Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (c) 2006 Oracle. All rights reserved. |
| 3 | * |
| 4 | * This software is available to you under a choice of one of two |
| 5 | * licenses. You may choose to be licensed under the terms of the GNU |
| 6 | * General Public License (GPL) Version 2, available from the file |
| 7 | * COPYING in the main directory of this source tree, or the |
| 8 | * OpenIB.org BSD license below: |
| 9 | * |
| 10 | * Redistribution and use in source and binary forms, with or |
| 11 | * without modification, are permitted provided that the following |
| 12 | * conditions are met: |
| 13 | * |
| 14 | * - Redistributions of source code must retain the above |
| 15 | * copyright notice, this list of conditions and the following |
| 16 | * disclaimer. |
| 17 | * |
| 18 | * - Redistributions in binary form must reproduce the above |
| 19 | * copyright notice, this list of conditions and the following |
| 20 | * disclaimer in the documentation and/or other materials |
| 21 | * provided with the distribution. |
| 22 | * |
| 23 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| 24 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| 25 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| 26 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| 27 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| 28 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| 29 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 30 | * SOFTWARE. |
| 31 | * |
| 32 | */ |
| 33 | #include <linux/kernel.h> |
| 34 | #include <linux/slab.h> |
| 35 | #include <linux/pci.h> |
| 36 | #include <linux/dma-mapping.h> |
| 37 | #include <rdma/rdma_cm.h> |
| 38 | |
| 39 | #include "rds.h" |
| 40 | #include "ib.h" |
| 41 | |
| 42 | static struct kmem_cache *rds_ib_incoming_slab; |
| 43 | static struct kmem_cache *rds_ib_frag_slab; |
| 44 | static atomic_t rds_ib_allocation = ATOMIC_INIT(0); |
| 45 | |
| 46 | void rds_ib_recv_init_ring(struct rds_ib_connection *ic) |
| 47 | { |
| 48 | struct rds_ib_recv_work *recv; |
| 49 | u32 i; |
| 50 | |
| 51 | for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) { |
| 52 | struct ib_sge *sge; |
| 53 | |
| 54 | recv->r_ibinc = NULL; |
| 55 | recv->r_frag = NULL; |
| 56 | |
| 57 | recv->r_wr.next = NULL; |
| 58 | recv->r_wr.wr_id = i; |
| 59 | recv->r_wr.sg_list = recv->r_sge; |
| 60 | recv->r_wr.num_sge = RDS_IB_RECV_SGE; |
| 61 | |
| 62 | sge = &recv->r_sge[0]; |
| 63 | sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header)); |
| 64 | sge->length = sizeof(struct rds_header); |
| 65 | sge->lkey = ic->i_pd->local_dma_lkey; |
| 66 | |
| 67 | sge = &recv->r_sge[1]; |
| 68 | sge->addr = 0; |
| 69 | sge->length = RDS_FRAG_SIZE; |
| 70 | sge->lkey = ic->i_pd->local_dma_lkey; |
| 71 | } |
| 72 | } |
| 73 | |
| 74 | /* |
| 75 | * The entire 'from' list, including the from element itself, is put on |
| 76 | * to the tail of the 'to' list. |
| 77 | */ |
| 78 | static void list_splice_entire_tail(struct list_head *from, |
| 79 | struct list_head *to) |
| 80 | { |
| 81 | struct list_head *from_last = from->prev; |
| 82 | |
| 83 | list_splice_tail(from_last, to); |
| 84 | list_add_tail(from_last, to); |
| 85 | } |
| 86 | |
| 87 | static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache) |
| 88 | { |
| 89 | struct list_head *tmp; |
| 90 | |
| 91 | tmp = xchg(&cache->xfer, NULL); |
| 92 | if (tmp) { |
| 93 | if (cache->ready) |
| 94 | list_splice_entire_tail(tmp, cache->ready); |
| 95 | else |
| 96 | cache->ready = tmp; |
| 97 | } |
| 98 | } |
| 99 | |
| 100 | static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache) |
| 101 | { |
| 102 | struct rds_ib_cache_head *head; |
| 103 | int cpu; |
| 104 | |
| 105 | cache->percpu = alloc_percpu(struct rds_ib_cache_head); |
| 106 | if (!cache->percpu) |
| 107 | return -ENOMEM; |
| 108 | |
| 109 | for_each_possible_cpu(cpu) { |
| 110 | head = per_cpu_ptr(cache->percpu, cpu); |
| 111 | head->first = NULL; |
| 112 | head->count = 0; |
| 113 | } |
| 114 | cache->xfer = NULL; |
| 115 | cache->ready = NULL; |
| 116 | |
| 117 | return 0; |
| 118 | } |
| 119 | |
| 120 | int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic) |
| 121 | { |
| 122 | int ret; |
| 123 | |
| 124 | ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs); |
| 125 | if (!ret) { |
| 126 | ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags); |
| 127 | if (ret) |
| 128 | free_percpu(ic->i_cache_incs.percpu); |
| 129 | } |
| 130 | |
| 131 | return ret; |
| 132 | } |
| 133 | |
| 134 | static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache, |
| 135 | struct list_head *caller_list) |
| 136 | { |
| 137 | struct rds_ib_cache_head *head; |
| 138 | int cpu; |
| 139 | |
| 140 | for_each_possible_cpu(cpu) { |
| 141 | head = per_cpu_ptr(cache->percpu, cpu); |
| 142 | if (head->first) { |
