Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (C) 2001 Momchil Velikov |
| 3 | * Portions Copyright (C) 2001 Christoph Hellwig |
| 4 | * Copyright (C) 2005 SGI, Christoph Lameter |
| 5 | * Copyright (C) 2006 Nick Piggin |
| 6 | * Copyright (C) 2012 Konstantin Khlebnikov |
| 7 | * |
| 8 | * This program is free software; you can redistribute it and/or |
| 9 | * modify it under the terms of the GNU General Public License as |
| 10 | * published by the Free Software Foundation; either version 2, or (at |
| 11 | * your option) any later version. |
| 12 | * |
| 13 | * This program is distributed in the hope that it will be useful, but |
| 14 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 16 | * General Public License for more details. |
| 17 | * |
| 18 | * You should have received a copy of the GNU General Public License |
| 19 | * along with this program; if not, write to the Free Software |
| 20 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| 21 | */ |
| 22 | |
| 23 | #include <linux/errno.h> |
| 24 | #include <linux/init.h> |
| 25 | #include <linux/kernel.h> |
| 26 | #include <linux/export.h> |
| 27 | #include <linux/radix-tree.h> |
| 28 | #include <linux/percpu.h> |
| 29 | #include <linux/slab.h> |
| 30 | #include <linux/kmemleak.h> |
| 31 | #include <linux/notifier.h> |
| 32 | #include <linux/cpu.h> |
| 33 | #include <linux/string.h> |
| 34 | #include <linux/bitops.h> |
| 35 | #include <linux/rcupdate.h> |
| 36 | #include <linux/preempt.h> /* in_interrupt() */ |
| 37 | |
| 38 | |
| 39 | /* |
| 40 | * The height_to_maxindex array needs to be one deeper than the maximum |
| 41 | * path as height 0 holds only 1 entry. |
| 42 | */ |
| 43 | static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly; |
| 44 | |
| 45 | /* |
| 46 | * Radix tree node cache. |
| 47 | */ |
| 48 | static struct kmem_cache *radix_tree_node_cachep; |
| 49 | |
| 50 | /* |
| 51 | * The radix tree is variable-height, so an insert operation not only has |
| 52 | * to build the branch to its corresponding item, it also has to build the |
| 53 | * branch to existing items if the size has to be increased (by |
| 54 | * radix_tree_extend). |
| 55 | * |
| 56 | * The worst case is a zero height tree with just a single item at index 0, |
| 57 | * and then inserting an item at index ULONG_MAX. This requires 2 new branches |
| 58 | * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared. |
| 59 | * Hence: |
| 60 | */ |
| 61 | #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1) |
| 62 | |
| 63 | /* |
| 64 | * Per-cpu pool of preloaded nodes |
| 65 | */ |
| 66 | struct radix_tree_preload { |
| 67 | int nr; |
| 68 | /* nodes->private_data points to next preallocated node */ |
| 69 | struct radix_tree_node *nodes; |
| 70 | }; |
| 71 | static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, }; |
| 72 | |
| 73 | static inline void *ptr_to_indirect(void *ptr) |
| 74 | { |
| 75 | return (void *)((unsigned long)ptr | RADIX_TREE_INDIRECT_PTR); |
| 76 | } |
| 77 | |
| 78 | static inline void *indirect_to_ptr(void *ptr) |
| 79 | { |
| 80 | return (void *)((unsigned long)ptr & ~RADIX_TREE_INDIRECT_PTR); |
| 81 | } |
| 82 | |
| 83 | static inline gfp_t root_gfp_mask(struct radix_tree_root *root) |
| 84 | { |
| 85 | return root->gfp_mask & __GFP_BITS_MASK; |
| 86 | } |
| 87 | |
| 88 | static inline void tag_set(struct radix_tree_node *node, unsigned int tag, |
| 89 | int offset) |
| 90 | { |
| 91 | __set_bit(offset, node->tags[tag]); |
| 92 | } |
| 93 | |
| 94 | static inline void tag_clear(struct radix_tree_node *node, unsigned int tag, |
| 95 | int offset) |
| 96 | { |
| 97 | __clear_bit(offset, node->tags[tag]); |
| 98 | } |
| 99 | |
| 100 | static inline int tag_get(struct radix_tree_node *node, unsigned int tag, |
| 101 | int offset) |
| 102 | { |
| 103 | return test_bit(offset, node->tags[tag]); |
| 104 | } |
| 105 | |
| 106 | static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag) |
| 107 | { |
| 108 | root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT)); |
| 109 | } |
| 110 | |
| 111 | static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag) |
| 112 | { |
| 113 | root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT)); |
| 114 | } |
| 115 | |
| 116 | static inline void root_tag_clear_all(struct radix_tree_root *root) |
| 117 | { |
| 118 | root->gfp_mask &= __GFP_BITS_MASK; |
| 119 | } |
| 120 | |
| 121 | static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag) |
| 122 | { |
| 123 | return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT)); |
| 124 | } |
| 125 | |
| 126 | /* |
| 127 | * Returns 1 if any slot in the node has this tag set. |
| 128 | * Otherwise returns 0. |
| 129 | */ |
| 130 | static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag) |
| 131 | { |
| 132 | int idx; |
| 133 | for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) { |
| 134 | if (node->tags[tag][idx]) |
| 135 | return 1; |
| 136 | } |
| 137 | return 0; |
| 138 | } |
| 139 | |
| 140 | /** |
| 141 | * radix_tree_find_next_bit - find the next set bit in a memory region |
| 142 | * |
| 143 | * @addr: The address to base the search on |
| 144 | * @size: The bitmap size in bits |
| 145 | * @offset: The bitnumber to start searching at |
| 146 | * |
| 147 | * Unrollable variant of find_next_bit() for constant size arrays. |
| 148 | * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero. |
| 149 | * Returns next bit offset, or size if nothing found. |
| 150 | */ |
| 151 | static __always_inline unsigned long |
| 152 | radix_tree_find_next_bit(const unsigned long *addr, |
| 153 | unsigned long size, unsigned long offset) |
| 154 | { |
| 155 | if (!__builtin_constant_p(size)) |
| 156 | return find_next_bit(addr, size, offset); |
| 157 | |
| 158 | if (offset < size) { |
| 159 | unsigned long tmp; |
| 160 | |
| 161 | addr += offset / BITS_PER_LONG; |
| 162 | tmp = *addr >> (offset % BITS_PER_LONG); |
| 163 | if (tmp) |
| 164 | return __ffs(tmp) + offset; |
| 165 | offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1); |
| 166 | while (offset < size) { |
| 167 | tmp = *++addr; |
| 168 | if (tmp) |
| 169 | return __ffs(tmp) + offset; |
| 170 | offset += BITS_PER_LONG; |
| 171 | } |
| 172 | } |
| 173 | return size; |
| 174 | } |
| 175 | |
| 176 | /* |
| 177 | * This assumes that the caller has performed appropriate preallocation, and |
| 178 | * that the caller has pinned this thread of control to the current CPU. |
| 179 | */ |
| 180 | static struct radix_tree_node * |
| 181 | radix_tree_node_alloc(struct radix_tree_root *root) |
| 182 | { |
| 183 | struct radix_tree_node *ret = NULL; |
| 184 | gfp_t gfp_mask = root_gfp_mask(root); |
