passed through a safe state, not so |
| 272 | * much for data-strcuture synchronization. |
| 273 | * |
| 274 | * See the description of call_rcu() for more detailed information on |
| 275 | * memory ordering guarantees. |
| 276 | */ |
| 277 | void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func); |
| 278 | void synchronize_rcu_tasks(void); |
| 279 | void rcu_barrier_tasks(void); |
| 280 | |
| 281 | #ifdef CONFIG_PREEMPT_RCU |
| 282 | |
| 283 | void __rcu_read_lock(void); |
| 284 | void __rcu_read_unlock(void); |
| 285 | void rcu_read_unlock_special(struct task_struct *t); |
| 286 | void synchronize_rcu(void); |
| 287 | |
| 288 | /* |
| 289 | * Defined as a macro as it is a very low level header included from |
| 290 | * areas that don't even know about current. This gives the rcu_read_lock() |
| 291 | * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other |
| 292 | * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. |
| 293 | */ |
| 294 | #define rcu_preempt_depth() (current->rcu_read_lock_nesting) |
| 295 | |
| 296 | #else /* #ifdef CONFIG_PREEMPT_RCU */ |
| 297 | |
| 298 | static inline void __rcu_read_lock(void) |
| 299 | { |
| 300 | if (IS_ENABLED(CONFIG_PREEMPT_COUNT)) |
| 301 | preempt_disable(); |
| 302 | } |
| 303 | |
| 304 | static inline void __rcu_read_unlock(void) |
| 305 | { |
| 306 | if (IS_ENABLED(CONFIG_PREEMPT_COUNT)) |
| 307 | preempt_enable(); |
| 308 | } |
| 309 | |
| 310 | static inline void synchronize_rcu(void) |
| 311 | { |
| 312 | synchronize_sched(); |
| 313 | } |
| 314 | |
| 315 | static inline int rcu_preempt_depth(void) |
| 316 | { |
| 317 | return 0; |
| 318 | } |
| 319 | |
| 320 | #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ |
| 321 | |
| 322 | /* Internal to kernel */ |
| 323 | void rcu_init(void); |
| 324 | void rcu_end_inkernel_boot(void); |
| 325 | void rcu_sched_qs(void); |
| 326 | void rcu_bh_qs(void); |
| 327 | void rcu_check_callbacks(int user); |
| 328 | struct notifier_block; |
| 329 | int rcu_cpu_notify(struct notifier_block *self, |
| 330 | unsigned long action, void *hcpu); |
| 331 | |
| 332 | #ifdef CONFIG_RCU_STALL_COMMON |
| 333 | void rcu_sysrq_start(void); |
| 334 | void rcu_sysrq_end(void); |
| 335 | #else /* #ifdef CONFIG_RCU_STALL_COMMON */ |
| 336 | static inline void rcu_sysrq_start(void) |
| 337 | { |
| 338 | } |
| 339 | static inline void rcu_sysrq_end(void) |
| 340 | { |
| 341 | } |
| 342 | #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */ |
| 343 | |
| 344 | #ifdef CONFIG_NO_HZ_FULL |
| 345 | void rcu_user_enter(void); |
| 346 | void rcu_user_exit(void); |
| 347 | #else |
| 348 | static inline void rcu_user_enter(void) { } |
| 349 | static inline void rcu_user_exit(void) { } |
| 350 | static inline void rcu_user_hooks_switch(struct task_struct *prev, |
| 351 | struct task_struct *next) { } |
| 352 | #endif /* CONFIG_NO_HZ_FULL */ |
| 353 | |
| 354 | #ifdef CONFIG_RCU_NOCB_CPU |
| 355 | void rcu_init_nohz(void); |
| 356 | #else /* #ifdef CONFIG_RCU_NOCB_CPU */ |
| 357 | static inline void rcu_init_nohz(void) |
| 358 | { |
| 359 | } |
| 360 | #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ |
| 361 | |
| 362 | /** |
| 363 | * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers |
| 364 | * @a: Code that RCU needs to pay attention to. |
| 365 | * |
| 366 | * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden |
| 367 | * in the inner idle loop, that is, between the rcu_idle_enter() and |
| 368 | * the rcu_idle_exit() -- RCU will happily ignore any such read-side |
| 369 | * critical sections. However, things like powertop need tracepoints |
| 370 | * in the inner idle loop. |
| 371 | * |
| 372 | * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) |
| 373 | * will tell RCU that it needs to pay attending, invoke its argument |
| 374 | * (in this example, a call to the do_something_with_RCU() function), |
| 375 | * and then tell RCU to go back to ignoring this CPU. It is permissible |
| 376 | * to nest RCU_NONIDLE() wrappers, but the nesting level is currently |
| 377 | * quite limited. If deeper nesting is required, it will be necessary |
| 378 | * to adjust DYNTICK_TASK_NESTING_VALUE accordingly. |
| 379 | */ |
| 380 | #define RCU_NONIDLE(a) \ |
| 381 | do { \ |
| 382 | rcu_irq_enter(); \ |
| 383 | do { a; } while (0); \ |
| 384 | rcu_irq_exit(); \ |
| 385 | } while (0) |
| 386 | |
| 387 | /* |
| 388 | * Note a voluntary context switch for RCU-tasks benefit. This is a |
| 389 | * macro rather than an inline function to avoid #include hell. |
| 390 | */ |
| 391 | #ifdef CONFIG_TASKS_RCU |
| 392 | #define TASKS_RCU(x) x |
| 393 | extern struct srcu_struct tasks_rcu_exit_srcu; |
| 394 | #define rcu_note_voluntary_context_switch(t) \ |
| 395 | do { \ |
| 396 | rcu_all_qs(); \ |
| 397 | if (READ_ONCE((t)->rcu_tasks_holdout)) \ |
