Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame^] | 1 | /* |
| 2 | * net/sched/sch_sfq.c Stochastic Fairness Queueing discipline. |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or |
| 5 | * modify it under the terms of the GNU General Public License |
| 6 | * as published by the Free Software Foundation; either version |
| 7 | * 2 of the License, or (at your option) any later version. |
| 8 | * |
| 9 | * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> |
| 10 | */ |
| 11 | |
| 12 | #include <linux/module.h> |
| 13 | #include <linux/types.h> |
| 14 | #include <linux/kernel.h> |
| 15 | #include <linux/jiffies.h> |
| 16 | #include <linux/string.h> |
| 17 | #include <linux/in.h> |
| 18 | #include <linux/errno.h> |
| 19 | #include <linux/init.h> |
| 20 | #include <linux/skbuff.h> |
| 21 | #include <linux/jhash.h> |
| 22 | #include <linux/slab.h> |
| 23 | #include <linux/vmalloc.h> |
| 24 | #include <net/netlink.h> |
| 25 | #include <net/pkt_sched.h> |
| 26 | #include <net/red.h> |
| 27 | |
| 28 | |
| 29 | /* Stochastic Fairness Queuing algorithm. |
| 30 | ======================================= |
| 31 | |
| 32 | Source: |
| 33 | Paul E. McKenney "Stochastic Fairness Queuing", |
| 34 | IEEE INFOCOMM'90 Proceedings, San Francisco, 1990. |
| 35 | |
| 36 | Paul E. McKenney "Stochastic Fairness Queuing", |
| 37 | "Interworking: Research and Experience", v.2, 1991, p.113-131. |
| 38 | |
| 39 | |
| 40 | See also: |
| 41 | M. Shreedhar and George Varghese "Efficient Fair |
| 42 | Queuing using Deficit Round Robin", Proc. SIGCOMM 95. |
| 43 | |
| 44 | |
| 45 | This is not the thing that is usually called (W)FQ nowadays. |
| 46 | It does not use any timestamp mechanism, but instead |
| 47 | processes queues in round-robin order. |
| 48 | |
| 49 | ADVANTAGE: |
| 50 | |
| 51 | - It is very cheap. Both CPU and memory requirements are minimal. |
| 52 | |
| 53 | DRAWBACKS: |
| 54 | |
| 55 | - "Stochastic" -> It is not 100% fair. |
| 56 | When hash collisions occur, several flows are considered as one. |
| 57 | |
| 58 | - "Round-robin" -> It introduces larger delays than virtual clock |
| 59 | based schemes, and should not be used for isolating interactive |
| 60 | traffic from non-interactive. It means, that this scheduler |
| 61 | should be used as leaf of CBQ or P3, which put interactive traffic |
| 62 | to higher priority band. |
| 63 | |
| 64 | We still need true WFQ for top level CSZ, but using WFQ |
| 65 | for the best effort traffic is absolutely pointless: |
| 66 | SFQ is superior for this purpose. |
| 67 | |
| 68 | IMPLEMENTATION: |
| 69 | This implementation limits : |
| 70 | - maximal queue length per flow to 127 packets. |
| 71 | - max mtu to 2^18-1; |
| 72 | - max 65408 flows, |
| 73 | - number of hash buckets to 65536. |
| 74 | |
| 75 | It is easy to increase these values, but not in flight. */ |
| 76 | |
| 77 | #define SFQ_MAX_DEPTH 127 /* max number of packets per flow */ |
| 78 | #define SFQ_DEFAULT_FLOWS 128 |
| 79 | #define SFQ_MAX_FLOWS (0x10000 - SFQ_MAX_DEPTH - 1) /* max number of flows */ |
| 80 | #define SFQ_EMPTY_SLOT 0xffff |
| 81 | #define SFQ_DEFAULT_HASH_DIVISOR 1024 |
| 82 | |
