Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame^] | 1 | /* |
| 2 | * Generic waiting primitives. |
| 3 | * |
| 4 | * (C) 2004 Nadia Yvette Chambers, Oracle |
| 5 | */ |
| 6 | #include <linux/init.h> |
| 7 | #include <linux/export.h> |
| 8 | #include <linux/sched.h> |
| 9 | #include <linux/mm.h> |
| 10 | #include <linux/wait.h> |
| 11 | #include <linux/hash.h> |
| 12 | #include <linux/kthread.h> |
| 13 | |
| 14 | void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *key) |
| 15 | { |
| 16 | spin_lock_init(&q->lock); |
| 17 | lockdep_set_class_and_name(&q->lock, key, name); |
| 18 | INIT_LIST_HEAD(&q->task_list); |
| 19 | } |
| 20 | |
| 21 | EXPORT_SYMBOL(__init_waitqueue_head); |
| 22 | |
| 23 | void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait) |
| 24 | { |
| 25 | unsigned long flags; |
| 26 | |
| 27 | wait->flags &= ~WQ_FLAG_EXCLUSIVE; |
| 28 | spin_lock_irqsave(&q->lock, flags); |
| 29 | __add_wait_queue(q, wait); |
| 30 | spin_unlock_irqrestore(&q->lock, flags); |
| 31 | } |
| 32 | EXPORT_SYMBOL(add_wait_queue); |
| 33 | |
| 34 | void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait) |
| 35 | { |
| 36 | unsigned long flags; |
| 37 | |
| 38 | wait->flags |= WQ_FLAG_EXCLUSIVE; |
| 39 | spin_lock_irqsave(&q->lock, flags); |
| 40 | __add_wait_queue_tail(q, wait); |
| 41 | spin_unlock_irqrestore(&q->lock, flags); |
| 42 | } |
| 43 | EXPORT_SYMBOL(add_wait_queue_exclusive); |
| 44 | |
| 45 | void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait) |
| 46 | { |
| 47 | unsigned long flags; |
| 48 | |
| 49 | spin_lock_irqsave(&q->lock, flags); |
| 50 | __remove_wait_queue(q, wait); |
| 51 | spin_unlock_irqrestore(&q->lock, flags); |
| 52 | } |
| 53 | EXPORT_SYMBOL(remove_wait_queue); |
| 54 | |
| 55 | |
| 56 | /* |
| 57 | * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just |
| 58 | * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve |
| 59 | * number) then we wake all the non-exclusive tasks and one exclusive task. |
| 60 | * |
| 61 | * There are circumstances in which we can try to wake a task which has already |
| 62 | * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns |
| 63 | * zero in this (rare) case, and we handle it by continuing to scan the queue. |
| 64 | */ |
| 65 | static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, |
| 66 | int nr_exclusive, int wake_flags, void *key) |
| 67 | { |
| 68 | wait_queue_t *curr, *next; |
| 69 | |
| 70 | list_for_each_entry_safe(curr, next, &q->task_list, task_list) { |
| 71 | unsigned flags = curr->flags; |
| 72 | |
| 73 | if (curr->func(curr, mode, wake_flags, key) && |
| 74 | (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) |
| 75 | break; |
| 76 | } |
| 77 | } |
| 78 | |
| 79 | /** |
| 80 | * __wake_up - wake up threads blocked on a waitqueue. |
| 81 | * @q: the waitqueue |
| 82 | * @mode: which threads |
| 83 | * @nr_exclusive: how many wake-one or wake-many threads to wake up |
| 84 | * @key: is directly passed to the wakeup function |
| 85 | * |
| 86 | * It may be assumed that this function implies a write memory barrier before |
| 87 | * changing the task state if and only if any tasks are woken up. |
| 88 | */ |
| 89 | void __wake_up(wait_queue_head_t *q, unsigned int mode, |
| 90 | int nr_exclusive, void *key) |
| 91 | { |
| 92 | unsigned long flags; |
| 93 | |