| 398 | WRITE_ONCE((t)->rcu_tasks_holdout, false); \ |
| 399 | } while (0) |
| 400 | #else /* #ifdef CONFIG_TASKS_RCU */ |
| 401 | #define TASKS_RCU(x) do { } while (0) |
| 402 | #define rcu_note_voluntary_context_switch(t) rcu_all_qs() |
| 403 | #endif /* #else #ifdef CONFIG_TASKS_RCU */ |
| 404 | |
| 405 | /** |
| 406 | * cond_resched_rcu_qs - Report potential quiescent states to RCU |
| 407 | * |
| 408 | * This macro resembles cond_resched(), except that it is defined to |
| 409 | * report potential quiescent states to RCU-tasks even if the cond_resched() |
| 410 | * machinery were to be shut off, as some advocate for PREEMPT kernels. |
| 411 | */ |
| 412 | #define cond_resched_rcu_qs() \ |
| 413 | do { \ |
| 414 | if (!cond_resched()) \ |
| 415 | rcu_note_voluntary_context_switch(current); \ |
| 416 | } while (0) |
| 417 | |
| 418 | #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) |
| 419 | bool __rcu_is_watching(void); |
| 420 | #endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */ |
| 421 | |
| 422 | /* |
| 423 | * Infrastructure to implement the synchronize_() primitives in |
| 424 | * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. |
| 425 | */ |
| 426 | |
| 427 | #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) |
| 428 | #include <linux/rcutree.h> |
| 429 | #elif defined(CONFIG_TINY_RCU) |
| 430 | #include <linux/rcutiny.h> |
| 431 | #else |
| 432 | #error "Unknown RCU implementation specified to kernel configuration" |
| 433 | #endif |
| 434 | |
| 435 | /* |
| 436 | * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic |
| 437 | * initialization and destruction of rcu_head on the stack. rcu_head structures |
| 438 | * allocated dynamically in the heap or defined statically don't need any |
| 439 | * initialization. |
| 440 | */ |
| 441 | #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD |
| 442 | void init_rcu_head(struct rcu_head *head); |
| 443 | void destroy_rcu_head(struct rcu_head *head); |
| 444 | void init_rcu_head_on_stack(struct rcu_head *head); |
| 445 | void destroy_rcu_head_on_stack(struct rcu_head *head); |
| 446 | #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ |
| 447 | static inline void init_rcu_head(struct rcu_head *head) |
| 448 | { |
| 449 | } |
| 450 | |
| 451 | static inline void destroy_rcu_head(struct rcu_head *head) |
| 452 | { |
| 453 | } |
| 454 | |
| 455 | static inline void init_rcu_head_on_stack(struct rcu_head *head) |
| 456 | { |
| 457 | } |
| 458 | |
| 459 | static inline void destroy_rcu_head_on_stack(struct rcu_head *head) |
| 460 | { |
| 461 | } |
| 462 | #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ |
| 463 | |
| 464 | #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) |
| 465 | bool rcu_lockdep_current_cpu_online(void); |
| 466 | #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ |
| 467 | static inline bool rcu_lockdep_current_cpu_online(void) |
| 468 | { |
| 469 | return true; |
| 470 | } |
| 471 | #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ |
| 472 | |
| 473 | #ifdef CONFIG_DEBUG_LOCK_ALLOC |
| 474 | |
| 475 | static inline void rcu_lock_acquire(struct lockdep_map *map) |
| 476 | { |
| 477 | lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_); |
| 478 | } |
| 479 | |
| 480 | static inline void rcu_lock_release(struct lockdep_map *map) |
| 481 | { |
| 482 | lock_release(map, 1, _THIS_IP_); |
| 483 | } |
| 484 | |
| 485 | extern struct lockdep_map rcu_lock_map; |
| 486 | extern struct lockdep_map rcu_bh_lock_map; |
| 487 | extern struct lockdep_map rcu_sched_lock_map; |
| 488 | extern struct lockdep_map rcu_callback_map; |
| 489 | int debug_lockdep_rcu_enabled(void); |
| 490 | |
| 491 | int rcu_read_lock_held(void); |
| 492 | int rcu_read_lock_bh_held(void); |
| 493 | |
| 494 | /** |
| 495 | * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section? |
| 496 | * |
| 497 | * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an |
| 498 | * RCU-sched read-side critical section. In absence of |
| 499 | * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side |
| 500 | * critical section unless it can prove otherwise. |
| 501 | */ |
| 502 | #ifdef CONFIG_PREEMPT_COUNT |
| 503 | int rcu_read_lock_sched_held(void); |
| 504 | #else /* #ifdef CONFIG_PREEMPT_COUNT */ |
| 505 | static inline int rcu_read_lock_sched_held(void) |
| 506 | { |
| 507 | return 1; |
| 508 | } |
| 509 | #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */ |
| 510 | |
| 511 | #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ |
| 512 | |
| 513 | # define rcu_lock_acquire(a) do { } while (0) |
| 514 | # define rcu_lock_release(a) do { } while (0) |
| 515 | |
| 516 | static inline int rcu_read_lock_held(void) |
| 517 | { |
| 518 | return 1; |
| 519 | } |
| 520 | |
| 521 | static inline int rcu_read_lock_bh_held(void) |
| 522 | { |
| 523 | return 1; |