| 185 | |
| 186 | /* |
| 187 | * Preload code isn't irq safe and it doesn't make sence to use |
| 188 | * preloading in the interrupt anyway as all the allocations have to |
| 189 | * be atomic. So just do normal allocation when in interrupt. |
| 190 | */ |
| 191 | if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) { |
| 192 | struct radix_tree_preload *rtp; |
| 193 | |
| 194 | /* |
| 195 | * Provided the caller has preloaded here, we will always |
| 196 | * succeed in getting a node here (and never reach |
| 197 | * kmem_cache_alloc) |
| 198 | */ |
| 199 | rtp = this_cpu_ptr(&radix_tree_preloads); |
| 200 | if (rtp->nr) { |
| 201 | ret = rtp->nodes; |
| 202 | rtp->nodes = ret->private_data; |
| 203 | ret->private_data = NULL; |
| 204 | rtp->nr--; |
| 205 | } |
| 206 | /* |
| 207 | * Update the allocation stack trace as this is more useful |
| 208 | * for debugging. |
| 209 | */ |
| 210 | kmemleak_update_trace(ret); |
| 211 | } |
| 212 | if (ret == NULL) |
| 213 | ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask); |
| 214 | |
| 215 | BUG_ON(radix_tree_is_indirect_ptr(ret)); |
| 216 | return ret; |
| 217 | } |
| 218 | |
| 219 | static void radix_tree_node_rcu_free(struct rcu_head *head) |
| 220 | { |
| 221 | struct radix_tree_node *node = |
| 222 | container_of(head, struct radix_tree_node, rcu_head); |
| 223 | int i; |
| 224 | |
| 225 | /* |
| 226 | * must only free zeroed nodes into the slab. radix_tree_shrink |
| 227 | * can leave us with a non-NULL entry in the first slot, so clear |
| 228 | * that here to make sure. |
| 229 | */ |
| 230 | for (i = 0; i < RADIX_TREE_MAX_TAGS; i++) |
| 231 | tag_clear(node, i, 0); |
| 232 | |
| 233 | node->slots[0] = NULL; |
| 234 | node->count = 0; |
| 235 | |
| 236 | kmem_cache_free(radix_tree_node_cachep, node); |
| 237 | } |
| 238 | |
| 239 | static inline void |
| 240 | radix_tree_node_free(struct radix_tree_node *node) |
| 241 | { |
| 242 | call_rcu(&node->rcu_head, radix_tree_node_rcu_free); |
| 243 | } |
| 244 | |
| 245 | /* |
| 246 | * Load up this CPU's radix_tree_node buffer with sufficient objects to |
| 247 | * ensure that the addition of a single element in the tree cannot fail. On |
| 248 | * success, return zero, with preemption disabled. On error, return -ENOMEM |
| 249 | * with preemption not disabled. |
| 250 | * |
| 251 | * To make use of this facility, the radix tree must be initialised without |
| 252 | * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE(). |
| 253 | */ |
| 254 | static int __radix_tree_preload(gfp_t gfp_mask) |
| 255 | { |
| 256 | struct radix_tree_preload *rtp; |
| 257 | struct radix_tree_node *node; |
| 258 | int ret = -ENOMEM; |
| 259 | |
| 260 | preempt_disable(); |
| 261 | rtp = this_cpu_ptr(&radix_tree_preloads); |
| 262 | while (rtp->nr < RADIX_TREE_PRELOAD_SIZE) { |
| 263 | preempt_enable(); |
| 264 | node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask); |
| 265 | if (node == NULL) |
| 266 | goto out; |
| 267 | preempt_disable(); |
| 268 | rtp = this_cpu_ptr(&radix_tree_preloads); |
| 269 | if (rtp->nr < RADIX_TREE_PRELOAD_SIZE) { |
| 270 | node->private_data = rtp->nodes; |
| 271 | rtp->nodes = node; |
| 272 | rtp->nr++; |
| 273 | } else { |
| 274 | kmem_cache_free(radix_tree_node_cachep, node); |
| 275 | } |
| 276 | } |
| 277 | ret = 0; |
| 278 | out: |
| 279 | return ret; |
| 280 | } |
| 281 | |
| 282 | /* |
| 283 | * Load up this CPU's radix_tree_node buffer with sufficient objects to |
| 284 | * ensure that the addition of a single element in the tree cannot fail. On |
| 285 | * success, return zero, with preemption disabled. On error, return -ENOMEM |
| 286 | * with preemption not disabled. |
| 287 | * |
| 288 | * To make use of this facility, the radix tree must be initialised without |
| 289 | * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE(). |
| 290 | */ |
| 291 | int radix_tree_preload(gfp_t gfp_mask) |
| 292 | { |
| 293 | /* Warn on non-sensical use... */ |
| 294 | WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask)); |
| 295 | return __radix_tree_preload(gfp_mask); |
| 296 | } |
| 297 | EXPORT_SYMBOL(radix_tree_preload); |
| 298 | |
| 299 | /* |
| 300 | * The same as above function, except we don't guarantee preloading happens. |
| 301 | * We do it, if we decide it helps. On success, return zero with preemption |
| 302 | * disabled. On error, return -ENOMEM with preemption not disabled. |
| 303 | */ |
| 304 | int radix_tree_maybe_preload(gfp_t gfp_mask) |
| 305 | { |
| 306 | if (gfpflags_allow_blocking(gfp_mask)) |
| 307 | return __radix_tree_preload(gfp_mask); |
| 308 | /* Preloading doesn't help anything with this gfp mask, skip it */ |
| 309 | preempt_disable(); |
| 310 | return 0; |
| 311 | } |
| 312 | EXPORT_SYMBOL(radix_tree_maybe_preload); |
| 313 | |
| 314 | /* |
| 315 | * Return the maximum key which can be store into a |
| 316 | * radix tree with height HEIGHT. |
| 317 | */ |
| 318 | static inline unsigned long radix_tree_maxindex(unsigned int height) |
| 319 | { |
| 320 | return height_to_maxindex[height]; |
| 321 | } |
| 322 | |
| 323 | /* |
| 324 | * Extend a radix tree so it can store key @index. |
| 325 | */ |
| 326 | static int radix_tree_extend(struct radix_tree_root *root, unsigned long index) |
| 327 | { |
| 328 | struct radix_tree_node *node; |
| 329 | struct radix_tree_node *slot; |
| 330 | unsigned int height; |
| 331 | int tag; |
| 332 | |
| 333 | /* Figure out what the height should be. */ |
| 334 | height = root->height + 1; |
| 335 | while (index > radix_tree_maxindex(height)) |
| 336 | height++; |
| 337 | |
| 338 | if (root->rnode == NULL) { |
| 339 | root->height = height; |
| 340 | goto out; |
| 341 | } |
| 342 | |
| 343 | do { |
| 344 | unsigned int newheight; |
| 345 | if (!(node = radix_tree_node_alloc(root))) |
| 346 | return -ENOMEM; |
| 347 | |
| 348 | /* Propagate the aggregated tag info into the new root */ |
| 349 | for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) { |
| 350 | if (root_tag_get(root, tag)) |
| 351 | tag_set(node, tag, 0); |
| 352 | } |
| 353 | |
| 354 | /* Increase the height. */ |
| 355 | newheight = root->height+1; |
| 356 | BUG_ON(newheight & ~RADIX_TREE_HEIGHT_MASK); |
| 357 | node->path = newheight; |
| 358 | node->count = 1; |
| 359 | node->parent = NULL; |
| 360 | slot = root->rnode; |
| 361 | if (newheight > 1) { |
| 362 | slot = indirect_to_ptr(slot); |
| 363 | slot->parent = node; |
| 364 | } |
| 365 | node->slots[0] = slot; |
| 366 | node = ptr_to_indirect(node); |
| 367 | rcu_assign_pointer(root->rnode, node); |
| 368 | root->height = newheight; |
| 369 | } while (height > root->height); |
| 370 | out: |
| 371 | return 0; |
