blob: 8c75af6b7d5b45481a4a2dab6650ac6fc8fa2dcb [file] [log] [blame]
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001#ifndef __LINUX_USB_H
2#define __LINUX_USB_H
3
4#include <linux/mod_devicetable.h>
5#include <linux/usb/ch9.h>
6
7#define USB_MAJOR 180
8#define USB_DEVICE_MAJOR 189
9
10
11#ifdef __KERNEL__
12
13#include <linux/errno.h> /* for -ENODEV */
14#include <linux/delay.h> /* for mdelay() */
15#include <linux/interrupt.h> /* for in_interrupt() */
16#include <linux/list.h> /* for struct list_head */
17#include <linux/kref.h> /* for struct kref */
18#include <linux/device.h> /* for struct device */
19#include <linux/fs.h> /* for struct file_operations */
20#include <linux/completion.h> /* for struct completion */
21#include <linux/sched.h> /* for current && schedule_timeout */
22#include <linux/mutex.h> /* for struct mutex */
23#include <linux/pm_runtime.h> /* for runtime PM */
24
25struct usb_device;
26struct usb_driver;
27struct wusb_dev;
28
29/*-------------------------------------------------------------------------*/
30
31/*
32 * Host-side wrappers for standard USB descriptors ... these are parsed
33 * from the data provided by devices. Parsing turns them from a flat
34 * sequence of descriptors into a hierarchy:
35 *
36 * - devices have one (usually) or more configs;
37 * - configs have one (often) or more interfaces;
38 * - interfaces have one (usually) or more settings;
39 * - each interface setting has zero or (usually) more endpoints.
40 * - a SuperSpeed endpoint has a companion descriptor
41 *
42 * And there might be other descriptors mixed in with those.
43 *
44 * Devices may also have class-specific or vendor-specific descriptors.
45 */
46
47struct ep_device;
48
49/**
50 * struct usb_host_endpoint - host-side endpoint descriptor and queue
51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53 * @urb_list: urbs queued to this endpoint; maintained by usbcore
54 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
55 * with one or more transfer descriptors (TDs) per urb
56 * @ep_dev: ep_device for sysfs info
57 * @extra: descriptors following this endpoint in the configuration
58 * @extralen: how many bytes of "extra" are valid
59 * @enabled: URBs may be submitted to this endpoint
60 * @streams: number of USB-3 streams allocated on the endpoint
61 *
62 * USB requests are always queued to a given endpoint, identified by a
63 * descriptor within an active interface in a given USB configuration.
64 */
65struct usb_host_endpoint {
66 struct usb_endpoint_descriptor desc;
67 struct usb_ss_ep_comp_descriptor ss_ep_comp;
68 struct list_head urb_list;
69 void *hcpriv;
70 struct ep_device *ep_dev; /* For sysfs info */
71
72 unsigned char *extra; /* Extra descriptors */
73 int extralen;
74 int enabled;
75 int streams;
76};
77
78/* host-side wrapper for one interface setting's parsed descriptors */
79struct usb_host_interface {
80 struct usb_interface_descriptor desc;
81
82 int extralen;
83 unsigned char *extra; /* Extra descriptors */
84
85 /* array of desc.bNumEndpoints endpoints associated with this
86 * interface setting. these will be in no particular order.
87 */
88 struct usb_host_endpoint *endpoint;
89
90 char *string; /* iInterface string, if present */
91};
92
93enum usb_interface_condition {
94 USB_INTERFACE_UNBOUND = 0,
95 USB_INTERFACE_BINDING,
96 USB_INTERFACE_BOUND,
97 USB_INTERFACE_UNBINDING,
98};
99
100/**
101 * struct usb_interface - what usb device drivers talk to
102 * @altsetting: array of interface structures, one for each alternate
103 * setting that may be selected. Each one includes a set of
104 * endpoint configurations. They will be in no particular order.
105 * @cur_altsetting: the current altsetting.
106 * @num_altsetting: number of altsettings defined.
107 * @intf_assoc: interface association descriptor
108 * @minor: the minor number assigned to this interface, if this
109 * interface is bound to a driver that uses the USB major number.
110 * If this interface does not use the USB major, this field should
111 * be unused. The driver should set this value in the probe()
112 * function of the driver, after it has been assigned a minor
113 * number from the USB core by calling usb_register_dev().
114 * @condition: binding state of the interface: not bound, binding
115 * (in probe()), bound to a driver, or unbinding (in disconnect())
116 * @sysfs_files_created: sysfs attributes exist
117 * @ep_devs_created: endpoint child pseudo-devices exist
118 * @unregistering: flag set when the interface is being unregistered
119 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
120 * capability during autosuspend.
121 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
122 * has been deferred.
123 * @needs_binding: flag set when the driver should be re-probed or unbound
124 * following a reset or suspend operation it doesn't support.
125 * @authorized: This allows to (de)authorize individual interfaces instead
126 * a whole device in contrast to the device authorization.
127 * @dev: driver model's view of this device
128 * @usb_dev: if an interface is bound to the USB major, this will point
129 * to the sysfs representation for that device.
130 * @pm_usage_cnt: PM usage counter for this interface
131 * @reset_ws: Used for scheduling resets from atomic context.
132 * @resetting_device: USB core reset the device, so use alt setting 0 as
133 * current; needs bandwidth alloc after reset.
134 *
135 * USB device drivers attach to interfaces on a physical device. Each
136 * interface encapsulates a single high level function, such as feeding
137 * an audio stream to a speaker or reporting a change in a volume control.
138 * Many USB devices only have one interface. The protocol used to talk to
139 * an interface's endpoints can be defined in a usb "class" specification,
140 * or by a product's vendor. The (default) control endpoint is part of
141 * every interface, but is never listed among the interface's descriptors.
142 *
143 * The driver that is bound to the interface can use standard driver model
144 * calls such as dev_get_drvdata() on the dev member of this structure.
145 *
146 * Each interface may have alternate settings. The initial configuration
147 * of a device sets altsetting 0, but the device driver can change
148 * that setting using usb_set_interface(). Alternate settings are often
149 * used to control the use of periodic endpoints, such as by having
150 * different endpoints use different amounts of reserved USB bandwidth.
151 * All standards-conformant USB devices that use isochronous endpoints
152 * will use them in non-default settings.
153 *
154 * The USB specification says that alternate setting numbers must run from
155 * 0 to one less than the total number of alternate settings. But some
156 * devices manage to mess this up, and the structures aren't necessarily
157 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
158 * look up an alternate setting in the altsetting array based on its number.
159 */
160struct usb_interface {
161 /* array of alternate settings for this interface,
162 * stored in no particular order */
163 struct usb_host_interface *altsetting;
164
165 struct usb_host_interface *cur_altsetting; /* the currently
166 * active alternate setting */
167 unsigned num_altsetting; /* number of alternate settings */
168
169 /* If there is an interface association descriptor then it will list
170 * the associated interfaces */
171 struct usb_interface_assoc_descriptor *intf_assoc;
172
173 int minor; /* minor number this interface is
174 * bound to */
175 enum usb_interface_condition condition; /* state of binding */
176 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
177 unsigned ep_devs_created:1; /* endpoint "devices" exist */
178 unsigned unregistering:1; /* unregistration is in progress */
179 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
180 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
181 unsigned needs_binding:1; /* needs delayed unbind/rebind */
182 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
183 unsigned authorized:1; /* used for interface authorization */
184
185 struct device dev; /* interface specific device info */
186 struct device *usb_dev;
187 atomic_t pm_usage_cnt; /* usage counter for autosuspend */
188 struct work_struct reset_ws; /* for resets in atomic context */
189};
190#define to_usb_interface(d) container_of(d, struct usb_interface, dev)
191
192static inline void *usb_get_intfdata(struct usb_interface *intf)
193{
194 return dev_get_drvdata(&intf->dev);
195}
196
197static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
198{
199 dev_set_drvdata(&intf->dev, data);
200}
201
202struct usb_interface *usb_get_intf(struct usb_interface *intf);
203void usb_put_intf(struct usb_interface *intf);
204
205/* Hard limit */
206#define USB_MAXENDPOINTS 30
207/* this maximum is arbitrary */
208#define USB_MAXINTERFACES 32
209#define USB_MAXIADS (USB_MAXINTERFACES/2)
210
211/*
212 * USB Resume Timer: Every Host controller driver should drive the resume
213 * signalling on the bus for the amount of time defined by this macro.
214 *
215 * That way we will have a 'stable' behavior among all HCDs supported by Linux.