| 524 | } |
| 525 | |
| 526 | #ifdef CONFIG_PREEMPT_COUNT |
| 527 | static inline int rcu_read_lock_sched_held(void) |
| 528 | { |
| 529 | return preempt_count() != 0 || irqs_disabled(); |
| 530 | } |
| 531 | #else /* #ifdef CONFIG_PREEMPT_COUNT */ |
| 532 | static inline int rcu_read_lock_sched_held(void) |
| 533 | { |
| 534 | return 1; |
| 535 | } |
| 536 | #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */ |
| 537 | |
| 538 | #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ |
| 539 | |
| 540 | #ifdef CONFIG_PROVE_RCU |
| 541 | |
| 542 | /** |
| 543 | * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met |
| 544 | * @c: condition to check |
| 545 | * @s: informative message |
| 546 | */ |
| 547 | #define RCU_LOCKDEP_WARN(c, s) \ |
| 548 | do { \ |
| 549 | static bool __section(.data.unlikely) __warned; \ |
| 550 | if (debug_lockdep_rcu_enabled() && !__warned && (c)) { \ |
| 551 | __warned = true; \ |
| 552 | lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ |
| 553 | } \ |
| 554 | } while (0) |
| 555 | |
| 556 | #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) |
| 557 | static inline void rcu_preempt_sleep_check(void) |
| 558 | { |
| 559 | RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), |
| 560 | "Illegal context switch in RCU read-side critical section"); |
| 561 | } |
| 562 | #else /* #ifdef CONFIG_PROVE_RCU */ |
| 563 | static inline void rcu_preempt_sleep_check(void) |
| 564 | { |
| 565 | } |
| 566 | #endif /* #else #ifdef CONFIG_PROVE_RCU */ |
| 567 | |
| 568 | #define rcu_sleep_check() \ |
| 569 | do { \ |
| 570 | rcu_preempt_sleep_check(); \ |
| 571 | RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \ |
| 572 | "Illegal context switch in RCU-bh read-side critical section"); \ |
| 573 | RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \ |
| 574 | "Illegal context switch in RCU-sched read-side critical section"); \ |
| 575 | } while (0) |
| 576 | |
| 577 | #else /* #ifdef CONFIG_PROVE_RCU */ |
| 578 | |
| 579 | #define RCU_LOCKDEP_WARN(c, s) do { } while (0) |
| 580 | #define rcu_sleep_check() do { } while (0) |
| 581 | |
| 582 | #endif /* #else #ifdef CONFIG_PROVE_RCU */ |
| 583 | |
| 584 | /* |
| 585 | * Helper functions for rcu_dereference_check(), rcu_dereference_protected() |
| 586 | * and rcu_assign_pointer(). Some of these could be folded into their |
| 587 | * callers, but they are left separate in order to ease introduction of |
| 588 | * multiple flavors of pointers to match the multiple flavors of RCU |
| 589 | * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in |
| 590 | * the future. |
| 591 | */ |
| 592 | |
| 593 | #ifdef __CHECKER__ |
| 594 | #define rcu_dereference_sparse(p, space) \ |
| 595 | ((void)(((typeof(*p) space *)p) == p)) |
| 596 | #else /* #ifdef __CHECKER__ */ |
| 597 | #define rcu_dereference_sparse(p, space) |
| 598 | #endif /* #else #ifdef __CHECKER__ */ |
| 599 | |
| 600 | #define __rcu_access_pointer(p, space) \ |
| 601 | ({ \ |
| 602 | typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \ |
| 603 | rcu_dereference_sparse(p, space); \ |
| 604 | ((typeof(*p) __force __kernel *)(_________p1)); \ |
| 605 | }) |
| 606 | #define __rcu_dereference_check(p, c, space) \ |
| 607 | ({ \ |
| 608 | /* Dependency order vs. p above. */ \ |
| 609 | typeof(*p) *________p1 = (typeof(*p) *__force)lockless_dereference(p); \ |
| 610 | RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \ |
| 611 | rcu_dereference_sparse(p, space); \ |
| 612 | ((typeof(*p) __force __kernel *)(________p1)); \ |
| 613 | }) |
| 614 | #define __rcu_dereference_protected(p, c, space) \ |
| 615 | ({ \ |
| 616 | RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \ |
| 617 | rcu_dereference_sparse(p, space); \ |
| 618 | ((typeof(*p) __force __kernel *)(p)); \ |
| 619 | }) |
| 620 | |
| 621 | /** |
| 622 | * RCU_INITIALIZER() - statically initialize an RCU-protected global variable |
| 623 | * @v: The value to statically initialize with. |
| 624 | */ |
| 625 | #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v) |
| 626 | |
| 627 | /** |
| 628 | * rcu_assign_pointer() - assign to RCU-protected pointer |
| 629 | * @p: pointer to assign to |
| 630 | * @v: value to assign (publish) |
| 631 | * |
| 632 | * Assigns the specified value to the specified RCU-protected |
| 633 | * pointer, ensuring that any concurrent RCU readers will see |
| 634 | * any prior initialization. |
| 635 | * |
| 636 | * Inserts memory barriers on architectures that require them |
| 637 | * (which is most of them), and also prevents the compiler from |
| 638 | * reordering the code that initializes the structure after the pointer |
| 639 | * assignment. More importantly, this call documents which pointers |
| 640 | * will be dereferenced by RCU read-side code. |
| 641 | * |
