Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame^] | 1 | /* |
| 2 | * linux/ipc/sem.c |
| 3 | * Copyright (C) 1992 Krishna Balasubramanian |
| 4 | * Copyright (C) 1995 Eric Schenk, Bruno Haible |
| 5 | * |
| 6 | * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com> |
| 7 | * |
| 8 | * SMP-threaded, sysctl's added |
| 9 | * (c) 1999 Manfred Spraul <manfred@colorfullife.com> |
| 10 | * Enforced range limit on SEM_UNDO |
| 11 | * (c) 2001 Red Hat Inc |
| 12 | * Lockless wakeup |
| 13 | * (c) 2003 Manfred Spraul <manfred@colorfullife.com> |
| 14 | * Further wakeup optimizations, documentation |
| 15 | * (c) 2010 Manfred Spraul <manfred@colorfullife.com> |
| 16 | * |
| 17 | * support for audit of ipc object properties and permission changes |
| 18 | * Dustin Kirkland <dustin.kirkland@us.ibm.com> |
| 19 | * |
| 20 | * namespaces support |
| 21 | * OpenVZ, SWsoft Inc. |
| 22 | * Pavel Emelianov <xemul@openvz.org> |
| 23 | * |
| 24 | * Implementation notes: (May 2010) |
| 25 | * This file implements System V semaphores. |
| 26 | * |
| 27 | * User space visible behavior: |
| 28 | * - FIFO ordering for semop() operations (just FIFO, not starvation |
| 29 | * protection) |
| 30 | * - multiple semaphore operations that alter the same semaphore in |
| 31 | * one semop() are handled. |
| 32 | * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and |
| 33 | * SETALL calls. |
| 34 | * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO. |
| 35 | * - undo adjustments at process exit are limited to 0..SEMVMX. |
| 36 | * - namespace are supported. |
| 37 | * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing |
| 38 | * to /proc/sys/kernel/sem. |
| 39 | * - statistics about the usage are reported in /proc/sysvipc/sem. |
| 40 | * |
| 41 | * Internals: |
| 42 | * - scalability: |
| 43 | * - all global variables are read-mostly. |
| 44 | * - semop() calls and semctl(RMID) are synchronized by RCU. |
| 45 | * - most operations do write operations (actually: spin_lock calls) to |
| 46 | * the per-semaphore array structure. |
| 47 | * Thus: Perfect SMP scaling between independent semaphore arrays. |
| 48 | * If multiple semaphores in one array are used, then cache line |
| 49 | * trashing on the semaphore array spinlock will limit the scaling. |
| 50 | * - semncnt and semzcnt are calculated on demand in count_semcnt() |
| 51 | * - the task that performs a successful semop() scans the list of all |
| 52 | * sleeping tasks and completes any pending operations that can be fulfilled. |
| 53 | * Semaphores are actively given to waiting tasks (necessary for FIFO). |
| 54 | * (see update_queue()) |
| 55 | * - To improve the scalability, the actual wake-up calls are performed after |
| 56 | * dropping all locks. (see wake_up_sem_queue_prepare(), |
| 57 | * wake_up_sem_queue_do()) |
| 58 | * - All work is done by the waker, the woken up task does not have to do |
| 59 | * anything - not even acquiring a lock or dropping a refcount. |
| 60 | * - A woken up task may not even touch the semaphore array anymore, it may |
| 61 | * have been destroyed already by a semctl(RMID). |
| 62 | * - The synchronizations between wake-ups due to a timeout/signal and a |
| 63 | * wake-up due to a completed semaphore operation is achieved by using an |
| 64 | * intermediate state (IN_WAKEUP). |
| 65 | * - UNDO values are stored in an array (one per process and per |
| 66 | * semaphore array, lazily allocated). For backwards compatibility, multiple |
| 67 | * modes for the UNDO variables are supported (per process, per thread) |
| 68 | * (see copy_semundo, CLONE_SYSVSEM) |
| 69 | * - There are two lists of the pending operations: a per-array list |
| 70 | * and per-semaphore list (stored in the array). This allows to achieve FIFO |
| 71 | * ordering without always scanning all pending operations. |
| 72 | * The worst-case behavior is nevertheless O(N^2) for N wakeups. |
| 73 | */ |
| 74 | |
| 75 | #include <linux/slab.h> |
| 76 | #include <linux/spinlock.h> |
| 77 | #include <linux/init.h> |
| 78 | #include <linux/proc_fs.h> |
| 79 | #include <linux/time.h> |
| 80 | #include <linux/security.h> |
| 81 | #include <linux/syscalls.h> |
| 82 | #include <linux/audit.h> |
| 83 | #include <linux/capability.h> |
| 84 | #include <linux/seq_file.h> |
| 85 | #include <linux/rwsem.h> |
| 86 | #include <linux/nsproxy.h> |
| 87 | #include <linux/ipc_namespace.h> |
| 88 | |
| 89 | #include <linux/uaccess.h> |
| 90 | #include "util.h" |
| 91 | |
| 92 | /* One semaphore structure for each semaphore in the system. */ |
| 93 | struct sem { |
| 94 | int semval; /* current value */ |
| 95 | int sempid; /* pid of last operation */ |
| 96 | spinlock_t lock; /* spinlock for fine-grained semtimedop */ |
| 97 | struct list_head pending_alter; /* pending single-sop operations */ |
| 98 | /* that alter the semaphore */ |
| 99 | struct list_head pending_const; /* pending single-sop operations */ |
| 100 | /* that do not alter the semaphore*/ |
| 101 | time_t sem_otime; /* candidate for sem_otime */ |
| 102 | } ____cacheline_aligned_in_smp; |
| 103 | |
| 104 | /* One queue for each sleeping process in the system. */ |
| 105 | struct sem_queue { |
| 106 | struct list_head list; /* queue of pending operations */ |
| 107 | struct task_struct *sleeper; /* this process */ |
| 108 | struct sem_undo *undo; /* undo structure */ |
| 109 | int pid; /* process id of requesting process */ |
| 110 | int status; /* completion status of operation */ |
| 111 | struct sembuf *sops; /* array of pending operations */ |
| 112 | struct sembuf *blocking; /* the operation that blocked */ |
| 113 | int nsops; /* number of operations */ |
| 114 | int alter; /* does *sops alter the array? */ |
| 115 | }; |
| 116 | |
| 117 | /* Each task has a list of undo requests. They are executed automatically |
| 118 | * when the process exits. |
| 119 | */ |
| 120 | struct sem_undo { |
| 121 | struct list_head list_proc; /* per-process list: * |
| 122 | * all undos from one process |
| 123 | * rcu protected */ |
| 124 | struct rcu_head rcu; /* rcu struct for sem_undo */ |
| 125 | struct sem_undo_list *ulp; /* back ptr to sem_undo_list */ |
| 126 | struct list_head list_id; /* per semaphore array list: |
| 127 | * all undos for one array */ |
| 128 | int semid; /* semaphore set identifier */ |
| 129 | short *semadj; /* array of adjustments */ |
| 130 | /* one per semaphore */ |
| 131 | }; |
| 132 | |
| 133 | /* sem_undo_list controls shared access to the list of sem_undo structures |
| 134 | * that may be shared among all a CLONE_SYSVSEM task group. |
| 135 | */ |
| 136 | struct sem_undo_list { |
| 137 | atomic_t refcnt; |
| 138 | spinlock_t lock; |
| 139 | struct list_head list_proc; |
| 140 | }; |
| 141 | |
| 142 | |
| 143 | #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS]) |
| 144 | |
| 145 | #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid) |
| 146 | |
| 147 | static int newary(struct ipc_namespace *, struct ipc_params *); |
| 148 | static void freeary(struct ipc_namespace *, struct kern_ipc_perm *); |
| 149 | #ifdef CONFIG_PROC_FS |
| 150 | static int sysvipc_sem_proc_show(struct seq_file *s, void *it); |
| 151 | #endif |
| 152 | |
| 153 | #define SEMMSL_FAST 256 /* 512 bytes on stack */ |
| 154 | #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */ |
| 155 | |
| 156 | /* |
| 157 | * Locking: |
| 158 | * a) global sem_lock() for read/write |
| 159 | * sem_undo.id_next, |
| 160 | * sem_array.complex_count, |
| 161 | * sem_array.complex_mode |
| 162 | * sem_array.pending{_alter,_const}, |
| 163 | * sem_array.sem_undo |
| 164 | * |
| 165 | * b) global or semaphore sem_lock() for read/write: |
| 166 | * sem_array.sem_base[i].pending_{const,alter}: |
| 167 | * sem_array.complex_mode (for read) |
| 168 | * |
| 169 | * c) special: |
| 170 | * sem_undo_list.list_proc: |
| 171 | * * undo_list->lock for write |
| 172 | * * rcu for read |
| 173 | */ |
| 174 | |
| 175 | #define sc_semmsl sem_ctls[0] |
| 176 | #define sc_semmns sem_ctls[1] |
| 177 | #define sc_semopm sem_ctls[2] |
| 178 | #define sc_semmni sem_ctls[3] |
| 179 | |
| 180 | void sem_init_ns(struct ipc_namespace *ns) |
| 181 | { |
| 182 | ns->sc_semmsl = SEMMSL; |
| 183 | ns->sc_semmns = SEMMNS; |
| 184 | ns->sc_semopm = SEMOPM; |
| 185 | ns->sc_semmni = SEMMNI; |
| 186 | ns->used_sems = 0; |
| 187 | ipc_init_ids(&ns->ids[IPC_SEM_IDS]); |
| 188 | } |
| 189 | |
| 190 | #ifdef CONFIG_IPC_NS |
| 191 | void sem_exit_ns(struct ipc_namespace *ns) |
| 192 | { |
| 193 | free_ipcs(ns, &sem_ids(ns), freeary); |
| 194 | idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr); |
| 195 | } |
| 196 | #endif |
| 197 | |
| 198 | void __init sem_init(void) |
| 199 | { |
| 200 | sem_init_ns(&init_ipc_ns); |
| 201 | ipc_init_proc_interface("sysvipc/sem", |
| 202 | " key semid perms nsems uid gid cuid cgid otime ctime\n", |
| 203 | IPC_SEM_IDS, sysvipc_sem_proc_show); |
| 204 | } |
| 205 | |
| 206 | /** |
| 207 | * unmerge_queues - unmerge queues, if possible. |
| 208 | * @sma: semaphore array |
| 209 | * |
| 210 | * The function unmerges the wait queues if complex_count is 0. |
| 211 | * It must be called prior to dropping the global semaphore array lock. |
| 212 | */ |
| 213 | static void unmerge_queues(struct sem_array *sma) |
| 214 | { |
| 215 | struct sem_queue *q, *tq; |
| 216 | |
| 217 | /* complex operations still around? */ |
| 218 | if (sma->complex_count) |
| 219 | return; |
| 220 | /* |
| 221 | * We will switch back to simple mode. |
| 222 | * Move all pending operation back into the per-semaphore |
| 223 | * queues. |
| 224 | */ |
| 225 | list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { |
| 226 | struct sem *curr; |
| 227 | curr = &sma->sem_base[q->sops[0].sem_num]; |
| 228 | |
| 229 | list_add_tail(&q->list, &curr->pending_alter); |
| 230 | } |
| 231 | INIT_LIST_HEAD(&sma->pending_alter); |
| 232 | } |
| 233 | |
| 234 | /** |
| 235 | * merge_queues - merge single semop queues into global queue |
| 236 | * @sma: semaphore array |
| 237 | * |
| 238 | * This function merges all per-semaphore queues into the global queue. |
| 239 | * It is necessary to achieve FIFO ordering for the pending single-sop |
| 240 | * operations when a multi-semop operation must sleep. |
| 241 | * Only the alter operations must be moved, the const operations can stay. |
| 242 | */ |
| 243 | static void merge_queues(struct sem_array *sma) |
| 244 | { |
| 245 | int i; |
| 246 | for (i = 0; i < sma->sem_nsems; i++) { |
| 247 | struct sem *sem = sma->sem_base + i; |
| 248 | |
| 249 | list_splice_init(&sem->pending_alter, &sma->pending_alter); |
| 250 | } |
| 251 | } |
| 252 | |
| 253 | static void sem_rcu_free(struct rcu_head *head) |
| 254 | { |
| 255 | struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu); |
| 256 | struct sem_array *sma = ipc_rcu_to_struct(p); |
| 257 | |
| 258 | security_sem_free(sma); |
| 259 | ipc_rcu_free(head); |
| 260 | } |
| 261 | |
| 262 | /* |
| 263 | * spin_unlock_wait() and !spin_is_locked() are not memory barriers, they |
| 264 | * are only control barriers. |
| 265 | * The code must pair with spin_unlock(&sem->lock) or |
| 266 | * spin_unlock(&sem_perm.lock), thus just the control barrier is insufficient. |
| 267 | * |
| 268 | * smp_rmb() is sufficient, as writes cannot pass the control barrier. |
| 269 | */ |
| 270 | #define ipc_smp_acquire__after_spin_is_unlocked() smp_rmb() |
| 271 | |
| 272 | /* |
| 273 | * Enter the mode suitable for non-simple operations: |
| 274 | * Caller must own sem_perm.lock. |
| 275 | */ |
| 276 | static void complexmode_enter(struct sem_array *sma) |
| 277 | { |
| 278 | int i; |
| 279 | struct sem *sem; |
| 280 | |
| 281 | if (sma->complex_mode) { |
| 282 | /* We are already in complex_mode. Nothing to do */ |
| 283 | return; |
| 284 | } |
| 285 | |
| 286 | /* We need a full barrier after seting complex_mode: |
| 287 | * The write to complex_mode must be visible |
| 288 | * before we read the first sem->lock spinlock state. |
| 289 | */ |
| 290 | smp_store_mb(sma->complex_mode, true); |
| 291 | |
| 292 | for (i = 0; i < sma->sem_nsems; i++) { |
| 293 | sem = sma->sem_base + i; |
| 294 | spin_unlock_wait(&sem->lock); |
| 295 | } |
| 296 | ipc_smp_acquire__after_spin_is_unlocked(); |
| 297 | } |
| 298 | |
| 299 | /* |
| 300 | * Try to leave the mode that disallows simple operations: |
| 301 | * Caller must own sem_perm.lock. |
| 302 | */ |
| 303 | static void complexmode_tryleave(struct sem_array *sma) |
| 304 | { |
| 305 | if (sma->complex_count) { |
| 306 | /* Complex ops are sleeping. |
| 307 | * We must stay in complex mode |
| 308 | */ |
| 309 | return; |
| 310 | } |
| 311 | /* |
| 312 | * Immediately after setting complex_mode to false, |
| 313 | * a simple op can start. Thus: all memory writes |
| 314 | * performed by the current operation must be visible |
| 315 | * before we set complex_mode to false. |
| 316 | */ |
| 317 | smp_store_release(&sma->complex_mode, false); |
| 318 | } |
| 319 | |
| 320 | #define SEM_GLOBAL_LOCK (-1) |
| 321 | /* |
| 322 | * If the request contains only one semaphore operation, and there are |
| 323 | * no complex transactions pending, lock only the semaphore involved. |
| 324 | * Otherwise, lock the entire semaphore array, since we either have |
| 325 | * multiple semaphores in our own semops, or we need to look at |
| 326 | * semaphores from other pending complex operations. |
| 327 | */ |
| 328 | static inline int sem_lock(struct sem_array *sma, struct sembuf *sops, |
| 329 | int nsops) |
| 330 | { |
| 331 | struct sem *sem; |
| 332 | |
| 333 | if (nsops != 1) { |
| 334 | /* Complex operation - acquire a full lock */ |
| 335 | ipc_lock_object(&sma->sem_perm); |
| 336 | |
| 337 | /* Prevent parallel simple ops */ |
| 338 | complexmode_enter(sma); |
| 339 | return SEM_GLOBAL_LOCK; |
| 340 | } |
| 341 | |
| 342 | /* |
| 343 | * Only one semaphore affected - try to optimize locking. |
| 344 | * Optimized locking is possible if no complex operation |
| 345 | * is either enqueued or processed right now. |
| 346 | * |
| 347 | * Both facts are tracked by complex_mode. |
| 348 | */ |
| 349 | sem = sma->sem_base + sops->sem_num; |
| 350 | |
| 351 | /* |
| 352 | * Initial check for complex_mode. Just an optimization, |
| 353 | * no locking, no memory barrier. |
| 354 | */ |
| 355 | if (!sma->complex_mode) { |
| 356 | /* |
| 357 | * It appears that no complex operation is around. |
| 358 | * Acquire the per-semaphore lock. |
| 359 | */ |
| 360 | spin_lock(&sem->lock); |
| 361 | |
| 362 | /* |
| 363 | * See 51d7d5205d33 |
| 364 | * ("powerpc: Add smp_mb() to arch_spin_is_locked()"): |
| 365 | * A full barrier is required: the write of sem->lock |
| 366 | * must be visible before the read is executed |
| 367 | */ |
| 368 | smp_mb(); |
| 369 | |
| 370 | if (!smp_load_acquire(&sma->complex_mode)) { |
| 371 | /* fast path successful! */ |
| 372 | return sops->sem_num; |
| 373 | } |
| 374 | spin_unlock(&sem->lock); |
| 375 | } |
| 376 | |
| 377 | /* slow path: acquire the full lock */ |
| 378 | ipc_lock_object(&sma->sem_perm); |
| 379 | |
| 380 | if (sma->complex_count == 0) { |
| 381 | /* False alarm: |
| 382 | * There is no complex operation, thus we can switch |
| 383 | * back to the fast path. |
| 384 | */ |
| 385 | spin_lock(&sem->lock); |
| 386 | ipc_unlock_object(&sma->sem_perm); |
| 387 | return sops->sem_num; |
| 388 | } else { |
| 389 | /* Not a false alarm, thus complete the sequence for a |
| 390 | * full lock. |
| 391 | */ |
| 392 | complexmode_enter(sma); |
| 393 | return SEM_GLOBAL_LOCK; |
| 394 | } |
| 395 | } |
| 396 | |
| 397 | static inline void sem_unlock(struct sem_array *sma, int locknum) |
| 398 | { |
| 399 | if (locknum == SEM_GLOBAL_LOCK) { |
| 400 | unmerge_queues(sma); |
| 401 | complexmode_tryleave(sma); |
| 402 | ipc_unlock_object(&sma->sem_perm); |
| 403 | } else { |
| 404 | struct sem *sem = sma->sem_base + locknum; |
| 405 | spin_unlock(&sem->lock); |
| 406 | } |
| 407 | } |
| 408 | |
| 409 | /* |
| 410 | * sem_lock_(check_) routines are called in the paths where the rwsem |
| 411 | * is not held. |
| 412 | * |
| 413 | * The caller holds the RCU read lock. |
| 414 | */ |
| 415 | static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns, |
| 416 | int id, struct sembuf *sops, int nsops, int *locknum) |
| 417 | { |
| 418 | struct kern_ipc_perm *ipcp; |
| 419 | struct sem_array *sma; |
| 420 | |
| 421 | ipcp = ipc_obtain_object_idr(&sem_ids(ns), id); |
| 422 | if (IS_ERR(ipcp)) |
| 423 | return ERR_CAST(ipcp); |
| 424 | |
| 425 | sma = container_of(ipcp, struct sem_array, sem_perm); |
| 426 | *locknum = sem_lock(sma, sops, nsops); |
| 427 | |
| 428 | /* ipc_rmid() may have already freed the ID while sem_lock |
| 429 | * was spinning: verify that the structure is still valid |
| 430 | */ |
| 431 | if (ipc_valid_object(ipcp)) |
| 432 | return container_of(ipcp, struct sem_array, sem_perm); |
| 433 | |
| 434 | sem_unlock(sma, *locknum); |
| 435 | return ERR_PTR(-EINVAL); |
| 436 | } |
| 437 | |
| 438 | static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id) |
| 439 | { |
| 440 | struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id); |
| 441 | |
| 442 | if (IS_ERR(ipcp)) |
| 443 | return ERR_CAST(ipcp); |
| 444 | |
| 445 | return container_of(ipcp, struct sem_array, sem_perm); |
| 446 | } |
| 447 | |
| 448 | static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns, |
| 449 | int id) |
| 450 | { |
| 451 | struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id); |
| 452 | |
| 453 | if (IS_ERR(ipcp)) |
| 454 | return ERR_CAST(ipcp); |
| 455 | |
| 456 | return container_of(ipcp, struct sem_array, sem_perm); |
| 457 | } |
| 458 | |
| 459 | static inline void sem_lock_and_putref(struct sem_array *sma) |
| 460 | { |
| 461 | sem_lock(sma, NULL, -1); |
| 462 | ipc_rcu_putref(sma, sem_rcu_free); |
| 463 | } |
| 464 | |
| 465 | static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s) |
| 466 | { |
| 467 | ipc_rmid(&sem_ids(ns), &s->sem_perm); |
| 468 | } |
| 469 | |
| 470 | /* |
| 471 | * Lockless wakeup algorithm: |
| 472 | * Without the check/retry algorithm a lockless wakeup is possible: |
| 473 | * - queue.status is initialized to -EINTR before blocking. |
| 474 | * - wakeup is performed by |
| 475 | * * unlinking the queue entry from the pending list |
| 476 | * * setting queue.status to IN_WAKEUP |
| 477 | * This is the notification for the blocked thread that a |
| 478 | * result value is imminent. |
| 479 | * * call wake_up_process |
| 480 | * * set queue.status to the final value. |
| 481 | * - the previously blocked thread checks queue.status: |
| 482 | * * if it's IN_WAKEUP, then it must wait until the value changes |
| 483 | * * if it's not -EINTR, then the operation was completed by |
| 484 | * update_queue. semtimedop can return queue.status without |
| 485 | * performing any operation on the sem array. |
| 486 | * * otherwise it must acquire the spinlock and check what's up. |
| 487 | * |
| 488 | * The two-stage algorithm is necessary to protect against the following |
| 489 | * races: |
| 490 | * - if queue.status is set after wake_up_process, then the woken up idle |
| 491 | * thread could race forward and try (and fail) to acquire sma->lock |
| 492 | * before update_queue had a chance to set queue.status |