| 94 | spin_lock_irqsave(&q->lock, flags); |
| 95 | __wake_up_common(q, mode, nr_exclusive, 0, key); |
| 96 | spin_unlock_irqrestore(&q->lock, flags); |
| 97 | } |
| 98 | EXPORT_SYMBOL(__wake_up); |
| 99 | |
| 100 | /* |
| 101 | * Same as __wake_up but called with the spinlock in wait_queue_head_t held. |
| 102 | */ |
| 103 | void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr) |
| 104 | { |
| 105 | __wake_up_common(q, mode, nr, 0, NULL); |
| 106 | } |
| 107 | EXPORT_SYMBOL_GPL(__wake_up_locked); |
| 108 | |
| 109 | void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) |
| 110 | { |
| 111 | __wake_up_common(q, mode, 1, 0, key); |
| 112 | } |
| 113 | EXPORT_SYMBOL_GPL(__wake_up_locked_key); |
| 114 | |
| 115 | /** |
| 116 | * __wake_up_sync_key - wake up threads blocked on a waitqueue. |
| 117 | * @q: the waitqueue |
| 118 | * @mode: which threads |
| 119 | * @nr_exclusive: how many wake-one or wake-many threads to wake up |
| 120 | * @key: opaque value to be passed to wakeup targets |
| 121 | * |
| 122 | * The sync wakeup differs that the waker knows that it will schedule |
| 123 | * away soon, so while the target thread will be woken up, it will not |
| 124 | * be migrated to another CPU - ie. the two threads are 'synchronized' |
| 125 | * with each other. This can prevent needless bouncing between CPUs. |
| 126 | * |
| 127 | * On UP it can prevent extra preemption. |
| 128 | * |
| 129 | * It may be assumed that this function implies a write memory barrier before |
| 130 | * changing the task state if and only if any tasks are woken up. |
| 131 | */ |
| 132 | void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, |
| 133 | int nr_exclusive, void *key) |
| 134 | { |
| 135 | unsigned long flags; |
| 136 | int wake_flags = 1; /* XXX WF_SYNC */ |
| 137 | |
| 138 | if (unlikely(!q)) |
| 139 | return; |
| 140 | |
| 141 | if (unlikely(nr_exclusive != 1)) |
| 142 | wake_flags = 0; |
| 143 | |
| 144 | spin_lock_irqsave(&q->lock, flags); |
| 145 | __wake_up_common(q, mode, nr_exclusive, wake_flags, key); |
| 146 | spin_unlock_irqrestore(&q->lock, flags); |
| 147 | } |
| 148 | EXPORT_SYMBOL_GPL(__wake_up_sync_key); |
| 149 | |
| 150 | /* |
| 151 | * __wake_up_sync - see __wake_up_sync_key() |
| 152 | */ |
| 153 | void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) |
| 154 | { |
| 155 | __wake_up_sync_key(q, mode, nr_exclusive, NULL); |
| 156 | } |
| 157 | EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ |
| 158 | |
| 159 | /* |
| 160 | * Note: we use "set_current_state()" _after_ the wait-queue add, |
| 161 | * because we need a memory barrier there on SMP, so that any |
| 162 | * wake-function that tests for the wait-queue being active |
| 163 | * will be guaranteed to see waitqueue addition _or_ subsequent |
| 164 | * tests in this thread will see the wakeup having taken place. |
| 165 | * |
| 166 | * The spin_unlock() itself is semi-permeable and only protects |
| 167 | * one way (it only protects stuff inside the critical region and |
| 168 | * stops them from bleeding out - it would still allow subsequent |
| 169 | * loads to move into the critical region). |
| 170 | */ |
| 171 | void |
| 172 | prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state) |
| 173 | { |
| 174 | unsigned long flags; |
| 175 | |
| 176 | wait->flags &= ~WQ_FLAG_EXCLUSIVE; |