216 *
217 * Note that the USB Specification states we should drive resume for *at least*
218 * 20 ms, but it doesn't give an upper bound. This creates two possible
219 * situations which we want to avoid:
220 *
221 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
222 * us to fail USB Electrical Tests, thus failing Certification
223 *
224 * (b) Some (many) devices actually need more than 20 ms of resume signalling,
225 * and while we can argue that's against the USB Specification, we don't have
226 * control over which devices a certification laboratory will be using for
227 * certification. If CertLab uses a device which was tested against Windows and
228 * that happens to have relaxed resume signalling rules, we might fall into
229 * situations where we fail interoperability and electrical tests.
230 *
231 * In order to avoid both conditions, we're using a 40 ms resume timeout, which
232 * should cope with both LPJ calibration errors and devices not following every
233 * detail of the USB Specification.
234 */
235#define USB_RESUME_TIMEOUT 40 /* ms */
236
237/**
238 * struct usb_interface_cache - long-term representation of a device interface
239 * @num_altsetting: number of altsettings defined.
240 * @ref: reference counter.
241 * @altsetting: variable-length array of interface structures, one for
242 * each alternate setting that may be selected. Each one includes a
243 * set of endpoint configurations. They will be in no particular order.
244 *
245 * These structures persist for the lifetime of a usb_device, unlike
246 * struct usb_interface (which persists only as long as its configuration
247 * is installed). The altsetting arrays can be accessed through these
248 * structures at any time, permitting comparison of configurations and
249 * providing support for the /proc/bus/usb/devices pseudo-file.
250 */
251struct usb_interface_cache {
252 unsigned num_altsetting; /* number of alternate settings */
253 struct kref ref; /* reference counter */
254
255 /* variable-length array of alternate settings for this interface,
256 * stored in no particular order */
257 struct usb_host_interface altsetting[0];
258};
259#define ref_to_usb_interface_cache(r) \
260 container_of(r, struct usb_interface_cache, ref)
261#define altsetting_to_usb_interface_cache(a) \
262 container_of(a, struct usb_interface_cache, altsetting[0])
263
264/**
265 * struct usb_host_config - representation of a device's configuration
266 * @desc: the device's configuration descriptor.
267 * @string: pointer to the cached version of the iConfiguration string, if
268 * present for this configuration.
269 * @intf_assoc: list of any interface association descriptors in this config
270 * @interface: array of pointers to usb_interface structures, one for each
271 * interface in the configuration. The number of interfaces is stored
272 * in desc.bNumInterfaces. These pointers are valid only while the
273 * the configuration is active.
274 * @intf_cache: array of pointers to usb_interface_cache structures, one
275 * for each interface in the configuration. These structures exist
276 * for the entire life of the device.
277 * @extra: pointer to buffer containing all extra descriptors associated
278 * with this configuration (those preceding the first interface
279 * descriptor).
280 * @extralen: length of the extra descriptors buffer.
281 *
282 * USB devices may have multiple configurations, but only one can be active
283 * at any time. Each encapsulates a different operational environment;
284 * for example, a dual-speed device would have separate configurations for
285 * full-speed and high-speed operation. The number of configurations
286 * available is stored in the device descriptor as bNumConfigurations.
287 *
288 * A configuration can contain multiple interfaces. Each corresponds to
289 * a different function of the USB device, and all are available whenever
290 * the configuration is active. The USB standard says that interfaces
291 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
292 * of devices get this wrong. In addition, the interface array is not
293 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
294 * look up an interface entry based on its number.
295 *
296 * Device drivers should not attempt to activate configurations. The choice
297 * of which configuration to install is a policy decision based on such
298 * considerations as available power, functionality provided, and the user's
299 * desires (expressed through userspace tools). However, drivers can call
300 * usb_reset_configuration() to reinitialize the current configuration and
301 * all its interfaces.
302 */
303struct usb_host_config {
304 struct usb_config_descriptor desc;
305
306 char *string; /* iConfiguration string, if present */
307
308 /* List of any Interface Association Descriptors in this
309 * configuration. */
310 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
311
312 /* the interfaces associated with this configuration,
313 * stored in no particular order */
314 struct usb_interface *interface[USB_MAXINTERFACES];
315
316 /* Interface information available even when this is not the
317 * active configuration */
318 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
319
320 unsigned char *extra; /* Extra descriptors */
321 int extralen;
322};
323
324/* USB2.0 and USB3.0 device BOS descriptor set */
325struct usb_host_bos {
326 struct usb_bos_descriptor *desc;
327
328 /* wireless cap descriptor is handled by wusb */
329 struct usb_ext_cap_descriptor *ext_cap;
330 struct usb_ss_cap_descriptor *ss_cap;
331 struct usb_ssp_cap_descriptor *ssp_cap;
332 struct usb_ss_container_id_descriptor *ss_id;
333};
334
335int __usb_get_extra_descriptor(char *buffer, unsigned size,
336 unsigned char type, void **ptr);
337#define usb_get_extra_descriptor(ifpoint, type, ptr) \
338 __usb_get_extra_descriptor((ifpoint)->extra, \
339 (ifpoint)->extralen, \
340 type, (void **)ptr)
341
342/* ----------------------------------------------------------------------- */
343
344/* USB device number allocation bitmap */
345struct usb_devmap {
346 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
347};
348
349/*
350 * Allocated per bus (tree of devices) we have:
351 */
352struct usb_bus {
353 struct device *controller; /* host/master side hardware */
354 int busnum; /* Bus number (in order of reg) */
355 const char *bus_name; /* stable id (PCI slot_name etc) */
356 u8 uses_dma; /* Does the host controller use DMA? */
357 u8 uses_pio_for_control; /*
358 * Does the host controller use PIO
359 * for control transfers?
360 */
361 u8 otg_port; /* 0, or number of OTG/HNP port */
362 unsigned is_b_host:1; /* true during some HNP roleswitches */
363 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
364 unsigned no_stop_on_short:1; /*
365 * Quirk: some controllers don't stop
366 * the ep queue on a short transfer
367 * with the URB_SHORT_NOT_OK flag set.
368 */
369 unsigned no_sg_constraint:1; /* no sg constraint */
370 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
371
372 int devnum_next; /* Next open device number in
373 * round-robin allocation */
374 struct mutex devnum_next_mutex; /* devnum_next mutex */
375
376 struct usb_devmap devmap; /* device address allocation map */
377 struct usb_device *root_hub; /* Root hub */
378 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
379 struct list_head bus_list; /* list of busses */
380
381 int bandwidth_allocated; /* on this bus: how much of the time
382 * reserved for periodic (intr/iso)
383 * requests is used, on average?
384 * Units: microseconds/frame.
385 * Limits: Full/low speed reserve 90%,
386 * while high speed reserves 80%.
387 */
388 int bandwidth_int_reqs; /* number of Interrupt requests */
389 int bandwidth_isoc_reqs; /* number of Isoc. requests */
390
391 unsigned resuming_ports; /* bit array: resuming root-hub ports */
392
393#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
394 struct mon_bus *mon_bus; /* non-null when associated */
395 int monitored; /* non-zero when monitored */
396#endif
397};
398
399struct usb_dev_state;
400
401/* ----------------------------------------------------------------------- */
402
403struct usb_tt;
404
405enum usb_device_removable {
406 USB_DEVICE_REMOVABLE_UNKNOWN = 0,
407 USB_DEVICE_REMOVABLE,
408 USB_DEVICE_FIXED,
409};
410
411enum usb_port_connect_type {
412 USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
413 USB_PORT_CONNECT_TYPE_HOT_PLUG,
414 USB_PORT_CONNECT_TYPE_HARD_WIRED,
415 USB_PORT_NOT_USED,
416};
417
418/*
419 * USB 2.0 Link Power Management (LPM) parameters.
420 */
421struct usb2_lpm_parameters {
422 /* Best effort service latency indicate how long the host will drive
423 * resume on an exit from L1.
424 */
425 unsigned int besl;
426
427 /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
428 * When the timer counts to zero, the parent hub will initiate a LPM
429 * transition to L1.
430 */
431 int timeout;
432};
433
434/*
435 * USB 3.0 Link Power Management (LPM) parameters.
436 *
437 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
438 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
439 * All three are stored in nanoseconds.
440 */
441struct usb3_lpm_parameters {
442 /*
443 * Maximum exit latency (MEL) for the host to send a packet to the
444 * device (either a Ping for isoc endpoints, or a data packet for
445 * interrupt endpoints), the hubs to decode the packet, and for all hubs
446 * in the path to transition the links to U0.
447 */
448 unsigned int mel;
449 /*
450 * Maximum exit latency for a device-initiated LPM transition to bring
451 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB
452 * 3.0 spec, with no explanation of what "P" stands for. "Path"?