| 642 | * In some special cases, you may use RCU_INIT_POINTER() instead |
| 643 | * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due |
| 644 | * to the fact that it does not constrain either the CPU or the compiler. |
| 645 | * That said, using RCU_INIT_POINTER() when you should have used |
| 646 | * rcu_assign_pointer() is a very bad thing that results in |
| 647 | * impossible-to-diagnose memory corruption. So please be careful. |
| 648 | * See the RCU_INIT_POINTER() comment header for details. |
| 649 | * |
| 650 | * Note that rcu_assign_pointer() evaluates each of its arguments only |
| 651 | * once, appearances notwithstanding. One of the "extra" evaluations |
| 652 | * is in typeof() and the other visible only to sparse (__CHECKER__), |
| 653 | * neither of which actually execute the argument. As with most cpp |
| 654 | * macros, this execute-arguments-only-once property is important, so |
| 655 | * please be careful when making changes to rcu_assign_pointer() and the |
| 656 | * other macros that it invokes. |
| 657 | */ |
| 658 | #define rcu_assign_pointer(p, v) smp_store_release(&p, RCU_INITIALIZER(v)) |
| 659 | |
| 660 | /** |
| 661 | * rcu_access_pointer() - fetch RCU pointer with no dereferencing |
| 662 | * @p: The pointer to read |
| 663 | * |
| 664 | * Return the value of the specified RCU-protected pointer, but omit the |
| 665 | * smp_read_barrier_depends() and keep the READ_ONCE(). This is useful |
| 666 | * when the value of this pointer is accessed, but the pointer is not |
| 667 | * dereferenced, for example, when testing an RCU-protected pointer against |
| 668 | * NULL. Although rcu_access_pointer() may also be used in cases where |
| 669 | * update-side locks prevent the value of the pointer from changing, you |
| 670 | * should instead use rcu_dereference_protected() for this use case. |
| 671 | * |
| 672 | * It is also permissible to use rcu_access_pointer() when read-side |
| 673 | * access to the pointer was removed at least one grace period ago, as |
| 674 | * is the case in the context of the RCU callback that is freeing up |
| 675 | * the data, or after a synchronize_rcu() returns. This can be useful |
| 676 | * when tearing down multi-linked structures after a grace period |
| 677 | * has elapsed. |
| 678 | */ |
| 679 | #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu) |
| 680 | |
| 681 | /** |
| 682 | * rcu_dereference_check() - rcu_dereference with debug checking |
| 683 | * @p: The pointer to read, prior to dereferencing |
| 684 | * @c: The conditions under which the dereference will take place |
| 685 | * |
| 686 | * Do an rcu_dereference(), but check that the conditions under which the |
| 687 | * dereference will take place are correct. Typically the conditions |
| 688 | * indicate the various locking conditions that should be held at that |
| 689 | * point. The check should return true if the conditions are satisfied. |
| 690 | * An implicit check for being in an RCU read-side critical section |
| 691 | * (rcu_read_lock()) is included. |
| 692 | * |
| 693 | * For example: |
| 694 | * |
| 695 | * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); |
| 696 | * |
| 697 | * could be used to indicate to lockdep that foo->bar may only be dereferenced |
| 698 | * if either rcu_read_lock() is held, or that the lock required to replace |
| 699 | * the bar struct at foo->bar is held. |
| 700 | * |
| 701 | * Note that the list of conditions may also include indications of when a lock |
| 702 | * need not be held, for example during initialisation or destruction of the |
| 703 | * target struct: |
| 704 | * |
| 705 | * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || |
| 706 | * atomic_read(&foo->usage) == 0); |
| 707 | * |
| 708 | * Inserts memory barriers on architectures that require them |
| 709 | * (currently only the Alpha), prevents the compiler from refetching |
| 710 | * (and from merging fetches), and, more importantly, documents exactly |
| 711 | * which pointers are protected by RCU and checks that the pointer is |
| 712 | * annotated as __rcu. |
| 713 | */ |
| 714 | #define rcu_dereference_check(p, c) \ |
| 715 | __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu) |
| 716 | |
| 717 | /** |
| 718 | * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking |
| 719 | * @p: The pointer to read, prior to dereferencing |
| 720 | * @c: The conditions under which the dereference will take place |
| 721 | * |
| 722 | * This is the RCU-bh counterpart to rcu_dereference_check(). |
| 723 | */ |
| 724 | #define rcu_dereference_bh_check(p, c) \ |
| 725 | __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu) |
| 726 | |
| 727 | /** |
| 728 | * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking |
| 729 | * @p: The pointer to read, prior to dereferencing |
| 730 | * @c: The conditions under which the dereference will take place |