| 372 | } |
| 373 | |
| 374 | /** |
| 375 | * __radix_tree_create - create a slot in a radix tree |
| 376 | * @root: radix tree root |
| 377 | * @index: index key |
| 378 | * @nodep: returns node |
| 379 | * @slotp: returns slot |
| 380 | * |
| 381 | * Create, if necessary, and return the node and slot for an item |
| 382 | * at position @index in the radix tree @root. |
| 383 | * |
| 384 | * Until there is more than one item in the tree, no nodes are |
| 385 | * allocated and @root->rnode is used as a direct slot instead of |
| 386 | * pointing to a node, in which case *@nodep will be NULL. |
| 387 | * |
| 388 | * Returns -ENOMEM, or 0 for success. |
| 389 | */ |
| 390 | int __radix_tree_create(struct radix_tree_root *root, unsigned long index, |
| 391 | struct radix_tree_node **nodep, void ***slotp) |
| 392 | { |
| 393 | struct radix_tree_node *node = NULL, *slot; |
| 394 | unsigned int height, shift, offset; |
| 395 | int error; |
| 396 | |
| 397 | /* Make sure the tree is high enough. */ |
| 398 | if (index > radix_tree_maxindex(root->height)) { |
| 399 | error = radix_tree_extend(root, index); |
| 400 | if (error) |
| 401 | return error; |
| 402 | } |
| 403 | |
| 404 | slot = indirect_to_ptr(root->rnode); |
| 405 | |
| 406 | height = root->height; |
| 407 | shift = (height-1) * RADIX_TREE_MAP_SHIFT; |
| 408 | |
| 409 | offset = 0; /* uninitialised var warning */ |
| 410 | while (height > 0) { |
| 411 | if (slot == NULL) { |
| 412 | /* Have to add a child node. */ |
| 413 | if (!(slot = radix_tree_node_alloc(root))) |
| 414 | return -ENOMEM; |
| 415 | slot->path = height; |
| 416 | slot->parent = node; |
| 417 | if (node) { |
| 418 | rcu_assign_pointer(node->slots[offset], slot); |
| 419 | node->count++; |
| 420 | slot->path |= offset << RADIX_TREE_HEIGHT_SHIFT; |
| 421 | } else |
| 422 | rcu_assign_pointer(root->rnode, ptr_to_indirect(slot)); |
| 423 | } |
| 424 | |
| 425 | /* Go a level down */ |
| 426 | offset = (index >> shift) & RADIX_TREE_MAP_MASK; |
| 427 | node = slot; |
| 428 | slot = node->slots[offset]; |
| 429 | shift -= RADIX_TREE_MAP_SHIFT; |
| 430 | height--; |
| 431 | } |
| 432 | |
| 433 | if (nodep) |
| 434 | *nodep = node; |
| 435 | if (slotp) |
| 436 | *slotp = node ? node->slots + offset : (void **)&root->rnode; |
| 437 | return 0; |
| 438 | } |
| 439 | |
| 440 | /** |
| 441 | * radix_tree_insert - insert into a radix tree |
| 442 | * @root: radix tree root |
| 443 | * @index: index key |
| 444 | * @item: item to insert |
| 445 | * |
| 446 | * Insert an item into the radix tree at position @index. |
| 447 | */ |
| 448 | int radix_tree_insert(struct radix_tree_root *root, |
| 449 | unsigned long index, void *item) |
| 450 | { |
| 451 | struct radix_tree_node *node; |
| 452 | void **slot; |
| 453 | int error; |
| 454 | |
| 455 | BUG_ON(radix_tree_is_indirect_ptr(item)); |
| 456 | |
| 457 | error = __radix_tree_create(root, index, &node, &slot); |
| 458 | if (error) |
| 459 | return error; |
| 460 | if (*slot != NULL) |
| 461 | return -EEXIST; |
| 462 | rcu_assign_pointer(*slot, item); |
| 463 | |
| 464 | if (node) { |
| 465 | node->count++; |
| 466 | BUG_ON(tag_get(node, 0, index & RADIX_TREE_MAP_MASK)); |
| 467 | BUG_ON(tag_get(node, 1, index & RADIX_TREE_MAP_MASK)); |
| 468 | } else { |
| 469 | BUG_ON(root_tag_get(root, 0)); |
| 470 | BUG_ON(root_tag_get(root, 1)); |
| 471 | } |
| 472 | |
| 473 | return 0; |
| 474 | } |
| 475 | EXPORT_SYMBOL(radix_tree_insert); |
| 476 | |
| 477 | /** |
| 478 | * __radix_tree_lookup - lookup an item in a radix tree |
| 479 | * @root: radix tree root |
| 480 | * @index: index key |
| 481 | * @nodep: returns node |
| 482 | * @slotp: returns slot |
| 483 | * |
| 484 | * Lookup and return the item at position @index in the radix |
| 485 | * tree @root. |
| 486 | * |
| 487 | * Until there is more than one item in the tree, no nodes are |
| 488 | * allocated and @root->rnode is used as a direct slot instead of |
| 489 | * pointing to a node, in which case *@nodep will be NULL. |
| 490 | */ |
| 491 | void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index, |
| 492 | struct radix_tree_node **nodep, void ***slotp) |
| 493 | { |
| 494 | struct radix_tree_node *node, *parent; |
| 495 | unsigned int height, shift; |
| 496 | void **slot; |
| 497 | |
| 498 | node = rcu_dereference_raw(root->rnode); |
| 499 | if (node == NULL) |
| 500 | return NULL; |
| 501 | |
| 502 | if (!radix_tree_is_indirect_ptr(node)) { |
| 503 | if (index > 0) |
| 504 | return NULL; |
| 505 | |
| 506 | if (nodep) |
| 507 | *nodep = NULL; |
| 508 | if (slotp) |
| 509 | *slotp = (void **)&root->rnode; |
| 510 | return node; |
| 511 | } |
| 512 | node = indirect_to_ptr(node); |
| 513 | |
| 514 | height = node->path & RADIX_TREE_HEIGHT_MASK; |
| 515 | if (index > radix_tree_maxindex(height)) |
| 516 | return NULL; |
| 517 | |
| 518 | shift = (height-1) * RADIX_TREE_MAP_SHIFT; |
| 519 | |
| 520 | do { |
| 521 | parent = node; |
| 522 | slot = node->slots + ((index >> shift) & RADIX_TREE_MAP_MASK); |
| 523 | node = rcu_dereference_raw(*slot); |
| 524 | if (node == NULL) |
| 525 | return NULL; |
| 526 | |
| 527 | shift -= RADIX_TREE_MAP_SHIFT; |
| 528 | height--; |
| 529 | } while (height > 0); |
| 530 | |
| 531 | if (nodep) |
| 532 | *nodep = parent; |
| 533 | if (slotp) |
| 534 | *slotp = slot; |
| 535 | return node; |
| 536 | } |
| 537 | |
| 538 | /** |
| 539 | * radix_tree_lookup_slot - lookup a slot in a radix tree |
| 540 | * @root: radix tree root |
| 541 | * @index: index key |
| 542 | * |
| 543 | * Returns: the slot corresponding to the position @index in the |
| 544 | * radix tree @root. This is useful for update-if-exists operations. |
| 545 | * |
| 546 | * This function can be called under rcu_read_lock iff the slot is not |
| 547 | * modified by radix_tree_replace_slot, otherwise it must be called |
| 548 | * exclusive from other writers. Any dereference of the slot must be done |
| 549 | * using radix_tree_deref_slot. |
| 550 | */ |
| 551 | void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index) |
| 552 | { |
| 553 | void **slot; |
| 554 | |
| 555 | if (!__radix_tree_lookup(root, index, NULL, &slot)) |
| 556 | return NULL; |
| 557 | return slot; |
| 558 | } |
| 559 | EXPORT_SYMBOL(radix_tree_lookup_slot); |
| 560 | |
| 561 | /** |
| 562 | * radix_tree_lookup - perform lookup operation on a radix tree |
| 563 | * @root: radix tree root |
| 564 | * @index: index key |
| 565 | * |
| 566 | * Lookup the item at the position @index in the radix tree @root. |
| 567 | * |
| 568 | * This function can be called under rcu_read_lock, however the caller |
| 569 | * must manage lifetimes of leaf nodes (eg. RCU may also be used to free |