| 177 | spin_lock_irqsave(&q->lock, flags); |
| 178 | if (list_empty(&wait->task_list)) |
| 179 | __add_wait_queue(q, wait); |
| 180 | set_current_state(state); |
| 181 | spin_unlock_irqrestore(&q->lock, flags); |
| 182 | } |
| 183 | EXPORT_SYMBOL(prepare_to_wait); |
| 184 | |
| 185 | void |
| 186 | prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state) |
| 187 | { |
| 188 | unsigned long flags; |
| 189 | |
| 190 | wait->flags |= WQ_FLAG_EXCLUSIVE; |
| 191 | spin_lock_irqsave(&q->lock, flags); |
| 192 | if (list_empty(&wait->task_list)) |
| 193 | __add_wait_queue_tail(q, wait); |
| 194 | set_current_state(state); |
| 195 | spin_unlock_irqrestore(&q->lock, flags); |
| 196 | } |
| 197 | EXPORT_SYMBOL(prepare_to_wait_exclusive); |
| 198 | |
| 199 | long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state) |
| 200 | { |
| 201 | unsigned long flags; |
| 202 | |
| 203 | if (signal_pending_state(state, current)) |
| 204 | return -ERESTARTSYS; |
| 205 | |
| 206 | wait->private = current; |
| 207 | wait->func = autoremove_wake_function; |
| 208 | |
| 209 | spin_lock_irqsave(&q->lock, flags); |
| 210 | if (list_empty(&wait->task_list)) { |
| 211 | if (wait->flags & WQ_FLAG_EXCLUSIVE) |
| 212 | __add_wait_queue_tail(q, wait); |
| 213 | else |
| 214 | __add_wait_queue(q, wait); |
| 215 | } |
| 216 | set_current_state(state); |
| 217 | spin_unlock_irqrestore(&q->lock, flags); |
| 218 | |
| 219 | return 0; |
| 220 | } |
| 221 | EXPORT_SYMBOL(prepare_to_wait_event); |
| 222 | |
| 223 | /** |
| 224 | * finish_wait - clean up after waiting in a queue |
| 225 | * @q: waitqueue waited on |
| 226 | * @wait: wait descriptor |
| 227 | * |
| 228 | * Sets current thread back to running state and removes |
| 229 | * the wait descriptor from the given waitqueue if still |
| 230 | * queued. |
| 231 | */ |
| 232 | void finish_wait(wait_queue_head_t *q, wait_queue_t *wait) |
| 233 | { |
| 234 | unsigned long flags; |
| 235 | |
| 236 | __set_current_state(TASK_RUNNING); |
| 237 | /* |
| 238 | * We can check for list emptiness outside the lock |
| 239 | * IFF: |
| 240 | * - we use the "careful" check that verifies both |
| 241 | * the next and prev pointers, so that there cannot |
| 242 | * be any half-pending updates in progress on other |
| 243 | * CPU's that we haven't seen yet (and that might |
| 244 | * still change the stack area. |
| 245 | * and |
| 246 | * - all other users take the lock (ie we can only |
| 247 | * have _one_ other CPU that looks at or modifies |
| 248 | * the list). |
| 249 | */ |
| 250 | if (!list_empty_careful(&wait->task_list)) { |
| 251 | spin_lock_irqsave(&q->lock, flags); |
| 252 | list_del_init(&wait->task_list); |
| 253 | spin_unlock_irqrestore(&q->lock, flags); |
| 254 | } |
| 255 | } |
| 256 | EXPORT_SYMBOL(finish_wait); |
| 257 | |
| 258 | /** |
| 259 | * abort_exclusive_wait - abort exclusive waiting in a queue |
| 260 | * @q: waitqueue waited on |
| 261 | * @wait: wait descriptor |
| 262 | * @mode: runstate of the waiter to be woken |
| 263 | * @key: key to identify a wait bit queue or %NULL |
| 264 | * |
| 265 | * Sets current thread back to running state and removes |
| 266 | * the wait descriptor from the given waitqueue if still |
| 267 | * queued. |
| 268 | * |
| 269 | * Wakes up the next waiter if the caller is concurrently |
| 270 | * woken up through the queue. |