| 731 | * |
| 732 | * This is the RCU-sched counterpart to rcu_dereference_check(). |
| 733 | */ |
| 734 | #define rcu_dereference_sched_check(p, c) \ |
| 735 | __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \ |
| 736 | __rcu) |
| 737 | |
| 738 | #define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/ |
| 739 | |
| 740 | /* |
| 741 | * The tracing infrastructure traces RCU (we want that), but unfortunately |
| 742 | * some of the RCU checks causes tracing to lock up the system. |
| 743 | * |
| 744 | * The tracing version of rcu_dereference_raw() must not call |
| 745 | * rcu_read_lock_held(). |
| 746 | */ |
| 747 | #define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu) |
| 748 | |
| 749 | /** |
| 750 | * rcu_dereference_protected() - fetch RCU pointer when updates prevented |
| 751 | * @p: The pointer to read, prior to dereferencing |
| 752 | * @c: The conditions under which the dereference will take place |
| 753 | * |
| 754 | * Return the value of the specified RCU-protected pointer, but omit |
| 755 | * both the smp_read_barrier_depends() and the READ_ONCE(). This |
| 756 | * is useful in cases where update-side locks prevent the value of the |
| 757 | * pointer from changing. Please note that this primitive does -not- |
| 758 | * prevent the compiler from repeating this reference or combining it |
| 759 | * with other references, so it should not be used without protection |
| 760 | * of appropriate locks. |
| 761 | * |
| 762 | * This function is only for update-side use. Using this function |
| 763 | * when protected only by rcu_read_lock() will result in infrequent |
| 764 | * but very ugly failures. |
| 765 | */ |
| 766 | #define rcu_dereference_protected(p, c) \ |
| 767 | __rcu_dereference_protected((p), (c), __rcu) |
| 768 | |
| 769 | |
| 770 | /** |
| 771 | * rcu_dereference() - fetch RCU-protected pointer for dereferencing |
| 772 | * @p: The pointer to read, prior to dereferencing |
| 773 | * |
| 774 | * This is a simple wrapper around rcu_dereference_check(). |
| 775 | */ |
| 776 | #define rcu_dereference(p) rcu_dereference_check(p, 0) |
| 777 | |
| 778 | /** |
| 779 | * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing |
| 780 | * @p: The pointer to read, prior to dereferencing |
| 781 | * |
| 782 | * Makes rcu_dereference_check() do the dirty work. |
| 783 | */ |
| 784 | #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) |
| 785 | |
| 786 | /** |
| 787 | * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing |
| 788 | * @p: The pointer to read, prior to dereferencing |
| 789 | * |
| 790 | * Makes rcu_dereference_check() do the dirty work. |
| 791 | */ |
| 792 | #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) |
| 793 | |
| 794 | /** |
| 795 | * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism |
| 796 | * @p: The pointer to hand off |
| 797 | * |
| 798 | * This is simply an identity function, but it documents where a pointer |
| 799 | * is handed off from RCU to some other synchronization mechanism, for |
| 800 | * example, reference counting or locking. In C11, it would map to |
| 801 | * kill_dependency(). It could be used as follows: |
| 802 | * |
| 803 | * rcu_read_lock(); |
| 804 | * p = rcu_dereference(gp); |
| 805 | * long_lived = is_long_lived(p); |
| 806 | * if (long_lived) { |
| 807 | * if (!atomic_inc_not_zero(p->refcnt)) |
| 808 | * long_lived = false; |
| 809 | * else |
| 810 | * p = rcu_pointer_handoff(p); |
| 811 | * } |
| 812 | * rcu_read_unlock(); |
| 813 | */ |
| 814 | #define rcu_pointer_handoff(p) (p) |
| 815 | |
| 816 | /** |
| 817 | * rcu_read_lock() - mark the beginning of an RCU read-side critical section |
| 818 | * |
| 819 | * When synchronize_rcu() is invoked on one CPU while other CPUs |
| 820 | * are within RCU read-side critical sections, then the |
| 821 | * synchronize_rcu() is guaranteed to block until after all the other |
| 822 | * CPUs exit their critical sections. Similarly, if call_rcu() is invoked |
| 823 | * on one CPU while other CPUs are within RCU read-side critical |
| 824 | * sections, invocation of the corresponding RCU callback is deferred |
| 825 | * until after the all the other CPUs exit their critical sections. |
| 826 | * |
| 827 | * Note, however, that RCU callbacks are permitted to run concurrently |
| 828 | * with new RCU read-side critical sections. One way that this can happen |
| 829 | * is via the following sequence of events: (1) CPU 0 enters an RCU |
| 830 | * read-side critical section, (2) CPU 1 invokes call_rcu() to register |
| 831 | * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, |
| 832 | * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU |
| 833 | * callback is invoked. This is legal, because the RCU read-side critical |
