Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame^] | 1 | /* |
| 2 | * Sleepable Read-Copy Update mechanism for mutual exclusion. |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify |
| 5 | * it under the terms of the GNU General Public License as published by |
| 6 | * the Free Software Foundation; either version 2 of the License, or |
| 7 | * (at your option) any later version. |
| 8 | * |
| 9 | * This program is distributed in the hope that it will be useful, |
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 | * GNU General Public License for more details. |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public License |
| 15 | * along with this program; if not, you can access it online at |
| 16 | * http://www.gnu.org/licenses/gpl-2.0.html. |
| 17 | * |
| 18 | * Copyright (C) IBM Corporation, 2006 |
| 19 | * Copyright (C) Fujitsu, 2012 |
| 20 | * |
| 21 | * Author: Paul McKenney <paulmck@us.ibm.com> |
| 22 | * Lai Jiangshan <laijs@cn.fujitsu.com> |
| 23 | * |
| 24 | * For detailed explanation of Read-Copy Update mechanism see - |
| 25 | * Documentation/RCU/ *.txt |
| 26 | * |
| 27 | */ |
| 28 | |
| 29 | #include <linux/export.h> |
| 30 | #include <linux/mutex.h> |
| 31 | #include <linux/percpu.h> |
| 32 | #include <linux/preempt.h> |
| 33 | #include <linux/rcupdate.h> |
| 34 | #include <linux/sched.h> |
| 35 | #include <linux/smp.h> |
| 36 | #include <linux/delay.h> |
| 37 | #include <linux/srcu.h> |
| 38 | |
| 39 | #include "rcu.h" |
| 40 | |
| 41 | /* |
| 42 | * Initialize an rcu_batch structure to empty. |
| 43 | */ |
| 44 | static inline void rcu_batch_init(struct rcu_batch *b) |
| 45 | { |
| 46 | b->head = NULL; |
| 47 | b->tail = &b->head; |
| 48 | } |
| 49 | |
| 50 | /* |
| 51 | * Enqueue a callback onto the tail of the specified rcu_batch structure. |
| 52 | */ |
| 53 | static inline void rcu_batch_queue(struct rcu_batch *b, struct rcu_head *head) |
| 54 | { |
| 55 | *b->tail = head; |
| 56 | b->tail = &head->next; |
| 57 | } |
| 58 | |
| 59 | /* |
| 60 | * Is the specified rcu_batch structure empty? |
| 61 | */ |
| 62 | static inline bool rcu_batch_empty(struct rcu_batch *b) |
| 63 | { |
| 64 | return b->tail == &b->head; |
| 65 | } |
| 66 | |
| 67 | /* |
| 68 | * Remove the callback at the head of the specified rcu_batch structure |
| 69 | * and return a pointer to it, or return NULL if the structure is empty. |
| 70 | */ |
| 71 | static inline struct rcu_head *rcu_batch_dequeue(struct rcu_batch *b) |
| 72 | { |
| 73 | struct rcu_head *head; |
| 74 | |
| 75 | if (rcu_batch_empty(b)) |
| 76 | return NULL; |
| 77 | |
| 78 | head = b->head; |
| 79 | b->head = head->next; |
| 80 | if (b->tail == &head->next) |
| 81 | rcu_batch_init(b); |
| 82 | |
| 83 | return head; |
| 84 | } |
| 85 | |
| 86 | /* |
| 87 | * Move all callbacks from the rcu_batch structure specified by "from" to |
| 88 | * the structure specified by "to". |
| 89 | */ |
| 90 | static inline void rcu_batch_move(struct rcu_batch *to, struct rcu_batch *from) |
| 91 | { |
| 92 | if (!rcu_batch_empty(from)) { |
| 93 | *to->tail = from->head; |
| 94 | to->tail = from->tail; |
| 95 | rcu_batch_init(from); |
| 96 | } |
| 97 | } |
| 98 | |
| 99 | static int init_srcu_struct_fields(struct srcu_struct *sp) |
| 100 | { |
| 101 | sp->completed = 0; |
| 102 | spin_lock_init(&sp->queue_lock); |
| 103 | sp->running = false; |
| 104 | rcu_batch_init(&sp->batch_queue); |
| 105 | rcu_batch_init(&sp->batch_check0); |
| 106 | rcu_batch_init(&sp->batch_check1); |