| 271 | * |
| 272 | * This prevents waiter starvation where an exclusive waiter |
| 273 | * aborts and is woken up concurrently and no one wakes up |
| 274 | * the next waiter. |
| 275 | */ |
| 276 | void abort_exclusive_wait(wait_queue_head_t *q, wait_queue_t *wait, |
| 277 | unsigned int mode, void *key) |
| 278 | { |
| 279 | unsigned long flags; |
| 280 | |
| 281 | __set_current_state(TASK_RUNNING); |
| 282 | spin_lock_irqsave(&q->lock, flags); |
| 283 | if (!list_empty(&wait->task_list)) |
| 284 | list_del_init(&wait->task_list); |
| 285 | else if (waitqueue_active(q)) |
| 286 | __wake_up_locked_key(q, mode, key); |
| 287 | spin_unlock_irqrestore(&q->lock, flags); |
| 288 | } |
| 289 | EXPORT_SYMBOL(abort_exclusive_wait); |
| 290 | |
| 291 | int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key) |
| 292 | { |
| 293 | int ret = default_wake_function(wait, mode, sync, key); |
| 294 | |
| 295 | if (ret) |
| 296 | list_del_init(&wait->task_list); |
| 297 | return ret; |
| 298 | } |
| 299 | EXPORT_SYMBOL(autoremove_wake_function); |
| 300 | |
| 301 | static inline bool is_kthread_should_stop(void) |
| 302 | { |
| 303 | return (current->flags & PF_KTHREAD) && kthread_should_stop(); |
| 304 | } |
| 305 | |
| 306 | /* |
| 307 | * DEFINE_WAIT_FUNC(wait, woken_wake_func); |
| 308 | * |
| 309 | * add_wait_queue(&wq, &wait); |
| 310 | * for (;;) { |
| 311 | * if (condition) |
| 312 | * break; |
| 313 | * |
| 314 | * p->state = mode; condition = true; |
| 315 | * smp_mb(); // A smp_wmb(); // C |
| 316 | * if (!wait->flags & WQ_FLAG_WOKEN) wait->flags |= WQ_FLAG_WOKEN; |
| 317 | * schedule() try_to_wake_up(); |
| 318 | * p->state = TASK_RUNNING; ~~~~~~~~~~~~~~~~~~ |
| 319 | * wait->flags &= ~WQ_FLAG_WOKEN; condition = true; |
| 320 | * smp_mb() // B smp_wmb(); // C |
| 321 | * wait->flags |= WQ_FLAG_WOKEN; |
| 322 | * } |
| 323 | * remove_wait_queue(&wq, &wait); |
| 324 | * |
| 325 | */ |
| 326 | long wait_woken(wait_queue_t *wait, unsigned mode, long timeout) |
| 327 | { |
| 328 | set_current_state(mode); /* A */ |
| 329 | /* |
| 330 | * The above implies an smp_mb(), which matches with the smp_wmb() from |
| 331 | * woken_wake_function() such that if we observe WQ_FLAG_WOKEN we must |
| 332 | * also observe all state before the wakeup. |
| 333 | */ |
| 334 | if (!(wait->flags & WQ_FLAG_WOKEN) && !is_kthread_should_stop()) |
| 335 | timeout = schedule_timeout(timeout); |
| 336 | __set_current_state(TASK_RUNNING); |
| 337 | |
| 338 | /* |
| 339 | * The below implies an smp_mb(), it too pairs with the smp_wmb() from |
| 340 | * woken_wake_function() such that we must either observe the wait |
| 341 | * condition being true _OR_ WQ_FLAG_WOKEN such that we will not miss |
| 342 | * an event. |
| 343 | */ |
| 344 | smp_store_mb(wait->flags, wait->flags & ~WQ_FLAG_WOKEN); /* B */ |
| 345 | |
| 346 | return timeout; |
| 347 | } |
| 348 | EXPORT_SYMBOL(wait_woken); |
| 349 | |
| 350 | int woken_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key) |
| 351 | { |
| 352 | /* |
| 353 | * Although this function is called under waitqueue lock, LOCK |
| 354 | * doesn't imply write barrier and the users expects write |
| 355 | * barrier semantics on wakeup functions. The following |
| 356 | * smp_wmb() is equivalent to smp_wmb() in try_to_wake_up() |