453 */
454 unsigned int pel;
455
456 /*
457 * The System Exit Latency (SEL) includes PEL, and three other
458 * latencies. After a device initiates a U0 transition, it will take
459 * some time from when the device sends the ERDY to when it will finally
460 * receive the data packet. Basically, SEL should be the worse-case
461 * latency from when a device starts initiating a U0 transition to when
462 * it will get data.
463 */
464 unsigned int sel;
465 /*
466 * The idle timeout value that is currently programmed into the parent
467 * hub for this device. When the timer counts to zero, the parent hub
468 * will initiate an LPM transition to either U1 or U2.
469 */
470 int timeout;
471};
472
473/**
474 * struct usb_device - kernel's representation of a USB device
475 * @devnum: device number; address on a USB bus
476 * @devpath: device ID string for use in messages (e.g., /port/...)
477 * @route: tree topology hex string for use with xHCI
478 * @state: device state: configured, not attached, etc.
479 * @speed: device speed: high/full/low (or error)
480 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
481 * @ttport: device port on that tt hub
482 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
483 * @parent: our hub, unless we're the root
484 * @bus: bus we're part of
485 * @ep0: endpoint 0 data (default control pipe)
486 * @dev: generic device interface
487 * @descriptor: USB device descriptor
488 * @bos: USB device BOS descriptor set
489 * @config: all of the device's configs
490 * @actconfig: the active configuration
491 * @ep_in: array of IN endpoints
492 * @ep_out: array of OUT endpoints
493 * @rawdescriptors: raw descriptors for each config
494 * @bus_mA: Current available from the bus
495 * @portnum: parent port number (origin 1)
496 * @level: number of USB hub ancestors
497 * @can_submit: URBs may be submitted
498 * @persist_enabled: USB_PERSIST enabled for this device
499 * @have_langid: whether string_langid is valid
500 * @authorized: policy has said we can use it;
501 * (user space) policy determines if we authorize this device to be
502 * used or not. By default, wired USB devices are authorized.
503 * WUSB devices are not, until we authorize them from user space.
504 * FIXME -- complete doc
505 * @authenticated: Crypto authentication passed
506 * @wusb: device is Wireless USB
507 * @lpm_capable: device supports LPM
508 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
509 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
510 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
511 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
512 * @usb3_lpm_enabled: USB3 hardware LPM enabled
513 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
514 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
515 * @string_langid: language ID for strings
516 * @product: iProduct string, if present (static)
517 * @manufacturer: iManufacturer string, if present (static)
518 * @serial: iSerialNumber string, if present (static)
519 * @filelist: usbfs files that are open to this device
520 * @maxchild: number of ports if hub
521 * @quirks: quirks of the whole device
522 * @urbnum: number of URBs submitted for the whole device
523 * @active_duration: total time device is not suspended
524 * @connect_time: time device was first connected
525 * @do_remote_wakeup: remote wakeup should be enabled
526 * @reset_resume: needs reset instead of resume
527 * @port_is_suspended: the upstream port is suspended (L2 or U3)
528 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
529 * specific data for the device.
530 * @slot_id: Slot ID assigned by xHCI
531 * @removable: Device can be physically removed from this port
532 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
533 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
534 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
535 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
536 * to keep track of the number of functions that require USB 3.0 Link Power
537 * Management to be disabled for this usb_device. This count should only
538 * be manipulated by those functions, with the bandwidth_mutex is held.
539 *
540 * Notes:
541 * Usbcore drivers should not set usbdev->state directly. Instead use
542 * usb_set_device_state().
543 */
544struct usb_device {
545 int devnum;
546 char devpath[16];
547 u32 route;
548 enum usb_device_state state;
549 enum usb_device_speed speed;
550
551 struct usb_tt *tt;
552 int ttport;
553
554 unsigned int toggle[2];
555
556 struct usb_device *parent;
557 struct usb_bus *bus;
558 struct usb_host_endpoint ep0;
559
560 struct device dev;
561
562 struct usb_device_descriptor descriptor;
563 struct usb_host_bos *bos;
564 struct usb_host_config *config;
565
566 struct usb_host_config *actconfig;
567 struct usb_host_endpoint *ep_in[16];
568 struct usb_host_endpoint *ep_out[16];
569
570 char **rawdescriptors;
571
572 unsigned short bus_mA;
573 u8 portnum;
574 u8 level;
575
576 unsigned can_submit:1;
577 unsigned persist_enabled:1;
578 unsigned have_langid:1;
579 unsigned authorized:1;
580 unsigned authenticated:1;
581 unsigned wusb:1;
582 unsigned lpm_capable:1;
583 unsigned usb2_hw_lpm_capable:1;
584 unsigned usb2_hw_lpm_besl_capable:1;
585 unsigned usb2_hw_lpm_enabled:1;
586 unsigned usb2_hw_lpm_allowed:1;
587 unsigned usb3_lpm_enabled:1;
588 unsigned usb3_lpm_u1_enabled:1;
589 unsigned usb3_lpm_u2_enabled:1;
590 int string_langid;
591
592 /* static strings from the device */
593 char *product;
594 char *manufacturer;
595 char *serial;
596
597 struct list_head filelist;
598
599 int maxchild;
600
601 u32 quirks;
602 atomic_t urbnum;
603
604 unsigned long active_duration;
605
606#ifdef CONFIG_PM
607 unsigned long connect_time;
608
609 unsigned do_remote_wakeup:1;
610 unsigned reset_resume:1;
611 unsigned port_is_suspended:1;
612#endif
613 struct wusb_dev *wusb_dev;
614 int slot_id;
615 enum usb_device_removable removable;
616 struct usb2_lpm_parameters l1_params;
617 struct usb3_lpm_parameters u1_params;
618 struct usb3_lpm_parameters u2_params;
619 unsigned lpm_disable_count;
620};
621#define to_usb_device(d) container_of(d, struct usb_device, dev)
622
623static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
624{
625 return to_usb_device(intf->dev.parent);
626}
627
628extern struct usb_device *usb_get_dev(struct usb_device *dev);
629extern void usb_put_dev(struct usb_device *dev);
630extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
631 int port1);
632
633/**
634 * usb_hub_for_each_child - iterate over all child devices on the hub
635 * @hdev: USB device belonging to the usb hub
636 * @port1: portnum associated with child device
637 * @child: child device pointer
638 */
639#define usb_hub_for_each_child(hdev, port1, child) \
640 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
641 port1 <= hdev->maxchild; \
642 child = usb_hub_find_child(hdev, ++port1)) \
643 if (!child) continue; else
644
645/* USB device locking */
646#define usb_lock_device(udev) device_lock(&(udev)->dev)
647#define usb_unlock_device(udev) device_unlock(&(udev)->dev)
648#define usb_trylock_device(udev) device_trylock(&(udev)->dev)
649extern int usb_lock_device_for_reset(struct usb_device *udev,
650 const struct usb_interface *iface);
651
652/* USB port reset for device reinitialization */
653extern int usb_reset_device(struct usb_device *dev);
654extern void usb_queue_reset_device(struct usb_interface *dev);
655
656#ifdef CONFIG_ACPI
657extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
658 bool enable);
659extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
660#else
661static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
662 bool enable) { return 0; }
663static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
664 { return true; }
665#endif
666
667/* USB autosuspend and autoresume */
668#ifdef CONFIG_PM
669extern void usb_enable_autosuspend(struct usb_device *udev);
670extern void usb_disable_autosuspend(struct usb_device *udev);
671
672extern int usb_autopm_get_interface(struct usb_interface *intf);
673extern void usb_autopm_put_interface(struct usb_interface *intf);
674extern int usb_autopm_get_interface_async(struct usb_interface *intf);
675extern void usb_autopm_put_interface_async(struct usb_interface *intf);
676extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
677extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
678
679static inline void usb_mark_last_busy(struct usb_device *udev)
680{
681 pm_runtime_mark_last_busy(&udev->dev);
682}
683
684#else
685
686static inline int usb_enable_autosuspend(struct usb_device *udev)
687{ return 0; }
688static inline int usb_disable_autosuspend(struct usb_device *udev)
689{ return 0; }
690
691static inline int usb_autopm_get_interface(struct usb_interface *intf)
692{ return 0; }
693static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
694{ return 0; }
695
696static inline void usb_autopm_put_interface(struct usb_interface *intf)
697{ }
698static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
699{ }
700static inline void usb_autopm_get_interface_no_resume(
701 struct usb_interface *intf)
702{ }
703static inline void usb_autopm_put_interface_no_suspend(
704 struct usb_interface *intf)
705{ }
706static inline void usb_mark_last_busy(struct usb_device *udev)
707{ }
708#endif
709
710extern int usb_disable_lpm(struct usb_device *udev);
711extern void usb_enable_lpm(struct usb_device *udev);
712/* Same as above, but these functions lock/unlock the bandwidth_mutex. */
713extern int usb_unlocked_disable_lpm(struct usb_device *udev);
714extern void usb_unlocked_enable_lpm(struct usb_device *udev);
715
716extern int usb_disable_ltm(struct usb_device *udev);
717extern void usb_enable_ltm(struct usb_device *udev);
718
719static inline bool usb_device_supports_ltm(struct usb_device *udev)
720{
721 if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
722 return false;
723 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
724}
725
726static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
727{
728 return udev && udev->bus && udev->bus->no_sg_constraint;
729}
730
731
732/*-------------------------------------------------------------------------*/
733
734/* for drivers using iso endpoints */
735extern int usb_get_current_frame_number(struct usb_device *usb_dev);
736
737/* Sets up a group of bulk endpoints to support multiple stream IDs. */
738extern int usb_alloc_streams(struct usb_interface *interface,
739 struct usb_host_endpoint **eps, unsigned int num_eps,
740 unsigned int num_streams, gfp_t mem_flags);
741
742/* Reverts a group of bulk endpoints back to not using stream IDs. */
743extern int usb_free_streams(struct usb_interface *interface,
744 struct usb_host_endpoint **eps, unsigned int num_eps,
745 gfp_t mem_flags);
746
747/* used these for multi-interface device registration */
748extern int usb_driver_claim_interface(struct usb_driver *driver,
749 struct usb_interface *iface, void *priv);
750
751/**
752 * usb_interface_claimed - returns true iff an interface is claimed
753 * @iface: the interface being checked
754 *
755 * Return: %true (nonzero) iff the interface is claimed, else %false
756 * (zero).