| 107 | rcu_batch_init(&sp->batch_done); |
| 108 | INIT_DELAYED_WORK(&sp->work, process_srcu); |
| 109 | sp->per_cpu_ref = alloc_percpu(struct srcu_struct_array); |
| 110 | return sp->per_cpu_ref ? 0 : -ENOMEM; |
| 111 | } |
| 112 | |
| 113 | #ifdef CONFIG_DEBUG_LOCK_ALLOC |
| 114 | |
| 115 | int __init_srcu_struct(struct srcu_struct *sp, const char *name, |
| 116 | struct lock_class_key *key) |
| 117 | { |
| 118 | /* Don't re-initialize a lock while it is held. */ |
| 119 | debug_check_no_locks_freed((void *)sp, sizeof(*sp)); |
| 120 | lockdep_init_map(&sp->dep_map, name, key, 0); |
| 121 | return init_srcu_struct_fields(sp); |
| 122 | } |
| 123 | EXPORT_SYMBOL_GPL(__init_srcu_struct); |
| 124 | |
| 125 | #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ |
| 126 | |
| 127 | /** |
| 128 | * init_srcu_struct - initialize a sleep-RCU structure |
| 129 | * @sp: structure to initialize. |
| 130 | * |
| 131 | * Must invoke this on a given srcu_struct before passing that srcu_struct |
| 132 | * to any other function. Each srcu_struct represents a separate domain |
| 133 | * of SRCU protection. |
| 134 | */ |
| 135 | int init_srcu_struct(struct srcu_struct *sp) |
| 136 | { |
| 137 | return init_srcu_struct_fields(sp); |
| 138 | } |
| 139 | EXPORT_SYMBOL_GPL(init_srcu_struct); |
| 140 | |
| 141 | #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ |
| 142 | |
| 143 | /* |
| 144 | * Returns approximate total of the readers' ->seq[] values for the |
| 145 | * rank of per-CPU counters specified by idx. |
| 146 | */ |
| 147 | static unsigned long srcu_readers_seq_idx(struct srcu_struct *sp, int idx) |
| 148 | { |
| 149 | int cpu; |
| 150 | unsigned long sum = 0; |
| 151 | unsigned long t; |
| 152 | |
| 153 | for_each_possible_cpu(cpu) { |
| 154 | t = READ_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->seq[idx]); |
| 155 | sum += t; |
| 156 | } |
| 157 | return sum; |
| 158 | } |
| 159 | |
| 160 | /* |
| 161 | * Returns approximate number of readers active on the specified rank |
| 162 | * of the per-CPU ->c[] counters. |
| 163 | */ |
| 164 | static unsigned long srcu_readers_active_idx(struct srcu_struct *sp, int idx) |
| 165 | { |
| 166 | int cpu; |
| 167 | unsigned long sum = 0; |
| 168 | unsigned long t; |
| 169 | |
| 170 | for_each_possible_cpu(cpu) { |
| 171 | t = READ_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->c[idx]); |
| 172 | sum += t; |
| 173 | } |
| 174 | return sum; |
| 175 | } |
| 176 | |
| 177 | /* |
| 178 | * Return true if the number of pre-existing readers is determined to |
| 179 | * be stably zero. An example unstable zero can occur if the call |
| 180 | * to srcu_readers_active_idx() misses an __srcu_read_lock() increment, |
| 181 | * but due to task migration, sees the corresponding __srcu_read_unlock() |
| 182 | * decrement. This can happen because srcu_readers_active_idx() takes |
| 183 | * time to sum the array, and might in fact be interrupted or preempted |
| 184 | * partway through the summation. |
| 185 | */ |
| 186 | static bool srcu_readers_active_idx_check(struct srcu_struct *sp, int idx) |
| 187 | { |
| 188 | unsigned long seq; |
| 189 | |
| 190 | seq = srcu_readers_seq_idx(sp, idx); |
| 191 | |
| 192 | /* |
| 193 | * The following smp_mb() A pairs with the smp_mb() B located in |
| 194 | * __srcu_read_lock(). This pairing ensures that if an |
| 195 | * __srcu_read_lock() increments its counter after the summation |
| 196 | * in srcu_readers_active_idx(), then the corresponding SRCU read-side |