| 83 | /* We use 16 bits to store allot, and want to handle packets up to 64K |
| 84 | * Scale allot by 8 (1<<3) so that no overflow occurs. |
| 85 | */ |
| 86 | #define SFQ_ALLOT_SHIFT 3 |
| 87 | #define SFQ_ALLOT_SIZE(X) DIV_ROUND_UP(X, 1 << SFQ_ALLOT_SHIFT) |
| 88 | |
| 89 | /* This type should contain at least SFQ_MAX_DEPTH + 1 + SFQ_MAX_FLOWS values */ |
| 90 | typedef u16 sfq_index; |
| 91 | |
| 92 | /* |
| 93 | * We dont use pointers to save space. |
| 94 | * Small indexes [0 ... SFQ_MAX_FLOWS - 1] are 'pointers' to slots[] array |
| 95 | * while following values [SFQ_MAX_FLOWS ... SFQ_MAX_FLOWS + SFQ_MAX_DEPTH] |
| 96 | * are 'pointers' to dep[] array |
| 97 | */ |
| 98 | struct sfq_head { |
| 99 | sfq_index next; |
| 100 | sfq_index prev; |
| 101 | }; |
| 102 | |
| 103 | struct sfq_slot { |
| 104 | struct sk_buff *skblist_next; |
| 105 | struct sk_buff *skblist_prev; |
| 106 | sfq_index qlen; /* number of skbs in skblist */ |
| 107 | sfq_index next; /* next slot in sfq RR chain */ |
| 108 | struct sfq_head dep; /* anchor in dep[] chains */ |
| 109 | unsigned short hash; /* hash value (index in ht[]) */ |
| 110 | short allot; /* credit for this slot */ |
| 111 | |
| 112 | unsigned int backlog; |
| 113 | struct red_vars vars; |
| 114 | }; |
| 115 | |
| 116 | struct sfq_sched_data { |
| 117 | /* frequently used fields */ |
| 118 | int limit; /* limit of total number of packets in this qdisc */ |
| 119 | unsigned int divisor; /* number of slots in hash table */ |
| 120 | u8 headdrop; |
| 121 | u8 maxdepth; /* limit of packets per flow */ |
| 122 | |
| 123 | u32 perturbation; |
| 124 | u8 cur_depth; /* depth of longest slot */ |
| 125 | u8 flags; |
| 126 | unsigned short scaled_quantum; /* SFQ_ALLOT_SIZE(quantum) */ |
| 127 | struct tcf_proto __rcu *filter_list; |
| 128 | sfq_index *ht; /* Hash table ('divisor' slots) */ |
| 129 | struct sfq_slot *slots; /* Flows table ('maxflows' entries) */ |
| 130 | |
| 131 | struct red_parms *red_parms; |
| 132 | struct tc_sfqred_stats stats; |
| 133 | struct sfq_slot *tail; /* current slot in round */ |
| 134 | |
| 135 | struct sfq_head dep[SFQ_MAX_DEPTH + 1]; |
| 136 | /* Linked lists of slots, indexed by depth |
| 137 | * dep[0] : list of unused flows |
| 138 | * dep[1] : list of flows with 1 packet |
| 139 | * dep[X] : list of flows with X packets |
| 140 | */ |
| 141 | |
| 142 | unsigned int maxflows; /* number of flows in flows array */ |
| 143 | int perturb_period; |
| 144 | unsigned int quantum; /* Allotment per round: MUST BE >= MTU */ |
| 145 | struct timer_list perturb_timer; |
| 146 | }; |
| 147 | |
| 148 | /* |
| 149 | * sfq_head are either in a sfq_slot or in dep[] array |
| 150 | */ |
| 151 | static inline struct sfq_head *sfq_dep_head(struct sfq_sched_data *q, sfq_index val) |
| 152 | { |
| 153 | if (val < SFQ_MAX_FLOWS) |
| 154 | return &q->slots[val].dep; |
| 155 | return &q->dep[val - SFQ_MAX_FLOWS]; |
| 156 | } |
| 157 | |
| 158 | static unsigned int sfq_hash(const struct sfq_sched_data *q, |
| 159 | const struct sk_buff *skb) |
| 160 | { |
| 161 | return skb_get_hash_perturb(skb, q->perturbation) & (q->divisor - 1); |
| 162 | } |
| 163 | |