757 *
758 * Note:
759 * Callers must own the driver model's usb bus readlock. So driver
760 * probe() entries don't need extra locking, but other call contexts
761 * may need to explicitly claim that lock.
762 *
763 */
764static inline int usb_interface_claimed(struct usb_interface *iface)
765{
766 return (iface->dev.driver != NULL);
767}
768
769extern void usb_driver_release_interface(struct usb_driver *driver,
770 struct usb_interface *iface);
771const struct usb_device_id *usb_match_id(struct usb_interface *interface,
772 const struct usb_device_id *id);
773extern int usb_match_one_id(struct usb_interface *interface,
774 const struct usb_device_id *id);
775
776extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
777extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
778 int minor);
779extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
780 unsigned ifnum);
781extern struct usb_host_interface *usb_altnum_to_altsetting(
782 const struct usb_interface *intf, unsigned int altnum);
783extern struct usb_host_interface *usb_find_alt_setting(
784 struct usb_host_config *config,
785 unsigned int iface_num,
786 unsigned int alt_num);
787
788/* port claiming functions */
789int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
790 struct usb_dev_state *owner);
791int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
792 struct usb_dev_state *owner);
793
794/**
795 * usb_make_path - returns stable device path in the usb tree
796 * @dev: the device whose path is being constructed
797 * @buf: where to put the string
798 * @size: how big is "buf"?
799 *
800 * Return: Length of the string (> 0) or negative if size was too small.
801 *
802 * Note:
803 * This identifier is intended to be "stable", reflecting physical paths in
804 * hardware such as physical bus addresses for host controllers or ports on
805 * USB hubs. That makes it stay the same until systems are physically
806 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
807 * controllers. Adding and removing devices, including virtual root hubs
808 * in host controller driver modules, does not change these path identifiers;
809 * neither does rebooting or re-enumerating. These are more useful identifiers
810 * than changeable ("unstable") ones like bus numbers or device addresses.
811 *
812 * With a partial exception for devices connected to USB 2.0 root hubs, these
813 * identifiers are also predictable. So long as the device tree isn't changed,
814 * plugging any USB device into a given hub port always gives it the same path.
815 * Because of the use of "companion" controllers, devices connected to ports on
816 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
817 * high speed, and a different one if they are full or low speed.
818 */
819static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
820{
821 int actual;
822 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
823 dev->devpath);
824 return (actual >= (int)size) ? -1 : actual;
825}
826
827/*-------------------------------------------------------------------------*/
828
829#define USB_DEVICE_ID_MATCH_DEVICE \
830 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
831#define USB_DEVICE_ID_MATCH_DEV_RANGE \
832 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
833#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
834 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
835#define USB_DEVICE_ID_MATCH_DEV_INFO \
836 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
837 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
838 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
839#define USB_DEVICE_ID_MATCH_INT_INFO \
840 (USB_DEVICE_ID_MATCH_INT_CLASS | \
841 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
842 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
843
844/**
845 * USB_DEVICE - macro used to describe a specific usb device
846 * @vend: the 16 bit USB Vendor ID
847 * @prod: the 16 bit USB Product ID
848 *
849 * This macro is used to create a struct usb_device_id that matches a
850 * specific device.
851 */
852#define USB_DEVICE(vend, prod) \
853 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
854 .idVendor = (vend), \
855 .idProduct = (prod)
856/**
857 * USB_DEVICE_VER - describe a specific usb device with a version range
858 * @vend: the 16 bit USB Vendor ID
859 * @prod: the 16 bit USB Product ID
860 * @lo: the bcdDevice_lo value
861 * @hi: the bcdDevice_hi value
862 *
863 * This macro is used to create a struct usb_device_id that matches a
864 * specific device, with a version range.
865 */
866#define USB_DEVICE_VER(vend, prod, lo, hi) \
867 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
868 .idVendor = (vend), \
869 .idProduct = (prod), \
870 .bcdDevice_lo = (lo), \
871 .bcdDevice_hi = (hi)
872
873/**
874 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
875 * @vend: the 16 bit USB Vendor ID
876 * @prod: the 16 bit USB Product ID
877 * @cl: bInterfaceClass value
878 *
879 * This macro is used to create a struct usb_device_id that matches a
880 * specific interface class of devices.
881 */
882#define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
883 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
884 USB_DEVICE_ID_MATCH_INT_CLASS, \
885 .idVendor = (vend), \
886 .idProduct = (prod), \
887 .bInterfaceClass = (cl)
888
889/**
890 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
891 * @vend: the 16 bit USB Vendor ID
892 * @prod: the 16 bit USB Product ID
893 * @pr: bInterfaceProtocol value
894 *
895 * This macro is used to create a struct usb_device_id that matches a
896 * specific interface protocol of devices.
897 */
898#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
899 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
900 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
901 .idVendor = (vend), \
902 .idProduct = (prod), \
903 .bInterfaceProtocol = (pr)
904
905/**
906 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
907 * @vend: the 16 bit USB Vendor ID
908 * @prod: the 16 bit USB Product ID
909 * @num: bInterfaceNumber value
910 *
911 * This macro is used to create a struct usb_device_id that matches a
912 * specific interface number of devices.
913 */
914#define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
915 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
916 USB_DEVICE_ID_MATCH_INT_NUMBER, \
917 .idVendor = (vend), \
918 .idProduct = (prod), \
919 .bInterfaceNumber = (num)
920
921/**
922 * USB_DEVICE_INFO - macro used to describe a class of usb devices
923 * @cl: bDeviceClass value
924 * @sc: bDeviceSubClass value
925 * @pr: bDeviceProtocol value
926 *
927 * This macro is used to create a struct usb_device_id that matches a
928 * specific class of devices.
929 */
930#define USB_DEVICE_INFO(cl, sc, pr) \
931 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
932 .bDeviceClass = (cl), \
933 .bDeviceSubClass = (sc), \
934 .bDeviceProtocol = (pr)
935
936/**
937 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
938 * @cl: bInterfaceClass value
939 * @sc: bInterfaceSubClass value
940 * @pr: bInterfaceProtocol value
941 *
942 * This macro is used to create a struct usb_device_id that matches a
943 * specific class of interfaces.
944 */
945#define USB_INTERFACE_INFO(cl, sc, pr) \
946 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
947 .bInterfaceClass = (cl), \
948 .bInterfaceSubClass = (sc), \
949 .bInterfaceProtocol = (pr)
950
951/**
952 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
953 * @vend: the 16 bit USB Vendor ID
954 * @prod: the 16 bit USB Product ID
955 * @cl: bInterfaceClass value
956 * @sc: bInterfaceSubClass value
957 * @pr: bInterfaceProtocol value
958 *
959 * This macro is used to create a struct usb_device_id that matches a
960 * specific device with a specific class of interfaces.
961 *
962 * This is especially useful when explicitly matching devices that have
963 * vendor specific bDeviceClass values, but standards-compliant interfaces.