| 143 | list_splice_entire_tail(head->first, caller_list); |
| 144 | head->first = NULL; |
| 145 | } |
| 146 | } |
| 147 | |
| 148 | if (cache->ready) { |
| 149 | list_splice_entire_tail(cache->ready, caller_list); |
| 150 | cache->ready = NULL; |
| 151 | } |
| 152 | } |
| 153 | |
| 154 | void rds_ib_recv_free_caches(struct rds_ib_connection *ic) |
| 155 | { |
| 156 | struct rds_ib_incoming *inc; |
| 157 | struct rds_ib_incoming *inc_tmp; |
| 158 | struct rds_page_frag *frag; |
| 159 | struct rds_page_frag *frag_tmp; |
| 160 | LIST_HEAD(list); |
| 161 | |
| 162 | rds_ib_cache_xfer_to_ready(&ic->i_cache_incs); |
| 163 | rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list); |
| 164 | free_percpu(ic->i_cache_incs.percpu); |
| 165 | |
| 166 | list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) { |
| 167 | list_del(&inc->ii_cache_entry); |
| 168 | WARN_ON(!list_empty(&inc->ii_frags)); |
| 169 | kmem_cache_free(rds_ib_incoming_slab, inc); |
| 170 | } |
| 171 | |
| 172 | rds_ib_cache_xfer_to_ready(&ic->i_cache_frags); |
| 173 | rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list); |
| 174 | free_percpu(ic->i_cache_frags.percpu); |
| 175 | |
| 176 | list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) { |
| 177 | list_del(&frag->f_cache_entry); |
| 178 | WARN_ON(!list_empty(&frag->f_item)); |
| 179 | kmem_cache_free(rds_ib_frag_slab, frag); |
| 180 | } |
| 181 | } |
| 182 | |
| 183 | /* fwd decl */ |
| 184 | static void rds_ib_recv_cache_put(struct list_head *new_item, |
| 185 | struct rds_ib_refill_cache *cache); |
| 186 | static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache); |
| 187 | |
| 188 | |
| 189 | /* Recycle frag and attached recv buffer f_sg */ |
| 190 | static void rds_ib_frag_free(struct rds_ib_connection *ic, |
| 191 | struct rds_page_frag *frag) |
| 192 | { |
| 193 | rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg)); |
| 194 | |
| 195 | rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags); |
| 196 | } |
| 197 | |
| 198 | /* Recycle inc after freeing attached frags */ |
| 199 | void rds_ib_inc_free(struct rds_incoming *inc) |
| 200 | { |
| 201 | struct rds_ib_incoming *ibinc; |
| 202 | struct rds_page_frag *frag; |
| 203 | struct rds_page_frag *pos; |
| 204 | struct rds_ib_connection *ic = inc->i_conn->c_transport_data; |
| 205 | |
| 206 | ibinc = container_of(inc, struct rds_ib_incoming, ii_inc); |
| 207 | |
| 208 | /* Free attached frags */ |
| 209 | list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) { |
| 210 | list_del_init(&frag->f_item); |
| 211 | rds_ib_frag_free(ic, frag); |
| 212 | } |
| 213 | BUG_ON(!list_empty(&ibinc->ii_frags)); |
| 214 | |
| 215 | rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc); |
| 216 | rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs); |
| 217 | } |
| 218 | |
| 219 | static void rds_ib_recv_clear_one(struct rds_ib_connection *ic, |
| 220 | struct rds_ib_recv_work *recv) |
| 221 | { |
| 222 | if (recv->r_ibinc) { |
| 223 | rds_inc_put(&recv->r_ibinc->ii_inc); |
| 224 | recv->r_ibinc = NULL; |
| 225 | } |
| 226 | if (recv->r_frag) { |
| 227 | ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE); |
| 228 | rds_ib_frag_free(ic, recv->r_frag); |
| 229 | recv->r_frag = NULL; |
| 230 | } |
| 231 | } |
| 232 | |
| 233 | void rds_ib_recv_clear_ring(struct rds_ib_connection *ic) |
| 234 | { |
| 235 | u32 i; |
| 236 | |
| 237 | for (i = 0; i < ic->i_recv_ring.w_nr; i++) |
| 238 | rds_ib_recv_clear_one(ic, &ic->i_recvs[i]); |
| 239 | } |
| 240 | |
| 241 | static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic, |
| 242 | gfp_t slab_mask) |
| 243 | { |
| 244 | struct rds_ib_incoming *ibinc; |
| 245 | struct list_head *cache_item; |
| 246 | int avail_allocs; |
| 247 | |
| 248 | cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs); |
| 249 | if (cache_item) { |
| 250 | ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry); |
| 251 | } else { |
| 252 | avail_allocs = atomic_add_unless(&rds_ib_allocation, |
| 253 | 1, rds_ib_sysctl_max_recv_allocation); |
| 254 | if (!avail_allocs) { |
| 255 | rds_ib_stats_inc(s_ib_rx_alloc_limit); |
| 256 | return NULL; |
| 257 | } |
| 258 | ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask); |
| 259 | if (!ibinc) { |
| 260 | atomic_dec(&rds_ib_allocation); |
| 261 | return NULL; |
| 262 | } |
| 263 | } |
| 264 | INIT_LIST_HEAD(&ibinc->ii_frags); |
| 265 | rds_inc_init(&ibinc->ii_inc, ic->conn, ic->conn->c_faddr); |
| 266 | |
| 267 | return ibinc; |
| 268 | } |
| 269 | |
| 270 | static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic, |
| 271 | gfp_t slab_mask, gfp_t page_mask) |
| 272 | { |
| 273 | struct rds_page_frag *frag; |
| 274 | struct list_head *cache_item; |
| 275 | int ret; |
| 276 | |
| 277 | cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags); |
| 278 | if (cache_item) { |
| 279 | frag = container_of(cache_item, struct rds_page_frag, f_cache_entry); |