| 493 | * - if queue.status is written before wake_up_process and if the |
| 494 | * blocked process is woken up by a signal between writing |
| 495 | * queue.status and the wake_up_process, then the woken up |
| 496 | * process could return from semtimedop and die by calling |
| 497 | * sys_exit before wake_up_process is called. Then wake_up_process |
| 498 | * will oops, because the task structure is already invalid. |
| 499 | * (yes, this happened on s390 with sysv msg). |
| 500 | * |
| 501 | */ |
| 502 | #define IN_WAKEUP 1 |
| 503 | |
| 504 | /** |
| 505 | * newary - Create a new semaphore set |
| 506 | * @ns: namespace |
| 507 | * @params: ptr to the structure that contains key, semflg and nsems |
| 508 | * |
| 509 | * Called with sem_ids.rwsem held (as a writer) |
| 510 | */ |
| 511 | static int newary(struct ipc_namespace *ns, struct ipc_params *params) |
| 512 | { |
| 513 | int id; |
| 514 | int retval; |
| 515 | struct sem_array *sma; |
| 516 | int size; |
| 517 | key_t key = params->key; |
| 518 | int nsems = params->u.nsems; |
| 519 | int semflg = params->flg; |
| 520 | int i; |
| 521 | |
| 522 | if (!nsems) |
| 523 | return -EINVAL; |
| 524 | if (ns->used_sems + nsems > ns->sc_semmns) |
| 525 | return -ENOSPC; |
| 526 | |
| 527 | size = sizeof(*sma) + nsems * sizeof(struct sem); |
| 528 | sma = ipc_rcu_alloc(size); |
| 529 | if (!sma) |
| 530 | return -ENOMEM; |
| 531 | |
| 532 | memset(sma, 0, size); |
| 533 | |
| 534 | sma->sem_perm.mode = (semflg & S_IRWXUGO); |
| 535 | sma->sem_perm.key = key; |
| 536 | |
| 537 | sma->sem_perm.security = NULL; |
| 538 | retval = security_sem_alloc(sma); |
| 539 | if (retval) { |
| 540 | ipc_rcu_putref(sma, ipc_rcu_free); |
| 541 | return retval; |
| 542 | } |
| 543 | |
| 544 | sma->sem_base = (struct sem *) &sma[1]; |
| 545 | |
| 546 | for (i = 0; i < nsems; i++) { |
| 547 | INIT_LIST_HEAD(&sma->sem_base[i].pending_alter); |
| 548 | INIT_LIST_HEAD(&sma->sem_base[i].pending_const); |
| 549 | spin_lock_init(&sma->sem_base[i].lock); |
| 550 | } |
| 551 | |
| 552 | sma->complex_count = 0; |
| 553 | sma->complex_mode = true; /* dropped by sem_unlock below */ |
| 554 | INIT_LIST_HEAD(&sma->pending_alter); |
| 555 | INIT_LIST_HEAD(&sma->pending_const); |
| 556 | INIT_LIST_HEAD(&sma->list_id); |
| 557 | sma->sem_nsems = nsems; |
| 558 | sma->sem_ctime = get_seconds(); |
| 559 | |
| 560 | id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni); |
| 561 | if (id < 0) { |
| 562 | ipc_rcu_putref(sma, sem_rcu_free); |
| 563 | return id; |
| 564 | } |
| 565 | ns->used_sems += nsems; |
| 566 | |
| 567 | sem_unlock(sma, -1); |
| 568 | rcu_read_unlock(); |
| 569 | |
| 570 | return sma->sem_perm.id; |
| 571 | } |
| 572 | |
| 573 | |
| 574 | /* |
| 575 | * Called with sem_ids.rwsem and ipcp locked. |
| 576 | */ |
| 577 | static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg) |
| 578 | { |
| 579 | struct sem_array *sma; |
| 580 | |
| 581 | sma = container_of(ipcp, struct sem_array, sem_perm); |
| 582 | return security_sem_associate(sma, semflg); |
| 583 | } |
| 584 | |
| 585 | /* |
| 586 | * Called with sem_ids.rwsem and ipcp locked. |
| 587 | */ |
| 588 | static inline int sem_more_checks(struct kern_ipc_perm *ipcp, |
| 589 | struct ipc_params *params) |
| 590 | { |
| 591 | struct sem_array *sma; |
| 592 | |
| 593 | sma = container_of(ipcp, struct sem_array, sem_perm); |
| 594 | if (params->u.nsems > sma->sem_nsems) |
| 595 | return -EINVAL; |
| 596 | |
| 597 | return 0; |
| 598 | } |
| 599 | |
| 600 | SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg) |
| 601 | { |
| 602 | struct ipc_namespace *ns; |
| 603 | static const struct ipc_ops sem_ops = { |
| 604 | .getnew = newary, |
| 605 | .associate = sem_security, |
| 606 | .more_checks = sem_more_checks, |
| 607 | }; |
| 608 | struct ipc_params sem_params; |
| 609 | |
| 610 | ns = current->nsproxy->ipc_ns; |
| 611 | |
| 612 | if (nsems < 0 || nsems > ns->sc_semmsl) |
| 613 | return -EINVAL; |
| 614 | |
| 615 | sem_params.key = key; |
| 616 | sem_params.flg = semflg; |
| 617 | sem_params.u.nsems = nsems; |
| 618 | |
| 619 | return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params); |
| 620 | } |
| 621 | |
| 622 | /** |
| 623 | * perform_atomic_semop - Perform (if possible) a semaphore operation |
| 624 | * @sma: semaphore array |
| 625 | * @q: struct sem_queue that describes the operation |
| 626 | * |
| 627 | * Returns 0 if the operation was possible. |
| 628 | * Returns 1 if the operation is impossible, the caller must sleep. |
| 629 | * Negative values are error codes. |
| 630 | */ |
| 631 | static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q) |
| 632 | { |
| 633 | int result, sem_op, nsops, pid; |
| 634 | struct sembuf *sop; |
| 635 | struct sem *curr; |
| 636 | struct sembuf *sops; |
| 637 | struct sem_undo *un; |
| 638 | |
| 639 | sops = q->sops; |
| 640 | nsops = q->nsops; |
| 641 | un = q->undo; |
| 642 | |
| 643 | for (sop = sops; sop < sops + nsops; sop++) { |
| 644 | curr = sma->sem_base + sop->sem_num; |
| 645 | sem_op = sop->sem_op; |
| 646 | result = curr->semval; |
| 647 | |
| 648 | if (!sem_op && result) |
| 649 | goto would_block; |
| 650 | |
| 651 | result += sem_op; |
| 652 | if (result < 0) |
| 653 | goto would_block; |
| 654 | if (result > SEMVMX) |
| 655 | goto out_of_range; |
| 656 | |
| 657 | if (sop->sem_flg & SEM_UNDO) { |
| 658 | int undo = un->semadj[sop->sem_num] - sem_op; |
| 659 | /* Exceeding the undo range is an error. */ |
| 660 | if (undo < (-SEMAEM - 1) || undo > SEMAEM) |
| 661 | goto out_of_range; |
| 662 | un->semadj[sop->sem_num] = undo; |
| 663 | } |
| 664 | |
| 665 | curr->semval = result; |
| 666 | } |
| 667 | |
| 668 | sop--; |
| 669 | pid = q->pid; |
| 670 | while (sop >= sops) { |
| 671 | sma->sem_base[sop->sem_num].sempid = pid; |
| 672 | sop--; |
| 673 | } |
| 674 | |
| 675 | return 0; |
| 676 | |
| 677 | out_of_range: |
| 678 | result = -ERANGE; |
| 679 | goto undo; |
| 680 | |
| 681 | would_block: |
| 682 | q->blocking = sop; |
| 683 | |
| 684 | if (sop->sem_flg & IPC_NOWAIT) |
| 685 | result = -EAGAIN; |
| 686 | else |
| 687 | result = 1; |
| 688 | |
| 689 | undo: |
| 690 | sop--; |
| 691 | while (sop >= sops) { |
| 692 | sem_op = sop->sem_op; |
| 693 | sma->sem_base[sop->sem_num].semval -= sem_op; |
| 694 | if (sop->sem_flg & SEM_UNDO) |
| 695 | un->semadj[sop->sem_num] += sem_op; |
| 696 | sop--; |
| 697 | } |
| 698 | |
| 699 | return result; |
| 700 | } |
| 701 | |
| 702 | /** wake_up_sem_queue_prepare(q, error): Prepare wake-up |
| 703 | * @q: queue entry that must be signaled |
| 704 | * @error: Error value for the signal |
| 705 | * |
| 706 | * Prepare the wake-up of the queue entry q. |
| 707 | */ |
| 708 | static void wake_up_sem_queue_prepare(struct list_head *pt, |
| 709 | struct sem_queue *q, int error) |
| 710 | { |
| 711 | if (list_empty(pt)) { |
| 712 | /* |
| 713 | * Hold preempt off so that we don't get preempted and have the |
| 714 | * wakee busy-wait until we're scheduled back on. |
| 715 | */ |
| 716 | preempt_disable(); |
| 717 | } |
| 718 | q->status = IN_WAKEUP; |
| 719 | q->pid = error; |
| 720 | |
| 721 | list_add_tail(&q->list, pt); |
| 722 | } |
| 723 | |
| 724 | /** |
| 725 | * wake_up_sem_queue_do - do the actual wake-up |
| 726 | * @pt: list of tasks to be woken up |
| 727 | * |
| 728 | * Do the actual wake-up. |
| 729 | * The function is called without any locks held, thus the semaphore array |
| 730 | * could be destroyed already and the tasks can disappear as soon as the |
| 731 | * status is set to the actual return code. |
| 732 | */ |
| 733 | static void wake_up_sem_queue_do(struct list_head *pt) |
| 734 | { |
| 735 | struct sem_queue *q, *t; |
| 736 | int did_something; |
| 737 | |
| 738 | did_something = !list_empty(pt); |
| 739 | list_for_each_entry_safe(q, t, pt, list) { |
| 740 | wake_up_process(q->sleeper); |
| 741 | /* q can disappear immediately after writing q->status. */ |
| 742 | smp_wmb(); |
| 743 | q->status = q->pid; |
| 744 | } |
| 745 | if (did_something) |
| 746 | preempt_enable(); |
| 747 | } |
| 748 | |
| 749 | static void unlink_queue(struct sem_array *sma, struct sem_queue *q) |
| 750 | { |
| 751 | list_del(&q->list); |
| 752 | if (q->nsops > 1) |
| 753 | sma->complex_count--; |
| 754 | } |
| 755 | |
| 756 | /** check_restart(sma, q) |
| 757 | * @sma: semaphore array |
| 758 | * @q: the operation that just completed |
| 759 | * |
| 760 | * update_queue is O(N^2) when it restarts scanning the whole queue of |
| 761 | * waiting operations. Therefore this function checks if the restart is |
| 762 | * really necessary. It is called after a previously waiting operation |
| 763 | * modified the array. |
| 764 | * Note that wait-for-zero operations are handled without restart. |
| 765 | */ |
| 766 | static int check_restart(struct sem_array *sma, struct sem_queue *q) |
| 767 | { |
| 768 | /* pending complex alter operations are too difficult to analyse */ |
| 769 | if (!list_empty(&sma->pending_alter)) |
| 770 | return 1; |
| 771 | |
| 772 | /* we were a sleeping complex operation. Too difficult */ |
| 773 | if (q->nsops > 1) |
| 774 | return 1; |
| 775 | |
| 776 | /* It is impossible that someone waits for the new value: |
| 777 | * - complex operations always restart. |
| 778 | * - wait-for-zero are handled seperately. |
| 779 | * - q is a previously sleeping simple operation that |
| 780 | * altered the array. It must be a decrement, because |
| 781 | * simple increments never sleep. |
| 782 | * - If there are older (higher priority) decrements |
| 783 | * in the queue, then they have observed the original |
| 784 | * semval value and couldn't proceed. The operation |