| 834 | * section that was running concurrently with the call_rcu() (and which |
| 835 | * therefore might be referencing something that the corresponding RCU |
| 836 | * callback would free up) has completed before the corresponding |
| 837 | * RCU callback is invoked. |
| 838 | * |
| 839 | * RCU read-side critical sections may be nested. Any deferred actions |
| 840 | * will be deferred until the outermost RCU read-side critical section |
| 841 | * completes. |
| 842 | * |
| 843 | * You can avoid reading and understanding the next paragraph by |
| 844 | * following this rule: don't put anything in an rcu_read_lock() RCU |
| 845 | * read-side critical section that would block in a !PREEMPT kernel. |
| 846 | * But if you want the full story, read on! |
| 847 | * |
| 848 | * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), |
| 849 | * it is illegal to block while in an RCU read-side critical section. |
| 850 | * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT |
| 851 | * kernel builds, RCU read-side critical sections may be preempted, |
| 852 | * but explicit blocking is illegal. Finally, in preemptible RCU |
| 853 | * implementations in real-time (with -rt patchset) kernel builds, RCU |
| 854 | * read-side critical sections may be preempted and they may also block, but |
| 855 | * only when acquiring spinlocks that are subject to priority inheritance. |
| 856 | */ |
| 857 | static inline void rcu_read_lock(void) |
| 858 | { |
| 859 | __rcu_read_lock(); |
| 860 | __acquire(RCU); |
| 861 | rcu_lock_acquire(&rcu_lock_map); |
| 862 | RCU_LOCKDEP_WARN(!rcu_is_watching(), |
| 863 | "rcu_read_lock() used illegally while idle"); |
| 864 | } |
| 865 | |
| 866 | /* |
| 867 | * So where is rcu_write_lock()? It does not exist, as there is no |
| 868 | * way for writers to lock out RCU readers. This is a feature, not |
| 869 | * a bug -- this property is what provides RCU's performance benefits. |
| 870 | * Of course, writers must coordinate with each other. The normal |
| 871 | * spinlock primitives work well for this, but any other technique may be |
| 872 | * used as well. RCU does not care how the writers keep out of each |
| 873 | * others' way, as long as they do so. |
| 874 | */ |
| 875 | |
| 876 | /** |
| 877 | * rcu_read_unlock() - marks the end of an RCU read-side critical section. |
| 878 | * |
| 879 | * In most situations, rcu_read_unlock() is immune from deadlock. |
| 880 | * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock() |
| 881 | * is responsible for deboosting, which it does via rt_mutex_unlock(). |
| 882 | * Unfortunately, this function acquires the scheduler's runqueue and |
| 883 | * priority-inheritance spinlocks. This means that deadlock could result |
| 884 | * if the caller of rcu_read_unlock() already holds one of these locks or |
| 885 | * any lock that is ever acquired while holding them; or any lock which |
| 886 | * can be taken from interrupt context because rcu_boost()->rt_mutex_lock() |
| 887 | * does not disable irqs while taking ->wait_lock. |
| 888 | * |
| 889 | * That said, RCU readers are never priority boosted unless they were |
| 890 | * preempted. Therefore, one way to avoid deadlock is to make sure |
| 891 | * that preemption never happens within any RCU read-side critical |
| 892 | * section whose outermost rcu_read_unlock() is called with one of |
| 893 | * rt_mutex_unlock()'s locks held. Such preemption can be avoided in |
| 894 | * a number of ways, for example, by invoking preempt_disable() before |
| 895 | * critical section's outermost rcu_read_lock(). |
| 896 | * |
| 897 | * Given that the set of locks acquired by rt_mutex_unlock() might change |
| 898 | * at any time, a somewhat more future-proofed approach is to make sure |
| 899 | * that that preemption never happens within any RCU read-side critical |
| 900 | * section whose outermost rcu_read_unlock() is called with irqs disabled. |
| 901 | * This approach relies on the fact that rt_mutex_unlock() currently only |
| 902 | * acquires irq-disabled locks. |
| 903 | * |
| 904 | * The second of these two approaches is best in most situations, |
| 905 | * however, the first approach can also be useful, at least to those |
| 906 | * developers willing to keep abreast of the set of locks acquired by |
| 907 | * rt_mutex_unlock(). |
| 908 | * |
| 909 | * See rcu_read_lock() for more information. |
| 910 | */ |
| 911 | static inline void rcu_read_unlock(void) |
| 912 | { |
| 913 | RCU_LOCKDEP_WARN(!rcu_is_watching(), |
| 914 | "rcu_read_unlock() used illegally while idle"); |
| 915 | __release(RCU); |
| 916 | __rcu_read_unlock(); |
| 917 | rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */ |
| 918 | } |
| 919 | |
| 920 | /** |
| 921 | * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section |
| 922 | * |
| 923 | * This is equivalent of rcu_read_lock(), but to be used when updates |