| 280 | } else { |
| 281 | frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask); |
| 282 | if (!frag) |
| 283 | return NULL; |
| 284 | |
| 285 | sg_init_table(&frag->f_sg, 1); |
| 286 | ret = rds_page_remainder_alloc(&frag->f_sg, |
| 287 | RDS_FRAG_SIZE, page_mask); |
| 288 | if (ret) { |
| 289 | kmem_cache_free(rds_ib_frag_slab, frag); |
| 290 | return NULL; |
| 291 | } |
| 292 | } |
| 293 | |
| 294 | INIT_LIST_HEAD(&frag->f_item); |
| 295 | |
| 296 | return frag; |
| 297 | } |
| 298 | |
| 299 | static int rds_ib_recv_refill_one(struct rds_connection *conn, |
| 300 | struct rds_ib_recv_work *recv, gfp_t gfp) |
| 301 | { |
| 302 | struct rds_ib_connection *ic = conn->c_transport_data; |
| 303 | struct ib_sge *sge; |
| 304 | int ret = -ENOMEM; |
| 305 | gfp_t slab_mask = GFP_NOWAIT; |
| 306 | gfp_t page_mask = GFP_NOWAIT; |
| 307 | |
| 308 | if (gfp & __GFP_DIRECT_RECLAIM) { |
| 309 | slab_mask = GFP_KERNEL; |
| 310 | page_mask = GFP_HIGHUSER; |
| 311 | } |
| 312 | |
| 313 | if (!ic->i_cache_incs.ready) |
| 314 | rds_ib_cache_xfer_to_ready(&ic->i_cache_incs); |
| 315 | if (!ic->i_cache_frags.ready) |
| 316 | rds_ib_cache_xfer_to_ready(&ic->i_cache_frags); |
| 317 | |
| 318 | /* |
| 319 | * ibinc was taken from recv if recv contained the start of a message. |
| 320 | * recvs that were continuations will still have this allocated. |
| 321 | */ |
| 322 | if (!recv->r_ibinc) { |
| 323 | recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask); |
| 324 | if (!recv->r_ibinc) |
| 325 | goto out; |
| 326 | } |
| 327 | |
| 328 | WARN_ON(recv->r_frag); /* leak! */ |
| 329 | recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask); |
| 330 | if (!recv->r_frag) |
| 331 | goto out; |
| 332 | |
| 333 | ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, |
| 334 | 1, DMA_FROM_DEVICE); |
| 335 | WARN_ON(ret != 1); |
| 336 | |
| 337 | sge = &recv->r_sge[0]; |
| 338 | sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header); |
| 339 | sge->length = sizeof(struct rds_header); |
| 340 | |
| 341 | sge = &recv->r_sge[1]; |
| 342 | sge->addr = ib_sg_dma_address(ic->i_cm_id->device, &recv->r_frag->f_sg); |
| 343 | sge->length = ib_sg_dma_len(ic->i_cm_id->device, &recv->r_frag->f_sg); |
| 344 | |
| 345 | ret = 0; |
| 346 | out: |
| 347 | return ret; |
| 348 | } |
| 349 | |
| 350 | static int acquire_refill(struct rds_connection *conn) |
| 351 | { |
| 352 | return test_and_set_bit(RDS_RECV_REFILL, &conn->c_flags) == 0; |
| 353 | } |
| 354 | |
| 355 | static void release_refill(struct rds_connection *conn) |
| 356 | { |
| 357 | clear_bit(RDS_RECV_REFILL, &conn->c_flags); |
| 358 | |
| 359 | /* We don't use wait_on_bit()/wake_up_bit() because our waking is in a |
| 360 | * hot path and finding waiters is very rare. We don't want to walk |
| 361 | * the system-wide hashed waitqueue buckets in the fast path only to |
| 362 | * almost never find waiters. |
| 363 | */ |
| 364 | if (waitqueue_active(&conn->c_waitq)) |
| 365 | wake_up_all(&conn->c_waitq); |
| 366 | } |
| 367 | |
| 368 | /* |
| 369 | * This tries to allocate and post unused work requests after making sure that |
| 370 | * they have all the allocations they need to queue received fragments into |
| 371 | * sockets. |
| 372 | * |
| 373 | * -1 is returned if posting fails due to temporary resource exhaustion. |
| 374 | */ |
| 375 | void rds_ib_recv_refill(struct rds_connection *conn, int prefill, gfp_t gfp) |
| 376 | { |
| 377 | struct rds_ib_connection *ic = conn->c_transport_data; |
| 378 | struct rds_ib_recv_work *recv; |
| 379 | struct ib_recv_wr *failed_wr; |
| 380 | unsigned int posted = 0; |
| 381 | int ret = 0; |
| 382 | bool can_wait = !!(gfp & __GFP_DIRECT_RECLAIM); |
| 383 | u32 pos; |
| 384 | |
| 385 | /* the goal here is to just make sure that someone, somewhere |
| 386 | * is posting buffers. If we can't get the refill lock, |
| 387 | * let them do their thing |
| 388 | */ |
| 389 | if (!acquire_refill(conn)) |
| 390 | return; |
| 391 | |
| 392 | while ((prefill || rds_conn_up(conn)) && |
| 393 | rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) { |
| 394 | if (pos >= ic->i_recv_ring.w_nr) { |
| 395 | printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n", |
| 396 | pos); |
| 397 | break; |
| 398 | } |
| 399 | |
| 400 | recv = &ic->i_recvs[pos]; |
| 401 | ret = rds_ib_recv_refill_one(conn, recv, gfp); |
| 402 | if (ret) { |
| 403 | break; |
| 404 | } |
| 405 | |
| 406 | /* XXX when can this fail? */ |
| 407 | ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr); |
| 408 | rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv, |
| 409 | recv->r_ibinc, sg_page(&recv->r_frag->f_sg), |
| 410 | (long) ib_sg_dma_address( |
| 411 | ic->i_cm_id->device, |
| 412 | &recv->r_frag->f_sg), |
| 413 | ret); |
| 414 | if (ret) { |
| 415 | rds_ib_conn_error(conn, "recv post on " |