| 785 | * decremented to value - thus they won't proceed either. |
| 786 | */ |
| 787 | return 0; |
| 788 | } |
| 789 | |
| 790 | /** |
| 791 | * wake_const_ops - wake up non-alter tasks |
| 792 | * @sma: semaphore array. |
| 793 | * @semnum: semaphore that was modified. |
| 794 | * @pt: list head for the tasks that must be woken up. |
| 795 | * |
| 796 | * wake_const_ops must be called after a semaphore in a semaphore array |
| 797 | * was set to 0. If complex const operations are pending, wake_const_ops must |
| 798 | * be called with semnum = -1, as well as with the number of each modified |
| 799 | * semaphore. |
| 800 | * The tasks that must be woken up are added to @pt. The return code |
| 801 | * is stored in q->pid. |
| 802 | * The function returns 1 if at least one operation was completed successfully. |
| 803 | */ |
| 804 | static int wake_const_ops(struct sem_array *sma, int semnum, |
| 805 | struct list_head *pt) |
| 806 | { |
| 807 | struct sem_queue *q; |
| 808 | struct list_head *walk; |
| 809 | struct list_head *pending_list; |
| 810 | int semop_completed = 0; |
| 811 | |
| 812 | if (semnum == -1) |
| 813 | pending_list = &sma->pending_const; |
| 814 | else |
| 815 | pending_list = &sma->sem_base[semnum].pending_const; |
| 816 | |
| 817 | walk = pending_list->next; |
| 818 | while (walk != pending_list) { |
| 819 | int error; |
| 820 | |
| 821 | q = container_of(walk, struct sem_queue, list); |
| 822 | walk = walk->next; |
| 823 | |
| 824 | error = perform_atomic_semop(sma, q); |
| 825 | |
| 826 | if (error <= 0) { |
| 827 | /* operation completed, remove from queue & wakeup */ |
| 828 | |
| 829 | unlink_queue(sma, q); |
| 830 | |
| 831 | wake_up_sem_queue_prepare(pt, q, error); |
| 832 | if (error == 0) |
| 833 | semop_completed = 1; |
| 834 | } |
| 835 | } |
| 836 | return semop_completed; |
| 837 | } |
| 838 | |
| 839 | /** |
| 840 | * do_smart_wakeup_zero - wakeup all wait for zero tasks |
| 841 | * @sma: semaphore array |
| 842 | * @sops: operations that were performed |
| 843 | * @nsops: number of operations |
| 844 | * @pt: list head of the tasks that must be woken up. |
| 845 | * |
| 846 | * Checks all required queue for wait-for-zero operations, based |
| 847 | * on the actual changes that were performed on the semaphore array. |
| 848 | * The function returns 1 if at least one operation was completed successfully. |
| 849 | */ |
| 850 | static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops, |
| 851 | int nsops, struct list_head *pt) |
| 852 | { |
| 853 | int i; |
| 854 | int semop_completed = 0; |
| 855 | int got_zero = 0; |
| 856 | |
| 857 | /* first: the per-semaphore queues, if known */ |
| 858 | if (sops) { |
| 859 | for (i = 0; i < nsops; i++) { |
| 860 | int num = sops[i].sem_num; |
| 861 | |
| 862 | if (sma->sem_base[num].semval == 0) { |
| 863 | got_zero = 1; |
| 864 | semop_completed |= wake_const_ops(sma, num, pt); |
| 865 | } |
| 866 | } |
| 867 | } else { |
| 868 | /* |
| 869 | * No sops means modified semaphores not known. |
| 870 | * Assume all were changed. |
| 871 | */ |
| 872 | for (i = 0; i < sma->sem_nsems; i++) { |
| 873 | if (sma->sem_base[i].semval == 0) { |
| 874 | got_zero = 1; |
| 875 | semop_completed |= wake_const_ops(sma, i, pt); |
| 876 | } |
| 877 | } |
| 878 | } |
| 879 | /* |
| 880 | * If one of the modified semaphores got 0, |
| 881 | * then check the global queue, too. |
| 882 | */ |
| 883 | if (got_zero) |
| 884 | semop_completed |= wake_const_ops(sma, -1, pt); |
| 885 | |
| 886 | return semop_completed; |
| 887 | } |
| 888 | |
| 889 | |
| 890 | /** |
| 891 | * update_queue - look for tasks that can be completed. |
| 892 | * @sma: semaphore array. |
| 893 | * @semnum: semaphore that was modified. |
| 894 | * @pt: list head for the tasks that must be woken up. |
| 895 | * |
| 896 | * update_queue must be called after a semaphore in a semaphore array |
| 897 | * was modified. If multiple semaphores were modified, update_queue must |
| 898 | * be called with semnum = -1, as well as with the number of each modified |
| 899 | * semaphore. |
| 900 | * The tasks that must be woken up are added to @pt. The return code |
| 901 | * is stored in q->pid. |
| 902 | * The function internally checks if const operations can now succeed. |
| 903 | * |
| 904 | * The function return 1 if at least one semop was completed successfully. |
| 905 | */ |
| 906 | static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt) |
| 907 | { |
| 908 | struct sem_queue *q; |
| 909 | struct list_head *walk; |
| 910 | struct list_head *pending_list; |
| 911 | int semop_completed = 0; |
| 912 | |
| 913 | if (semnum == -1) |
| 914 | pending_list = &sma->pending_alter; |
| 915 | else |
| 916 | pending_list = &sma->sem_base[semnum].pending_alter; |
| 917 | |
| 918 | again: |
| 919 | walk = pending_list->next; |
| 920 | while (walk != pending_list) { |
| 921 | int error, restart; |
| 922 | |
| 923 | q = container_of(walk, struct sem_queue, list); |
| 924 | walk = walk->next; |
| 925 | |
| 926 | /* If we are scanning the single sop, per-semaphore list of |
| 927 | * one semaphore and that semaphore is 0, then it is not |
| 928 | * necessary to scan further: simple increments |
| 929 | * that affect only one entry succeed immediately and cannot |
| 930 | * be in the per semaphore pending queue, and decrements |
| 931 | * cannot be successful if the value is already 0. |
| 932 | */ |
| 933 | if (semnum != -1 && sma->sem_base[semnum].semval == 0) |
| 934 | break; |
| 935 | |
| 936 | error = perform_atomic_semop(sma, q); |
| 937 | |
| 938 | /* Does q->sleeper still need to sleep? */ |
| 939 | if (error > 0) |
| 940 | continue; |
| 941 | |
| 942 | unlink_queue(sma, q); |
| 943 | |
| 944 | if (error) { |
| 945 | restart = 0; |
| 946 | } else { |
| 947 | semop_completed = 1; |
| 948 | do_smart_wakeup_zero(sma, q->sops, q->nsops, pt); |
| 949 | restart = check_restart(sma, q); |
| 950 | } |
| 951 | |
| 952 | wake_up_sem_queue_prepare(pt, q, error); |
| 953 | if (restart) |
| 954 | goto again; |
| 955 | } |
| 956 | return semop_completed; |
| 957 | } |
| 958 | |
| 959 | /** |
| 960 | * set_semotime - set sem_otime |
| 961 | * @sma: semaphore array |
| 962 | * @sops: operations that modified the array, may be NULL |
| 963 | * |
| 964 | * sem_otime is replicated to avoid cache line trashing. |
| 965 | * This function sets one instance to the current time. |
| 966 | */ |
| 967 | static void set_semotime(struct sem_array *sma, struct sembuf *sops) |
| 968 | { |
| 969 | if (sops == NULL) { |
| 970 | sma->sem_base[0].sem_otime = get_seconds(); |
| 971 | } else { |
| 972 | sma->sem_base[sops[0].sem_num].sem_otime = |
| 973 | get_seconds(); |
| 974 | } |
| 975 | } |
| 976 | |
| 977 | /** |
| 978 | * do_smart_update - optimized update_queue |
| 979 | * @sma: semaphore array |
| 980 | * @sops: operations that were performed |
| 981 | * @nsops: number of operations |
| 982 | * @otime: force setting otime |
| 983 | * @pt: list head of the tasks that must be woken up. |
| 984 | * |
| 985 | * do_smart_update() does the required calls to update_queue and wakeup_zero, |
| 986 | * based on the actual changes that were performed on the semaphore array. |
| 987 | * Note that the function does not do the actual wake-up: the caller is |
| 988 | * responsible for calling wake_up_sem_queue_do(@pt). |
| 989 | * It is safe to perform this call after dropping all locks. |
| 990 | */ |
| 991 | static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops, |
| 992 | int otime, struct list_head *pt) |
| 993 | { |
| 994 | int i; |
| 995 | |
| 996 | otime |= do_smart_wakeup_zero(sma, sops, nsops, pt); |
| 997 | |
| 998 | if (!list_empty(&sma->pending_alter)) { |
| 999 | /* semaphore array uses the global queue - just process it. */ |
| 1000 | otime |= update_queue(sma, -1, pt); |
| 1001 | } else { |
| 1002 | if (!sops) { |
| 1003 | /* |
| 1004 | * No sops, thus the modified semaphores are not |
| 1005 | * known. Check all. |
| 1006 | */ |
| 1007 | for (i = 0; i < sma->sem_nsems; i++) |
| 1008 | otime |= update_queue(sma, i, pt); |
| 1009 | } else { |
| 1010 | /* |
| 1011 | * Check the semaphores that were increased: |
| 1012 | * - No complex ops, thus all sleeping ops are |
| 1013 | * decrease. |
| 1014 | * - if we decreased the value, then any sleeping |
| 1015 | * semaphore ops wont be able to run: If the |
| 1016 | * previous value was too small, then the new |
| 1017 | * value will be too small, too. |
| 1018 | */ |
| 1019 | for (i = 0; i < nsops; i++) { |
| 1020 | if (sops[i].sem_op > 0) { |
| 1021 | otime |= update_queue(sma, |
| 1022 | sops[i].sem_num, pt); |
| 1023 | } |
| 1024 | } |
| 1025 | } |
| 1026 | } |
| 1027 | if (otime) |
| 1028 | set_semotime(sma, sops); |
| 1029 | } |
| 1030 | |
| 1031 | /* |
| 1032 | * check_qop: Test if a queued operation sleeps on the semaphore semnum |
| 1033 | */ |
| 1034 | static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q, |
| 1035 | bool count_zero) |
| 1036 | { |
| 1037 | struct sembuf *sop = q->blocking; |
| 1038 | |
| 1039 | /* |
| 1040 | * Linux always (since 0.99.10) reported a task as sleeping on all |
| 1041 | * semaphores. This violates SUS, therefore it was changed to the |
| 1042 | * standard compliant behavior. |
| 1043 | * Give the administrators a chance to notice that an application |
| 1044 | * might misbehave because it relies on the Linux behavior. |
| 1045 | */ |
| 1046 | pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n" |
| 1047 | "The task %s (%d) triggered the difference, watch for misbehavior.\n", |
| 1048 | current->comm, task_pid_nr(current)); |
| 1049 | |
