blob: e347b24ef9fb645cd3d74b4a0e09ca3296c7b58b [file] [log] [blame]
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001/*
2 *
3 * Copyright (c) 2011, Microsoft Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 *
18 * Authors:
19 * Haiyang Zhang <haiyangz@microsoft.com>
20 * Hank Janssen <hjanssen@microsoft.com>
21 * K. Y. Srinivasan <kys@microsoft.com>
22 *
23 */
24
25#ifndef _UAPI_HYPERV_H
26#define _UAPI_HYPERV_H
27
28#include <linux/uuid.h>
29
30/*
31 * Framework version for util services.
32 */
33#define UTIL_FW_MINOR 0
34
35#define UTIL_WS2K8_FW_MAJOR 1
36#define UTIL_WS2K8_FW_VERSION (UTIL_WS2K8_FW_MAJOR << 16 | UTIL_FW_MINOR)
37
38#define UTIL_FW_MAJOR 3
39#define UTIL_FW_VERSION (UTIL_FW_MAJOR << 16 | UTIL_FW_MINOR)
40
41
42/*
43 * Implementation of host controlled snapshot of the guest.
44 */
45
46#define VSS_OP_REGISTER 128
47
48/*
49 Daemon code with full handshake support.
50 */
51#define VSS_OP_REGISTER1 129
52
53enum hv_vss_op {
54 VSS_OP_CREATE = 0,
55 VSS_OP_DELETE,
56 VSS_OP_HOT_BACKUP,
57 VSS_OP_GET_DM_INFO,
58 VSS_OP_BU_COMPLETE,
59 /*
60 * Following operations are only supported with IC version >= 5.0
61 */
62 VSS_OP_FREEZE, /* Freeze the file systems in the VM */
63 VSS_OP_THAW, /* Unfreeze the file systems */
64 VSS_OP_AUTO_RECOVER,
65 VSS_OP_COUNT /* Number of operations, must be last */
66};
67
68
69/*
70 * Header for all VSS messages.
71 */
72struct hv_vss_hdr {
73 __u8 operation;
74 __u8 reserved[7];
75} __attribute__((packed));
76
77
78/*
79 * Flag values for the hv_vss_check_feature. Linux supports only
80 * one value.
81 */
82#define VSS_HBU_NO_AUTO_RECOVERY 0x00000005
83
84struct hv_vss_check_feature {
85 __u32 flags;
86} __attribute__((packed));
87
88struct hv_vss_check_dm_info {
89 __u32 flags;
90} __attribute__((packed));
91
92struct hv_vss_msg {
93 union {
94 struct hv_vss_hdr vss_hdr;
95 int error;
96 };
97 union {
98 struct hv_vss_check_feature vss_cf;
99 struct hv_vss_check_dm_info dm_info;
100 };
101} __attribute__((packed));
102
103/*
104 * Implementation of a host to guest copy facility.
105 */
106
107#define FCOPY_VERSION_0 0
108#define FCOPY_VERSION_1 1
109#define FCOPY_CURRENT_VERSION FCOPY_VERSION_1
110#define W_MAX_PATH 260
111
112enum hv_fcopy_op {
113 START_FILE_COPY = 0,
114 WRITE_TO_FILE,
115 COMPLETE_FCOPY,
116 CANCEL_FCOPY,
117};
118
119struct hv_fcopy_hdr {
120 __u32 operation;
121 uuid_le service_id0; /* currently unused */
122 uuid_le service_id1; /* currently unused */
123} __attribute__((packed));
124
125#define OVER_WRITE 0x1
126#define CREATE_PATH 0x2
127
128struct hv_start_fcopy {
129 struct hv_fcopy_hdr hdr;
130 __u16 file_name[W_MAX_PATH];
131 __u16 path_name[W_MAX_PATH];
132 __u32 copy_flags;
133 __u64 file_size;
134} __attribute__((packed));
135
136/*
137 * The file is chunked into fragments.
138 */
139#define DATA_FRAGMENT (6 * 1024)
140
141struct hv_do_fcopy {
142 struct hv_fcopy_hdr hdr;
143 __u32 pad;
144 __u64 offset;
145 __u32 size;
146 __u8 data[DATA_FRAGMENT];
147} __attribute__((packed));
148
149/*
150 * An implementation of HyperV key value pair (KVP) functionality for Linux.
151 *
152 *
153 * Copyright (C) 2010, Novell, Inc.