| 570 | * them safely). No RCU barriers are required to access or modify the |
| 571 | * returned item, however. |
| 572 | */ |
| 573 | void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index) |
| 574 | { |
| 575 | return __radix_tree_lookup(root, index, NULL, NULL); |
| 576 | } |
| 577 | EXPORT_SYMBOL(radix_tree_lookup); |
| 578 | |
| 579 | /** |
| 580 | * radix_tree_tag_set - set a tag on a radix tree node |
| 581 | * @root: radix tree root |
| 582 | * @index: index key |
| 583 | * @tag: tag index |
| 584 | * |
| 585 | * Set the search tag (which must be < RADIX_TREE_MAX_TAGS) |
| 586 | * corresponding to @index in the radix tree. From |
| 587 | * the root all the way down to the leaf node. |
| 588 | * |
| 589 | * Returns the address of the tagged item. Setting a tag on a not-present |
| 590 | * item is a bug. |
| 591 | */ |
| 592 | void *radix_tree_tag_set(struct radix_tree_root *root, |
| 593 | unsigned long index, unsigned int tag) |
| 594 | { |
| 595 | unsigned int height, shift; |
| 596 | struct radix_tree_node *slot; |
| 597 | |
| 598 | height = root->height; |
| 599 | BUG_ON(index > radix_tree_maxindex(height)); |
| 600 | |
| 601 | slot = indirect_to_ptr(root->rnode); |
| 602 | shift = (height - 1) * RADIX_TREE_MAP_SHIFT; |
| 603 | |
| 604 | while (height > 0) { |
| 605 | int offset; |
| 606 | |
| 607 | offset = (index >> shift) & RADIX_TREE_MAP_MASK; |
| 608 | if (!tag_get(slot, tag, offset)) |
| 609 | tag_set(slot, tag, offset); |
| 610 | slot = slot->slots[offset]; |
| 611 | BUG_ON(slot == NULL); |
| 612 | shift -= RADIX_TREE_MAP_SHIFT; |
| 613 | height--; |
| 614 | } |
| 615 | |
| 616 | /* set the root's tag bit */ |
| 617 | if (slot && !root_tag_get(root, tag)) |
| 618 | root_tag_set(root, tag); |
| 619 | |
| 620 | return slot; |
| 621 | } |
| 622 | EXPORT_SYMBOL(radix_tree_tag_set); |
| 623 | |
| 624 | /** |
| 625 | * radix_tree_tag_clear - clear a tag on a radix tree node |
| 626 | * @root: radix tree root |
| 627 | * @index: index key |
| 628 | * @tag: tag index |
| 629 | * |
| 630 | * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS) |
| 631 | * corresponding to @index in the radix tree. If |
| 632 | * this causes the leaf node to have no tags set then clear the tag in the |
| 633 | * next-to-leaf node, etc. |
| 634 | * |
| 635 | * Returns the address of the tagged item on success, else NULL. ie: |
| 636 | * has the same return value and semantics as radix_tree_lookup(). |
| 637 | */ |
| 638 | void *radix_tree_tag_clear(struct radix_tree_root *root, |
| 639 | unsigned long index, unsigned int tag) |
| 640 | { |
| 641 | struct radix_tree_node *node = NULL; |
| 642 | struct radix_tree_node *slot = NULL; |
| 643 | unsigned int height, shift; |
| 644 | int uninitialized_var(offset); |
| 645 | |
| 646 | height = root->height; |
| 647 | if (index > radix_tree_maxindex(height)) |
| 648 | goto out; |
| 649 | |
| 650 | shift = height * RADIX_TREE_MAP_SHIFT; |
| 651 | slot = indirect_to_ptr(root->rnode); |
| 652 | |
| 653 | while (shift) { |
| 654 | if (slot == NULL) |
| 655 | goto out; |
| 656 | |
| 657 | shift -= RADIX_TREE_MAP_SHIFT; |
| 658 | offset = (index >> shift) & RADIX_TREE_MAP_MASK; |
| 659 | node = slot; |
| 660 | slot = slot->slots[offset]; |
| 661 | } |
| 662 | |
| 663 | if (slot == NULL) |
| 664 | goto out; |
| 665 | |
| 666 | while (node) { |
| 667 | if (!tag_get(node, tag, offset)) |
| 668 | goto out; |
| 669 | tag_clear(node, tag, offset); |
| 670 | if (any_tag_set(node, tag)) |
| 671 | goto out; |
| 672 | |
| 673 | index >>= RADIX_TREE_MAP_SHIFT; |
| 674 | offset = index & RADIX_TREE_MAP_MASK; |
| 675 | node = node->parent; |
| 676 | } |
| 677 | |
| 678 | /* clear the root's tag bit */ |
| 679 | if (root_tag_get(root, tag)) |
| 680 | root_tag_clear(root, tag); |
| 681 | |
| 682 | out: |
| 683 | return slot; |
| 684 | } |
| 685 | EXPORT_SYMBOL(radix_tree_tag_clear); |
| 686 | |
| 687 | /** |
| 688 | * radix_tree_tag_get - get a tag on a radix tree node |
| 689 | * @root: radix tree root |
| 690 | * @index: index key |
| 691 | * @tag: tag index (< RADIX_TREE_MAX_TAGS) |
| 692 | * |
| 693 | * Return values: |
| 694 | * |
| 695 | * 0: tag not present or not set |
| 696 | * 1: tag set |
| 697 | * |
| 698 | * Note that the return value of this function may not be relied on, even if |
| 699 | * the RCU lock is held, unless tag modification and node deletion are excluded |
| 700 | * from concurrency. |
| 701 | */ |
| 702 | int radix_tree_tag_get(struct radix_tree_root *root, |
| 703 | unsigned long index, unsigned int tag) |
| 704 | { |
| 705 | unsigned int height, shift; |
| 706 | struct radix_tree_node *node; |
| 707 | |
| 708 | /* check the root's tag bit */ |
| 709 | if (!root_tag_get(root, tag)) |
| 710 | return 0; |
| 711 | |
| 712 | node = rcu_dereference_raw(root->rnode); |
| 713 | if (node == NULL) |
| 714 | return 0; |
| 715 | |
| 716 | if (!radix_tree_is_indirect_ptr(node)) |
| 717 | return (index == 0); |
| 718 | node = indirect_to_ptr(node); |
| 719 | |
| 720 | height = node->path & RADIX_TREE_HEIGHT_MASK; |
| 721 | if (index > radix_tree_maxindex(height)) |
| 722 | return 0; |
| 723 | |
| 724 | shift = (height - 1) * RADIX_TREE_MAP_SHIFT; |
| 725 | |
| 726 | for ( ; ; ) { |
| 727 | int offset; |
| 728 | |
| 729 | if (node == NULL) |
| 730 | return 0; |
| 731 | |
| 732 | offset = (index >> shift) & RADIX_TREE_MAP_MASK; |
| 733 | if (!tag_get(node, tag, offset)) |
| 734 | return 0; |
| 735 | if (height == 1) |
| 736 | return 1; |
| 737 | node = rcu_dereference_raw(node->slots[offset]); |
| 738 | shift -= RADIX_TREE_MAP_SHIFT; |
| 739 | height--; |
| 740 | } |
| 741 | } |
| 742 | EXPORT_SYMBOL(radix_tree_tag_get); |
| 743 | |
| 744 | /** |
| 745 | * radix_tree_next_chunk - find next chunk of slots for iteration |
| 746 | * |
| 747 | * @root: radix tree root |
| 748 | * @iter: iterator state |
| 749 | * @flags: RADIX_TREE_ITER_* flags and tag index |
| 750 | * Returns: pointer to chunk first slot, or NULL if iteration is over |
| 751 | */ |
| 752 | void **radix_tree_next_chunk(struct radix_tree_root *root, |
| 753 | struct radix_tree_iter *iter, unsigned flags) |
| 754 | { |
| 755 | unsigned shift, tag = flags & RADIX_TREE_ITER_TAG_MASK; |
| 756 | struct radix_tree_node *rnode, *node; |
| 757 | unsigned long index, offset, height; |
| 758 | |
| 759 | if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag)) |
| 760 | return NULL; |
| 761 | |
| 762 | /* |
| 763 | * Catch next_index overflow after ~0UL. iter->index never overflows |
| 764 | * during iterating; it can be zero only at the beginning. |
| 765 | * And we cannot overflow iter->next_index in a single step, |