| 1050 | if (sop->sem_num != semnum) |
| 1051 | return 0; |
| 1052 | |
| 1053 | if (count_zero && sop->sem_op == 0) |
| 1054 | return 1; |
| 1055 | if (!count_zero && sop->sem_op < 0) |
| 1056 | return 1; |
| 1057 | |
| 1058 | return 0; |
| 1059 | } |
| 1060 | |
| 1061 | /* The following counts are associated to each semaphore: |
| 1062 | * semncnt number of tasks waiting on semval being nonzero |
| 1063 | * semzcnt number of tasks waiting on semval being zero |
| 1064 | * |
| 1065 | * Per definition, a task waits only on the semaphore of the first semop |
| 1066 | * that cannot proceed, even if additional operation would block, too. |
| 1067 | */ |
| 1068 | static int count_semcnt(struct sem_array *sma, ushort semnum, |
| 1069 | bool count_zero) |
| 1070 | { |
| 1071 | struct list_head *l; |
| 1072 | struct sem_queue *q; |
| 1073 | int semcnt; |
| 1074 | |
| 1075 | semcnt = 0; |
| 1076 | /* First: check the simple operations. They are easy to evaluate */ |
| 1077 | if (count_zero) |
| 1078 | l = &sma->sem_base[semnum].pending_const; |
| 1079 | else |
| 1080 | l = &sma->sem_base[semnum].pending_alter; |
| 1081 | |
| 1082 | list_for_each_entry(q, l, list) { |
| 1083 | /* all task on a per-semaphore list sleep on exactly |
| 1084 | * that semaphore |
| 1085 | */ |
| 1086 | semcnt++; |
| 1087 | } |
| 1088 | |
| 1089 | /* Then: check the complex operations. */ |
| 1090 | list_for_each_entry(q, &sma->pending_alter, list) { |
| 1091 | semcnt += check_qop(sma, semnum, q, count_zero); |
| 1092 | } |
| 1093 | if (count_zero) { |
| 1094 | list_for_each_entry(q, &sma->pending_const, list) { |
| 1095 | semcnt += check_qop(sma, semnum, q, count_zero); |
| 1096 | } |
| 1097 | } |
| 1098 | return semcnt; |
| 1099 | } |
| 1100 | |
| 1101 | /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked |
| 1102 | * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem |
| 1103 | * remains locked on exit. |
| 1104 | */ |
| 1105 | static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp) |
| 1106 | { |
| 1107 | struct sem_undo *un, *tu; |
| 1108 | struct sem_queue *q, *tq; |
| 1109 | struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); |
| 1110 | struct list_head tasks; |
| 1111 | int i; |
| 1112 | |
| 1113 | /* Free the existing undo structures for this semaphore set. */ |
| 1114 | ipc_assert_locked_object(&sma->sem_perm); |
| 1115 | list_for_each_entry_safe(un, tu, &sma->list_id, list_id) { |
| 1116 | list_del(&un->list_id); |
| 1117 | spin_lock(&un->ulp->lock); |
| 1118 | un->semid = -1; |
| 1119 | list_del_rcu(&un->list_proc); |
| 1120 | spin_unlock(&un->ulp->lock); |
| 1121 | kfree_rcu(un, rcu); |
| 1122 | } |
| 1123 | |
| 1124 | /* Wake up all pending processes and let them fail with EIDRM. */ |
| 1125 | INIT_LIST_HEAD(&tasks); |
| 1126 | list_for_each_entry_safe(q, tq, &sma->pending_const, list) { |
| 1127 | unlink_queue(sma, q); |
| 1128 | wake_up_sem_queue_prepare(&tasks, q, -EIDRM); |
| 1129 | } |
| 1130 | |
| 1131 | list_for_each_entry_safe(q, tq, &sma->pending_alter, list) { |
| 1132 | unlink_queue(sma, q); |
| 1133 | wake_up_sem_queue_prepare(&tasks, q, -EIDRM); |
| 1134 | } |
| 1135 | for (i = 0; i < sma->sem_nsems; i++) { |
| 1136 | struct sem *sem = sma->sem_base + i; |
| 1137 | list_for_each_entry_safe(q, tq, &sem->pending_const, list) { |
| 1138 | unlink_queue(sma, q); |
| 1139 | wake_up_sem_queue_prepare(&tasks, q, -EIDRM); |
| 1140 | } |
| 1141 | list_for_each_entry_safe(q, tq, &sem->pending_alter, list) { |
| 1142 | unlink_queue(sma, q); |
| 1143 | wake_up_sem_queue_prepare(&tasks, q, -EIDRM); |
| 1144 | } |
| 1145 | } |
| 1146 | |
| 1147 | /* Remove the semaphore set from the IDR */ |
| 1148 | sem_rmid(ns, sma); |
| 1149 | sem_unlock(sma, -1); |
| 1150 | rcu_read_unlock(); |
| 1151 | |
| 1152 | wake_up_sem_queue_do(&tasks); |
| 1153 | ns->used_sems -= sma->sem_nsems; |
| 1154 | ipc_rcu_putref(sma, sem_rcu_free); |
| 1155 | } |
| 1156 | |
| 1157 | static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) |
| 1158 | { |
| 1159 | switch (version) { |
| 1160 | case IPC_64: |
| 1161 | return copy_to_user(buf, in, sizeof(*in)); |
| 1162 | case IPC_OLD: |
| 1163 | { |
| 1164 | struct semid_ds out; |
| 1165 | |
| 1166 | memset(&out, 0, sizeof(out)); |
| 1167 | |
| 1168 | ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); |
| 1169 | |
| 1170 | out.sem_otime = in->sem_otime; |
| 1171 | out.sem_ctime = in->sem_ctime; |
| 1172 | out.sem_nsems = in->sem_nsems; |
| 1173 | |
| 1174 | return copy_to_user(buf, &out, sizeof(out)); |
| 1175 | } |
| 1176 | default: |
| 1177 | return -EINVAL; |
| 1178 | } |
| 1179 | } |
| 1180 | |
| 1181 | static time_t get_semotime(struct sem_array *sma) |
| 1182 | { |
| 1183 | int i; |
| 1184 | time_t res; |
| 1185 | |
| 1186 | res = sma->sem_base[0].sem_otime; |
| 1187 | for (i = 1; i < sma->sem_nsems; i++) { |
| 1188 | time_t to = sma->sem_base[i].sem_otime; |
| 1189 | |
| 1190 | if (to > res) |
| 1191 | res = to; |
| 1192 | } |
| 1193 | return res; |
| 1194 | } |
| 1195 | |
| 1196 | static int semctl_nolock(struct ipc_namespace *ns, int semid, |
| 1197 | int cmd, int version, void __user *p) |
| 1198 | { |
| 1199 | int err; |
| 1200 | struct sem_array *sma; |
| 1201 | |
| 1202 | switch (cmd) { |
| 1203 | case IPC_INFO: |
| 1204 | case SEM_INFO: |
| 1205 | { |
| 1206 | struct seminfo seminfo; |
| 1207 | int max_id; |
| 1208 | |
| 1209 | err = security_sem_semctl(NULL, cmd); |
| 1210 | if (err) |
| 1211 | return err; |
| 1212 | |
| 1213 | memset(&seminfo, 0, sizeof(seminfo)); |
| 1214 | seminfo.semmni = ns->sc_semmni; |
| 1215 | seminfo.semmns = ns->sc_semmns; |
| 1216 | seminfo.semmsl = ns->sc_semmsl; |
| 1217 | seminfo.semopm = ns->sc_semopm; |
| 1218 | seminfo.semvmx = SEMVMX; |
| 1219 | seminfo.semmnu = SEMMNU; |
| 1220 | seminfo.semmap = SEMMAP; |
| 1221 | seminfo.semume = SEMUME; |
| 1222 | down_read(&sem_ids(ns).rwsem); |
| 1223 | if (cmd == SEM_INFO) { |
| 1224 | seminfo.semusz = sem_ids(ns).in_use; |
| 1225 | seminfo.semaem = ns->used_sems; |
| 1226 | } else { |
| 1227 | seminfo.semusz = SEMUSZ; |
| 1228 | seminfo.semaem = SEMAEM; |
| 1229 | } |
| 1230 | max_id = ipc_get_maxid(&sem_ids(ns)); |
| 1231 | up_read(&sem_ids(ns).rwsem); |
| 1232 | if (copy_to_user(p, &seminfo, sizeof(struct seminfo))) |
| 1233 | return -EFAULT; |
| 1234 | return (max_id < 0) ? 0 : max_id; |
| 1235 | } |
| 1236 | case IPC_STAT: |
| 1237 | case SEM_STAT: |
| 1238 | { |
| 1239 | struct semid64_ds tbuf; |
| 1240 | int id = 0; |
| 1241 | |
| 1242 | memset(&tbuf, 0, sizeof(tbuf)); |
| 1243 | |
| 1244 | rcu_read_lock(); |
| 1245 | if (cmd == SEM_STAT) { |
| 1246 | sma = sem_obtain_object(ns, semid); |
| 1247 | if (IS_ERR(sma)) { |
| 1248 | err = PTR_ERR(sma); |
| 1249 | goto out_unlock; |
| 1250 | } |
| 1251 | id = sma->sem_perm.id; |
| 1252 | } else { |
| 1253 | sma = sem_obtain_object_check(ns, semid); |
| 1254 | if (IS_ERR(sma)) { |
| 1255 | err = PTR_ERR(sma); |
| 1256 | goto out_unlock; |
| 1257 | } |
| 1258 | } |
| 1259 | |
| 1260 | err = -EACCES; |
| 1261 | if (ipcperms(ns, &sma->sem_perm, S_IRUGO)) |
| 1262 | goto out_unlock; |
| 1263 | |
| 1264 | err = security_sem_semctl(sma, cmd); |
| 1265 | if (err) |
| 1266 | goto out_unlock; |
| 1267 | |
| 1268 | kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm); |
| 1269 | tbuf.sem_otime = get_semotime(sma); |
| 1270 | tbuf.sem_ctime = sma->sem_ctime; |
| 1271 | tbuf.sem_nsems = sma->sem_nsems; |
| 1272 | rcu_read_unlock(); |
| 1273 | if (copy_semid_to_user(p, &tbuf, version)) |
| 1274 | return -EFAULT; |
| 1275 | return id; |
| 1276 | } |
| 1277 | default: |
| 1278 | return -EINVAL; |
| 1279 | } |
| 1280 | out_unlock: |
| 1281 | rcu_read_unlock(); |
| 1282 | return err; |
| 1283 | } |
| 1284 | |
| 1285 | static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum, |
| 1286 | unsigned long arg) |
| 1287 | { |
| 1288 | struct sem_undo *un; |
| 1289 | struct sem_array *sma; |
| 1290 | struct sem *curr; |
| 1291 | int err; |
| 1292 | struct list_head tasks; |
| 1293 | int val; |
| 1294 | #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN) |
| 1295 | /* big-endian 64bit */ |
| 1296 | val = arg >> 32; |
| 1297 | #else |
| 1298 | /* 32bit or little-endian 64bit */ |
| 1299 | val = arg; |
| 1300 | #endif |
| 1301 | |
| 1302 | if (val > SEMVMX || val < 0) |
| 1303 | return -ERANGE; |
| 1304 | |
| 1305 | INIT_LIST_HEAD(&tasks); |
| 1306 | |
| 1307 | rcu_read_lock(); |
| 1308 | sma = sem_obtain_object_check(ns, semid); |
| 1309 | if (IS_ERR(sma)) { |
| 1310 | rcu_read_unlock(); |
| 1311 | return PTR_ERR(sma); |
| 1312 | } |
| 1313 | |
| 1314 | if (semnum < 0 || semnum >= sma->sem_nsems) { |
| 1315 | rcu_read_unlock(); |
| 1316 | return -EINVAL; |
| 1317 | } |
| 1318 | |
| 1319 | |
| 1320 | if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) { |
| 1321 | rcu_read_unlock(); |
| 1322 | return -EACCES; |
| 1323 | } |
| 1324 | |
| 1325 | err = security_sem_semctl(sma, SETVAL); |
| 1326 | if (err) { |
| 1327 | rcu_read_unlock(); |
| 1328 | return -EACCES; |
| 1329 | } |
| 1330 | |
| 1331 | sem_lock(sma, NULL, -1); |
| 1332 | |
| 1333 | if (!ipc_valid_object(&sma->sem_perm)) { |
| 1334 | sem_unlock(sma, -1); |
| 1335 | rcu_read_unlock(); |
| 1336 | return -EIDRM; |
| 1337 | } |
| 1338 | |
| 1339 | curr = &sma->sem_base[semnum]; |
| 1340 | |
| 1341 | ipc_assert_locked_object(&sma->sem_perm); |
| 1342 | list_for_each_entry(un, &sma->list_id, list_id) |
| 1343 | un->semadj[semnum] = 0; |
| 1344 | |
| 1345 | curr->semval = val; |
| 1346 | curr->sempid = task_tgid_vnr(current); |
| 1347 | sma->sem_ctime = get_seconds(); |
| 1348 | /* maybe some queued-up processes were waiting for this */ |