| 416 | "%pI4 returned %d, disconnecting and " |
| 417 | "reconnecting\n", &conn->c_faddr, |
| 418 | ret); |
| 419 | break; |
| 420 | } |
| 421 | |
| 422 | posted++; |
| 423 | } |
| 424 | |
| 425 | /* We're doing flow control - update the window. */ |
| 426 | if (ic->i_flowctl && posted) |
| 427 | rds_ib_advertise_credits(conn, posted); |
| 428 | |
| 429 | if (ret) |
| 430 | rds_ib_ring_unalloc(&ic->i_recv_ring, 1); |
| 431 | |
| 432 | release_refill(conn); |
| 433 | |
| 434 | /* if we're called from the softirq handler, we'll be GFP_NOWAIT. |
| 435 | * in this case the ring being low is going to lead to more interrupts |
| 436 | * and we can safely let the softirq code take care of it unless the |
| 437 | * ring is completely empty. |
| 438 | * |
| 439 | * if we're called from krdsd, we'll be GFP_KERNEL. In this case |
| 440 | * we might have raced with the softirq code while we had the refill |
| 441 | * lock held. Use rds_ib_ring_low() instead of ring_empty to decide |
| 442 | * if we should requeue. |
| 443 | */ |
| 444 | if (rds_conn_up(conn) && |
| 445 | ((can_wait && rds_ib_ring_low(&ic->i_recv_ring)) || |
| 446 | rds_ib_ring_empty(&ic->i_recv_ring))) { |
| 447 | queue_delayed_work(rds_wq, &conn->c_recv_w, 1); |
| 448 | } |
| 449 | } |
| 450 | |
| 451 | /* |
| 452 | * We want to recycle several types of recv allocations, like incs and frags. |
| 453 | * To use this, the *_free() function passes in the ptr to a list_head within |
| 454 | * the recyclee, as well as the cache to put it on. |
| 455 | * |
| 456 | * First, we put the memory on a percpu list. When this reaches a certain size, |
| 457 | * We move it to an intermediate non-percpu list in a lockless manner, with some |
| 458 | * xchg/compxchg wizardry. |
| 459 | * |
| 460 | * N.B. Instead of a list_head as the anchor, we use a single pointer, which can |
| 461 | * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and |
| 462 | * list_empty() will return true with one element is actually present. |
| 463 | */ |
| 464 | static void rds_ib_recv_cache_put(struct list_head *new_item, |
| 465 | struct rds_ib_refill_cache *cache) |
| 466 | { |
| 467 | unsigned long flags; |
| 468 | struct list_head *old, *chpfirst; |
| 469 | |
| 470 | local_irq_save(flags); |
| 471 | |
| 472 | chpfirst = __this_cpu_read(cache->percpu->first); |
| 473 | if (!chpfirst) |
| 474 | INIT_LIST_HEAD(new_item); |
| 475 | else /* put on front */ |
| 476 | list_add_tail(new_item, chpfirst); |
| 477 | |
| 478 | __this_cpu_write(cache->percpu->first, new_item); |
| 479 | __this_cpu_inc(cache->percpu->count); |
| 480 | |
| 481 | if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT) |
| 482 | goto end; |
| 483 | |
| 484 | /* |
| 485 | * Return our per-cpu first list to the cache's xfer by atomically |
| 486 | * grabbing the current xfer list, appending it to our per-cpu list, |
| 487 | * and then atomically returning that entire list back to the |
| 488 | * cache's xfer list as long as it's still empty. |
| 489 | */ |
| 490 | do { |
| 491 | old = xchg(&cache->xfer, NULL); |
| 492 | if (old) |
| 493 | list_splice_entire_tail(old, chpfirst); |
| 494 | old = cmpxchg(&cache->xfer, NULL, chpfirst); |
| 495 | } while (old); |
| 496 | |
| 497 | |
| 498 | __this_cpu_write(cache->percpu->first, NULL); |
| 499 | __this_cpu_write(cache->percpu->count, 0); |
| 500 | end: |
| 501 | local_irq_restore(flags); |
| 502 | } |
| 503 | |
| 504 | static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache) |
| 505 | { |
| 506 | struct list_head *head = cache->ready; |
| 507 | |
| 508 | if (head) { |
| 509 | if (!list_empty(head)) { |
| 510 | cache->ready = head->next; |
| 511 | list_del_init(head); |
| 512 | } else |
| 513 | cache->ready = NULL; |
| 514 | } |
| 515 | |
| 516 | return head; |
| 517 | } |
| 518 | |
| 519 | int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to) |
| 520 | { |
| 521 | struct rds_ib_incoming *ibinc; |
| 522 | struct rds_page_frag *frag; |
| 523 | unsigned long to_copy; |
| 524 | unsigned long frag_off = 0; |
| 525 | int copied = 0; |
| 526 | int ret; |
| 527 | u32 len; |
| 528 | |
| 529 | ibinc = container_of(inc, struct rds_ib_incoming, ii_inc); |
| 530 | frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item); |
| 531 | len = be32_to_cpu(inc->i_hdr.h_len); |
| 532 | |
| 533 | while (iov_iter_count(to) && copied < len) { |
| 534 | if (frag_off == RDS_FRAG_SIZE) { |
| 535 | frag = list_entry(frag->f_item.next, |
| 536 | struct rds_page_frag, f_item); |
| 537 | frag_off = 0; |
| 538 | } |
| 539 | to_copy = min_t(unsigned long, iov_iter_count(to), |
| 540 | RDS_FRAG_SIZE - frag_off); |
| 541 | to_copy = min_t(unsigned long, to_copy, len - copied); |
| 542 | |
| 543 | /* XXX needs + offset for multiple recvs per page */ |
| 544 | rds_stats_add(s_copy_to_user, to_copy); |
| 545 | ret = copy_page_to_iter(sg_page(&frag->f_sg), |