| 197 | * critical section will see any changes made prior to the start |
| 198 | * of the current SRCU grace period. |
| 199 | * |
| 200 | * Also, if the above call to srcu_readers_seq_idx() saw the |
| 201 | * increment of ->seq[], then the call to srcu_readers_active_idx() |
| 202 | * must see the increment of ->c[]. |
| 203 | */ |
| 204 | smp_mb(); /* A */ |
| 205 | |
| 206 | /* |
| 207 | * Note that srcu_readers_active_idx() can incorrectly return |
| 208 | * zero even though there is a pre-existing reader throughout. |
| 209 | * To see this, suppose that task A is in a very long SRCU |
| 210 | * read-side critical section that started on CPU 0, and that |
| 211 | * no other reader exists, so that the sum of the counters |
| 212 | * is equal to one. Then suppose that task B starts executing |
| 213 | * srcu_readers_active_idx(), summing up to CPU 1, and then that |
| 214 | * task C starts reading on CPU 0, so that its increment is not |
| 215 | * summed, but finishes reading on CPU 2, so that its decrement |
| 216 | * -is- summed. Then when task B completes its sum, it will |
| 217 | * incorrectly get zero, despite the fact that task A has been |
| 218 | * in its SRCU read-side critical section the whole time. |
| 219 | * |
| 220 | * We therefore do a validation step should srcu_readers_active_idx() |
| 221 | * return zero. |
| 222 | */ |
| 223 | if (srcu_readers_active_idx(sp, idx) != 0) |
| 224 | return false; |
| 225 | |
| 226 | /* |
| 227 | * The remainder of this function is the validation step. |
| 228 | * The following smp_mb() D pairs with the smp_mb() C in |
| 229 | * __srcu_read_unlock(). If the __srcu_read_unlock() was seen |
| 230 | * by srcu_readers_active_idx() above, then any destructive |
| 231 | * operation performed after the grace period will happen after |
| 232 | * the corresponding SRCU read-side critical section. |
| 233 | * |
| 234 | * Note that there can be at most NR_CPUS worth of readers using |
| 235 | * the old index, which is not enough to overflow even a 32-bit |
| 236 | * integer. (Yes, this does mean that systems having more than |
| 237 | * a billion or so CPUs need to be 64-bit systems.) Therefore, |
| 238 | * the sum of the ->seq[] counters cannot possibly overflow. |
| 239 | * Therefore, the only way that the return values of the two |
| 240 | * calls to srcu_readers_seq_idx() can be equal is if there were |
| 241 | * no increments of the corresponding rank of ->seq[] counts |
| 242 | * in the interim. But the missed-increment scenario laid out |
| 243 | * above includes an increment of the ->seq[] counter by |
| 244 | * the corresponding __srcu_read_lock(). Therefore, if this |
| 245 | * scenario occurs, the return values from the two calls to |
| 246 | * srcu_readers_seq_idx() will differ, and thus the validation |
| 247 | * step below suffices. |
| 248 | */ |
| 249 | smp_mb(); /* D */ |
| 250 | |
| 251 | return srcu_readers_seq_idx(sp, idx) == seq; |
| 252 | } |
| 253 | |
| 254 | /** |
| 255 | * srcu_readers_active - returns true if there are readers. and false |
| 256 | * otherwise |
| 257 | * @sp: which srcu_struct to count active readers (holding srcu_read_lock). |
| 258 | * |
| 259 | * Note that this is not an atomic primitive, and can therefore suffer |
| 260 | * severe errors when invoked on an active srcu_struct. That said, it |
| 261 | * can be useful as an error check at cleanup time. |
| 262 | */ |