| 1349 | do_smart_update(sma, NULL, 0, 0, &tasks); |
| 1350 | sem_unlock(sma, -1); |
| 1351 | rcu_read_unlock(); |
| 1352 | wake_up_sem_queue_do(&tasks); |
| 1353 | return 0; |
| 1354 | } |
| 1355 | |
| 1356 | static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, |
| 1357 | int cmd, void __user *p) |
| 1358 | { |
| 1359 | struct sem_array *sma; |
| 1360 | struct sem *curr; |
| 1361 | int err, nsems; |
| 1362 | ushort fast_sem_io[SEMMSL_FAST]; |
| 1363 | ushort *sem_io = fast_sem_io; |
| 1364 | struct list_head tasks; |
| 1365 | |
| 1366 | INIT_LIST_HEAD(&tasks); |
| 1367 | |
| 1368 | rcu_read_lock(); |
| 1369 | sma = sem_obtain_object_check(ns, semid); |
| 1370 | if (IS_ERR(sma)) { |
| 1371 | rcu_read_unlock(); |
| 1372 | return PTR_ERR(sma); |
| 1373 | } |
| 1374 | |
| 1375 | nsems = sma->sem_nsems; |
| 1376 | |
| 1377 | err = -EACCES; |
| 1378 | if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO)) |
| 1379 | goto out_rcu_wakeup; |
| 1380 | |
| 1381 | err = security_sem_semctl(sma, cmd); |
| 1382 | if (err) |
| 1383 | goto out_rcu_wakeup; |
| 1384 | |
| 1385 | err = -EACCES; |
| 1386 | switch (cmd) { |
| 1387 | case GETALL: |
| 1388 | { |
| 1389 | ushort __user *array = p; |
| 1390 | int i; |
| 1391 | |
| 1392 | sem_lock(sma, NULL, -1); |
| 1393 | if (!ipc_valid_object(&sma->sem_perm)) { |
| 1394 | err = -EIDRM; |
| 1395 | goto out_unlock; |
| 1396 | } |
| 1397 | if (nsems > SEMMSL_FAST) { |
| 1398 | if (!ipc_rcu_getref(sma)) { |
| 1399 | err = -EIDRM; |
| 1400 | goto out_unlock; |
| 1401 | } |
| 1402 | sem_unlock(sma, -1); |
| 1403 | rcu_read_unlock(); |
| 1404 | sem_io = ipc_alloc(sizeof(ushort)*nsems); |
| 1405 | if (sem_io == NULL) { |
| 1406 | ipc_rcu_putref(sma, sem_rcu_free); |
| 1407 | return -ENOMEM; |
| 1408 | } |
| 1409 | |
| 1410 | rcu_read_lock(); |
| 1411 | sem_lock_and_putref(sma); |
| 1412 | if (!ipc_valid_object(&sma->sem_perm)) { |
| 1413 | err = -EIDRM; |
| 1414 | goto out_unlock; |
| 1415 | } |
| 1416 | } |
| 1417 | for (i = 0; i < sma->sem_nsems; i++) |
| 1418 | sem_io[i] = sma->sem_base[i].semval; |
| 1419 | sem_unlock(sma, -1); |
| 1420 | rcu_read_unlock(); |
| 1421 | err = 0; |
| 1422 | if (copy_to_user(array, sem_io, nsems*sizeof(ushort))) |
| 1423 | err = -EFAULT; |
| 1424 | goto out_free; |
| 1425 | } |
| 1426 | case SETALL: |
| 1427 | { |
| 1428 | int i; |
| 1429 | struct sem_undo *un; |
| 1430 | |
| 1431 | if (!ipc_rcu_getref(sma)) { |
| 1432 | err = -EIDRM; |
| 1433 | goto out_rcu_wakeup; |
| 1434 | } |
| 1435 | rcu_read_unlock(); |
| 1436 | |
| 1437 | if (nsems > SEMMSL_FAST) { |
| 1438 | sem_io = ipc_alloc(sizeof(ushort)*nsems); |
| 1439 | if (sem_io == NULL) { |
| 1440 | ipc_rcu_putref(sma, sem_rcu_free); |
| 1441 | return -ENOMEM; |
| 1442 | } |
| 1443 | } |
| 1444 | |
| 1445 | if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) { |
| 1446 | ipc_rcu_putref(sma, sem_rcu_free); |
| 1447 | err = -EFAULT; |
| 1448 | goto out_free; |
| 1449 | } |
| 1450 | |
| 1451 | for (i = 0; i < nsems; i++) { |
| 1452 | if (sem_io[i] > SEMVMX) { |
| 1453 | ipc_rcu_putref(sma, sem_rcu_free); |
| 1454 | err = -ERANGE; |
| 1455 | goto out_free; |
| 1456 | } |
| 1457 | } |
| 1458 | rcu_read_lock(); |
| 1459 | sem_lock_and_putref(sma); |
| 1460 | if (!ipc_valid_object(&sma->sem_perm)) { |
| 1461 | err = -EIDRM; |
| 1462 | goto out_unlock; |
| 1463 | } |
| 1464 | |
| 1465 | for (i = 0; i < nsems; i++) |
| 1466 | sma->sem_base[i].semval = sem_io[i]; |
| 1467 | |
| 1468 | ipc_assert_locked_object(&sma->sem_perm); |
| 1469 | list_for_each_entry(un, &sma->list_id, list_id) { |
| 1470 | for (i = 0; i < nsems; i++) |
| 1471 | un->semadj[i] = 0; |
| 1472 | } |
| 1473 | sma->sem_ctime = get_seconds(); |
| 1474 | /* maybe some queued-up processes were waiting for this */ |
| 1475 | do_smart_update(sma, NULL, 0, 0, &tasks); |
| 1476 | err = 0; |
| 1477 | goto out_unlock; |
| 1478 | } |
| 1479 | /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */ |
| 1480 | } |
| 1481 | err = -EINVAL; |
| 1482 | if (semnum < 0 || semnum >= nsems) |
| 1483 | goto out_rcu_wakeup; |
| 1484 | |
| 1485 | sem_lock(sma, NULL, -1); |
| 1486 | if (!ipc_valid_object(&sma->sem_perm)) { |
| 1487 | err = -EIDRM; |
| 1488 | goto out_unlock; |
| 1489 | } |
| 1490 | curr = &sma->sem_base[semnum]; |
| 1491 | |
| 1492 | switch (cmd) { |
| 1493 | case GETVAL: |
| 1494 | err = curr->semval; |
| 1495 | goto out_unlock; |
| 1496 | case GETPID: |
| 1497 | err = curr->sempid; |
| 1498 | goto out_unlock; |
| 1499 | case GETNCNT: |
| 1500 | err = count_semcnt(sma, semnum, 0); |
| 1501 | goto out_unlock; |
| 1502 | case GETZCNT: |
| 1503 | err = count_semcnt(sma, semnum, 1); |
| 1504 | goto out_unlock; |
| 1505 | } |
| 1506 | |
| 1507 | out_unlock: |
| 1508 | sem_unlock(sma, -1); |
| 1509 | out_rcu_wakeup: |
| 1510 | rcu_read_unlock(); |
| 1511 | wake_up_sem_queue_do(&tasks); |
| 1512 | out_free: |
| 1513 | if (sem_io != fast_sem_io) |
| 1514 | ipc_free(sem_io, sizeof(ushort)*nsems); |
| 1515 | return err; |
| 1516 | } |
| 1517 | |
| 1518 | static inline unsigned long |
| 1519 | copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version) |
| 1520 | { |
| 1521 | switch (version) { |
| 1522 | case IPC_64: |
| 1523 | if (copy_from_user(out, buf, sizeof(*out))) |
| 1524 | return -EFAULT; |
| 1525 | return 0; |
| 1526 | case IPC_OLD: |
| 1527 | { |
| 1528 | struct semid_ds tbuf_old; |
| 1529 | |
| 1530 | if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) |
| 1531 | return -EFAULT; |
| 1532 | |
| 1533 | out->sem_perm.uid = tbuf_old.sem_perm.uid; |
| 1534 | out->sem_perm.gid = tbuf_old.sem_perm.gid; |
| 1535 | out->sem_perm.mode = tbuf_old.sem_perm.mode; |
| 1536 | |
| 1537 | return 0; |
| 1538 | } |
| 1539 | default: |
| 1540 | return -EINVAL; |
| 1541 | } |
| 1542 | } |
| 1543 | |
| 1544 | /* |
| 1545 | * This function handles some semctl commands which require the rwsem |
| 1546 | * to be held in write mode. |
| 1547 | * NOTE: no locks must be held, the rwsem is taken inside this function. |
| 1548 | */ |
| 1549 | static int semctl_down(struct ipc_namespace *ns, int semid, |
| 1550 | int cmd, int version, void __user *p) |
| 1551 | { |
| 1552 | struct sem_array *sma; |
| 1553 | int err; |
| 1554 | struct semid64_ds semid64; |
| 1555 | struct kern_ipc_perm *ipcp; |
| 1556 | |
| 1557 | if (cmd == IPC_SET) { |
| 1558 | if (copy_semid_from_user(&semid64, p, version)) |
| 1559 | return -EFAULT; |
| 1560 | } |
| 1561 | |
| 1562 | down_write(&sem_ids(ns).rwsem); |
| 1563 | rcu_read_lock(); |
| 1564 | |
| 1565 | ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd, |
| 1566 | &semid64.sem_perm, 0); |
| 1567 | if (IS_ERR(ipcp)) { |
| 1568 | err = PTR_ERR(ipcp); |
| 1569 | goto out_unlock1; |
| 1570 | } |
| 1571 | |
| 1572 | sma = container_of(ipcp, struct sem_array, sem_perm); |
| 1573 | |
| 1574 | err = security_sem_semctl(sma, cmd); |
| 1575 | if (err) |
| 1576 | goto out_unlock1; |
| 1577 | |
| 1578 | switch (cmd) { |
| 1579 | case IPC_RMID: |
| 1580 | sem_lock(sma, NULL, -1); |
| 1581 | /* freeary unlocks the ipc object and rcu */ |
| 1582 | freeary(ns, ipcp); |
| 1583 | goto out_up; |
| 1584 | case IPC_SET: |
| 1585 | sem_lock(sma, NULL, -1); |
| 1586 | err = ipc_update_perm(&semid64.sem_perm, ipcp); |
| 1587 | if (err) |
| 1588 | goto out_unlock0; |
| 1589 | sma->sem_ctime = get_seconds(); |
| 1590 | break; |
| 1591 | default: |
| 1592 | err = -EINVAL; |
| 1593 | goto out_unlock1; |
| 1594 | } |
| 1595 | |
| 1596 | out_unlock0: |
| 1597 | sem_unlock(sma, -1); |
| 1598 | out_unlock1: |
| 1599 | rcu_read_unlock(); |
| 1600 | out_up: |
| 1601 | up_write(&sem_ids(ns).rwsem); |
| 1602 | return err; |
| 1603 | } |
| 1604 | |
| 1605 | SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg) |
| 1606 | { |
| 1607 | int version; |
| 1608 | struct ipc_namespace *ns; |
| 1609 | void __user *p = (void __user *)arg; |
| 1610 | |
| 1611 | if (semid < 0) |
| 1612 | return -EINVAL; |
| 1613 | |
| 1614 | version = ipc_parse_version(&cmd); |
| 1615 | ns = current->nsproxy->ipc_ns; |
| 1616 | |
| 1617 | switch (cmd) { |
| 1618 | case IPC_INFO: |
| 1619 | case SEM_INFO: |
| 1620 | case IPC_STAT: |
| 1621 | case SEM_STAT: |
| 1622 | return semctl_nolock(ns, semid, cmd, version, p); |
| 1623 | case GETALL: |
| 1624 | case GETVAL: |
| 1625 | case GETPID: |
| 1626 | case GETNCNT: |
| 1627 | case GETZCNT: |
| 1628 | case SETALL: |
| 1629 | return semctl_main(ns, semid, semnum, cmd, p); |
| 1630 | case SETVAL: |
| 1631 | return semctl_setval(ns, semid, semnum, arg); |
| 1632 | case IPC_RMID: |
| 1633 | case IPC_SET: |
| 1634 | return semctl_down(ns, semid, cmd, version, p); |
| 1635 | default: |
| 1636 | return -EINVAL; |
| 1637 | } |
| 1638 | } |
| 1639 | |
| 1640 | /* If the task doesn't already have a undo_list, then allocate one |
| 1641 | * here. We guarantee there is only one thread using this undo list, |
| 1642 | * and current is THE ONE |
| 1643 | * |
| 1644 | * If this allocation and assignment succeeds, but later |
| 1645 | * portions of this code fail, there is no need to free the sem_undo_list. |
| 1646 | * Just let it stay associated with the task, and it'll be freed later |
| 1647 | * at exit time. |
| 1648 | * |
| 1649 | * This can block, so callers must hold no locks. |
| 1650 | */ |
| 1651 | static inline int get_undo_list(struct sem_undo_list **undo_listp) |
| 1652 | { |
| 1653 | struct sem_undo_list *undo_list; |
| 1654 | |
| 1655 | undo_list = current->sysvsem.undo_list; |
| 1656 | if (!undo_list) { |
| 1657 | undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL); |
| 1658 | if (undo_list == NULL) |
| 1659 | return -ENOMEM; |
| 1660 | spin_lock_init(&undo_list->lock); |
| 1661 | atomic_set(&undo_list->refcnt, 1); |