| 357 | * and is paired with smp_store_mb() in wait_woken(). |
| 358 | */ |
| 359 | smp_wmb(); /* C */ |
| 360 | wait->flags |= WQ_FLAG_WOKEN; |
| 361 | |
| 362 | return default_wake_function(wait, mode, sync, key); |
| 363 | } |
| 364 | EXPORT_SYMBOL(woken_wake_function); |
| 365 | |
| 366 | int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg) |
| 367 | { |
| 368 | struct wait_bit_key *key = arg; |
| 369 | struct wait_bit_queue *wait_bit |
| 370 | = container_of(wait, struct wait_bit_queue, wait); |
| 371 | |
| 372 | if (wait_bit->key.flags != key->flags || |
| 373 | wait_bit->key.bit_nr != key->bit_nr || |
| 374 | test_bit(key->bit_nr, key->flags)) |
| 375 | return 0; |
| 376 | else |
| 377 | return autoremove_wake_function(wait, mode, sync, key); |
| 378 | } |
| 379 | EXPORT_SYMBOL(wake_bit_function); |
| 380 | |
| 381 | /* |
| 382 | * To allow interruptible waiting and asynchronous (i.e. nonblocking) |
| 383 | * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are |
| 384 | * permitted return codes. Nonzero return codes halt waiting and return. |
| 385 | */ |
| 386 | int __sched |
| 387 | __wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q, |
| 388 | wait_bit_action_f *action, unsigned mode) |
| 389 | { |
| 390 | int ret = 0; |
| 391 | |
| 392 | do { |
| 393 | prepare_to_wait(wq, &q->wait, mode); |
| 394 | if (test_bit(q->key.bit_nr, q->key.flags)) |
| 395 | ret = (*action)(&q->key, mode); |
| 396 | } while (test_bit(q->key.bit_nr, q->key.flags) && !ret); |
| 397 | finish_wait(wq, &q->wait); |
| 398 | return ret; |
| 399 | } |
| 400 | EXPORT_SYMBOL(__wait_on_bit); |
| 401 | |
| 402 | int __sched out_of_line_wait_on_bit(void *word, int bit, |
| 403 | wait_bit_action_f *action, unsigned mode) |
| 404 | { |
| 405 | wait_queue_head_t *wq = bit_waitqueue(word, bit); |
| 406 | DEFINE_WAIT_BIT(wait, word, bit); |
| 407 | |
| 408 | return __wait_on_bit(wq, &wait, action, mode); |
| 409 | } |
| 410 | EXPORT_SYMBOL(out_of_line_wait_on_bit); |
| 411 | |
| 412 | int __sched out_of_line_wait_on_bit_timeout( |
| 413 | void *word, int bit, wait_bit_action_f *action, |
| 414 | unsigned mode, unsigned long timeout) |
| 415 | { |
| 416 | wait_queue_head_t *wq = bit_waitqueue(word, bit); |
| 417 | DEFINE_WAIT_BIT(wait, word, bit); |
| 418 | |
| 419 | wait.key.timeout = jiffies + timeout; |
| 420 | return __wait_on_bit(wq, &wait, action, mode); |
| 421 | } |
| 422 | EXPORT_SYMBOL_GPL(out_of_line_wait_on_bit_timeout); |
| 423 | |
| 424 | int __sched |
| 425 | __wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q, |
| 426 | wait_bit_action_f *action, unsigned mode) |
| 427 | { |
| 428 | do { |
| 429 | int ret; |
| 430 | |
| 431 | prepare_to_wait_exclusive(wq, &q->wait, mode); |
| 432 | if (!test_bit(q->key.bit_nr, q->key.flags)) |
| 433 | continue; |
| 434 | ret = action(&q->key, mode); |
| 435 | if (!ret) |
| 436 | continue; |
| 437 | abort_exclusive_wait(wq, &q->wait, mode, &q->key); |
| 438 | return ret; |
| 439 | } while (test_and_set_bit(q->key.bit_nr, q->key.flags)); |
| 440 | finish_wait(wq, &q->wait); |
| 441 | return 0; |
| 442 | } |
| 443 | EXPORT_SYMBOL(__wait_on_bit_lock); |
| 444 | |
| 445 | int __sched out_of_line_wait_on_bit_lock(void *word, int bit, |
| 446 | wait_bit_action_f *action, unsigned mode) |
| 447 | { |
| 448 | wait_queue_head_t *wq = bit_waitqueue(word, bit); |