964 */
965#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
966 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
967 | USB_DEVICE_ID_MATCH_DEVICE, \
968 .idVendor = (vend), \
969 .idProduct = (prod), \
970 .bInterfaceClass = (cl), \
971 .bInterfaceSubClass = (sc), \
972 .bInterfaceProtocol = (pr)
973
974/**
975 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
976 * @vend: the 16 bit USB Vendor ID
977 * @cl: bInterfaceClass value
978 * @sc: bInterfaceSubClass value
979 * @pr: bInterfaceProtocol value
980 *
981 * This macro is used to create a struct usb_device_id that matches a
982 * specific vendor with a specific class of interfaces.
983 *
984 * This is especially useful when explicitly matching devices that have
985 * vendor specific bDeviceClass values, but standards-compliant interfaces.
986 */
987#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
988 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
989 | USB_DEVICE_ID_MATCH_VENDOR, \
990 .idVendor = (vend), \
991 .bInterfaceClass = (cl), \
992 .bInterfaceSubClass = (sc), \
993 .bInterfaceProtocol = (pr)
994
995/* ----------------------------------------------------------------------- */
996
997/* Stuff for dynamic usb ids */
998struct usb_dynids {
999 spinlock_t lock;
1000 struct list_head list;
1001};
1002
1003struct usb_dynid {
1004 struct list_head node;
1005 struct usb_device_id id;
1006};
1007
1008extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1009 const struct usb_device_id *id_table,
1010 struct device_driver *driver,
1011 const char *buf, size_t count);
1012
1013extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1014
1015/**
1016 * struct usbdrv_wrap - wrapper for driver-model structure
1017 * @driver: The driver-model core driver structure.
1018 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1019 */
1020struct usbdrv_wrap {
1021 struct device_driver driver;
1022 int for_devices;
1023};
1024
1025/**
1026 * struct usb_driver - identifies USB interface driver to usbcore
1027 * @name: The driver name should be unique among USB drivers,
1028 * and should normally be the same as the module name.
1029 * @probe: Called to see if the driver is willing to manage a particular
1030 * interface on a device. If it is, probe returns zero and uses
1031 * usb_set_intfdata() to associate driver-specific data with the
1032 * interface. It may also use usb_set_interface() to specify the
1033 * appropriate altsetting. If unwilling to manage the interface,
1034 * return -ENODEV, if genuine IO errors occurred, an appropriate
1035 * negative errno value.
1036 * @disconnect: Called when the interface is no longer accessible, usually
1037 * because its device has been (or is being) disconnected or the
1038 * driver module is being unloaded.
1039 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1040 * the "usbfs" filesystem. This lets devices provide ways to
1041 * expose information to user space regardless of where they
1042 * do (or don't) show up otherwise in the filesystem.
1043 * @suspend: Called when the device is going to be suspended by the
1044 * system either from system sleep or runtime suspend context. The
1045 * return value will be ignored in system sleep context, so do NOT
1046 * try to continue using the device if suspend fails in this case.
1047 * Instead, let the resume or reset-resume routine recover from
1048 * the failure.
1049 * @resume: Called when the device is being resumed by the system.
1050 * @reset_resume: Called when the suspended device has been reset instead
1051 * of being resumed.
1052 * @pre_reset: Called by usb_reset_device() when the device is about to be
1053 * reset. This routine must not return until the driver has no active
1054 * URBs for the device, and no more URBs may be submitted until the
1055 * post_reset method is called.
1056 * @post_reset: Called by usb_reset_device() after the device
1057 * has been reset
1058 * @id_table: USB drivers use ID table to support hotplugging.
1059 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
1060 * or your driver's probe function will never get called.
1061 * @dynids: used internally to hold the list of dynamically added device
1062 * ids for this driver.
1063 * @drvwrap: Driver-model core structure wrapper.
1064 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1065 * added to this driver by preventing the sysfs file from being created.
1066 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1067 * for interfaces bound to this driver.
1068 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1069 * endpoints before calling the driver's disconnect method.
1070 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1071 * to initiate lower power link state transitions when an idle timeout
1072 * occurs. Device-initiated USB 3.0 link PM will still be allowed.
1073 *
1074 * USB interface drivers must provide a name, probe() and disconnect()
1075 * methods, and an id_table. Other driver fields are optional.
1076 *
1077 * The id_table is used in hotplugging. It holds a set of descriptors,
1078 * and specialized data may be associated with each entry. That table
1079 * is used by both user and kernel mode hotplugging support.
1080 *
1081 * The probe() and disconnect() methods are called in a context where
1082 * they can sleep, but they should avoid abusing the privilege. Most
1083 * work to connect to a device should be done when the device is opened,
1084 * and undone at the last close. The disconnect code needs to address
1085 * concurrency issues with respect to open() and close() methods, as
1086 * well as forcing all pending I/O requests to complete (by unlinking
1087 * them as necessary, and blocking until the unlinks complete).
1088 */
1089struct usb_driver {
1090 const char *name;
1091
1092 int (*probe) (struct usb_interface *intf,
1093 const struct usb_device_id *id);
1094
1095 void (*disconnect) (struct usb_interface *intf);
1096
1097 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1098 void *buf);
1099
1100 int (*suspend) (struct usb_interface *intf, pm_message_t message);
1101 int (*resume) (struct usb_interface *intf);
1102 int (*reset_resume)(struct usb_interface *intf);
1103
1104 int (*pre_reset)(struct usb_interface *intf);
1105 int (*post_reset)(struct usb_interface *intf);
1106
1107 const struct usb_device_id *id_table;
1108
1109 struct usb_dynids dynids;
1110 struct usbdrv_wrap drvwrap;
1111 unsigned int no_dynamic_id:1;
1112 unsigned int supports_autosuspend:1;
1113 unsigned int disable_hub_initiated_lpm:1;
1114 unsigned int soft_unbind:1;
1115};
1116#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1117
1118/**
1119 * struct usb_device_driver - identifies USB device driver to usbcore
1120 * @name: The driver name should be unique among USB drivers,
1121 * and should normally be the same as the module name.
1122 * @probe: Called to see if the driver is willing to manage a particular
1123 * device. If it is, probe returns zero and uses dev_set_drvdata()
1124 * to associate driver-specific data with the device. If unwilling
1125 * to manage the device, return a negative errno value.
1126 * @disconnect: Called when the device is no longer accessible, usually
1127 * because it has been (or is being) disconnected or the driver's
1128 * module is being unloaded.
1129 * @suspend: Called when the device is going to be suspended by the system.
1130 * @resume: Called when the device is being resumed by the system.
1131 * @drvwrap: Driver-model core structure wrapper.
1132 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1133 * for devices bound to this driver.
1134 *
1135 * USB drivers must provide all the fields listed above except drvwrap.
1136 */
1137struct usb_device_driver {
1138 const char *name;
1139
1140 int (*probe) (struct usb_device *udev);
1141 void (*disconnect) (struct usb_device *udev);
1142
1143 int (*suspend) (struct usb_device *udev, pm_message_t message);
1144 int (*resume) (struct usb_device *udev, pm_message_t message);
1145 struct usbdrv_wrap drvwrap;
1146 unsigned int supports_autosuspend:1;
1147};
1148#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1149 drvwrap.driver)
1150
1151extern struct bus_type usb_bus_type;
1152
1153/**
1154 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1155 * @name: the usb class device name for this driver. Will show up in sysfs.
1156 * @devnode: Callback to provide a naming hint for a possible
1157 * device node to create.
1158 * @fops: pointer to the struct file_operations of this driver.
1159 * @minor_base: the start of the minor range for this driver.
1160 *
1161 * This structure is used for the usb_register_dev() and
1162 * usb_unregister_dev() functions, to consolidate a number of the
1163 * parameters used for them.