| 546 | frag->f_sg.offset + frag_off, |
| 547 | to_copy, |
| 548 | to); |
| 549 | if (ret != to_copy) |
| 550 | return -EFAULT; |
| 551 | |
| 552 | frag_off += to_copy; |
| 553 | copied += to_copy; |
| 554 | } |
| 555 | |
| 556 | return copied; |
| 557 | } |
| 558 | |
| 559 | /* ic starts out kzalloc()ed */ |
| 560 | void rds_ib_recv_init_ack(struct rds_ib_connection *ic) |
| 561 | { |
| 562 | struct ib_send_wr *wr = &ic->i_ack_wr; |
| 563 | struct ib_sge *sge = &ic->i_ack_sge; |
| 564 | |
| 565 | sge->addr = ic->i_ack_dma; |
| 566 | sge->length = sizeof(struct rds_header); |
| 567 | sge->lkey = ic->i_pd->local_dma_lkey; |
| 568 | |
| 569 | wr->sg_list = sge; |
| 570 | wr->num_sge = 1; |
| 571 | wr->opcode = IB_WR_SEND; |
| 572 | wr->wr_id = RDS_IB_ACK_WR_ID; |
| 573 | wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED; |
| 574 | } |
| 575 | |
| 576 | /* |
| 577 | * You'd think that with reliable IB connections you wouldn't need to ack |
| 578 | * messages that have been received. The problem is that IB hardware generates |
| 579 | * an ack message before it has DMAed the message into memory. This creates a |
| 580 | * potential message loss if the HCA is disabled for any reason between when it |
| 581 | * sends the ack and before the message is DMAed and processed. This is only a |
| 582 | * potential issue if another HCA is available for fail-over. |
| 583 | * |
| 584 | * When the remote host receives our ack they'll free the sent message from |
| 585 | * their send queue. To decrease the latency of this we always send an ack |
| 586 | * immediately after we've received messages. |
| 587 | * |
| 588 | * For simplicity, we only have one ack in flight at a time. This puts |
| 589 | * pressure on senders to have deep enough send queues to absorb the latency of |
| 590 | * a single ack frame being in flight. This might not be good enough. |
| 591 | * |
| 592 | * This is implemented by have a long-lived send_wr and sge which point to a |
| 593 | * statically allocated ack frame. This ack wr does not fall under the ring |
| 594 | * accounting that the tx and rx wrs do. The QP attribute specifically makes |
| 595 | * room for it beyond the ring size. Send completion notices its special |
| 596 | * wr_id and avoids working with the ring in that case. |
| 597 | */ |
| 598 | #ifndef KERNEL_HAS_ATOMIC64 |
| 599 | void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required) |
| 600 | { |
| 601 | unsigned long flags; |
| 602 | |
| 603 | spin_lock_irqsave(&ic->i_ack_lock, flags); |
| 604 | ic->i_ack_next = seq; |
| 605 | if (ack_required) |
| 606 | set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); |
| 607 | spin_unlock_irqrestore(&ic->i_ack_lock, flags); |
| 608 | } |
| 609 | |
| 610 | static u64 rds_ib_get_ack(struct rds_ib_connection *ic) |
| 611 | { |
| 612 | unsigned long flags; |
| 613 | u64 seq; |
| 614 | |
| 615 | clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); |
| 616 | |
| 617 | spin_lock_irqsave(&ic->i_ack_lock, flags); |
| 618 | seq = ic->i_ack_next; |
| 619 | spin_unlock_irqrestore(&ic->i_ack_lock, flags); |
| 620 | |
| 621 | return seq; |
| 622 | } |
| 623 | #else |
| 624 | void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required) |
| 625 | { |
| 626 | atomic64_set(&ic->i_ack_next, seq); |
| 627 | if (ack_required) { |
| 628 | smp_mb__before_atomic(); |
| 629 | set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); |
| 630 | } |
| 631 | } |
| 632 | |
| 633 | static u64 rds_ib_get_ack(struct rds_ib_connection *ic) |
| 634 | { |
| 635 | clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); |
| 636 | smp_mb__after_atomic(); |
| 637 | |
| 638 | return atomic64_read(&ic->i_ack_next); |
| 639 | } |
| 640 | #endif |
| 641 | |
| 642 | |
| 643 | static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits) |
| 644 | { |
| 645 | struct rds_header *hdr = ic->i_ack; |
| 646 | struct ib_send_wr *failed_wr; |
| 647 | u64 seq; |
| 648 | int ret; |
| 649 | |
| 650 | seq = rds_ib_get_ack(ic); |
| 651 | |
| 652 | rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq); |
| 653 | rds_message_populate_header(hdr, 0, 0, 0); |
| 654 | hdr->h_ack = cpu_to_be64(seq); |
| 655 | hdr->h_credit = adv_credits; |
| 656 | rds_message_make_checksum(hdr); |
| 657 | ic->i_ack_queued = jiffies; |
| 658 | |
| 659 | ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr); |
| 660 | if (unlikely(ret)) { |
| 661 | /* Failed to send. Release the WR, and |
| 662 | * force another ACK. |
| 663 | */ |
| 664 | clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); |
| 665 | set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); |
| 666 | |
| 667 | rds_ib_stats_inc(s_ib_ack_send_failure); |
| 668 | |
| 669 | rds_ib_conn_error(ic->conn, "sending ack failed\n"); |
| 670 | } else |
| 671 | rds_ib_stats_inc(s_ib_ack_sent); |
| 672 | } |
| 673 | |
| 674 | /* |