| 1662 | INIT_LIST_HEAD(&undo_list->list_proc); |
| 1663 | |
| 1664 | current->sysvsem.undo_list = undo_list; |
| 1665 | } |
| 1666 | *undo_listp = undo_list; |
| 1667 | return 0; |
| 1668 | } |
| 1669 | |
| 1670 | static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid) |
| 1671 | { |
| 1672 | struct sem_undo *un; |
| 1673 | |
| 1674 | list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) { |
| 1675 | if (un->semid == semid) |
| 1676 | return un; |
| 1677 | } |
| 1678 | return NULL; |
| 1679 | } |
| 1680 | |
| 1681 | static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) |
| 1682 | { |
| 1683 | struct sem_undo *un; |
| 1684 | |
| 1685 | assert_spin_locked(&ulp->lock); |
| 1686 | |
| 1687 | un = __lookup_undo(ulp, semid); |
| 1688 | if (un) { |
| 1689 | list_del_rcu(&un->list_proc); |
| 1690 | list_add_rcu(&un->list_proc, &ulp->list_proc); |
| 1691 | } |
| 1692 | return un; |
| 1693 | } |
| 1694 | |
| 1695 | /** |
| 1696 | * find_alloc_undo - lookup (and if not present create) undo array |
| 1697 | * @ns: namespace |
| 1698 | * @semid: semaphore array id |
| 1699 | * |
| 1700 | * The function looks up (and if not present creates) the undo structure. |
| 1701 | * The size of the undo structure depends on the size of the semaphore |
| 1702 | * array, thus the alloc path is not that straightforward. |
| 1703 | * Lifetime-rules: sem_undo is rcu-protected, on success, the function |
| 1704 | * performs a rcu_read_lock(). |
| 1705 | */ |
| 1706 | static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid) |
| 1707 | { |
| 1708 | struct sem_array *sma; |
| 1709 | struct sem_undo_list *ulp; |
| 1710 | struct sem_undo *un, *new; |
| 1711 | int nsems, error; |
| 1712 | |
| 1713 | error = get_undo_list(&ulp); |
| 1714 | if (error) |
| 1715 | return ERR_PTR(error); |
| 1716 | |
| 1717 | rcu_read_lock(); |
| 1718 | spin_lock(&ulp->lock); |
| 1719 | un = lookup_undo(ulp, semid); |
| 1720 | spin_unlock(&ulp->lock); |
| 1721 | if (likely(un != NULL)) |
| 1722 | goto out; |
| 1723 | |
| 1724 | /* no undo structure around - allocate one. */ |
| 1725 | /* step 1: figure out the size of the semaphore array */ |
| 1726 | sma = sem_obtain_object_check(ns, semid); |
| 1727 | if (IS_ERR(sma)) { |
| 1728 | rcu_read_unlock(); |
| 1729 | return ERR_CAST(sma); |
| 1730 | } |
| 1731 | |
| 1732 | nsems = sma->sem_nsems; |
| 1733 | if (!ipc_rcu_getref(sma)) { |
| 1734 | rcu_read_unlock(); |
| 1735 | un = ERR_PTR(-EIDRM); |
| 1736 | goto out; |
| 1737 | } |
| 1738 | rcu_read_unlock(); |
| 1739 | |
| 1740 | /* step 2: allocate new undo structure */ |
| 1741 | new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL); |
| 1742 | if (!new) { |
| 1743 | ipc_rcu_putref(sma, sem_rcu_free); |
| 1744 | return ERR_PTR(-ENOMEM); |
| 1745 | } |
| 1746 | |
| 1747 | /* step 3: Acquire the lock on semaphore array */ |
| 1748 | rcu_read_lock(); |
| 1749 | sem_lock_and_putref(sma); |
| 1750 | if (!ipc_valid_object(&sma->sem_perm)) { |
| 1751 | sem_unlock(sma, -1); |
| 1752 | rcu_read_unlock(); |
| 1753 | kfree(new); |
| 1754 | un = ERR_PTR(-EIDRM); |
| 1755 | goto out; |
| 1756 | } |
| 1757 | spin_lock(&ulp->lock); |
| 1758 | |
| 1759 | /* |
| 1760 | * step 4: check for races: did someone else allocate the undo struct? |
| 1761 | */ |
| 1762 | un = lookup_undo(ulp, semid); |
| 1763 | if (un) { |
| 1764 | kfree(new); |
| 1765 | goto success; |
| 1766 | } |
| 1767 | /* step 5: initialize & link new undo structure */ |
| 1768 | new->semadj = (short *) &new[1]; |
| 1769 | new->ulp = ulp; |
| 1770 | new->semid = semid; |
| 1771 | assert_spin_locked(&ulp->lock); |
| 1772 | list_add_rcu(&new->list_proc, &ulp->list_proc); |
| 1773 | ipc_assert_locked_object(&sma->sem_perm); |
| 1774 | list_add(&new->list_id, &sma->list_id); |
| 1775 | un = new; |
| 1776 | |
| 1777 | success: |
| 1778 | spin_unlock(&ulp->lock); |
| 1779 | sem_unlock(sma, -1); |
| 1780 | out: |
| 1781 | return un; |
| 1782 | } |
| 1783 | |
| 1784 | |
| 1785 | /** |
| 1786 | * get_queue_result - retrieve the result code from sem_queue |
| 1787 | * @q: Pointer to queue structure |
| 1788 | * |
| 1789 | * Retrieve the return code from the pending queue. If IN_WAKEUP is found in |
| 1790 | * q->status, then we must loop until the value is replaced with the final |
| 1791 | * value: This may happen if a task is woken up by an unrelated event (e.g. |
| 1792 | * signal) and in parallel the task is woken up by another task because it got |
| 1793 | * the requested semaphores. |
| 1794 | * |
| 1795 | * The function can be called with or without holding the semaphore spinlock. |
| 1796 | */ |
| 1797 | static int get_queue_result(struct sem_queue *q) |
| 1798 | { |
| 1799 | int error; |
| 1800 | |
| 1801 | error = q->status; |
| 1802 | while (unlikely(error == IN_WAKEUP)) { |
| 1803 | cpu_relax(); |
| 1804 | error = q->status; |
| 1805 | } |
| 1806 | |
| 1807 | return error; |
| 1808 | } |
| 1809 | |
| 1810 | SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops, |
| 1811 | unsigned, nsops, const struct timespec __user *, timeout) |
| 1812 | { |
| 1813 | int error = -EINVAL; |
| 1814 | struct sem_array *sma; |
| 1815 | struct sembuf fast_sops[SEMOPM_FAST]; |
| 1816 | struct sembuf *sops = fast_sops, *sop; |
| 1817 | struct sem_undo *un; |
| 1818 | int undos = 0, alter = 0, max, locknum; |
| 1819 | struct sem_queue queue; |
| 1820 | unsigned long jiffies_left = 0; |
| 1821 | struct ipc_namespace *ns; |
| 1822 | struct list_head tasks; |
| 1823 | |
| 1824 | ns = current->nsproxy->ipc_ns; |
| 1825 | |
| 1826 | if (nsops < 1 || semid < 0) |
| 1827 | return -EINVAL; |
| 1828 | if (nsops > ns->sc_semopm) |
| 1829 | return -E2BIG; |
| 1830 | if (nsops > SEMOPM_FAST) { |
| 1831 | sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL); |
| 1832 | if (sops == NULL) |
| 1833 | return -ENOMEM; |
| 1834 | } |
| 1835 | if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) { |
| 1836 | error = -EFAULT; |
| 1837 | goto out_free; |
| 1838 | } |
| 1839 | if (timeout) { |
| 1840 | struct timespec _timeout; |
| 1841 | if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) { |
| 1842 | error = -EFAULT; |
| 1843 | goto out_free; |
| 1844 | } |
| 1845 | if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 || |
| 1846 | _timeout.tv_nsec >= 1000000000L) { |
| 1847 | error = -EINVAL; |
| 1848 | goto out_free; |
| 1849 | } |
| 1850 | jiffies_left = timespec_to_jiffies(&_timeout); |
| 1851 | } |
| 1852 | max = 0; |
| 1853 | for (sop = sops; sop < sops + nsops; sop++) { |
| 1854 | if (sop->sem_num >= max) |
| 1855 | max = sop->sem_num; |
| 1856 | if (sop->sem_flg & SEM_UNDO) |
| 1857 | undos = 1; |
| 1858 | if (sop->sem_op != 0) |
| 1859 | alter = 1; |
| 1860 | } |
| 1861 | |
| 1862 | INIT_LIST_HEAD(&tasks); |
| 1863 | |
| 1864 | if (undos) { |
| 1865 | /* On success, find_alloc_undo takes the rcu_read_lock */ |
| 1866 | un = find_alloc_undo(ns, semid); |
| 1867 | if (IS_ERR(un)) { |
| 1868 | error = PTR_ERR(un); |
| 1869 | goto out_free; |
| 1870 | } |
| 1871 | } else { |
| 1872 | un = NULL; |
| 1873 | rcu_read_lock(); |
| 1874 | } |
| 1875 | |
| 1876 | sma = sem_obtain_object_check(ns, semid); |
| 1877 | if (IS_ERR(sma)) { |
| 1878 | rcu_read_unlock(); |
| 1879 | error = PTR_ERR(sma); |
| 1880 | goto out_free; |
| 1881 | } |
| 1882 | |
| 1883 | error = -EFBIG; |
| 1884 | if (max >= sma->sem_nsems) |
| 1885 | goto out_rcu_wakeup; |
| 1886 | |
| 1887 | error = -EACCES; |
| 1888 | if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) |
| 1889 | goto out_rcu_wakeup; |
| 1890 | |
| 1891 | error = security_sem_semop(sma, sops, nsops, alter); |
| 1892 | if (error) |
| 1893 | goto out_rcu_wakeup; |
| 1894 | |
| 1895 | error = -EIDRM; |
| 1896 | locknum = sem_lock(sma, sops, nsops); |
| 1897 | /* |
| 1898 | * We eventually might perform the following check in a lockless |
| 1899 | * fashion, considering ipc_valid_object() locking constraints. |
| 1900 | * If nsops == 1 and there is no contention for sem_perm.lock, then |
| 1901 | * only a per-semaphore lock is held and it's OK to proceed with the |
| 1902 | * check below. More details on the fine grained locking scheme |
| 1903 | * entangled here and why it's RMID race safe on comments at sem_lock() |
| 1904 | */ |
| 1905 | if (!ipc_valid_object(&sma->sem_perm)) |
| 1906 | goto out_unlock_free; |
| 1907 | /* |
| 1908 | * semid identifiers are not unique - find_alloc_undo may have |
| 1909 | * allocated an undo structure, it was invalidated by an RMID |
| 1910 | * and now a new array with received the same id. Check and fail. |
| 1911 | * This case can be detected checking un->semid. The existence of |
| 1912 | * "un" itself is guaranteed by rcu. |
| 1913 | */ |
| 1914 | if (un && un->semid == -1) |
| 1915 | goto out_unlock_free; |
| 1916 | |
| 1917 | queue.sops = sops; |
| 1918 | queue.nsops = nsops; |
| 1919 | queue.undo = un; |
| 1920 | queue.pid = task_tgid_vnr(current); |
| 1921 | queue.alter = alter; |
| 1922 | |
| 1923 | error = perform_atomic_semop(sma, &queue); |
| 1924 | if (error == 0) { |
| 1925 | /* If the operation was successful, then do |
| 1926 | * the required updates. |
| 1927 | */ |
| 1928 | if (alter) |
| 1929 | do_smart_update(sma, sops, nsops, 1, &tasks); |
| 1930 | else |
| 1931 | set_semotime(sma, sops); |
| 1932 | } |
| 1933 | if (error <= 0) |
| 1934 | goto out_unlock_free; |
| 1935 | |
| 1936 | /* We need to sleep on this operation, so we put the current |
| 1937 | * task into the pending queue and go to sleep. |
| 1938 | */ |
| 1939 | |
| 1940 | if (nsops == 1) { |
| 1941 | struct sem *curr; |
| 1942 | curr = &sma->sem_base[sops->sem_num]; |
| 1943 | |