| 766 | * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG. |
| 767 | * |
| 768 | * This condition also used by radix_tree_next_slot() to stop |
| 769 | * contiguous iterating, and forbid swithing to the next chunk. |
| 770 | */ |
| 771 | index = iter->next_index; |
| 772 | if (!index && iter->index) |
| 773 | return NULL; |
| 774 | |
| 775 | rnode = rcu_dereference_raw(root->rnode); |
| 776 | if (radix_tree_is_indirect_ptr(rnode)) { |
| 777 | rnode = indirect_to_ptr(rnode); |
| 778 | } else if (rnode && !index) { |
| 779 | /* Single-slot tree */ |
| 780 | iter->index = 0; |
| 781 | iter->next_index = 1; |
| 782 | iter->tags = 1; |
| 783 | return (void **)&root->rnode; |
| 784 | } else |
| 785 | return NULL; |
| 786 | |
| 787 | restart: |
| 788 | height = rnode->path & RADIX_TREE_HEIGHT_MASK; |
| 789 | shift = (height - 1) * RADIX_TREE_MAP_SHIFT; |
| 790 | offset = index >> shift; |
| 791 | |
| 792 | /* Index outside of the tree */ |
| 793 | if (offset >= RADIX_TREE_MAP_SIZE) |
| 794 | return NULL; |
| 795 | |
| 796 | node = rnode; |
| 797 | while (1) { |
| 798 | if ((flags & RADIX_TREE_ITER_TAGGED) ? |
| 799 | !test_bit(offset, node->tags[tag]) : |
| 800 | !node->slots[offset]) { |
| 801 | /* Hole detected */ |
| 802 | if (flags & RADIX_TREE_ITER_CONTIG) |
| 803 | return NULL; |
| 804 | |
| 805 | if (flags & RADIX_TREE_ITER_TAGGED) |
| 806 | offset = radix_tree_find_next_bit( |
| 807 | node->tags[tag], |
| 808 | RADIX_TREE_MAP_SIZE, |
| 809 | offset + 1); |
| 810 | else |
| 811 | while (++offset < RADIX_TREE_MAP_SIZE) { |
| 812 | if (node->slots[offset]) |
| 813 | break; |
| 814 | } |
| 815 | index &= ~((RADIX_TREE_MAP_SIZE << shift) - 1); |
| 816 | index += offset << shift; |
| 817 | /* Overflow after ~0UL */ |
| 818 | if (!index) |
| 819 | return NULL; |
| 820 | if (offset == RADIX_TREE_MAP_SIZE) |
| 821 | goto restart; |
| 822 | } |
| 823 | |
| 824 | /* This is leaf-node */ |
| 825 | if (!shift) |
| 826 | break; |
| 827 | |
| 828 | node = rcu_dereference_raw(node->slots[offset]); |
| 829 | if (node == NULL) |
| 830 | goto restart; |
| 831 | shift -= RADIX_TREE_MAP_SHIFT; |
| 832 | offset = (index >> shift) & RADIX_TREE_MAP_MASK; |
| 833 | } |
| 834 | |
| 835 | /* Update the iterator state */ |
| 836 | iter->index = index; |
| 837 | iter->next_index = (index | RADIX_TREE_MAP_MASK) + 1; |
| 838 | |
| 839 | /* Construct iter->tags bit-mask from node->tags[tag] array */ |
| 840 | if (flags & RADIX_TREE_ITER_TAGGED) { |
| 841 | unsigned tag_long, tag_bit; |
| 842 | |
| 843 | tag_long = offset / BITS_PER_LONG; |
| 844 | tag_bit = offset % BITS_PER_LONG; |
| 845 | iter->tags = node->tags[tag][tag_long] >> tag_bit; |
| 846 | /* This never happens if RADIX_TREE_TAG_LONGS == 1 */ |
| 847 | if (tag_long < RADIX_TREE_TAG_LONGS - 1) { |
| 848 | /* Pick tags from next element */ |
| 849 | if (tag_bit) |
| 850 | iter->tags |= node->tags[tag][tag_long + 1] << |
| 851 | (BITS_PER_LONG - tag_bit); |
| 852 | /* Clip chunk size, here only BITS_PER_LONG tags */ |
| 853 | iter->next_index = index + BITS_PER_LONG; |
| 854 | } |
| 855 | } |
| 856 | |
| 857 | return node->slots + offset; |
| 858 | } |
| 859 | EXPORT_SYMBOL(radix_tree_next_chunk); |
| 860 | |
| 861 | /** |
| 862 | * radix_tree_range_tag_if_tagged - for each item in given range set given |
| 863 | * tag if item has another tag set |
| 864 | * @root: radix tree root |
| 865 | * @first_indexp: pointer to a starting index of a range to scan |
| 866 | * @last_index: last index of a range to scan |
| 867 | * @nr_to_tag: maximum number items to tag |
| 868 | * @iftag: tag index to test |
| 869 | * @settag: tag index to set if tested tag is set |
| 870 | * |
| 871 | * This function scans range of radix tree from first_index to last_index |
| 872 | * (inclusive). For each item in the range if iftag is set, the function sets |
| 873 | * also settag. The function stops either after tagging nr_to_tag items or |
| 874 | * after reaching last_index. |
| 875 | * |
| 876 | * The tags must be set from the leaf level only and propagated back up the |
| 877 | * path to the root. We must do this so that we resolve the full path before |
| 878 | * setting any tags on intermediate nodes. If we set tags as we descend, then |
| 879 | * we can get to the leaf node and find that the index that has the iftag |
| 880 | * set is outside the range we are scanning. This reults in dangling tags and |
| 881 | * can lead to problems with later tag operations (e.g. livelocks on lookups). |
| 882 | * |
| 883 | * The function returns number of leaves where the tag was set and sets |
| 884 | * *first_indexp to the first unscanned index. |
| 885 | * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must |
| 886 | * be prepared to handle that. |
| 887 | */ |
| 888 | unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root, |
| 889 | unsigned long *first_indexp, unsigned long last_index, |
| 890 | unsigned long nr_to_tag, |
| 891 | unsigned int iftag, unsigned int settag) |
| 892 | { |
| 893 | unsigned int height = root->height; |
| 894 | struct radix_tree_node *node = NULL; |
| 895 | struct radix_tree_node *slot; |
| 896 | unsigned int shift; |
| 897 | unsigned long tagged = 0; |
| 898 | unsigned long index = *first_indexp; |
| 899 | |
| 900 | last_index = min(last_index, radix_tree_maxindex(height)); |
| 901 | if (index > last_index) |
| 902 | return 0; |
| 903 | if (!nr_to_tag) |
| 904 | return 0; |
| 905 | if (!root_tag_get(root, iftag)) { |
| 906 | *first_indexp = last_index + 1; |
| 907 | return 0; |
| 908 | } |
| 909 | if (height == 0) { |
| 910 | *first_indexp = last_index + 1; |
| 911 | root_tag_set(root, settag); |
| 912 | return 1; |
| 913 | } |
| 914 | |
| 915 | shift = (height - 1) * RADIX_TREE_MAP_SHIFT; |
| 916 | slot = indirect_to_ptr(root->rnode); |
| 917 | |
| 918 | for (;;) { |
| 919 | unsigned long upindex; |
| 920 | int offset; |
| 921 | |
| 922 | offset = (index >> shift) & RADIX_TREE_MAP_MASK; |
| 923 | if (!slot->slots[offset]) |
| 924 | goto next; |
| 925 | if (!tag_get(slot, iftag, offset)) |
| 926 | goto next; |
| 927 | if (shift) { |
| 928 | /* Go down one level */ |
| 929 | shift -= RADIX_TREE_MAP_SHIFT; |
| 930 | node = slot; |
| 931 | slot = slot->slots[offset]; |
| 932 | continue; |
| 933 | } |
| 934 | |
| 935 | /* tag the leaf */ |
| 936 | tagged++; |
| 937 | tag_set(slot, settag, offset); |
| 938 | |
| 939 | /* walk back up the path tagging interior nodes */ |
| 940 | upindex = index; |
| 941 | while (node) { |
| 942 | upindex >>= RADIX_TREE_MAP_SHIFT; |
| 943 | offset = upindex & RADIX_TREE_MAP_MASK; |
| 944 | |
| 945 | /* stop if we find a node with the tag already set */ |