| 164 | static unsigned int sfq_classify(struct sk_buff *skb, struct Qdisc *sch, |
| 165 | int *qerr) |
| 166 | { |
| 167 | struct sfq_sched_data *q = qdisc_priv(sch); |
| 168 | struct tcf_result res; |
| 169 | struct tcf_proto *fl; |
| 170 | int result; |
| 171 | |
| 172 | if (TC_H_MAJ(skb->priority) == sch->handle && |
| 173 | TC_H_MIN(skb->priority) > 0 && |
| 174 | TC_H_MIN(skb->priority) <= q->divisor) |
| 175 | return TC_H_MIN(skb->priority); |
| 176 | |
| 177 | fl = rcu_dereference_bh(q->filter_list); |
| 178 | if (!fl) |
| 179 | return sfq_hash(q, skb) + 1; |
| 180 | |
| 181 | *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; |
| 182 | result = tc_classify(skb, fl, &res, false); |
| 183 | if (result >= 0) { |
| 184 | #ifdef CONFIG_NET_CLS_ACT |
| 185 | switch (result) { |
| 186 | case TC_ACT_STOLEN: |
| 187 | case TC_ACT_QUEUED: |
| 188 | *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; |
| 189 | case TC_ACT_SHOT: |
| 190 | return 0; |
| 191 | } |
| 192 | #endif |
| 193 | if (TC_H_MIN(res.classid) <= q->divisor) |
| 194 | return TC_H_MIN(res.classid); |
| 195 | } |
| 196 | return 0; |
| 197 | } |
| 198 | |
| 199 | /* |
| 200 | * x : slot number [0 .. SFQ_MAX_FLOWS - 1] |
| 201 | */ |
| 202 | static inline void sfq_link(struct sfq_sched_data *q, sfq_index x) |
| 203 | { |
| 204 | sfq_index p, n; |
| 205 | struct sfq_slot *slot = &q->slots[x]; |
| 206 | int qlen = slot->qlen; |
| 207 | |
| 208 | p = qlen + SFQ_MAX_FLOWS; |
| 209 | n = q->dep[qlen].next; |
| 210 | |
| 211 | slot->dep.next = n; |
| 212 | slot->dep.prev = p; |
| 213 | |
| 214 | q->dep[qlen].next = x; /* sfq_dep_head(q, p)->next = x */ |
| 215 | sfq_dep_head(q, n)->prev = x; |
| 216 | } |
| 217 | |
| 218 | #define sfq_unlink(q, x, n, p) \ |
| 219 | do { \ |
| 220 | n = q->slots[x].dep.next; \ |
| 221 | p = q->slots[x].dep.prev; \ |
| 222 | sfq_dep_head(q, p)->next = n; \ |
| 223 | sfq_dep_head(q, n)->prev = p; \ |
| 224 | } while (0) |
| 225 | |
| 226 | |
| 227 | static inline void sfq_dec(struct sfq_sched_data *q, sfq_index x) |
| 228 | { |
| 229 | sfq_index p, n; |
| 230 | int d; |
| 231 | |
| 232 | sfq_unlink(q, x, n, p); |
| 233 | |
| 234 | d = q->slots[x].qlen--; |
| 235 | if (n == p && q->cur_depth == d) |
| 236 | q->cur_depth--; |
| 237 | sfq_link(q, x); |
| 238 | } |
| 239 | |
| 240 | static inline void sfq_inc(struct sfq_sched_data *q, sfq_index x) |
| 241 | { |
| 242 | sfq_index p, n; |
| 243 | int d; |
| 244 | |
| 245 | sfq_unlink(q, x, n, p); |
| 246 | |
| 247 | d = ++q->slots[x].qlen; |
| 248 | if (q->cur_depth < d) |
| 249 | q->cur_depth = d; |
| 250 | sfq_link(q, x); |
| 251 | } |
| 252 | |
| 253 | /* helper functions : might be changed when/if skb use a standard list_head */ |
| 254 | |
| 255 | /* remove one skb from tail of slot queue */ |
| 256 | static inline struct sk_buff *slot_dequeue_tail(struct sfq_slot *slot) |
| 257 | { |
| 258 | struct sk_buff *skb = slot->skblist_prev; |
| 259 | |
| 260 | slot->skblist_prev = skb->prev; |
| 261 | skb->prev->next = (struct sk_buff *)slot; |
| 262 | skb->next = skb->prev = NULL; |
| 263 | return skb; |
| 264 | } |
| 265 | |
| 266 | /* remove one skb from head of slot queue */ |