| 675 | * There are 3 ways of getting acknowledgements to the peer: |
| 676 | * 1. We call rds_ib_attempt_ack from the recv completion handler |
| 677 | * to send an ACK-only frame. |
| 678 | * However, there can be only one such frame in the send queue |
| 679 | * at any time, so we may have to postpone it. |
| 680 | * 2. When another (data) packet is transmitted while there's |
| 681 | * an ACK in the queue, we piggyback the ACK sequence number |
| 682 | * on the data packet. |
| 683 | * 3. If the ACK WR is done sending, we get called from the |
| 684 | * send queue completion handler, and check whether there's |
| 685 | * another ACK pending (postponed because the WR was on the |
| 686 | * queue). If so, we transmit it. |
| 687 | * |
| 688 | * We maintain 2 variables: |
| 689 | * - i_ack_flags, which keeps track of whether the ACK WR |
| 690 | * is currently in the send queue or not (IB_ACK_IN_FLIGHT) |
| 691 | * - i_ack_next, which is the last sequence number we received |
| 692 | * |
| 693 | * Potentially, send queue and receive queue handlers can run concurrently. |
| 694 | * It would be nice to not have to use a spinlock to synchronize things, |
| 695 | * but the one problem that rules this out is that 64bit updates are |
| 696 | * not atomic on all platforms. Things would be a lot simpler if |
| 697 | * we had atomic64 or maybe cmpxchg64 everywhere. |
| 698 | * |
| 699 | * Reconnecting complicates this picture just slightly. When we |
| 700 | * reconnect, we may be seeing duplicate packets. The peer |
| 701 | * is retransmitting them, because it hasn't seen an ACK for |
| 702 | * them. It is important that we ACK these. |
| 703 | * |
| 704 | * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with |
| 705 | * this flag set *MUST* be acknowledged immediately. |
| 706 | */ |
| 707 | |
| 708 | /* |
| 709 | * When we get here, we're called from the recv queue handler. |
| 710 | * Check whether we ought to transmit an ACK. |
| 711 | */ |
| 712 | void rds_ib_attempt_ack(struct rds_ib_connection *ic) |
| 713 | { |
| 714 | unsigned int adv_credits; |
| 715 | |
| 716 | if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags)) |
| 717 | return; |
| 718 | |
| 719 | if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) { |
| 720 | rds_ib_stats_inc(s_ib_ack_send_delayed); |
| 721 | return; |
| 722 | } |
| 723 | |
| 724 | /* Can we get a send credit? */ |
| 725 | if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) { |
| 726 | rds_ib_stats_inc(s_ib_tx_throttle); |
| 727 | clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); |
| 728 | return; |
| 729 | } |
| 730 | |
| 731 | clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); |
| 732 | rds_ib_send_ack(ic, adv_credits); |
| 733 | } |
| 734 | |
| 735 | /* |
| 736 | * We get here from the send completion handler, when the |
| 737 | * adapter tells us the ACK frame was sent. |
| 738 | */ |
| 739 | void rds_ib_ack_send_complete(struct rds_ib_connection *ic) |
| 740 | { |
| 741 | clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); |
| 742 | rds_ib_attempt_ack(ic); |
| 743 | } |
| 744 | |
| 745 | /* |
| 746 | * This is called by the regular xmit code when it wants to piggyback |
| 747 | * an ACK on an outgoing frame. |
| 748 | */ |
| 749 | u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic) |
| 750 | { |
| 751 | if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags)) |
| 752 | rds_ib_stats_inc(s_ib_ack_send_piggybacked); |
| 753 | return rds_ib_get_ack(ic); |
| 754 | } |
| 755 | |
| 756 | /* |
| 757 | * It's kind of lame that we're copying from the posted receive pages into |
| 758 | * long-lived bitmaps. We could have posted the bitmaps and rdma written into |
| 759 | * them. But receiving new congestion bitmaps should be a *rare* event, so |
| 760 | * hopefully we won't need to invest that complexity in making it more |
| 761 | * efficient. By copying we can share a simpler core with TCP which has to |
| 762 | * copy. |
| 763 | */ |
| 764 | static void rds_ib_cong_recv(struct rds_connection *conn, |
| 765 | struct rds_ib_incoming *ibinc) |
| 766 | { |
| 767 | struct rds_cong_map *map; |
| 768 | unsigned int map_off; |
| 769 | unsigned int map_page; |
| 770 | struct rds_page_frag *frag; |
| 771 | unsigned long frag_off; |
| 772 | unsigned long to_copy; |
| 773 | unsigned long copied; |
| 774 | uint64_t uncongested = 0; |
| 775 | void *addr; |
| 776 | |
| 777 | /* catch completely corrupt packets */ |
| 778 | if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES) |
| 779 | return; |
| 780 | |
| 781 | map = conn->c_fcong; |
| 782 | map_page = 0; |
| 783 | map_off = 0; |
| 784 | |
| 785 | frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item); |
| 786 | frag_off = 0; |
| 787 | |
| 788 | copied = 0; |
| 789 | |
| 790 | while (copied < RDS_CONG_MAP_BYTES) { |
| 791 | uint64_t *src, *dst; |