| 946 | if (tag_get(node, settag, offset)) |
| 947 | break; |
| 948 | tag_set(node, settag, offset); |
| 949 | node = node->parent; |
| 950 | } |
| 951 | |
| 952 | /* |
| 953 | * Small optimization: now clear that node pointer. |
| 954 | * Since all of this slot's ancestors now have the tag set |
| 955 | * from setting it above, we have no further need to walk |
| 956 | * back up the tree setting tags, until we update slot to |
| 957 | * point to another radix_tree_node. |
| 958 | */ |
| 959 | node = NULL; |
| 960 | |
| 961 | next: |
| 962 | /* Go to next item at level determined by 'shift' */ |
| 963 | index = ((index >> shift) + 1) << shift; |
| 964 | /* Overflow can happen when last_index is ~0UL... */ |
| 965 | if (index > last_index || !index) |
| 966 | break; |
| 967 | if (tagged >= nr_to_tag) |
| 968 | break; |
| 969 | while (((index >> shift) & RADIX_TREE_MAP_MASK) == 0) { |
| 970 | /* |
| 971 | * We've fully scanned this node. Go up. Because |
| 972 | * last_index is guaranteed to be in the tree, what |
| 973 | * we do below cannot wander astray. |
| 974 | */ |
| 975 | slot = slot->parent; |
| 976 | shift += RADIX_TREE_MAP_SHIFT; |
| 977 | } |
| 978 | } |
| 979 | /* |
| 980 | * We need not to tag the root tag if there is no tag which is set with |
| 981 | * settag within the range from *first_indexp to last_index. |
| 982 | */ |
| 983 | if (tagged > 0) |
| 984 | root_tag_set(root, settag); |
| 985 | *first_indexp = index; |
| 986 | |
| 987 | return tagged; |
| 988 | } |
| 989 | EXPORT_SYMBOL(radix_tree_range_tag_if_tagged); |
| 990 | |
| 991 | /** |
| 992 | * radix_tree_gang_lookup - perform multiple lookup on a radix tree |
| 993 | * @root: radix tree root |
| 994 | * @results: where the results of the lookup are placed |
| 995 | * @first_index: start the lookup from this key |
| 996 | * @max_items: place up to this many items at *results |
| 997 | * |
| 998 | * Performs an index-ascending scan of the tree for present items. Places |
| 999 | * them at *@results and returns the number of items which were placed at |
| 1000 | * *@results. |
| 1001 | * |
| 1002 | * The implementation is naive. |
| 1003 | * |
| 1004 | * Like radix_tree_lookup, radix_tree_gang_lookup may be called under |
| 1005 | * rcu_read_lock. In this case, rather than the returned results being |
| 1006 | * an atomic snapshot of the tree at a single point in time, the semantics |
| 1007 | * of an RCU protected gang lookup are as though multiple radix_tree_lookups |
| 1008 | * have been issued in individual locks, and results stored in 'results'. |
| 1009 | */ |
| 1010 | unsigned int |
| 1011 | radix_tree_gang_lookup(struct radix_tree_root *root, void **results, |
| 1012 | unsigned long first_index, unsigned int max_items) |
| 1013 | { |
| 1014 | struct radix_tree_iter iter; |
| 1015 | void **slot; |
| 1016 | unsigned int ret = 0; |
| 1017 | |
| 1018 | if (unlikely(!max_items)) |
| 1019 | return 0; |
| 1020 | |
| 1021 | radix_tree_for_each_slot(slot, root, &iter, first_index) { |
| 1022 | results[ret] = rcu_dereference_raw(*slot); |
| 1023 | if (!results[ret]) |
| 1024 | continue; |
| 1025 | if (radix_tree_is_indirect_ptr(results[ret])) { |
| 1026 | slot = radix_tree_iter_retry(&iter); |
| 1027 | continue; |
| 1028 | } |
| 1029 | if (++ret == max_items) |
| 1030 | break; |
| 1031 | } |
| 1032 | |
| 1033 | return ret; |
| 1034 | } |
| 1035 | EXPORT_SYMBOL(radix_tree_gang_lookup); |
| 1036 | |
| 1037 | /** |
| 1038 | * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree |
| 1039 | * @root: radix tree root |
| 1040 | * @results: where the results of the lookup are placed |
| 1041 | * @indices: where their indices should be placed (but usually NULL) |
| 1042 | * @first_index: start the lookup from this key |
| 1043 | * @max_items: place up to this many items at *results |
| 1044 | * |
| 1045 | * Performs an index-ascending scan of the tree for present items. Places |
| 1046 | * their slots at *@results and returns the number of items which were |
| 1047 | * placed at *@results. |
| 1048 | * |
| 1049 | * The implementation is naive. |
| 1050 | * |
| 1051 | * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must |
| 1052 | * be dereferenced with radix_tree_deref_slot, and if using only RCU |
| 1053 | * protection, radix_tree_deref_slot may fail requiring a retry. |
| 1054 | */ |
| 1055 | unsigned int |
| 1056 | radix_tree_gang_lookup_slot(struct radix_tree_root *root, |
| 1057 | void ***results, unsigned long *indices, |
| 1058 | unsigned long first_index, unsigned int max_items) |
| 1059 | { |
| 1060 | struct radix_tree_iter iter; |
| 1061 | void **slot; |
| 1062 | unsigned int ret = 0; |
| 1063 | |
| 1064 | if (unlikely(!max_items)) |
| 1065 | return 0; |
| 1066 | |
| 1067 | radix_tree_for_each_slot(slot, root, &iter, first_index) { |
| 1068 | results[ret] = slot; |
| 1069 | if (indices) |
| 1070 | indices[ret] = iter.index; |
| 1071 | if (++ret == max_items) |
| 1072 | break; |
| 1073 | } |
| 1074 | |
| 1075 | return ret; |
| 1076 | } |
| 1077 | EXPORT_SYMBOL(radix_tree_gang_lookup_slot); |
| 1078 | |
| 1079 | /** |
| 1080 | * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree |
| 1081 | * based on a tag |
| 1082 | * @root: radix tree root |
| 1083 | * @results: where the results of the lookup are placed |
| 1084 | * @first_index: start the lookup from this key |
| 1085 | * @max_items: place up to this many items at *results |
| 1086 | * @tag: the tag index (< RADIX_TREE_MAX_TAGS) |
| 1087 | * |
| 1088 | * Performs an index-ascending scan of the tree for present items which |
| 1089 | * have the tag indexed by @tag set. Places the items at *@results and |
| 1090 | * returns the number of items which were placed at *@results. |
| 1091 | */ |
| 1092 | unsigned int |
| 1093 | radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results, |
| 1094 | unsigned long first_index, unsigned int max_items, |
| 1095 | unsigned int tag) |
| 1096 | { |
| 1097 | struct radix_tree_iter iter; |
| 1098 | void **slot; |
| 1099 | unsigned int ret = 0; |
| 1100 | |
| 1101 | if (unlikely(!max_items)) |
| 1102 | return 0; |
| 1103 | |
| 1104 | radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) { |
| 1105 | results[ret] = rcu_dereference_raw(*slot); |
| 1106 | if (!results[ret]) |
| 1107 | continue; |
| 1108 | if (radix_tree_is_indirect_ptr(results[ret])) { |
| 1109 | slot = radix_tree_iter_retry(&iter); |
| 1110 | continue; |
| 1111 | } |
| 1112 | if (++ret == max_items) |
| 1113 | break; |
| 1114 | } |
| 1115 | |
| 1116 | return ret; |
| 1117 | } |
| 1118 | EXPORT_SYMBOL(radix_tree_gang_lookup_tag); |
| 1119 | |
| 1120 | /** |
| 1121 | * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a |