| 267 | static inline struct sk_buff *slot_dequeue_head(struct sfq_slot *slot) |
| 268 | { |
| 269 | struct sk_buff *skb = slot->skblist_next; |
| 270 | |
| 271 | slot->skblist_next = skb->next; |
| 272 | skb->next->prev = (struct sk_buff *)slot; |
| 273 | skb->next = skb->prev = NULL; |
| 274 | return skb; |
| 275 | } |
| 276 | |
| 277 | static inline void slot_queue_init(struct sfq_slot *slot) |
| 278 | { |
| 279 | memset(slot, 0, sizeof(*slot)); |
| 280 | slot->skblist_prev = slot->skblist_next = (struct sk_buff *)slot; |
| 281 | } |
| 282 | |
| 283 | /* add skb to slot queue (tail add) */ |
| 284 | static inline void slot_queue_add(struct sfq_slot *slot, struct sk_buff *skb) |
| 285 | { |
| 286 | skb->prev = slot->skblist_prev; |
| 287 | skb->next = (struct sk_buff *)slot; |
| 288 | slot->skblist_prev->next = skb; |
| 289 | slot->skblist_prev = skb; |
| 290 | } |
| 291 | |
| 292 | static unsigned int sfq_drop(struct Qdisc *sch) |
| 293 | { |
| 294 | struct sfq_sched_data *q = qdisc_priv(sch); |
| 295 | sfq_index x, d = q->cur_depth; |
| 296 | struct sk_buff *skb; |
| 297 | unsigned int len; |
| 298 | struct sfq_slot *slot; |
| 299 | |
| 300 | /* Queue is full! Find the longest slot and drop tail packet from it */ |
| 301 | if (d > 1) { |
| 302 | x = q->dep[d].next; |
| 303 | slot = &q->slots[x]; |
| 304 | drop: |
| 305 | skb = q->headdrop ? slot_dequeue_head(slot) : slot_dequeue_tail(slot); |
| 306 | len = qdisc_pkt_len(skb); |
| 307 | slot->backlog -= len; |
| 308 | sfq_dec(q, x); |
| 309 | sch->q.qlen--; |
| 310 | qdisc_qstats_drop(sch); |
| 311 | qdisc_qstats_backlog_dec(sch, skb); |
| 312 | kfree_skb(skb); |
| 313 | return len; |
| 314 | } |
| 315 | |
| 316 | if (d == 1) { |
| 317 | /* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */ |
| 318 | x = q->tail->next; |
| 319 | slot = &q->slots[x]; |
| 320 | q->tail->next = slot->next; |
| 321 | q->ht[slot->hash] = SFQ_EMPTY_SLOT; |
| 322 | goto drop; |
| 323 | } |
| 324 | |
| 325 | return 0; |
| 326 | } |
| 327 | |
| 328 | /* Is ECN parameter configured */ |
| 329 | static int sfq_prob_mark(const struct sfq_sched_data *q) |
| 330 | { |
| 331 | return q->flags & TC_RED_ECN; |
| 332 | } |
| 333 | |
| 334 | /* Should packets over max threshold just be marked */ |
| 335 | static int sfq_hard_mark(const struct sfq_sched_data *q) |
| 336 | { |
| 337 | return (q->flags & (TC_RED_ECN | TC_RED_HARDDROP)) == TC_RED_ECN; |
| 338 | } |
| 339 | |
| 340 | static int sfq_headdrop(const struct sfq_sched_data *q) |
| 341 | { |
| 342 | return q->headdrop; |
| 343 | } |
| 344 | |
| 345 | static int |
| 346 | sfq_enqueue(struct sk_buff *skb, struct Qdisc *sch) |
| 347 | { |
| 348 | struct sfq_sched_data *q = qdisc_priv(sch); |
| 349 | unsigned int hash, dropped; |
| 350 | sfq_index x, qlen; |
| 351 | struct sfq_slot *slot; |
| 352 | int uninitialized_var(ret); |
| 353 | struct sk_buff *head; |
| 354 | int delta; |
| 355 | |
| 356 | hash = sfq_classify(skb, sch, &ret); |
| 357 | if (hash == 0) { |
| 358 | if (ret & __NET_XMIT_BYPASS) |
| 359 | qdisc_qstats_drop(sch); |
| 360 | kfree_skb(skb); |
| 361 | return ret; |
| 362 | } |
| 363 | hash--; |
| 364 | |
| 365 | x = q->ht[hash]; |
| 366 | slot = &q->slots[x]; |