| 263 | static bool srcu_readers_active(struct srcu_struct *sp) |
| 264 | { |
| 265 | int cpu; |
| 266 | unsigned long sum = 0; |
| 267 | |
| 268 | for_each_possible_cpu(cpu) { |
| 269 | sum += READ_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->c[0]); |
| 270 | sum += READ_ONCE(per_cpu_ptr(sp->per_cpu_ref, cpu)->c[1]); |
| 271 | } |
| 272 | return sum; |
| 273 | } |
| 274 | |
| 275 | /** |
| 276 | * cleanup_srcu_struct - deconstruct a sleep-RCU structure |
| 277 | * @sp: structure to clean up. |
| 278 | * |
| 279 | * Must invoke this after you are finished using a given srcu_struct that |
| 280 | * was initialized via init_srcu_struct(), else you leak memory. |
| 281 | */ |
| 282 | void cleanup_srcu_struct(struct srcu_struct *sp) |
| 283 | { |
| 284 | if (WARN_ON(srcu_readers_active(sp))) |
| 285 | return; /* Leakage unless caller handles error. */ |
| 286 | free_percpu(sp->per_cpu_ref); |
| 287 | sp->per_cpu_ref = NULL; |
| 288 | } |
| 289 | EXPORT_SYMBOL_GPL(cleanup_srcu_struct); |
| 290 | |
| 291 | /* |
| 292 | * Counts the new reader in the appropriate per-CPU element of the |
| 293 | * srcu_struct. Must be called from process context. |
| 294 | * Returns an index that must be passed to the matching srcu_read_unlock(). |
| 295 | */ |
| 296 | int __srcu_read_lock(struct srcu_struct *sp) |
| 297 | { |
| 298 | int idx; |
| 299 | |
| 300 | idx = READ_ONCE(sp->completed) & 0x1; |
| 301 | __this_cpu_inc(sp->per_cpu_ref->c[idx]); |
| 302 | smp_mb(); /* B */ /* Avoid leaking the critical section. */ |
| 303 | __this_cpu_inc(sp->per_cpu_ref->seq[idx]); |
| 304 | return idx; |
| 305 | } |
| 306 | EXPORT_SYMBOL_GPL(__srcu_read_lock); |
| 307 | |
| 308 | /* |
| 309 | * Removes the count for the old reader from the appropriate per-CPU |
| 310 | * element of the srcu_struct. Note that this may well be a different |
| 311 | * CPU than that which was incremented by the corresponding srcu_read_lock(). |
| 312 | * Must be called from process context. |
| 313 | */ |
| 314 | void __srcu_read_unlock(struct srcu_struct *sp, int idx) |
| 315 | { |
| 316 | smp_mb(); /* C */ /* Avoid leaking the critical section. */ |
| 317 | this_cpu_dec(sp->per_cpu_ref->c[idx]); |
| 318 | } |
| 319 | EXPORT_SYMBOL_GPL(__srcu_read_unlock); |
| 320 | |
| 321 | /* |
| 322 | * We use an adaptive strategy for synchronize_srcu() and especially for |
| 323 | * synchronize_srcu_expedited(). We spin for a fixed time period |
| 324 | * (defined below) to allow SRCU readers to exit their read-side critical |
| 325 | * sections. If there are still some readers after 10 microseconds, |
| 326 | * we repeatedly block for 1-millisecond time periods. This approach |
| 327 | * has done well in testing, so there is no need for a config parameter. |
| 328 | */ |
| 329 | #define SRCU_RETRY_CHECK_DELAY 5 |
| 330 | #define SYNCHRONIZE_SRCU_TRYCOUNT 2 |
| 331 | #define SYNCHRONIZE_SRCU_EXP_TRYCOUNT 12 |
| 332 | |
| 333 | /* |
| 334 | * @@@ Wait until all pre-existing readers complete. Such readers |
| 335 | * will have used the index specified by "idx". |
| 336 | * the caller should ensures the ->completed is not changed while checking |
| 337 | * and idx = (->completed & 1) ^ 1 |
| 338 | */ |
| 339 | static bool try_check_zero(struct srcu_struct *sp, int idx, int trycount) |
| 340 | { |
| 341 | for (;;) { |
| 342 | if (srcu_readers_active_idx_check(sp, idx)) |
| 343 | return true; |
| 344 | if (--trycount <= 0) |
| 345 | return false; |
| 346 | udelay(SRCU_RETRY_CHECK_DELAY); |
| 347 | } |
| 348 | } |