| 1122 | * radix tree based on a tag |
| 1123 | * @root: radix tree root |
| 1124 | * @results: where the results of the lookup are placed |
| 1125 | * @first_index: start the lookup from this key |
| 1126 | * @max_items: place up to this many items at *results |
| 1127 | * @tag: the tag index (< RADIX_TREE_MAX_TAGS) |
| 1128 | * |
| 1129 | * Performs an index-ascending scan of the tree for present items which |
| 1130 | * have the tag indexed by @tag set. Places the slots at *@results and |
| 1131 | * returns the number of slots which were placed at *@results. |
| 1132 | */ |
| 1133 | unsigned int |
| 1134 | radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results, |
| 1135 | unsigned long first_index, unsigned int max_items, |
| 1136 | unsigned int tag) |
| 1137 | { |
| 1138 | struct radix_tree_iter iter; |
| 1139 | void **slot; |
| 1140 | unsigned int ret = 0; |
| 1141 | |
| 1142 | if (unlikely(!max_items)) |
| 1143 | return 0; |
| 1144 | |
| 1145 | radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) { |
| 1146 | results[ret] = slot; |
| 1147 | if (++ret == max_items) |
| 1148 | break; |
| 1149 | } |
| 1150 | |
| 1151 | return ret; |
| 1152 | } |
| 1153 | EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot); |
| 1154 | |
| 1155 | #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP) |
| 1156 | #include <linux/sched.h> /* for cond_resched() */ |
| 1157 | |
| 1158 | /* |
| 1159 | * This linear search is at present only useful to shmem_unuse_inode(). |
| 1160 | */ |
| 1161 | static unsigned long __locate(struct radix_tree_node *slot, void *item, |
| 1162 | unsigned long index, unsigned long *found_index) |
| 1163 | { |
| 1164 | unsigned int shift, height; |
| 1165 | unsigned long i; |
| 1166 | |
| 1167 | height = slot->path & RADIX_TREE_HEIGHT_MASK; |
| 1168 | shift = (height-1) * RADIX_TREE_MAP_SHIFT; |
| 1169 | |
| 1170 | for ( ; height > 1; height--) { |
| 1171 | i = (index >> shift) & RADIX_TREE_MAP_MASK; |
| 1172 | for (;;) { |
| 1173 | if (slot->slots[i] != NULL) |
| 1174 | break; |
| 1175 | index &= ~((1UL << shift) - 1); |
| 1176 | index += 1UL << shift; |
| 1177 | if (index == 0) |
| 1178 | goto out; /* 32-bit wraparound */ |
| 1179 | i++; |
| 1180 | if (i == RADIX_TREE_MAP_SIZE) |
| 1181 | goto out; |
| 1182 | } |
| 1183 | |
| 1184 | shift -= RADIX_TREE_MAP_SHIFT; |
| 1185 | slot = rcu_dereference_raw(slot->slots[i]); |
| 1186 | if (slot == NULL) |
| 1187 | goto out; |
| 1188 | } |
| 1189 | |
| 1190 | /* Bottom level: check items */ |
| 1191 | for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) { |
| 1192 | if (slot->slots[i] == item) { |
| 1193 | *found_index = index + i; |
| 1194 | index = 0; |
| 1195 | goto out; |
| 1196 | } |
| 1197 | } |
| 1198 | index += RADIX_TREE_MAP_SIZE; |
| 1199 | out: |
| 1200 | return index; |
| 1201 | } |
| 1202 | |
| 1203 | /** |
| 1204 | * radix_tree_locate_item - search through radix tree for item |
| 1205 | * @root: radix tree root |
| 1206 | * @item: item to be found |
| 1207 | * |
| 1208 | * Returns index where item was found, or -1 if not found. |
| 1209 | * Caller must hold no lock (since this time-consuming function needs |
| 1210 | * to be preemptible), and must check afterwards if item is still there. |
| 1211 | */ |
| 1212 | unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item) |
| 1213 | { |
| 1214 | struct radix_tree_node *node; |
| 1215 | unsigned long max_index; |
| 1216 | unsigned long cur_index = 0; |
| 1217 | unsigned long found_index = -1; |
| 1218 | |
| 1219 | do { |
| 1220 | rcu_read_lock(); |
| 1221 | node = rcu_dereference_raw(root->rnode); |
| 1222 | if (!radix_tree_is_indirect_ptr(node)) { |
| 1223 | rcu_read_unlock(); |
| 1224 | if (node == item) |
| 1225 | found_index = 0; |
| 1226 | break; |
| 1227 | } |
| 1228 | |
| 1229 | node = indirect_to_ptr(node); |
| 1230 | max_index = radix_tree_maxindex(node->path & |
| 1231 | RADIX_TREE_HEIGHT_MASK); |
| 1232 | if (cur_index > max_index) { |
| 1233 | rcu_read_unlock(); |
| 1234 | break; |
| 1235 | } |
| 1236 | |
| 1237 | cur_index = __locate(node, item, cur_index, &found_index); |
| 1238 | rcu_read_unlock(); |
| 1239 | cond_resched(); |
| 1240 | } while (cur_index != 0 && cur_index <= max_index); |
| 1241 | |
| 1242 | return found_index; |
| 1243 | } |
| 1244 | #else |
| 1245 | unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item) |
| 1246 | { |
| 1247 | return -1; |
| 1248 | } |
| 1249 | #endif /* CONFIG_SHMEM && CONFIG_SWAP */ |
| 1250 | |
| 1251 | /** |
| 1252 | * radix_tree_shrink - shrink height of a radix tree to minimal |
| 1253 | * @root radix tree root |
| 1254 | */ |
| 1255 | static inline void radix_tree_shrink(struct radix_tree_root *root) |
| 1256 | { |
| 1257 | /* try to shrink tree height */ |
| 1258 | while (root->height > 0) { |
| 1259 | struct radix_tree_node *to_free = root->rnode; |
| 1260 | struct radix_tree_node *slot; |
| 1261 | |
| 1262 | BUG_ON(!radix_tree_is_indirect_ptr(to_free)); |
| 1263 | to_free = indirect_to_ptr(to_free); |
| 1264 | |
| 1265 | /* |
| 1266 | * The candidate node has more than one child, or its child |
| 1267 | * is not at the leftmost slot, we cannot shrink. |
| 1268 | */ |
| 1269 | if (to_free->count != 1) |
| 1270 | break; |
| 1271 | if (!to_free->slots[0]) |
| 1272 | break; |
| 1273 | |
| 1274 | /* |
| 1275 | * We don't need rcu_assign_pointer(), since we are simply |
| 1276 | * moving the node from one part of the tree to another: if it |
| 1277 | * was safe to dereference the old pointer to it |
| 1278 | * (to_free->slots[0]), it will be safe to dereference the new |
| 1279 | * one (root->rnode) as far as dependent read barriers go. |
| 1280 | */ |
| 1281 | slot = to_free->slots[0]; |
| 1282 | if (root->height > 1) { |
| 1283 | slot->parent = NULL; |
| 1284 | slot = ptr_to_indirect(slot); |
| 1285 | } |
| 1286 | root->rnode = slot; |
| 1287 | root->height--; |
| 1288 | |
| 1289 | /* |
| 1290 | * We have a dilemma here. The node's slot[0] must not be |
| 1291 | * NULLed in case there are concurrent lookups expecting to |
| 1292 | * find the item. However if this was a bottom-level node, |
| 1293 | * then it may be subject to the slot pointer being visible |
| 1294 | * to callers dereferencing it. If item corresponding to |
| 1295 | * slot[0] is subsequently deleted, these callers would expect |
| 1296 | * their slot to become empty sooner or later. |
| 1297 | * |
| 1298 | * For example, lockless pagecache will look up a slot, deref |
| 1299 | * the page pointer, and if the page is 0 refcount it means it |
| 1300 | * was concurrently deleted from pagecache so try the deref |