| 449 | DEFINE_WAIT_BIT(wait, word, bit); |
| 450 | |
| 451 | return __wait_on_bit_lock(wq, &wait, action, mode); |
| 452 | } |
| 453 | EXPORT_SYMBOL(out_of_line_wait_on_bit_lock); |
| 454 | |
| 455 | void __wake_up_bit(wait_queue_head_t *wq, void *word, int bit) |
| 456 | { |
| 457 | struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit); |
| 458 | if (waitqueue_active(wq)) |
| 459 | __wake_up(wq, TASK_NORMAL, 1, &key); |
| 460 | } |
| 461 | EXPORT_SYMBOL(__wake_up_bit); |
| 462 | |
| 463 | /** |
| 464 | * wake_up_bit - wake up a waiter on a bit |
| 465 | * @word: the word being waited on, a kernel virtual address |
| 466 | * @bit: the bit of the word being waited on |
| 467 | * |
| 468 | * There is a standard hashed waitqueue table for generic use. This |
| 469 | * is the part of the hashtable's accessor API that wakes up waiters |
| 470 | * on a bit. For instance, if one were to have waiters on a bitflag, |
| 471 | * one would call wake_up_bit() after clearing the bit. |
| 472 | * |
| 473 | * In order for this to function properly, as it uses waitqueue_active() |
| 474 | * internally, some kind of memory barrier must be done prior to calling |
| 475 | * this. Typically, this will be smp_mb__after_atomic(), but in some |
| 476 | * cases where bitflags are manipulated non-atomically under a lock, one |
| 477 | * may need to use a less regular barrier, such fs/inode.c's smp_mb(), |
| 478 | * because spin_unlock() does not guarantee a memory barrier. |
| 479 | */ |
| 480 | void wake_up_bit(void *word, int bit) |
| 481 | { |
| 482 | __wake_up_bit(bit_waitqueue(word, bit), word, bit); |
| 483 | } |
| 484 | EXPORT_SYMBOL(wake_up_bit); |
| 485 | |
| 486 | wait_queue_head_t *bit_waitqueue(void *word, int bit) |
| 487 | { |
| 488 | const int shift = BITS_PER_LONG == 32 ? 5 : 6; |
| 489 | const struct zone *zone = page_zone(virt_to_page(word)); |
| 490 | unsigned long val = (unsigned long)word << shift | bit; |
| 491 | |
| 492 | return &zone->wait_table[hash_long(val, zone->wait_table_bits)]; |
| 493 | } |
| 494 | EXPORT_SYMBOL(bit_waitqueue); |
| 495 | |
| 496 | /* |
| 497 | * Manipulate the atomic_t address to produce a better bit waitqueue table hash |
| 498 | * index (we're keying off bit -1, but that would produce a horrible hash |
| 499 | * value). |
| 500 | */ |
| 501 | static inline wait_queue_head_t *atomic_t_waitqueue(atomic_t *p) |
| 502 | { |
| 503 | if (BITS_PER_LONG == 64) { |
| 504 | unsigned long q = (unsigned long)p; |
| 505 | return bit_waitqueue((void *)(q & ~1), q & 1); |
| 506 | } |
| 507 | return bit_waitqueue(p, 0); |
| 508 | } |
| 509 | |
| 510 | static int wake_atomic_t_function(wait_queue_t *wait, unsigned mode, int sync, |
| 511 | void *arg) |
| 512 | { |
| 513 | struct wait_bit_key *key = arg; |
| 514 | struct wait_bit_queue *wait_bit |
| 515 | = container_of(wait, struct wait_bit_queue, wait); |
| 516 | atomic_t *val = key->flags; |
| 517 | |
| 518 | if (wait_bit->key.flags != key->flags || |
| 519 | wait_bit->key.bit_nr != key->bit_nr || |
| 520 | atomic_read(val) != 0) |
| 521 | return 0; |
| 522 | return autoremove_wake_function(wait, mode, sync, key); |
| 523 | } |
| 524 | |
| 525 | /* |
| 526 | * To allow interruptible waiting and asynchronous (i.e. nonblocking) waiting, |
| 527 | * the actions of __wait_on_atomic_t() are permitted return codes. Nonzero |