| 349 | |
| 350 | /* |
| 351 | * Increment the ->completed counter so that future SRCU readers will |
| 352 | * use the other rank of the ->c[] and ->seq[] arrays. This allows |
| 353 | * us to wait for pre-existing readers in a starvation-free manner. |
| 354 | */ |
| 355 | static void srcu_flip(struct srcu_struct *sp) |
| 356 | { |
| 357 | sp->completed++; |
| 358 | } |
| 359 | |
| 360 | /* |
| 361 | * Enqueue an SRCU callback on the specified srcu_struct structure, |
| 362 | * initiating grace-period processing if it is not already running. |
| 363 | * |
| 364 | * Note that all CPUs must agree that the grace period extended beyond |
| 365 | * all pre-existing SRCU read-side critical section. On systems with |
| 366 | * more than one CPU, this means that when "func()" is invoked, each CPU |
| 367 | * is guaranteed to have executed a full memory barrier since the end of |
| 368 | * its last corresponding SRCU read-side critical section whose beginning |
| 369 | * preceded the call to call_rcu(). It also means that each CPU executing |
| 370 | * an SRCU read-side critical section that continues beyond the start of |
| 371 | * "func()" must have executed a memory barrier after the call_rcu() |
| 372 | * but before the beginning of that SRCU read-side critical section. |
| 373 | * Note that these guarantees include CPUs that are offline, idle, or |
| 374 | * executing in user mode, as well as CPUs that are executing in the kernel. |
| 375 | * |
| 376 | * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the |
| 377 | * resulting SRCU callback function "func()", then both CPU A and CPU |
| 378 | * B are guaranteed to execute a full memory barrier during the time |
| 379 | * interval between the call to call_rcu() and the invocation of "func()". |
| 380 | * This guarantee applies even if CPU A and CPU B are the same CPU (but |
| 381 | * again only if the system has more than one CPU). |
| 382 | * |
| 383 | * Of course, these guarantees apply only for invocations of call_srcu(), |
| 384 | * srcu_read_lock(), and srcu_read_unlock() that are all passed the same |
| 385 | * srcu_struct structure. |
| 386 | */ |
| 387 | void call_srcu(struct srcu_struct *sp, struct rcu_head *head, |
| 388 | rcu_callback_t func) |
| 389 | { |
| 390 | unsigned long flags; |
| 391 | |
| 392 | head->next = NULL; |
| 393 | head->func = func; |
| 394 | spin_lock_irqsave(&sp->queue_lock, flags); |
| 395 | rcu_batch_queue(&sp->batch_queue, head); |
| 396 | if (!sp->running) { |
| 397 | sp->running = true; |
| 398 | queue_delayed_work(system_power_efficient_wq, &sp->work, 0); |
| 399 | } |
| 400 | spin_unlock_irqrestore(&sp->queue_lock, flags); |
| 401 | } |
| 402 | EXPORT_SYMBOL_GPL(call_srcu); |
| 403 | |
| 404 | static void srcu_advance_batches(struct srcu_struct *sp, int trycount); |
| 405 | static void srcu_reschedule(struct srcu_struct *sp); |
| 406 | |
| 407 | /* |
| 408 | * Helper function for synchronize_srcu() and synchronize_srcu_expedited(). |
| 409 | */ |
| 410 | static void __synchronize_srcu(struct srcu_struct *sp, int trycount) |
| 411 | { |
| 412 | struct rcu_synchronize rcu; |
| 413 | struct rcu_head *head = &rcu.head; |
| 414 | bool done = false; |
| 415 | |
| 416 | RCU_LOCKDEP_WARN(lock_is_held(&sp->dep_map) || |
| 417 | lock_is_held(&rcu_bh_lock_map) || |
| 418 | lock_is_held(&rcu_lock_map) || |
| 419 | lock_is_held(&rcu_sched_lock_map), |
| 420 | "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section"); |
| 421 | |