| 792 | unsigned int k; |
| 793 | |
| 794 | to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off); |
| 795 | BUG_ON(to_copy & 7); /* Must be 64bit aligned. */ |
| 796 | |
| 797 | addr = kmap_atomic(sg_page(&frag->f_sg)); |
| 798 | |
| 799 | src = addr + frag_off; |
| 800 | dst = (void *)map->m_page_addrs[map_page] + map_off; |
| 801 | for (k = 0; k < to_copy; k += 8) { |
| 802 | /* Record ports that became uncongested, ie |
| 803 | * bits that changed from 0 to 1. */ |
| 804 | uncongested |= ~(*src) & *dst; |
| 805 | *dst++ = *src++; |
| 806 | } |
| 807 | kunmap_atomic(addr); |
| 808 | |
| 809 | copied += to_copy; |
| 810 | |
| 811 | map_off += to_copy; |
| 812 | if (map_off == PAGE_SIZE) { |
| 813 | map_off = 0; |
| 814 | map_page++; |
| 815 | } |
| 816 | |
| 817 | frag_off += to_copy; |
| 818 | if (frag_off == RDS_FRAG_SIZE) { |
| 819 | frag = list_entry(frag->f_item.next, |
| 820 | struct rds_page_frag, f_item); |
| 821 | frag_off = 0; |
| 822 | } |
| 823 | } |
| 824 | |
| 825 | /* the congestion map is in little endian order */ |
| 826 | uncongested = le64_to_cpu(uncongested); |
| 827 | |
| 828 | rds_cong_map_updated(map, uncongested); |
| 829 | } |
| 830 | |
| 831 | static void rds_ib_process_recv(struct rds_connection *conn, |
| 832 | struct rds_ib_recv_work *recv, u32 data_len, |
| 833 | struct rds_ib_ack_state *state) |
| 834 | { |
| 835 | struct rds_ib_connection *ic = conn->c_transport_data; |
| 836 | struct rds_ib_incoming *ibinc = ic->i_ibinc; |
| 837 | struct rds_header *ihdr, *hdr; |
| 838 | |
| 839 | /* XXX shut down the connection if port 0,0 are seen? */ |
| 840 | |
| 841 | rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv, |
| 842 | data_len); |
| 843 | |
| 844 | if (data_len < sizeof(struct rds_header)) { |
| 845 | rds_ib_conn_error(conn, "incoming message " |
| 846 | "from %pI4 didn't include a " |
| 847 | "header, disconnecting and " |
| 848 | "reconnecting\n", |
| 849 | &conn->c_faddr); |
| 850 | return; |
| 851 | } |
| 852 | data_len -= sizeof(struct rds_header); |
| 853 | |
| 854 | ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs]; |
| 855 | |
| 856 | /* Validate the checksum. */ |
| 857 | if (!rds_message_verify_checksum(ihdr)) { |
| 858 | rds_ib_conn_error(conn, "incoming message " |
| 859 | "from %pI4 has corrupted header - " |
| 860 | "forcing a reconnect\n", |
| 861 | &conn->c_faddr); |
| 862 | rds_stats_inc(s_recv_drop_bad_checksum); |
| 863 | return; |
| 864 | } |
| 865 | |
| 866 | /* Process the ACK sequence which comes with every packet */ |
| 867 | state->ack_recv = be64_to_cpu(ihdr->h_ack); |
| 868 | state->ack_recv_valid = 1; |
| 869 | |
| 870 | /* Process the credits update if there was one */ |
| 871 | if (ihdr->h_credit) |
| 872 | rds_ib_send_add_credits(conn, ihdr->h_credit); |
| 873 | |
| 874 | if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) { |
| 875 | /* This is an ACK-only packet. The fact that it gets |
| 876 | * special treatment here is that historically, ACKs |
| 877 | * were rather special beasts. |
| 878 | */ |
| 879 | rds_ib_stats_inc(s_ib_ack_received); |
| 880 | |
| 881 | /* |
| 882 | * Usually the frags make their way on to incs and are then freed as |
| 883 | * the inc is freed. We don't go that route, so we have to drop the |
| 884 | * page ref ourselves. We can't just leave the page on the recv |
| 885 | * because that confuses the dma mapping of pages and each recv's use |
| 886 | * of a partial page. |
| 887 | * |
| 888 | * FIXME: Fold this into the code path below. |
| 889 | */ |
| 890 | rds_ib_frag_free(ic, recv->r_frag); |
| 891 | recv->r_frag = NULL; |
| 892 | return; |
| 893 | } |
| 894 | |
| 895 | /* |
| 896 | * If we don't already have an inc on the connection then this |
| 897 | * fragment has a header and starts a message.. copy its header |
| 898 | * into the inc and save the inc so we can hang upcoming fragments |
| 899 | * off its list. |
| 900 | */ |
| 901 | if (!ibinc) { |
| 902 | ibinc = recv->r_ibinc; |
| 903 | recv->r_ibinc = NULL; |
| 904 | ic->i_ibinc = ibinc; |
| 905 | |
| 906 | hdr = &ibinc->ii_inc.i_hdr; |
| 907 | memcpy(hdr, ihdr, sizeof(*hdr)); |
| 908 | ic->i_recv_data_rem = be32_to_cpu(hdr->h_len); |
| 909 | |
| 910 | rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc, |
| 911 | ic->i_recv_data_rem, hdr->h_flags); |
| 912 | } else { |
| 913 | hdr = &ibinc->ii_inc.i_hdr; |
| 914 | /* We can't just use memcmp here; fragments of a |
| 915 | * single message may carry different ACKs */ |
| 916 | if (hdr->h_sequence != ihdr->h_sequence || |
| 917 | hdr->h_len != ihdr->h_len || |
| 918 | hdr->h_sport != ihdr->h_sport || |
| 919 | hdr->h_dport != ihdr->h_dport) { |
| 920 | rds_ib_conn_error(conn, |
| 921 | "fragment header mismatch; forcing reconnect\n"); |
| 922 | return; |
| 923 | } |
| 924 | } |
| 925 | |
| 926 | list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags); |