| 1944 | if (alter) { |
| 1945 | if (sma->complex_count) { |
| 1946 | list_add_tail(&queue.list, |
| 1947 | &sma->pending_alter); |
| 1948 | } else { |
| 1949 | |
| 1950 | list_add_tail(&queue.list, |
| 1951 | &curr->pending_alter); |
| 1952 | } |
| 1953 | } else { |
| 1954 | list_add_tail(&queue.list, &curr->pending_const); |
| 1955 | } |
| 1956 | } else { |
| 1957 | if (!sma->complex_count) |
| 1958 | merge_queues(sma); |
| 1959 | |
| 1960 | if (alter) |
| 1961 | list_add_tail(&queue.list, &sma->pending_alter); |
| 1962 | else |
| 1963 | list_add_tail(&queue.list, &sma->pending_const); |
| 1964 | |
| 1965 | sma->complex_count++; |
| 1966 | } |
| 1967 | |
| 1968 | queue.status = -EINTR; |
| 1969 | queue.sleeper = current; |
| 1970 | |
| 1971 | sleep_again: |
| 1972 | __set_current_state(TASK_INTERRUPTIBLE); |
| 1973 | sem_unlock(sma, locknum); |
| 1974 | rcu_read_unlock(); |
| 1975 | |
| 1976 | if (timeout) |
| 1977 | jiffies_left = schedule_timeout(jiffies_left); |
| 1978 | else |
| 1979 | schedule(); |
| 1980 | |
| 1981 | error = get_queue_result(&queue); |
| 1982 | |
| 1983 | if (error != -EINTR) { |
| 1984 | /* fast path: update_queue already obtained all requested |
| 1985 | * resources. |
| 1986 | * Perform a smp_mb(): User space could assume that semop() |
| 1987 | * is a memory barrier: Without the mb(), the cpu could |
| 1988 | * speculatively read in user space stale data that was |
| 1989 | * overwritten by the previous owner of the semaphore. |
| 1990 | */ |
| 1991 | smp_mb(); |
| 1992 | |
| 1993 | goto out_free; |
| 1994 | } |
| 1995 | |
| 1996 | rcu_read_lock(); |
| 1997 | sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum); |
| 1998 | |
| 1999 | /* |
| 2000 | * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing. |
| 2001 | */ |
| 2002 | error = get_queue_result(&queue); |
| 2003 | |
| 2004 | /* |
| 2005 | * Array removed? If yes, leave without sem_unlock(). |
| 2006 | */ |
| 2007 | if (IS_ERR(sma)) { |
| 2008 | rcu_read_unlock(); |
| 2009 | goto out_free; |
| 2010 | } |
| 2011 | |
| 2012 | |
| 2013 | /* |
| 2014 | * If queue.status != -EINTR we are woken up by another process. |
| 2015 | * Leave without unlink_queue(), but with sem_unlock(). |
| 2016 | */ |
| 2017 | if (error != -EINTR) |
| 2018 | goto out_unlock_free; |
| 2019 | |
| 2020 | /* |
| 2021 | * If an interrupt occurred we have to clean up the queue |
| 2022 | */ |
| 2023 | if (timeout && jiffies_left == 0) |
| 2024 | error = -EAGAIN; |
| 2025 | |
| 2026 | /* |
| 2027 | * If the wakeup was spurious, just retry |
| 2028 | */ |
| 2029 | if (error == -EINTR && !signal_pending(current)) |
| 2030 | goto sleep_again; |
| 2031 | |
| 2032 | unlink_queue(sma, &queue); |
| 2033 | |
| 2034 | out_unlock_free: |
| 2035 | sem_unlock(sma, locknum); |
| 2036 | out_rcu_wakeup: |
| 2037 | rcu_read_unlock(); |
| 2038 | wake_up_sem_queue_do(&tasks); |
| 2039 | out_free: |
| 2040 | if (sops != fast_sops) |
| 2041 | kfree(sops); |
| 2042 | return error; |
| 2043 | } |
| 2044 | |
| 2045 | SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops, |
| 2046 | unsigned, nsops) |
| 2047 | { |
| 2048 | return sys_semtimedop(semid, tsops, nsops, NULL); |
| 2049 | } |
| 2050 | |
| 2051 | /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between |
| 2052 | * parent and child tasks. |
| 2053 | */ |
| 2054 | |
| 2055 | int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) |
| 2056 | { |
| 2057 | struct sem_undo_list *undo_list; |
| 2058 | int error; |
| 2059 | |
| 2060 | if (clone_flags & CLONE_SYSVSEM) { |
| 2061 | error = get_undo_list(&undo_list); |
| 2062 | if (error) |
| 2063 | return error; |
| 2064 | atomic_inc(&undo_list->refcnt); |
| 2065 | tsk->sysvsem.undo_list = undo_list; |
| 2066 | } else |
| 2067 | tsk->sysvsem.undo_list = NULL; |
| 2068 | |
| 2069 | return 0; |
| 2070 | } |
| 2071 | |
| 2072 | /* |
| 2073 | * add semadj values to semaphores, free undo structures. |
| 2074 | * undo structures are not freed when semaphore arrays are destroyed |
| 2075 | * so some of them may be out of date. |
| 2076 | * IMPLEMENTATION NOTE: There is some confusion over whether the |
| 2077 | * set of adjustments that needs to be done should be done in an atomic |
| 2078 | * manner or not. That is, if we are attempting to decrement the semval |
| 2079 | * should we queue up and wait until we can do so legally? |
| 2080 | * The original implementation attempted to do this (queue and wait). |
| 2081 | * The current implementation does not do so. The POSIX standard |
| 2082 | * and SVID should be consulted to determine what behavior is mandated. |
| 2083 | */ |
| 2084 | void exit_sem(struct task_struct *tsk) |
| 2085 | { |
| 2086 | struct sem_undo_list *ulp; |
| 2087 | |
| 2088 | ulp = tsk->sysvsem.undo_list; |
| 2089 | if (!ulp) |
| 2090 | return; |
| 2091 | tsk->sysvsem.undo_list = NULL; |
| 2092 | |
| 2093 | if (!atomic_dec_and_test(&ulp->refcnt)) |
| 2094 | return; |
| 2095 | |
| 2096 | for (;;) { |
| 2097 | struct sem_array *sma; |
| 2098 | struct sem_undo *un; |
| 2099 | struct list_head tasks; |
| 2100 | int semid, i; |
| 2101 | |
| 2102 | rcu_read_lock(); |
| 2103 | un = list_entry_rcu(ulp->list_proc.next, |
| 2104 | struct sem_undo, list_proc); |
| 2105 | if (&un->list_proc == &ulp->list_proc) { |
| 2106 | /* |
| 2107 | * We must wait for freeary() before freeing this ulp, |
| 2108 | * in case we raced with last sem_undo. There is a small |
| 2109 | * possibility where we exit while freeary() didn't |
| 2110 | * finish unlocking sem_undo_list. |
| 2111 | */ |
| 2112 | spin_unlock_wait(&ulp->lock); |
| 2113 | rcu_read_unlock(); |
| 2114 | break; |
| 2115 | } |
| 2116 | spin_lock(&ulp->lock); |
| 2117 | semid = un->semid; |
| 2118 | spin_unlock(&ulp->lock); |
| 2119 | |
| 2120 | /* exit_sem raced with IPC_RMID, nothing to do */ |
| 2121 | if (semid == -1) { |
| 2122 | rcu_read_unlock(); |
| 2123 | continue; |
| 2124 | } |
| 2125 | |
| 2126 | sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid); |
| 2127 | /* exit_sem raced with IPC_RMID, nothing to do */ |
| 2128 | if (IS_ERR(sma)) { |
| 2129 | rcu_read_unlock(); |
| 2130 | continue; |
| 2131 | } |
| 2132 | |
| 2133 | sem_lock(sma, NULL, -1); |
| 2134 | /* exit_sem raced with IPC_RMID, nothing to do */ |
| 2135 | if (!ipc_valid_object(&sma->sem_perm)) { |
| 2136 | sem_unlock(sma, -1); |
| 2137 | rcu_read_unlock(); |
| 2138 | continue; |
| 2139 | } |
| 2140 | un = __lookup_undo(ulp, semid); |
| 2141 | if (un == NULL) { |
| 2142 | /* exit_sem raced with IPC_RMID+semget() that created |
| 2143 | * exactly the same semid. Nothing to do. |
| 2144 | */ |
| 2145 | sem_unlock(sma, -1); |
| 2146 | rcu_read_unlock(); |
| 2147 | continue; |
| 2148 | } |
| 2149 | |
| 2150 | /* remove un from the linked lists */ |
| 2151 | ipc_assert_locked_object(&sma->sem_perm); |
| 2152 | list_del(&un->list_id); |
| 2153 | |
| 2154 | /* we are the last process using this ulp, acquiring ulp->lock |
| 2155 | * isn't required. Besides that, we are also protected against |
| 2156 | * IPC_RMID as we hold sma->sem_perm lock now |
| 2157 | */ |
| 2158 | list_del_rcu(&un->list_proc); |
| 2159 | |
| 2160 | /* perform adjustments registered in un */ |
| 2161 | for (i = 0; i < sma->sem_nsems; i++) { |
| 2162 | struct sem *semaphore = &sma->sem_base[i]; |
| 2163 | if (un->semadj[i]) { |
| 2164 | semaphore->semval += un->semadj[i]; |
| 2165 | /* |
| 2166 | * Range checks of the new semaphore value, |
| 2167 | * not defined by sus: |
| 2168 | * - Some unices ignore the undo entirely |
| 2169 | * (e.g. HP UX 11i 11.22, Tru64 V5.1) |
| 2170 | * - some cap the value (e.g. FreeBSD caps |
| 2171 | * at 0, but doesn't enforce SEMVMX) |
| 2172 | * |
| 2173 | * Linux caps the semaphore value, both at 0 |
| 2174 | * and at SEMVMX. |
| 2175 | * |
| 2176 | * Manfred <manfred@colorfullife.com> |
| 2177 | */ |
| 2178 | if (semaphore->semval < 0) |
| 2179 | semaphore->semval = 0; |
| 2180 | if (semaphore->semval > SEMVMX) |
| 2181 | semaphore->semval = SEMVMX; |
| 2182 | semaphore->sempid = task_tgid_vnr(current); |
| 2183 | } |
| 2184 | } |
| 2185 | /* maybe some queued-up processes were waiting for this */ |
| 2186 | INIT_LIST_HEAD(&tasks); |
| 2187 | do_smart_update(sma, NULL, 0, 1, &tasks); |
| 2188 | sem_unlock(sma, -1); |
| 2189 | rcu_read_unlock(); |
| 2190 | wake_up_sem_queue_do(&tasks); |
| 2191 | |
| 2192 | kfree_rcu(un, rcu); |
| 2193 | } |
| 2194 | kfree(ulp); |
| 2195 | } |
| 2196 | |
| 2197 | #ifdef CONFIG_PROC_FS |
| 2198 | static int sysvipc_sem_proc_show(struct seq_file *s, void *it) |
| 2199 | { |
| 2200 | struct user_namespace *user_ns = seq_user_ns(s); |
| 2201 | struct sem_array *sma = it; |
| 2202 | time_t sem_otime; |
| 2203 | |
| 2204 | /* |
| 2205 | * The proc interface isn't aware of sem_lock(), it calls |
| 2206 | * ipc_lock_object() directly (in sysvipc_find_ipc). |
| 2207 | * In order to stay compatible with sem_lock(), we must |
| 2208 | * enter / leave complex_mode. |
| 2209 | */ |
| 2210 | complexmode_enter(sma); |
| 2211 | |
| 2212 | sem_otime = get_semotime(sma); |
| 2213 | |
| 2214 | seq_printf(s, |
| 2215 | "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n", |
| 2216 | sma->sem_perm.key, |
| 2217 | sma->sem_perm.id, |
| 2218 | sma->sem_perm.mode, |
| 2219 | sma->sem_nsems, |
| 2220 | from_kuid_munged(user_ns, sma->sem_perm.uid), |
| 2221 | from_kgid_munged(user_ns, sma->sem_perm.gid), |
| 2222 | from_kuid_munged(user_ns, sma->sem_perm.cuid), |
| 2223 | from_kgid_munged(user_ns, sma->sem_perm.cgid), |
| 2224 | sem_otime, |
| 2225 | sma->sem_ctime); |
| 2226 | |
| 2227 | complexmode_tryleave(sma); |
| 2228 | |
| 2229 | return 0; |
| 2230 | } |
| 2231 | #endif |