1164 */
1165struct usb_class_driver {
1166 char *name;
1167 char *(*devnode)(struct device *dev, umode_t *mode);
1168 const struct file_operations *fops;
1169 int minor_base;
1170};
1171
1172/*
1173 * use these in module_init()/module_exit()
1174 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1175 */
1176extern int usb_register_driver(struct usb_driver *, struct module *,
1177 const char *);
1178
1179/* use a define to avoid include chaining to get THIS_MODULE & friends */
1180#define usb_register(driver) \
1181 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1182
1183extern void usb_deregister(struct usb_driver *);
1184
1185/**
1186 * module_usb_driver() - Helper macro for registering a USB driver
1187 * @__usb_driver: usb_driver struct
1188 *
1189 * Helper macro for USB drivers which do not do anything special in module
1190 * init/exit. This eliminates a lot of boilerplate. Each module may only
1191 * use this macro once, and calling it replaces module_init() and module_exit()
1192 */
1193#define module_usb_driver(__usb_driver) \
1194 module_driver(__usb_driver, usb_register, \
1195 usb_deregister)
1196
1197extern int usb_register_device_driver(struct usb_device_driver *,
1198 struct module *);
1199extern void usb_deregister_device_driver(struct usb_device_driver *);
1200
1201extern int usb_register_dev(struct usb_interface *intf,
1202 struct usb_class_driver *class_driver);
1203extern void usb_deregister_dev(struct usb_interface *intf,
1204 struct usb_class_driver *class_driver);
1205
1206extern int usb_disabled(void);
1207
1208/* ----------------------------------------------------------------------- */
1209
1210/*
1211 * URB support, for asynchronous request completions
1212 */
1213
1214/*
1215 * urb->transfer_flags:
1216 *
1217 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1218 */
1219#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1220#define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired
1221 * slot in the schedule */
1222#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1223#define URB_NO_FSBR 0x0020 /* UHCI-specific */
1224#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1225#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1226 * needed */
1227#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1228
1229/* The following flags are used internally by usbcore and HCDs */
1230#define URB_DIR_IN 0x0200 /* Transfer from device to host */
1231#define URB_DIR_OUT 0
1232#define URB_DIR_MASK URB_DIR_IN
1233
1234#define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
1235#define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
1236#define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
1237#define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
1238#define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
1239#define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
1240#define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
1241#define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
1242
1243struct usb_iso_packet_descriptor {
1244 unsigned int offset;
1245 unsigned int length; /* expected length */
1246 unsigned int actual_length;
1247 int status;
1248};
1249
1250struct urb;
1251
1252struct usb_anchor {
1253 struct list_head urb_list;
1254 wait_queue_head_t wait;
1255 spinlock_t lock;
1256 atomic_t suspend_wakeups;
1257 unsigned int poisoned:1;
1258};
1259
1260static inline void init_usb_anchor(struct usb_anchor *anchor)
1261{
1262 memset(anchor, 0, sizeof(*anchor));
1263 INIT_LIST_HEAD(&anchor->urb_list);
1264 init_waitqueue_head(&anchor->wait);
1265 spin_lock_init(&anchor->lock);
1266}
1267
1268typedef void (*usb_complete_t)(struct urb *);
1269
1270/**
1271 * struct urb - USB Request Block
1272 * @urb_list: For use by current owner of the URB.
1273 * @anchor_list: membership in the list of an anchor
1274 * @anchor: to anchor URBs to a common mooring
1275 * @ep: Points to the endpoint's data structure. Will eventually
1276 * replace @pipe.
1277 * @pipe: Holds endpoint number, direction, type, and more.
1278 * Create these values with the eight macros available;
1279 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1280 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1281 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1282 * numbers range from zero to fifteen. Note that "in" endpoint two
1283 * is a different endpoint (and pipe) from "out" endpoint two.
1284 * The current configuration controls the existence, type, and
1285 * maximum packet size of any given endpoint.
1286 * @stream_id: the endpoint's stream ID for bulk streams
1287 * @dev: Identifies the USB device to perform the request.
1288 * @status: This is read in non-iso completion functions to get the
1289 * status of the particular request. ISO requests only use it
1290 * to tell whether the URB was unlinked; detailed status for
1291 * each frame is in the fields of the iso_frame-desc.
1292 * @transfer_flags: A variety of flags may be used to affect how URB
1293 * submission, unlinking, or operation are handled. Different
1294 * kinds of URB can use different flags.
1295 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1296 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1297 * (however, do not leave garbage in transfer_buffer even then).
1298 * This buffer must be suitable for DMA; allocate it with
1299 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1300 * of this buffer will be modified. This buffer is used for the data
1301 * stage of control transfers.
1302 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1303 * the device driver is saying that it provided this DMA address,
1304 * which the host controller driver should use in preference to the
1305 * transfer_buffer.
1306 * @sg: scatter gather buffer list, the buffer size of each element in
1307 * the list (except the last) must be divisible by the endpoint's
1308 * max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1309 * @num_mapped_sgs: (internal) number of mapped sg entries
1310 * @num_sgs: number of entries in the sg list
1311 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1312 * be broken up into chunks according to the current maximum packet
1313 * size for the endpoint, which is a function of the configuration
1314 * and is encoded in the pipe. When the length is zero, neither
1315 * transfer_buffer nor transfer_dma is used.
1316 * @actual_length: This is read in non-iso completion functions, and
1317 * it tells how many bytes (out of transfer_buffer_length) were
1318 * transferred. It will normally be the same as requested, unless
1319 * either an error was reported or a short read was performed.
1320 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1321 * short reads be reported as errors.
1322 * @setup_packet: Only used for control transfers, this points to eight bytes
1323 * of setup data. Control transfers always start by sending this data
1324 * to the device. Then transfer_buffer is read or written, if needed.
1325 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1326 * this field; setup_packet must point to a valid buffer.
1327 * @start_frame: Returns the initial frame for isochronous transfers.
1328 * @number_of_packets: Lists the number of ISO transfer buffers.
1329 * @interval: Specifies the polling interval for interrupt or isochronous
1330 * transfers. The units are frames (milliseconds) for full and low
1331 * speed devices, and microframes (1/8 millisecond) for highspeed
1332 * and SuperSpeed devices.
1333 * @error_count: Returns the number of ISO transfers that reported errors.
1334 * @context: For use in completion functions. This normally points to
1335 * request-specific driver context.
1336 * @complete: Completion handler. This URB is passed as the parameter to the
1337 * completion function. The completion function may then do what
1338 * it likes with the URB, including resubmitting or freeing it.
1339 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1340 * collect the transfer status for each buffer.
1341 *
1342 * This structure identifies USB transfer requests. URBs must be allocated by
1343 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1344 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1345 * are submitted using usb_submit_urb(), and pending requests may be canceled
1346 * using usb_unlink_urb() or usb_kill_urb().
1347 *
1348 * Data Transfer Buffers:
1349 *
1350 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1351 * taken from the general page pool. That is provided by transfer_buffer
1352 * (control requests also use setup_packet), and host controller drivers
1353 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1354 * mapping operations can be expensive on some platforms (perhaps using a dma
1355 * bounce buffer or talking to an IOMMU),
1356 * although they're cheap on commodity x86 and ppc hardware.
1357 *
1358 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1359 * which tells the host controller driver that no such mapping is needed for
1360 * the transfer_buffer since
1361 * the device driver is DMA-aware. For example, a device driver might
1362 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1363 * When this transfer flag is provided, host controller drivers will
1364 * attempt to use the dma address found in the transfer_dma
1365 * field rather than determining a dma address themselves.
1366 *
1367 * Note that transfer_buffer must still be set if the controller
1368 * does not support DMA (as indicated by bus.uses_dma) and when talking
1369 * to root hub. If you have to trasfer between highmem zone and the device
1370 * on such controller, create a bounce buffer or bail out with an error.
1371 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1372 * capable, assign NULL to it, so that usbmon knows not to use the value.
1373 * The setup_packet must always be set, so it cannot be located in highmem.
1374 *
1375 * Initialization:
1376 *
1377 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1378 * zero), and complete fields. All URBs must also initialize
1379 * transfer_buffer and transfer_buffer_length. They may provide the
1380 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1381 * to be treated as errors; that flag is invalid for write requests.
1382 *
1383 * Bulk URBs may
1384 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1385 * should always terminate with a short packet, even if it means adding an
1386 * extra zero length packet.
1387 *
1388 * Control URBs must provide a valid pointer in the setup_packet field.
1389 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1390 * beforehand.
1391 *
1392 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1393 * or, for highspeed devices, 125 microsecond units)
1394 * to poll for transfers. After the URB has been submitted, the interval
1395 * field reflects how the transfer was actually scheduled.
1396 * The polling interval may be more frequent than requested.
1397 * For example, some controllers have a maximum interval of 32 milliseconds,
1398 * while others support intervals of up to 1024 milliseconds.
1399 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1400 * endpoints, as well as high speed interrupt endpoints, the encoding of
1401 * the transfer interval in the endpoint descriptor is logarithmic.
1402 * Device drivers must convert that value to linear units themselves.)
1403 *
1404 * If an isochronous endpoint queue isn't already running, the host
1405 * controller will schedule a new URB to start as soon as bandwidth
1406 * utilization allows. If the queue is running then a new URB will be
1407 * scheduled to start in the first transfer slot following the end of the
1408 * preceding URB, if that slot has not already expired. If the slot has
1409 * expired (which can happen when IRQ delivery is delayed for a long time),
1410 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag
1411 * is clear then the URB will be scheduled to start in the expired slot,
1412 * implying that some of its packets will not be transferred; if the flag
1413 * is set then the URB will be scheduled in the first unexpired slot,
1414 * breaking the queue's synchronization. Upon URB completion, the
1415 * start_frame field will be set to the (micro)frame number in which the
1416 * transfer was scheduled. Ranges for frame counter values are HC-specific
1417 * and can go from as low as 256 to as high as 65536 frames.