| 422 | might_sleep(); |
| 423 | init_completion(&rcu.completion); |
| 424 | |
| 425 | head->next = NULL; |
| 426 | head->func = wakeme_after_rcu; |
| 427 | spin_lock_irq(&sp->queue_lock); |
| 428 | if (!sp->running) { |
| 429 | /* steal the processing owner */ |
| 430 | sp->running = true; |
| 431 | rcu_batch_queue(&sp->batch_check0, head); |
| 432 | spin_unlock_irq(&sp->queue_lock); |
| 433 | |
| 434 | srcu_advance_batches(sp, trycount); |
| 435 | if (!rcu_batch_empty(&sp->batch_done)) { |
| 436 | BUG_ON(sp->batch_done.head != head); |
| 437 | rcu_batch_dequeue(&sp->batch_done); |
| 438 | done = true; |
| 439 | } |
| 440 | /* give the processing owner to work_struct */ |
| 441 | srcu_reschedule(sp); |
| 442 | } else { |
| 443 | rcu_batch_queue(&sp->batch_queue, head); |
| 444 | spin_unlock_irq(&sp->queue_lock); |
| 445 | } |
| 446 | |
| 447 | if (!done) |
| 448 | wait_for_completion(&rcu.completion); |
| 449 | } |
| 450 | |
| 451 | /** |
| 452 | * synchronize_srcu - wait for prior SRCU read-side critical-section completion |
| 453 | * @sp: srcu_struct with which to synchronize. |
| 454 | * |
| 455 | * Wait for the count to drain to zero of both indexes. To avoid the |
| 456 | * possible starvation of synchronize_srcu(), it waits for the count of |
| 457 | * the index=((->completed & 1) ^ 1) to drain to zero at first, |
| 458 | * and then flip the completed and wait for the count of the other index. |
| 459 | * |
| 460 | * Can block; must be called from process context. |
| 461 | * |
| 462 | * Note that it is illegal to call synchronize_srcu() from the corresponding |
| 463 | * SRCU read-side critical section; doing so will result in deadlock. |
| 464 | * However, it is perfectly legal to call synchronize_srcu() on one |
| 465 | * srcu_struct from some other srcu_struct's read-side critical section, |
| 466 | * as long as the resulting graph of srcu_structs is acyclic. |
| 467 | * |
| 468 | * There are memory-ordering constraints implied by synchronize_srcu(). |
| 469 | * On systems with more than one CPU, when synchronize_srcu() returns, |
| 470 | * each CPU is guaranteed to have executed a full memory barrier since |
| 471 | * the end of its last corresponding SRCU-sched read-side critical section |
| 472 | * whose beginning preceded the call to synchronize_srcu(). In addition, |
| 473 | * each CPU having an SRCU read-side critical section that extends beyond |
| 474 | * the return from synchronize_srcu() is guaranteed to have executed a |
| 475 | * full memory barrier after the beginning of synchronize_srcu() and before |
| 476 | * the beginning of that SRCU read-side critical section. Note that these |
| 477 | * guarantees include CPUs that are offline, idle, or executing in user mode, |
| 478 | * as well as CPUs that are executing in the kernel. |
| 479 | * |
| 480 | * Furthermore, if CPU A invoked synchronize_srcu(), which returned |
| 481 | * to its caller on CPU B, then both CPU A and CPU B are guaranteed |
| 482 | * to have executed a full memory barrier during the execution of |
| 483 | * synchronize_srcu(). This guarantee applies even if CPU A and CPU B |
| 484 | * are the same CPU, but again only if the system has more than one CPU. |
| 485 | * |
| 486 | * Of course, these memory-ordering guarantees apply only when |
| 487 | * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are |
| 488 | * passed the same srcu_struct structure. |
| 489 | */ |
| 490 | void synchronize_srcu(struct srcu_struct *sp) |
| 491 | { |