| 927 | recv->r_frag = NULL; |
| 928 | |
| 929 | if (ic->i_recv_data_rem > RDS_FRAG_SIZE) |
| 930 | ic->i_recv_data_rem -= RDS_FRAG_SIZE; |
| 931 | else { |
| 932 | ic->i_recv_data_rem = 0; |
| 933 | ic->i_ibinc = NULL; |
| 934 | |
| 935 | if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP) |
| 936 | rds_ib_cong_recv(conn, ibinc); |
| 937 | else { |
| 938 | rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr, |
| 939 | &ibinc->ii_inc, GFP_ATOMIC); |
| 940 | state->ack_next = be64_to_cpu(hdr->h_sequence); |
| 941 | state->ack_next_valid = 1; |
| 942 | } |
| 943 | |
| 944 | /* Evaluate the ACK_REQUIRED flag *after* we received |
| 945 | * the complete frame, and after bumping the next_rx |
| 946 | * sequence. */ |
| 947 | if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) { |
| 948 | rds_stats_inc(s_recv_ack_required); |
| 949 | state->ack_required = 1; |
| 950 | } |
| 951 | |
| 952 | rds_inc_put(&ibinc->ii_inc); |
| 953 | } |
| 954 | } |
| 955 | |
| 956 | void rds_ib_recv_cqe_handler(struct rds_ib_connection *ic, |
| 957 | struct ib_wc *wc, |
| 958 | struct rds_ib_ack_state *state) |
| 959 | { |
| 960 | struct rds_connection *conn = ic->conn; |
| 961 | struct rds_ib_recv_work *recv; |
| 962 | |
| 963 | rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n", |
| 964 | (unsigned long long)wc->wr_id, wc->status, |
| 965 | ib_wc_status_msg(wc->status), wc->byte_len, |
| 966 | be32_to_cpu(wc->ex.imm_data)); |
| 967 | |
| 968 | rds_ib_stats_inc(s_ib_rx_cq_event); |
| 969 | recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)]; |
| 970 | ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, |
| 971 | DMA_FROM_DEVICE); |
| 972 | |
| 973 | /* Also process recvs in connecting state because it is possible |
| 974 | * to get a recv completion _before_ the rdmacm ESTABLISHED |
| 975 | * event is processed. |
| 976 | */ |
| 977 | if (wc->status == IB_WC_SUCCESS) { |
| 978 | rds_ib_process_recv(conn, recv, wc->byte_len, state); |
| 979 | } else { |
| 980 | /* We expect errors as the qp is drained during shutdown */ |
| 981 | if (rds_conn_up(conn) || rds_conn_connecting(conn)) |
| 982 | rds_ib_conn_error(conn, "recv completion on %pI4 had status %u (%s), disconnecting and reconnecting\n", |
| 983 | &conn->c_faddr, |
| 984 | wc->status, |
| 985 | ib_wc_status_msg(wc->status)); |
| 986 | } |
| 987 | |
| 988 | /* rds_ib_process_recv() doesn't always consume the frag, and |
| 989 | * we might not have called it at all if the wc didn't indicate |
| 990 | * success. We already unmapped the frag's pages, though, and |
| 991 | * the following rds_ib_ring_free() call tells the refill path |
| 992 | * that it will not find an allocated frag here. Make sure we |
| 993 | * keep that promise by freeing a frag that's still on the ring. |
| 994 | */ |
| 995 | if (recv->r_frag) { |
| 996 | rds_ib_frag_free(ic, recv->r_frag); |
| 997 | recv->r_frag = NULL; |
| 998 | } |
| 999 | rds_ib_ring_free(&ic->i_recv_ring, 1); |
| 1000 | |
| 1001 | /* If we ever end up with a really empty receive ring, we're |
| 1002 | * in deep trouble, as the sender will definitely see RNR |
| 1003 | * timeouts. */ |
| 1004 | if (rds_ib_ring_empty(&ic->i_recv_ring)) |
| 1005 | rds_ib_stats_inc(s_ib_rx_ring_empty); |
| 1006 | |
| 1007 | if (rds_ib_ring_low(&ic->i_recv_ring)) |
| 1008 | rds_ib_recv_refill(conn, 0, GFP_NOWAIT); |
| 1009 | } |
| 1010 | |
| 1011 | int rds_ib_recv(struct rds_connection *conn) |
| 1012 | { |
| 1013 | struct rds_ib_connection *ic = conn->c_transport_data; |
| 1014 | int ret = 0; |
| 1015 | |
| 1016 | rdsdebug("conn %p\n", conn); |
| 1017 | if (rds_conn_up(conn)) { |
| 1018 | rds_ib_attempt_ack(ic); |
| 1019 | rds_ib_recv_refill(conn, 0, GFP_KERNEL); |
| 1020 | } |
| 1021 | |
| 1022 | return ret; |
| 1023 | } |
| 1024 | |
| 1025 | int rds_ib_recv_init(void) |
| 1026 | { |
| 1027 | struct sysinfo si; |
| 1028 | int ret = -ENOMEM; |
| 1029 | |
| 1030 | /* Default to 30% of all available RAM for recv memory */ |
| 1031 | si_meminfo(&si); |
| 1032 | rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE; |
| 1033 | |
| 1034 | rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming", |
| 1035 | sizeof(struct rds_ib_incoming), |
| 1036 | 0, SLAB_HWCACHE_ALIGN, NULL); |
| 1037 | if (!rds_ib_incoming_slab) |
| 1038 | goto out; |
| 1039 | |
| 1040 | rds_ib_frag_slab = kmem_cache_create("rds_ib_frag", |
| 1041 | sizeof(struct rds_page_frag), |
| 1042 | 0, SLAB_HWCACHE_ALIGN, NULL); |
| 1043 | if (!rds_ib_frag_slab) { |
| 1044 | kmem_cache_destroy(rds_ib_incoming_slab); |
| 1045 | rds_ib_incoming_slab = NULL; |
| 1046 | } else |
| 1047 | ret = 0; |
| 1048 | out: |
| 1049 | return ret; |
| 1050 | } |
| 1051 | |
| 1052 | void rds_ib_recv_exit(void) |
| 1053 | { |
| 1054 | kmem_cache_destroy(rds_ib_incoming_slab); |
| 1055 | kmem_cache_destroy(rds_ib_frag_slab); |
| 1056 | } |