1418 *
1419 * Isochronous URBs have a different data transfer model, in part because
1420 * the quality of service is only "best effort". Callers provide specially
1421 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1422 * at the end. Each such packet is an individual ISO transfer. Isochronous
1423 * URBs are normally queued, submitted by drivers to arrange that
1424 * transfers are at least double buffered, and then explicitly resubmitted
1425 * in completion handlers, so
1426 * that data (such as audio or video) streams at as constant a rate as the
1427 * host controller scheduler can support.
1428 *
1429 * Completion Callbacks:
1430 *
1431 * The completion callback is made in_interrupt(), and one of the first
1432 * things that a completion handler should do is check the status field.
1433 * The status field is provided for all URBs. It is used to report
1434 * unlinked URBs, and status for all non-ISO transfers. It should not
1435 * be examined before the URB is returned to the completion handler.
1436 *
1437 * The context field is normally used to link URBs back to the relevant
1438 * driver or request state.
1439 *
1440 * When the completion callback is invoked for non-isochronous URBs, the
1441 * actual_length field tells how many bytes were transferred. This field
1442 * is updated even when the URB terminated with an error or was unlinked.
1443 *
1444 * ISO transfer status is reported in the status and actual_length fields
1445 * of the iso_frame_desc array, and the number of errors is reported in
1446 * error_count. Completion callbacks for ISO transfers will normally
1447 * (re)submit URBs to ensure a constant transfer rate.
1448 *
1449 * Note that even fields marked "public" should not be touched by the driver
1450 * when the urb is owned by the hcd, that is, since the call to
1451 * usb_submit_urb() till the entry into the completion routine.
1452 */
1453struct urb {
1454 /* private: usb core and host controller only fields in the urb */
1455 struct kref kref; /* reference count of the URB */
1456 void *hcpriv; /* private data for host controller */
1457 atomic_t use_count; /* concurrent submissions counter */
1458 atomic_t reject; /* submissions will fail */
1459 int unlinked; /* unlink error code */
1460
1461 /* public: documented fields in the urb that can be used by drivers */
1462 struct list_head urb_list; /* list head for use by the urb's
1463 * current owner */
1464 struct list_head anchor_list; /* the URB may be anchored */
1465 struct usb_anchor *anchor;
1466 struct usb_device *dev; /* (in) pointer to associated device */
1467 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1468 unsigned int pipe; /* (in) pipe information */
1469 unsigned int stream_id; /* (in) stream ID */
1470 int status; /* (return) non-ISO status */
1471 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1472 void *transfer_buffer; /* (in) associated data buffer */
1473 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1474 struct scatterlist *sg; /* (in) scatter gather buffer list */
1475 int num_mapped_sgs; /* (internal) mapped sg entries */
1476 int num_sgs; /* (in) number of entries in the sg list */
1477 u32 transfer_buffer_length; /* (in) data buffer length */
1478 u32 actual_length; /* (return) actual transfer length */
1479 unsigned char *setup_packet; /* (in) setup packet (control only) */
1480 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1481 int start_frame; /* (modify) start frame (ISO) */
1482 int number_of_packets; /* (in) number of ISO packets */
1483 int interval; /* (modify) transfer interval
1484 * (INT/ISO) */
1485 int error_count; /* (return) number of ISO errors */
1486 void *context; /* (in) context for completion */
1487 usb_complete_t complete; /* (in) completion routine */
1488 struct usb_iso_packet_descriptor iso_frame_desc[0];
1489 /* (in) ISO ONLY */
1490};
1491
1492/* ----------------------------------------------------------------------- */
1493
1494/**
1495 * usb_fill_control_urb - initializes a control urb
1496 * @urb: pointer to the urb to initialize.
1497 * @dev: pointer to the struct usb_device for this urb.
1498 * @pipe: the endpoint pipe
1499 * @setup_packet: pointer to the setup_packet buffer
1500 * @transfer_buffer: pointer to the transfer buffer
1501 * @buffer_length: length of the transfer buffer
1502 * @complete_fn: pointer to the usb_complete_t function
1503 * @context: what to set the urb context to.
1504 *
1505 * Initializes a control urb with the proper information needed to submit
1506 * it to a device.
1507 */
1508static inline void usb_fill_control_urb(struct urb *urb,
1509 struct usb_device *dev,
1510 unsigned int pipe,
1511 unsigned char *setup_packet,
1512 void *transfer_buffer,
1513 int buffer_length,
1514 usb_complete_t complete_fn,
1515 void *context)
1516{
1517 urb->dev = dev;
1518 urb->pipe = pipe;
1519 urb->setup_packet = setup_packet;
1520 urb->transfer_buffer = transfer_buffer;
1521 urb->transfer_buffer_length = buffer_length;
1522 urb->complete = complete_fn;
1523 urb->context = context;
1524}
1525
1526/**
1527 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1528 * @urb: pointer to the urb to initialize.
1529 * @dev: pointer to the struct usb_device for this urb.
1530 * @pipe: the endpoint pipe
1531 * @transfer_buffer: pointer to the transfer buffer
1532 * @buffer_length: length of the transfer buffer
1533 * @complete_fn: pointer to the usb_complete_t function
1534 * @context: what to set the urb context to.
1535 *
1536 * Initializes a bulk urb with the proper information needed to submit it
1537 * to a device.
1538 */
1539static inline void usb_fill_bulk_urb(struct urb *urb,
1540 struct usb_device *dev,
1541 unsigned int pipe,
1542 void *transfer_buffer,
1543 int buffer_length,
1544 usb_complete_t complete_fn,
1545 void *context)
1546{
1547 urb->dev = dev;
1548 urb->pipe = pipe;
1549 urb->transfer_buffer = transfer_buffer;
1550 urb->transfer_buffer_length = buffer_length;
1551 urb->complete = complete_fn;
1552 urb->context = context;
1553}
1554
1555/**
1556 * usb_fill_int_urb - macro to help initialize a interrupt urb
1557 * @urb: pointer to the urb to initialize.
1558 * @dev: pointer to the struct usb_device for this urb.
1559 * @pipe: the endpoint pipe
1560 * @transfer_buffer: pointer to the transfer buffer
1561 * @buffer_length: length of the transfer buffer
1562 * @complete_fn: pointer to the usb_complete_t function
1563 * @context: what to set the urb context to.
1564 * @interval: what to set the urb interval to, encoded like
1565 * the endpoint descriptor's bInterval value.
1566 *
1567 * Initializes a interrupt urb with the proper information needed to submit
1568 * it to a device.
1569 *
1570 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1571 * encoding of the endpoint interval, and express polling intervals in
1572 * microframes (eight per millisecond) rather than in frames (one per
1573 * millisecond).
1574 *
1575 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1576 * 128us instead of 125us. For Wireless USB devices, the interval is passed
1577 * through to the host controller, rather than being translated into microframe
1578 * units.
1579 */
1580static inline void usb_fill_int_urb(struct urb *urb,
1581 struct usb_device *dev,
1582 unsigned int pipe,
1583 void *transfer_buffer,
1584 int buffer_length,
1585 usb_complete_t complete_fn,
1586 void *context,
1587 int interval)
1588{
1589 urb->dev = dev;
1590 urb->pipe = pipe;
1591 urb->transfer_buffer = transfer_buffer;
1592 urb->transfer_buffer_length = buffer_length;
1593 urb->complete = complete_fn;
1594 urb->context = context;
1595
1596 if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER) {
1597 /* make sure interval is within allowed range */
1598 interval = clamp(interval, 1, 16);
1599
1600 urb->interval = 1 << (interval - 1);
1601 } else {
1602 urb->interval = interval;
1603 }
1604
1605 urb->start_frame = -1;
1606}
1607
1608extern void usb_init_urb(struct urb *urb);
1609extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1610extern void usb_free_urb(struct urb *urb);
1611#define usb_put_urb usb_free_urb
1612extern struct urb *usb_get_urb(struct urb *urb);
1613extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1614extern int usb_unlink_urb(struct urb *urb);
1615extern void usb_kill_urb(struct urb *urb);
1616extern void usb_poison_urb(struct urb *urb);
1617extern void usb_unpoison_urb(struct urb *urb);
1618extern void usb_block_urb(struct urb *urb);
1619extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1620extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1621extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1622extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1623extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1624extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1625extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1626extern void usb_unanchor_urb(struct urb *urb);
1627extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1628 unsigned int timeout);
1629extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1630extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1631extern int usb_anchor_empty(struct usb_anchor *anchor);
1632
1633#define usb_unblock_urb usb_unpoison_urb
1634
1635/**
1636 * usb_urb_dir_in - check if an URB describes an IN transfer
1637 * @urb: URB to be checked
1638 *
1639 * Return: 1 if @urb describes an IN transfer (device-to-host),
1640 * otherwise 0.