| 492 | __synchronize_srcu(sp, rcu_gp_is_expedited() |
| 493 | ? SYNCHRONIZE_SRCU_EXP_TRYCOUNT |
| 494 | : SYNCHRONIZE_SRCU_TRYCOUNT); |
| 495 | } |
| 496 | EXPORT_SYMBOL_GPL(synchronize_srcu); |
| 497 | |
| 498 | /** |
| 499 | * synchronize_srcu_expedited - Brute-force SRCU grace period |
| 500 | * @sp: srcu_struct with which to synchronize. |
| 501 | * |
| 502 | * Wait for an SRCU grace period to elapse, but be more aggressive about |
| 503 | * spinning rather than blocking when waiting. |
| 504 | * |
| 505 | * Note that synchronize_srcu_expedited() has the same deadlock and |
| 506 | * memory-ordering properties as does synchronize_srcu(). |
| 507 | */ |
| 508 | void synchronize_srcu_expedited(struct srcu_struct *sp) |
| 509 | { |
| 510 | __synchronize_srcu(sp, SYNCHRONIZE_SRCU_EXP_TRYCOUNT); |
| 511 | } |
| 512 | EXPORT_SYMBOL_GPL(synchronize_srcu_expedited); |
| 513 | |
| 514 | /** |
| 515 | * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete. |
| 516 | * @sp: srcu_struct on which to wait for in-flight callbacks. |
| 517 | */ |
| 518 | void srcu_barrier(struct srcu_struct *sp) |
| 519 | { |
| 520 | synchronize_srcu(sp); |
| 521 | } |
| 522 | EXPORT_SYMBOL_GPL(srcu_barrier); |
| 523 | |
| 524 | /** |
| 525 | * srcu_batches_completed - return batches completed. |
| 526 | * @sp: srcu_struct on which to report batch completion. |
| 527 | * |
| 528 | * Report the number of batches, correlated with, but not necessarily |
| 529 | * precisely the same as, the number of grace periods that have elapsed. |
| 530 | */ |
| 531 | unsigned long srcu_batches_completed(struct srcu_struct *sp) |
| 532 | { |
| 533 | return sp->completed; |
| 534 | } |
| 535 | EXPORT_SYMBOL_GPL(srcu_batches_completed); |
| 536 | |
| 537 | #define SRCU_CALLBACK_BATCH 10 |
| 538 | #define SRCU_INTERVAL 1 |
| 539 | |
| 540 | /* |
| 541 | * Move any new SRCU callbacks to the first stage of the SRCU grace |
| 542 | * period pipeline. |
| 543 | */ |
| 544 | static void srcu_collect_new(struct srcu_struct *sp) |
| 545 | { |
| 546 | if (!rcu_batch_empty(&sp->batch_queue)) { |
| 547 | spin_lock_irq(&sp->queue_lock); |
| 548 | rcu_batch_move(&sp->batch_check0, &sp->batch_queue); |
| 549 | spin_unlock_irq(&sp->queue_lock); |
| 550 | } |
| 551 | } |
| 552 | |
| 553 | /* |
| 554 | * Core SRCU state machine. Advance callbacks from ->batch_check0 to |
| 555 | * ->batch_check1 and then to ->batch_done as readers drain. |
| 556 | */ |
| 557 | static void srcu_advance_batches(struct srcu_struct *sp, int trycount) |
| 558 | { |
| 559 | int idx = 1 ^ (sp->completed & 1); |
| 560 | |
| 561 | /* |
| 562 | * Because readers might be delayed for an extended period after |
| 563 | * fetching ->completed for their index, at any point in time there |
| 564 | * might well be readers using both idx=0 and idx=1. We therefore |
| 565 | * need to wait for readers to clear from both index values before |
| 566 | * invoking a callback. |
| 567 | */ |
| 568 | |
| 569 | if (rcu_batch_empty(&sp->batch_check0) && |
| 570 | rcu_batch_empty(&sp->batch_check1)) |
| 571 | return; /* no callbacks need to be advanced */ |
| 572 | |
| 573 | if (!try_check_zero(sp, idx, trycount)) |
| 574 | return; /* failed to advance, will try after SRCU_INTERVAL */ |
| 575 | |
| 576 | /* |
| 577 | * The callbacks in ->batch_check1 have already done with their |
| 578 | * first zero check and flip back when they were enqueued on |
| 579 | * ->batch_check0 in a previous invocation of srcu_advance_batches(). |