| 528 | * return codes halt waiting and return. |
| 529 | */ |
| 530 | static __sched |
| 531 | int __wait_on_atomic_t(wait_queue_head_t *wq, struct wait_bit_queue *q, |
| 532 | int (*action)(atomic_t *), unsigned mode) |
| 533 | { |
| 534 | atomic_t *val; |
| 535 | int ret = 0; |
| 536 | |
| 537 | do { |
| 538 | prepare_to_wait(wq, &q->wait, mode); |
| 539 | val = q->key.flags; |
| 540 | if (atomic_read(val) == 0) |
| 541 | break; |
| 542 | ret = (*action)(val); |
| 543 | } while (!ret && atomic_read(val) != 0); |
| 544 | finish_wait(wq, &q->wait); |
| 545 | return ret; |
| 546 | } |
| 547 | |
| 548 | #define DEFINE_WAIT_ATOMIC_T(name, p) \ |
| 549 | struct wait_bit_queue name = { \ |
| 550 | .key = __WAIT_ATOMIC_T_KEY_INITIALIZER(p), \ |
| 551 | .wait = { \ |
| 552 | .private = current, \ |
| 553 | .func = wake_atomic_t_function, \ |
| 554 | .task_list = \ |
| 555 | LIST_HEAD_INIT((name).wait.task_list), \ |
| 556 | }, \ |
| 557 | } |
| 558 | |
| 559 | __sched int out_of_line_wait_on_atomic_t(atomic_t *p, int (*action)(atomic_t *), |
| 560 | unsigned mode) |
| 561 | { |
| 562 | wait_queue_head_t *wq = atomic_t_waitqueue(p); |
| 563 | DEFINE_WAIT_ATOMIC_T(wait, p); |
| 564 | |
| 565 | return __wait_on_atomic_t(wq, &wait, action, mode); |
| 566 | } |
| 567 | EXPORT_SYMBOL(out_of_line_wait_on_atomic_t); |
| 568 | |
| 569 | /** |
| 570 | * wake_up_atomic_t - Wake up a waiter on a atomic_t |
| 571 | * @p: The atomic_t being waited on, a kernel virtual address |
| 572 | * |
| 573 | * Wake up anyone waiting for the atomic_t to go to zero. |
| 574 | * |
| 575 | * Abuse the bit-waker function and its waitqueue hash table set (the atomic_t |
| 576 | * check is done by the waiter's wake function, not the by the waker itself). |
| 577 | */ |
| 578 | void wake_up_atomic_t(atomic_t *p) |
| 579 | { |
| 580 | __wake_up_bit(atomic_t_waitqueue(p), p, WAIT_ATOMIC_T_BIT_NR); |
| 581 | } |
| 582 | EXPORT_SYMBOL(wake_up_atomic_t); |
| 583 | |
| 584 | __sched int bit_wait(struct wait_bit_key *word, int mode) |
| 585 | { |
| 586 | schedule(); |
| 587 | if (signal_pending_state(mode, current)) |
| 588 | return -EINTR; |
| 589 | return 0; |
| 590 | } |
| 591 | EXPORT_SYMBOL(bit_wait); |
| 592 | |
| 593 | __sched int bit_wait_io(struct wait_bit_key *word, int mode) |
| 594 | { |
| 595 | io_schedule(); |
| 596 | if (signal_pending_state(mode, current)) |
| 597 | return -EINTR; |
| 598 | return 0; |
| 599 | } |
| 600 | EXPORT_SYMBOL(bit_wait_io); |
| 601 | |
| 602 | __sched int bit_wait_timeout(struct wait_bit_key *word, int mode) |
| 603 | { |
| 604 | unsigned long now = READ_ONCE(jiffies); |
| 605 | if (time_after_eq(now, word->timeout)) |
| 606 | return -EAGAIN; |
| 607 | schedule_timeout(word->timeout - now); |
| 608 | if (signal_pending_state(mode, current)) |
| 609 | return -EINTR; |
| 610 | return 0; |
| 611 | } |
| 612 | EXPORT_SYMBOL_GPL(bit_wait_timeout); |
| 613 | |
| 614 | __sched int bit_wait_io_timeout(struct wait_bit_key *word, int mode) |
| 615 | { |
| 616 | unsigned long now = READ_ONCE(jiffies); |
| 617 | if (time_after_eq(now, word->timeout)) |
| 618 | return -EAGAIN; |
| 619 | io_schedule_timeout(word->timeout - now); |
| 620 | if (signal_pending_state(mode, current)) |
| 621 | return -EINTR; |
| 622 | return 0; |
| 623 | } |
| 624 | EXPORT_SYMBOL_GPL(bit_wait_io_timeout); |