154 * Author : K. Y. Srinivasan <ksrinivasan@novell.com>
155 *
156 */
157
158/*
159 * Maximum value size - used for both key names and value data, and includes
160 * any applicable NULL terminators.
161 *
162 * Note: This limit is somewhat arbitrary, but falls easily within what is
163 * supported for all native guests (back to Win 2000) and what is reasonable
164 * for the IC KVP exchange functionality. Note that Windows Me/98/95 are
165 * limited to 255 character key names.
166 *
167 * MSDN recommends not storing data values larger than 2048 bytes in the
168 * registry.
169 *
170 * Note: This value is used in defining the KVP exchange message - this value
171 * cannot be modified without affecting the message size and compatibility.
172 */
173
174/*
175 * bytes, including any null terminators
176 */
177#define HV_KVP_EXCHANGE_MAX_VALUE_SIZE (2048)
178
179
180/*
181 * Maximum key size - the registry limit for the length of an entry name
182 * is 256 characters, including the null terminator
183 */
184
185#define HV_KVP_EXCHANGE_MAX_KEY_SIZE (512)
186
187/*
188 * In Linux, we implement the KVP functionality in two components:
189 * 1) The kernel component which is packaged as part of the hv_utils driver
190 * is responsible for communicating with the host and responsible for
191 * implementing the host/guest protocol. 2) A user level daemon that is
192 * responsible for data gathering.
193 *
194 * Host/Guest Protocol: The host iterates over an index and expects the guest
195 * to assign a key name to the index and also return the value corresponding to
196 * the key. The host will have atmost one KVP transaction outstanding at any
197 * given point in time. The host side iteration stops when the guest returns
198 * an error. Microsoft has specified the following mapping of key names to
199 * host specified index:
200 *
201 * Index Key Name
202 * 0 FullyQualifiedDomainName
203 * 1 IntegrationServicesVersion
204 * 2 NetworkAddressIPv4
205 * 3 NetworkAddressIPv6
206 * 4 OSBuildNumber
207 * 5 OSName
208 * 6 OSMajorVersion
209 * 7 OSMinorVersion
210 * 8 OSVersion
211 * 9 ProcessorArchitecture
212 *
213 * The Windows host expects the Key Name and Key Value to be encoded in utf16.
214 *
215 * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the
216 * data gathering functionality in a user mode daemon. The user level daemon
217 * is also responsible for binding the key name to the index as well. The
218 * kernel and user-level daemon communicate using a connector channel.
219 *
220 * The user mode component first registers with the
221 * the kernel component. Subsequently, the kernel component requests, data
222 * for the specified keys. In response to this message the user mode component
223 * fills in the value corresponding to the specified key. We overload the
224 * sequence field in the cn_msg header to define our KVP message types.
225 *
226 *
227 * The kernel component simply acts as a conduit for communication between the
228 * Windows host and the user-level daemon. The kernel component passes up the
229 * index received from the Host to the user-level daemon. If the index is
230 * valid (supported), the corresponding key as well as its
231 * value (both are strings) is returned. If the index is invalid
232 * (not supported), a NULL key string is returned.
233 */
234
235
236/*
237 * Registry value types.
238 */
239
240#define REG_SZ 1
241#define REG_U32 4
242#define REG_U64 8
243
244/*
245 * As we look at expanding the KVP functionality to include
246 * IP injection functionality, we need to maintain binary
247 * compatibility with older daemons.
248 *
249 * The KVP opcodes are defined by the host and it was unfortunate
250 * that I chose to treat the registration operation as part of the
251 * KVP operations defined by the host.
252 * Here is the level of compatibility
253 * (between the user level daemon and the kernel KVP driver) that we
254 * will implement:
255 *
256 * An older daemon will always be supported on a newer driver.
257 * A given user level daemon will require a minimal version of the
258 * kernel driver.
259 * If we cannot handle the version differences, we will fail gracefully
260 * (this can happen when we have a user level daemon that is more
261 * advanced than the KVP driver.
262 *
263 * We will use values used in this handshake for determining if we have
264 * workable user level daemon and the kernel driver. We begin by taking the
265 * registration opcode out of the KVP opcode namespace. We will however,
266 * maintain compatibility with the existing user-level daemon code.
267 */
268
269/*
270 * Daemon code not supporting IP injection (legacy daemon).