| 924 | * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since |
| 925 | * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a |
| 926 | * softirq handler to be a quiescent state, a process in RCU read-side |
| 927 | * critical section must be protected by disabling softirqs. Read-side |
| 928 | * critical sections in interrupt context can use just rcu_read_lock(), |
| 929 | * though this should at least be commented to avoid confusing people |
| 930 | * reading the code. |
| 931 | * |
| 932 | * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() |
| 933 | * must occur in the same context, for example, it is illegal to invoke |
| 934 | * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() |
| 935 | * was invoked from some other task. |
| 936 | */ |
| 937 | static inline void rcu_read_lock_bh(void) |
| 938 | { |
| 939 | local_bh_disable(); |
| 940 | __acquire(RCU_BH); |
| 941 | rcu_lock_acquire(&rcu_bh_lock_map); |
| 942 | RCU_LOCKDEP_WARN(!rcu_is_watching(), |
| 943 | "rcu_read_lock_bh() used illegally while idle"); |
| 944 | } |
| 945 | |
| 946 | /* |
| 947 | * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section |
| 948 | * |
| 949 | * See rcu_read_lock_bh() for more information. |
| 950 | */ |
| 951 | static inline void rcu_read_unlock_bh(void) |
| 952 | { |
| 953 | RCU_LOCKDEP_WARN(!rcu_is_watching(), |
| 954 | "rcu_read_unlock_bh() used illegally while idle"); |
| 955 | rcu_lock_release(&rcu_bh_lock_map); |
| 956 | __release(RCU_BH); |
| 957 | local_bh_enable(); |
| 958 | } |
| 959 | |
| 960 | /** |
| 961 | * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section |
| 962 | * |
| 963 | * This is equivalent of rcu_read_lock(), but to be used when updates |
| 964 | * are being done using call_rcu_sched() or synchronize_rcu_sched(). |
| 965 | * Read-side critical sections can also be introduced by anything that |
| 966 | * disables preemption, including local_irq_disable() and friends. |
| 967 | * |
| 968 | * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() |
| 969 | * must occur in the same context, for example, it is illegal to invoke |
| 970 | * rcu_read_unlock_sched() from process context if the matching |
| 971 | * rcu_read_lock_sched() was invoked from an NMI handler. |
| 972 | */ |
| 973 | static inline void rcu_read_lock_sched(void) |
| 974 | { |
| 975 | preempt_disable(); |
| 976 | __acquire(RCU_SCHED); |
| 977 | rcu_lock_acquire(&rcu_sched_lock_map); |
| 978 | RCU_LOCKDEP_WARN(!rcu_is_watching(), |
| 979 | "rcu_read_lock_sched() used illegally while idle"); |
| 980 | } |
| 981 | |
| 982 | /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ |
| 983 | static inline notrace void rcu_read_lock_sched_notrace(void) |
| 984 | { |
| 985 | preempt_disable_notrace(); |
| 986 | __acquire(RCU_SCHED); |
| 987 | } |
| 988 | |
| 989 | /* |
| 990 | * rcu_read_unlock_sched - marks the end of a RCU-classic critical section |
| 991 | * |
| 992 | * See rcu_read_lock_sched for more information. |
| 993 | */ |
| 994 | static inline void rcu_read_unlock_sched(void) |
| 995 | { |
| 996 | RCU_LOCKDEP_WARN(!rcu_is_watching(), |
| 997 | "rcu_read_unlock_sched() used illegally while idle"); |
| 998 | rcu_lock_release(&rcu_sched_lock_map); |
| 999 | __release(RCU_SCHED); |
| 1000 | preempt_enable(); |
| 1001 | } |
| 1002 | |
| 1003 | /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ |
| 1004 | static inline notrace void rcu_read_unlock_sched_notrace(void) |
| 1005 | { |
| 1006 | __release(RCU_SCHED); |
| 1007 | preempt_enable_notrace(); |
| 1008 | } |
| 1009 | |
| 1010 | /** |
| 1011 | * RCU_INIT_POINTER() - initialize an RCU protected pointer |
| 1012 | * |
| 1013 | * Initialize an RCU-protected pointer in special cases where readers |
| 1014 | * do not need ordering constraints on the CPU or the compiler. These |
| 1015 | * special cases are: |
| 1016 | * |
| 1017 | * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or- |
| 1018 | * 2. The caller has taken whatever steps are required to prevent |
| 1019 | * RCU readers from concurrently accessing this pointer -or- |
| 1020 | * 3. The referenced data structure has already been exposed to |
| 1021 | * readers either at compile time or via rcu_assign_pointer() -and- |
| 1022 | * a. You have not made -any- reader-visible changes to |
| 1023 | * this structure since then -or- |
| 1024 | * b. It is OK for readers accessing this structure from its |
| 1025 | * new location to see the old state of the structure. (For |
| 1026 | * example, the changes were to statistical counters or to |
| 1027 | * other state where exact synchronization is not required.) |
| 1028 | * |
| 1029 | * Failure to follow these rules governing use of RCU_INIT_POINTER() will |
| 1030 | * result in impossible-to-diagnose memory corruption. As in the structures |