| 1301 | * again. Fortunately there is already a requirement for logic |
| 1302 | * to retry the entire slot lookup -- the indirect pointer |
| 1303 | * problem (replacing direct root node with an indirect pointer |
| 1304 | * also results in a stale slot). So tag the slot as indirect |
| 1305 | * to force callers to retry. |
| 1306 | */ |
| 1307 | if (root->height == 0) |
| 1308 | *((unsigned long *)&to_free->slots[0]) |= |
| 1309 | RADIX_TREE_INDIRECT_PTR; |
| 1310 | |
| 1311 | radix_tree_node_free(to_free); |
| 1312 | } |
| 1313 | } |
| 1314 | |
| 1315 | /** |
| 1316 | * __radix_tree_delete_node - try to free node after clearing a slot |
| 1317 | * @root: radix tree root |
| 1318 | * @node: node containing @index |
| 1319 | * |
| 1320 | * After clearing the slot at @index in @node from radix tree |
| 1321 | * rooted at @root, call this function to attempt freeing the |
| 1322 | * node and shrinking the tree. |
| 1323 | * |
| 1324 | * Returns %true if @node was freed, %false otherwise. |
| 1325 | */ |
| 1326 | bool __radix_tree_delete_node(struct radix_tree_root *root, |
| 1327 | struct radix_tree_node *node) |
| 1328 | { |
| 1329 | bool deleted = false; |
| 1330 | |
| 1331 | do { |
| 1332 | struct radix_tree_node *parent; |
| 1333 | |
| 1334 | if (node->count) { |
| 1335 | if (node == indirect_to_ptr(root->rnode)) { |
| 1336 | radix_tree_shrink(root); |
| 1337 | if (root->height == 0) |
| 1338 | deleted = true; |
| 1339 | } |
| 1340 | return deleted; |
| 1341 | } |
| 1342 | |
| 1343 | parent = node->parent; |
| 1344 | if (parent) { |
| 1345 | unsigned int offset; |
| 1346 | |
| 1347 | offset = node->path >> RADIX_TREE_HEIGHT_SHIFT; |
| 1348 | parent->slots[offset] = NULL; |
| 1349 | parent->count--; |
| 1350 | } else { |
| 1351 | root_tag_clear_all(root); |
| 1352 | root->height = 0; |
| 1353 | root->rnode = NULL; |
| 1354 | } |
| 1355 | |
| 1356 | radix_tree_node_free(node); |
| 1357 | deleted = true; |
| 1358 | |
| 1359 | node = parent; |
| 1360 | } while (node); |
| 1361 | |
| 1362 | return deleted; |
| 1363 | } |
| 1364 | |
| 1365 | /** |
| 1366 | * radix_tree_delete_item - delete an item from a radix tree |
| 1367 | * @root: radix tree root |
| 1368 | * @index: index key |
| 1369 | * @item: expected item |
| 1370 | * |
| 1371 | * Remove @item at @index from the radix tree rooted at @root. |
| 1372 | * |
| 1373 | * Returns the address of the deleted item, or NULL if it was not present |
| 1374 | * or the entry at the given @index was not @item. |
| 1375 | */ |
| 1376 | void *radix_tree_delete_item(struct radix_tree_root *root, |
| 1377 | unsigned long index, void *item) |
| 1378 | { |
| 1379 | struct radix_tree_node *node; |
| 1380 | unsigned int offset; |
| 1381 | void **slot; |
| 1382 | void *entry; |
| 1383 | int tag; |
| 1384 | |
| 1385 | entry = __radix_tree_lookup(root, index, &node, &slot); |
| 1386 | if (!entry) |
| 1387 | return NULL; |
| 1388 | |
| 1389 | if (item && entry != item) |
| 1390 | return NULL; |
| 1391 | |
| 1392 | if (!node) { |
| 1393 | root_tag_clear_all(root); |
| 1394 | root->rnode = NULL; |
| 1395 | return entry; |
| 1396 | } |
| 1397 | |
| 1398 | offset = index & RADIX_TREE_MAP_MASK; |
| 1399 | |
| 1400 | /* |
| 1401 | * Clear all tags associated with the item to be deleted. |
| 1402 | * This way of doing it would be inefficient, but seldom is any set. |
| 1403 | */ |
| 1404 | for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) { |
| 1405 | if (tag_get(node, tag, offset)) |
| 1406 | radix_tree_tag_clear(root, index, tag); |
| 1407 | } |
| 1408 | |
| 1409 | node->slots[offset] = NULL; |
| 1410 | node->count--; |
| 1411 | |
| 1412 | __radix_tree_delete_node(root, node); |
| 1413 | |
| 1414 | return entry; |
| 1415 | } |
| 1416 | EXPORT_SYMBOL(radix_tree_delete_item); |
| 1417 | |
| 1418 | /** |
| 1419 | * radix_tree_delete - delete an item from a radix tree |
| 1420 | * @root: radix tree root |
| 1421 | * @index: index key |
| 1422 | * |
| 1423 | * Remove the item at @index from the radix tree rooted at @root. |
| 1424 | * |
| 1425 | * Returns the address of the deleted item, or NULL if it was not present. |
| 1426 | */ |
| 1427 | void *radix_tree_delete(struct radix_tree_root *root, unsigned long index) |
| 1428 | { |
| 1429 | return radix_tree_delete_item(root, index, NULL); |
| 1430 | } |
| 1431 | EXPORT_SYMBOL(radix_tree_delete); |
| 1432 | |
| 1433 | /** |
| 1434 | * radix_tree_tagged - test whether any items in the tree are tagged |
| 1435 | * @root: radix tree root |
| 1436 | * @tag: tag to test |
| 1437 | */ |
| 1438 | int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag) |
| 1439 | { |
| 1440 | return root_tag_get(root, tag); |
| 1441 | } |
| 1442 | EXPORT_SYMBOL(radix_tree_tagged); |
| 1443 | |
| 1444 | static void |
| 1445 | radix_tree_node_ctor(void *arg) |
| 1446 | { |
| 1447 | struct radix_tree_node *node = arg; |
| 1448 | |
| 1449 | memset(node, 0, sizeof(*node)); |
| 1450 | INIT_LIST_HEAD(&node->private_list); |
| 1451 | } |
| 1452 | |
| 1453 | static __init unsigned long __maxindex(unsigned int height) |
| 1454 | { |
| 1455 | unsigned int width = height * RADIX_TREE_MAP_SHIFT; |
| 1456 | int shift = RADIX_TREE_INDEX_BITS - width; |
| 1457 | |
| 1458 | if (shift < 0) |
| 1459 | return ~0UL; |
| 1460 | if (shift >= BITS_PER_LONG) |
| 1461 | return 0UL; |
| 1462 | return ~0UL >> shift; |
| 1463 | } |
| 1464 | |
| 1465 | static __init void radix_tree_init_maxindex(void) |
| 1466 | { |
| 1467 | unsigned int i; |
| 1468 | |
| 1469 | for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++) |
| 1470 | height_to_maxindex[i] = __maxindex(i); |
| 1471 | } |
| 1472 | |
| 1473 | static int radix_tree_callback(struct notifier_block *nfb, |
| 1474 | unsigned long action, |
| 1475 | void *hcpu) |
| 1476 | { |
| 1477 | int cpu = (long)hcpu; |
| 1478 | struct radix_tree_preload *rtp; |
| 1479 | struct radix_tree_node *node; |
| 1480 | |
| 1481 | /* Free per-cpu pool of perloaded nodes */ |
| 1482 | if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { |
| 1483 | rtp = &per_cpu(radix_tree_preloads, cpu); |
| 1484 | while (rtp->nr) { |
| 1485 | node = rtp->nodes; |
| 1486 | rtp->nodes = node->private_data; |
| 1487 | kmem_cache_free(radix_tree_node_cachep, node); |
| 1488 | rtp->nr--; |
| 1489 | } |
| 1490 | } |
| 1491 | return NOTIFY_OK; |
| 1492 | } |
| 1493 | |
| 1494 | void __init radix_tree_init(void) |
| 1495 | { |
| 1496 | radix_tree_node_cachep = kmem_cache_create("radix_tree_node", |
| 1497 | sizeof(struct radix_tree_node), 0, |
| 1498 | SLAB_PANIC | SLAB_RECLAIM_ACCOUNT, |
| 1499 | radix_tree_node_ctor); |
| 1500 | radix_tree_init_maxindex(); |
| 1501 | hotcpu_notifier(radix_tree_callback, 0); |
| 1502 | } |