1641 */
1642static inline int usb_urb_dir_in(struct urb *urb)
1643{
1644 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1645}
1646
1647/**
1648 * usb_urb_dir_out - check if an URB describes an OUT transfer
1649 * @urb: URB to be checked
1650 *
1651 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1652 * otherwise 0.
1653 */
1654static inline int usb_urb_dir_out(struct urb *urb)
1655{
1656 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1657}
1658
1659void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1660 gfp_t mem_flags, dma_addr_t *dma);
1661void usb_free_coherent(struct usb_device *dev, size_t size,
1662 void *addr, dma_addr_t dma);
1663
1664#if 0
1665struct urb *usb_buffer_map(struct urb *urb);
1666void usb_buffer_dmasync(struct urb *urb);
1667void usb_buffer_unmap(struct urb *urb);
1668#endif
1669
1670struct scatterlist;
1671int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1672 struct scatterlist *sg, int nents);
1673#if 0
1674void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1675 struct scatterlist *sg, int n_hw_ents);
1676#endif
1677void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1678 struct scatterlist *sg, int n_hw_ents);
1679
1680/*-------------------------------------------------------------------*
1681 * SYNCHRONOUS CALL SUPPORT *
1682 *-------------------------------------------------------------------*/
1683
1684extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1685 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1686 void *data, __u16 size, int timeout);
1687extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1688 void *data, int len, int *actual_length, int timeout);
1689extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1690 void *data, int len, int *actual_length,
1691 int timeout);
1692
1693/* wrappers around usb_control_msg() for the most common standard requests */
1694extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1695 unsigned char descindex, void *buf, int size);
1696extern int usb_get_status(struct usb_device *dev,
1697 int type, int target, void *data);
1698extern int usb_string(struct usb_device *dev, int index,
1699 char *buf, size_t size);
1700
1701/* wrappers that also update important state inside usbcore */
1702extern int usb_clear_halt(struct usb_device *dev, int pipe);
1703extern int usb_reset_configuration(struct usb_device *dev);
1704extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1705extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1706
1707/* this request isn't really synchronous, but it belongs with the others */
1708extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1709
1710/* choose and set configuration for device */
1711extern int usb_choose_configuration(struct usb_device *udev);
1712extern int usb_set_configuration(struct usb_device *dev, int configuration);
1713
1714/*
1715 * timeouts, in milliseconds, used for sending/receiving control messages
1716 * they typically complete within a few frames (msec) after they're issued
1717 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1718 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1719 */
1720#define USB_CTRL_GET_TIMEOUT 5000
1721#define USB_CTRL_SET_TIMEOUT 5000
1722
1723
1724/**
1725 * struct usb_sg_request - support for scatter/gather I/O
1726 * @status: zero indicates success, else negative errno
1727 * @bytes: counts bytes transferred.
1728 *
1729 * These requests are initialized using usb_sg_init(), and then are used
1730 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1731 * members of the request object aren't for driver access.
1732 *
1733 * The status and bytecount values are valid only after usb_sg_wait()
1734 * returns. If the status is zero, then the bytecount matches the total
1735 * from the request.
1736 *
1737 * After an error completion, drivers may need to clear a halt condition
1738 * on the endpoint.
1739 */
1740struct usb_sg_request {
1741 int status;
1742 size_t bytes;
1743
1744 /* private:
1745 * members below are private to usbcore,
1746 * and are not provided for driver access!
1747 */
1748 spinlock_t lock;
1749
1750 struct usb_device *dev;
1751 int pipe;
1752
1753 int entries;
1754 struct urb **urbs;
1755
1756 int count;
1757 struct completion complete;
1758};
1759
1760int usb_sg_init(
1761 struct usb_sg_request *io,
1762 struct usb_device *dev,
1763 unsigned pipe,
1764 unsigned period,
1765 struct scatterlist *sg,
1766 int nents,
1767 size_t length,
1768 gfp_t mem_flags
1769);
1770void usb_sg_cancel(struct usb_sg_request *io);
1771void usb_sg_wait(struct usb_sg_request *io);
1772
1773
1774/* ----------------------------------------------------------------------- */
1775
1776/*
1777 * For various legacy reasons, Linux has a small cookie that's paired with
1778 * a struct usb_device to identify an endpoint queue. Queue characteristics
1779 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1780 * an unsigned int encoded as:
1781 *
1782 * - direction: bit 7 (0 = Host-to-Device [Out],
1783 * 1 = Device-to-Host [In] ...
1784 * like endpoint bEndpointAddress)
1785 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1786 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1787 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1788 * 10 = control, 11 = bulk)
1789 *
1790 * Given the device address and endpoint descriptor, pipes are redundant.
1791 */
1792
1793/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1794/* (yet ... they're the values used by usbfs) */
1795#define PIPE_ISOCHRONOUS 0
1796#define PIPE_INTERRUPT 1
1797#define PIPE_CONTROL 2
1798#define PIPE_BULK 3
1799
1800#define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1801#define usb_pipeout(pipe) (!usb_pipein(pipe))
1802
1803#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1804#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1805
1806#define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1807#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1808#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1809#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1810#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1811
1812static inline unsigned int __create_pipe(struct usb_device *dev,
1813 unsigned int endpoint)
1814{
1815 return (dev->devnum << 8) | (endpoint << 15);
1816}
1817
1818/* Create various pipes... */
1819#define usb_sndctrlpipe(dev, endpoint) \
1820 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1821#define usb_rcvctrlpipe(dev, endpoint) \
1822 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1823#define usb_sndisocpipe(dev, endpoint) \
1824 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1825#define usb_rcvisocpipe(dev, endpoint) \
1826 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1827#define usb_sndbulkpipe(dev, endpoint) \
1828 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1829#define usb_rcvbulkpipe(dev, endpoint) \
1830 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1831#define usb_sndintpipe(dev, endpoint) \
1832 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1833#define usb_rcvintpipe(dev, endpoint) \
1834 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1835
1836static inline struct usb_host_endpoint *
1837usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1838{
1839 struct usb_host_endpoint **eps;
1840 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1841 return eps[usb_pipeendpoint(pipe)];
1842}
1843
1844/*-------------------------------------------------------------------------*/
1845
1846static inline __u16
1847usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1848{
1849 struct usb_host_endpoint *ep;
1850 unsigned epnum = usb_pipeendpoint(pipe);
1851
1852 if (is_out) {
1853 WARN_ON(usb_pipein(pipe));
1854 ep = udev->ep_out[epnum];
1855 } else {
1856 WARN_ON(usb_pipeout(pipe));
1857 ep = udev->ep_in[epnum];
1858 }
1859 if (!ep)
1860 return 0;
1861
1862 /* NOTE: only 0x07ff bits are for packet size... */
1863 return usb_endpoint_maxp(&ep->desc);
1864}
1865
1866/* ----------------------------------------------------------------------- */
1867
1868/* translate USB error codes to codes user space understands */
1869static inline int usb_translate_errors(int error_code)
1870{
1871 switch (error_code) {
1872 case 0:
1873 case -ENOMEM:
1874 case -ENODEV:
1875 case -EOPNOTSUPP:
1876 return error_code;
1877 default:
1878 return -EIO;
1879 }
1880}
1881
1882/* Events from the usb core */
1883#define USB_DEVICE_ADD 0x0001
1884#define USB_DEVICE_REMOVE 0x0002
1885#define USB_BUS_ADD 0x0003
1886#define USB_BUS_REMOVE 0x0004
1887extern void usb_register_notify(struct notifier_block *nb);
1888extern void usb_unregister_notify(struct notifier_block *nb);
1889
1890/* debugfs stuff */
1891extern struct dentry *usb_debug_root;
1892
1893/* LED triggers */
1894enum usb_led_event {
1895 USB_LED_EVENT_HOST = 0,
1896 USB_LED_EVENT_GADGET = 1,
1897};
1898
1899#ifdef CONFIG_USB_LED_TRIG
1900extern void usb_led_activity(enum usb_led_event ev);
1901#else
1902static inline void usb_led_activity(enum usb_led_event ev) {}
1903#endif
1904
1905#endif /* __KERNEL__ */
1906
1907#endif