271 */
272
273#define KVP_OP_REGISTER 4
274
275/*
276 * Daemon code supporting IP injection.
277 * The KVP opcode field is used to communicate the
278 * registration information; so define a namespace that
279 * will be distinct from the host defined KVP opcode.
280 */
281
282#define KVP_OP_REGISTER1 100
283
284enum hv_kvp_exchg_op {
285 KVP_OP_GET = 0,
286 KVP_OP_SET,
287 KVP_OP_DELETE,
288 KVP_OP_ENUMERATE,
289 KVP_OP_GET_IP_INFO,
290 KVP_OP_SET_IP_INFO,
291 KVP_OP_COUNT /* Number of operations, must be last. */
292};
293
294enum hv_kvp_exchg_pool {
295 KVP_POOL_EXTERNAL = 0,
296 KVP_POOL_GUEST,
297 KVP_POOL_AUTO,
298 KVP_POOL_AUTO_EXTERNAL,
299 KVP_POOL_AUTO_INTERNAL,
300 KVP_POOL_COUNT /* Number of pools, must be last. */
301};
302
303/*
304 * Some Hyper-V status codes.
305 */
306
307#define HV_S_OK 0x00000000
308#define HV_E_FAIL 0x80004005
309#define HV_S_CONT 0x80070103
310#define HV_ERROR_NOT_SUPPORTED 0x80070032
311#define HV_ERROR_MACHINE_LOCKED 0x800704F7
312#define HV_ERROR_DEVICE_NOT_CONNECTED 0x8007048F
313#define HV_INVALIDARG 0x80070057
314#define HV_GUID_NOTFOUND 0x80041002
315#define HV_ERROR_ALREADY_EXISTS 0x80070050
316#define HV_ERROR_DISK_FULL 0x80070070
317
318#define ADDR_FAMILY_NONE 0x00
319#define ADDR_FAMILY_IPV4 0x01
320#define ADDR_FAMILY_IPV6 0x02
321
322#define MAX_ADAPTER_ID_SIZE 128
323#define MAX_IP_ADDR_SIZE 1024
324#define MAX_GATEWAY_SIZE 512
325
326
327struct hv_kvp_ipaddr_value {
328 __u16 adapter_id[MAX_ADAPTER_ID_SIZE];
329 __u8 addr_family;
330 __u8 dhcp_enabled;
331 __u16 ip_addr[MAX_IP_ADDR_SIZE];
332 __u16 sub_net[MAX_IP_ADDR_SIZE];
333 __u16 gate_way[MAX_GATEWAY_SIZE];
334 __u16 dns_addr[MAX_IP_ADDR_SIZE];
335} __attribute__((packed));
336
337
338struct hv_kvp_hdr {
339 __u8 operation;
340 __u8 pool;
341 __u16 pad;
342} __attribute__((packed));
343
344struct hv_kvp_exchg_msg_value {
345 __u32 value_type;
346 __u32 key_size;
347 __u32 value_size;
348 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
349 union {
350 __u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE];
351 __u32 value_u32;
352 __u64 value_u64;
353 };
354} __attribute__((packed));
355
356struct hv_kvp_msg_enumerate {
357 __u32 index;
358 struct hv_kvp_exchg_msg_value data;
359} __attribute__((packed));
360
361struct hv_kvp_msg_get {
362 struct hv_kvp_exchg_msg_value data;
363};
364
365struct hv_kvp_msg_set {
366 struct hv_kvp_exchg_msg_value data;
367};
368
369struct hv_kvp_msg_delete {
370 __u32 key_size;
371 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
372};
373
374struct hv_kvp_register {
375 __u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
376};
377
378struct hv_kvp_msg {
379 union {
380 struct hv_kvp_hdr kvp_hdr;
381 int error;
382 };
383 union {
384 struct hv_kvp_msg_get kvp_get;
385 struct hv_kvp_msg_set kvp_set;
386 struct hv_kvp_msg_delete kvp_delete;
387 struct hv_kvp_msg_enumerate kvp_enum_data;
388 struct hv_kvp_ipaddr_value kvp_ip_val;
389 struct hv_kvp_register kvp_register;
390 } body;
391} __attribute__((packed));
392
393struct hv_kvp_ip_msg {
394 __u8 operation;
395 __u8 pool;
396 struct hv_kvp_ipaddr_value kvp_ip_val;
397} __attribute__((packed));
398
399#endif /* _UAPI_HYPERV_H */