| 580 | * (Presumably try_check_zero() returned false during that |
| 581 | * invocation, leaving the callbacks stranded on ->batch_check1.) |
| 582 | * They are therefore ready to invoke, so move them to ->batch_done. |
| 583 | */ |
| 584 | rcu_batch_move(&sp->batch_done, &sp->batch_check1); |
| 585 | |
| 586 | if (rcu_batch_empty(&sp->batch_check0)) |
| 587 | return; /* no callbacks need to be advanced */ |
| 588 | srcu_flip(sp); |
| 589 | |
| 590 | /* |
| 591 | * The callbacks in ->batch_check0 just finished their |
| 592 | * first check zero and flip, so move them to ->batch_check1 |
| 593 | * for future checking on the other idx. |
| 594 | */ |
| 595 | rcu_batch_move(&sp->batch_check1, &sp->batch_check0); |
| 596 | |
| 597 | /* |
| 598 | * SRCU read-side critical sections are normally short, so check |
| 599 | * at least twice in quick succession after a flip. |
| 600 | */ |
| 601 | trycount = trycount < 2 ? 2 : trycount; |
| 602 | if (!try_check_zero(sp, idx^1, trycount)) |
| 603 | return; /* failed to advance, will try after SRCU_INTERVAL */ |
| 604 | |
| 605 | /* |
| 606 | * The callbacks in ->batch_check1 have now waited for all |
| 607 | * pre-existing readers using both idx values. They are therefore |
| 608 | * ready to invoke, so move them to ->batch_done. |
| 609 | */ |
| 610 | rcu_batch_move(&sp->batch_done, &sp->batch_check1); |
| 611 | } |
| 612 | |
| 613 | /* |
| 614 | * Invoke a limited number of SRCU callbacks that have passed through |
| 615 | * their grace period. If there are more to do, SRCU will reschedule |
| 616 | * the workqueue. |
| 617 | */ |
| 618 | static void srcu_invoke_callbacks(struct srcu_struct *sp) |
| 619 | { |
| 620 | int i; |
| 621 | struct rcu_head *head; |
| 622 | |
| 623 | for (i = 0; i < SRCU_CALLBACK_BATCH; i++) { |
| 624 | head = rcu_batch_dequeue(&sp->batch_done); |
| 625 | if (!head) |
| 626 | break; |
| 627 | local_bh_disable(); |
| 628 | head->func(head); |
| 629 | local_bh_enable(); |
| 630 | } |
| 631 | } |
| 632 | |
| 633 | /* |
| 634 | * Finished one round of SRCU grace period. Start another if there are |
| 635 | * more SRCU callbacks queued, otherwise put SRCU into not-running state. |
| 636 | */ |
| 637 | static void srcu_reschedule(struct srcu_struct *sp) |
| 638 | { |
| 639 | bool pending = true; |
| 640 | |
| 641 | if (rcu_batch_empty(&sp->batch_done) && |
| 642 | rcu_batch_empty(&sp->batch_check1) && |
| 643 | rcu_batch_empty(&sp->batch_check0) && |
| 644 | rcu_batch_empty(&sp->batch_queue)) { |
| 645 | spin_lock_irq(&sp->queue_lock); |
| 646 | if (rcu_batch_empty(&sp->batch_done) && |
| 647 | rcu_batch_empty(&sp->batch_check1) && |
| 648 | rcu_batch_empty(&sp->batch_check0) && |
| 649 | rcu_batch_empty(&sp->batch_queue)) { |
| 650 | sp->running = false; |
| 651 | pending = false; |
| 652 | } |
| 653 | spin_unlock_irq(&sp->queue_lock); |
| 654 | } |
| 655 | |
| 656 | if (pending) |
| 657 | queue_delayed_work(system_power_efficient_wq, |
| 658 | &sp->work, SRCU_INTERVAL); |
| 659 | } |
| 660 | |
| 661 | /* |
| 662 | * This is the work-queue function that handles SRCU grace periods. |
| 663 | */ |
| 664 | void process_srcu(struct work_struct *work) |
| 665 | { |
| 666 | struct srcu_struct *sp; |
| 667 | |
| 668 | sp = container_of(work, struct srcu_struct, work.work); |
| 669 | |
| 670 | srcu_collect_new(sp); |
| 671 | srcu_advance_batches(sp, 1); |
| 672 | srcu_invoke_callbacks(sp); |
| 673 | srcu_reschedule(sp); |
| 674 | } |
| 675 | EXPORT_SYMBOL_GPL(process_srcu); |