| 1031 | * will look OK in crash dumps, but any concurrent RCU readers might |
| 1032 | * see pre-initialized values of the referenced data structure. So |
| 1033 | * please be very careful how you use RCU_INIT_POINTER()!!! |
| 1034 | * |
| 1035 | * If you are creating an RCU-protected linked structure that is accessed |
| 1036 | * by a single external-to-structure RCU-protected pointer, then you may |
| 1037 | * use RCU_INIT_POINTER() to initialize the internal RCU-protected |
| 1038 | * pointers, but you must use rcu_assign_pointer() to initialize the |
| 1039 | * external-to-structure pointer -after- you have completely initialized |
| 1040 | * the reader-accessible portions of the linked structure. |
| 1041 | * |
| 1042 | * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no |
| 1043 | * ordering guarantees for either the CPU or the compiler. |
| 1044 | */ |
| 1045 | #define RCU_INIT_POINTER(p, v) \ |
| 1046 | do { \ |
| 1047 | rcu_dereference_sparse(p, __rcu); \ |
| 1048 | WRITE_ONCE(p, RCU_INITIALIZER(v)); \ |
| 1049 | } while (0) |
| 1050 | |
| 1051 | /** |
| 1052 | * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer |
| 1053 | * |
| 1054 | * GCC-style initialization for an RCU-protected pointer in a structure field. |
| 1055 | */ |
| 1056 | #define RCU_POINTER_INITIALIZER(p, v) \ |
| 1057 | .p = RCU_INITIALIZER(v) |
| 1058 | |
| 1059 | /* |
| 1060 | * Does the specified offset indicate that the corresponding rcu_head |
| 1061 | * structure can be handled by kfree_rcu()? |
| 1062 | */ |
| 1063 | #define __is_kfree_rcu_offset(offset) ((offset) < 4096) |
| 1064 | |
| 1065 | /* |
| 1066 | * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain. |
| 1067 | */ |
| 1068 | #define __kfree_rcu(head, offset) \ |
| 1069 | do { \ |
| 1070 | BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \ |
| 1071 | kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \ |
| 1072 | } while (0) |
| 1073 | |
| 1074 | /** |
| 1075 | * kfree_rcu() - kfree an object after a grace period. |
| 1076 | * @ptr: pointer to kfree |
| 1077 | * @rcu_head: the name of the struct rcu_head within the type of @ptr. |
| 1078 | * |
| 1079 | * Many rcu callbacks functions just call kfree() on the base structure. |
| 1080 | * These functions are trivial, but their size adds up, and furthermore |
| 1081 | * when they are used in a kernel module, that module must invoke the |
| 1082 | * high-latency rcu_barrier() function at module-unload time. |
| 1083 | * |
| 1084 | * The kfree_rcu() function handles this issue. Rather than encoding a |
| 1085 | * function address in the embedded rcu_head structure, kfree_rcu() instead |
| 1086 | * encodes the offset of the rcu_head structure within the base structure. |
| 1087 | * Because the functions are not allowed in the low-order 4096 bytes of |
| 1088 | * kernel virtual memory, offsets up to 4095 bytes can be accommodated. |
| 1089 | * If the offset is larger than 4095 bytes, a compile-time error will |
| 1090 | * be generated in __kfree_rcu(). If this error is triggered, you can |
| 1091 | * either fall back to use of call_rcu() or rearrange the structure to |
| 1092 | * position the rcu_head structure into the first 4096 bytes. |
| 1093 | * |
| 1094 | * Note that the allowable offset might decrease in the future, for example, |
| 1095 | * to allow something like kmem_cache_free_rcu(). |
| 1096 | * |
| 1097 | * The BUILD_BUG_ON check must not involve any function calls, hence the |
| 1098 | * checks are done in macros here. |
| 1099 | */ |
| 1100 | #define kfree_rcu(ptr, rcu_head) \ |
| 1101 | __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head)) |
| 1102 | |
| 1103 | #ifdef CONFIG_TINY_RCU |
| 1104 | static inline int rcu_needs_cpu(u64 basemono, u64 *nextevt) |
| 1105 | { |
| 1106 | *nextevt = KTIME_MAX; |
| 1107 | return 0; |
| 1108 | } |
| 1109 | #endif /* #ifdef CONFIG_TINY_RCU */ |
| 1110 | |
| 1111 | #if defined(CONFIG_RCU_NOCB_CPU_ALL) |
| 1112 | static inline bool rcu_is_nocb_cpu(int cpu) { return true; } |
| 1113 | #elif defined(CONFIG_RCU_NOCB_CPU) |
| 1114 | bool rcu_is_nocb_cpu(int cpu); |
| 1115 | #else |
| 1116 | static inline bool rcu_is_nocb_cpu(int cpu) { return false; } |
| 1117 | #endif |
| 1118 | |
| 1119 | |
| 1120 | /* Only for use by adaptive-ticks code. */ |
| 1121 | #ifdef CONFIG_NO_HZ_FULL_SYSIDLE |
| 1122 | bool rcu_sys_is_idle(void); |
| 1123 | void rcu_sysidle_force_exit(void); |
| 1124 | #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ |
| 1125 | |
| 1126 | static inline bool rcu_sys_is_idle(void) |
| 1127 | { |
| 1128 | return false; |
| 1129 | } |
| 1130 | |
| 1131 | static inline void rcu_sysidle_force_exit(void) |
| 1132 | { |
| 1133 | } |
| 1134 | |
| 1135 | #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ |
| 1136 | |
| 1137 | |
| 1138 | #endif /* __LINUX_RCUPDATE_H */ |