| 367 | if (x == SFQ_EMPTY_SLOT) { |
| 368 | x = q->dep[0].next; /* get a free slot */ |
| 369 | if (x >= SFQ_MAX_FLOWS) |
| 370 | return qdisc_drop(skb, sch); |
| 371 | q->ht[hash] = x; |
| 372 | slot = &q->slots[x]; |
| 373 | slot->hash = hash; |
| 374 | slot->backlog = 0; /* should already be 0 anyway... */ |
| 375 | red_set_vars(&slot->vars); |
| 376 | goto enqueue; |
| 377 | } |
| 378 | if (q->red_parms) { |
| 379 | slot->vars.qavg = red_calc_qavg_no_idle_time(q->red_parms, |
| 380 | &slot->vars, |
| 381 | slot->backlog); |
| 382 | switch (red_action(q->red_parms, |
| 383 | &slot->vars, |
| 384 | slot->vars.qavg)) { |
| 385 | case RED_DONT_MARK: |
| 386 | break; |
| 387 | |
| 388 | case RED_PROB_MARK: |
| 389 | qdisc_qstats_overlimit(sch); |
| 390 | if (sfq_prob_mark(q)) { |
| 391 | /* We know we have at least one packet in queue */ |
| 392 | if (sfq_headdrop(q) && |
| 393 | INET_ECN_set_ce(slot->skblist_next)) { |
| 394 | q->stats.prob_mark_head++; |
| 395 | break; |
| 396 | } |
| 397 | if (INET_ECN_set_ce(skb)) { |
| 398 | q->stats.prob_mark++; |
| 399 | break; |
| 400 | } |
| 401 | } |
| 402 | q->stats.prob_drop++; |
| 403 | goto congestion_drop; |
| 404 | |
| 405 | case RED_HARD_MARK: |
| 406 | qdisc_qstats_overlimit(sch); |
| 407 | if (sfq_hard_mark(q)) { |
| 408 | /* We know we have at least one packet in queue */ |
| 409 | if (sfq_headdrop(q) && |
| 410 | INET_ECN_set_ce(slot->skblist_next)) { |
| 411 | q->stats.forced_mark_head++; |
| 412 | break; |
| 413 | } |
| 414 | if (INET_ECN_set_ce(skb)) { |
| 415 | q->stats.forced_mark++; |
| 416 | break; |
| 417 | } |
| 418 | } |
| 419 | q->stats.forced_drop++; |
| 420 | goto congestion_drop; |
| 421 | } |
| 422 | } |
| 423 | |
| 424 | if (slot->qlen >= q->maxdepth) { |
| 425 | congestion_drop: |
| 426 | if (!sfq_headdrop(q)) |
| 427 | return qdisc_drop(skb, sch); |
| 428 | |
| 429 | /* We know we have at least one packet in queue */ |
| 430 | head = slot_dequeue_head(slot); |
| 431 | delta = qdisc_pkt_len(head) - qdisc_pkt_len(skb); |
| 432 | sch->qstats.backlog -= delta; |
| 433 | slot->backlog -= delta; |
| 434 | qdisc_drop(head, sch); |
| 435 | |
| 436 | slot_queue_add(slot, skb); |
| 437 | qdisc_tree_reduce_backlog(sch, 0, delta); |
| 438 | return NET_XMIT_CN; |
| 439 | } |
| 440 | |
| 441 | enqueue: |
| 442 | qdisc_qstats_backlog_inc(sch, skb); |
| 443 | slot->backlog += qdisc_pkt_len(skb); |
| 444 | slot_queue_add(slot, skb); |
| 445 | sfq_inc(q, x); |
| 446 | if (slot->qlen == 1) { /* The flow is new */ |
| 447 | if (q->tail == NULL) { /* It is the first flow */ |
| 448 | slot->next = x; |
| 449 | } else { |
| 450 | slot->next = q->tail->next; |
| 451 | q->tail->next = x; |
| 452 | } |
| 453 | /* We put this flow at the end of our flow list. |
| 454 | * This might sound unfair for a new flow to wait after old ones, |
| 455 | * but we could endup servicing new flows only, and freeze old ones. |
| 456 | */ |
| 457 | q->tail = slot; |
| 458 | /* We could use a bigger initial quantum for new flows */ |
| 459 | slot->allot = q->scaled_quantum; |
| 460 | } |
| 461 | if (++sch->q.qlen <= q->limit) |
| 462 | return NET_XMIT_SUCCESS; |
| 463 | |
| 464 | qlen = slot->qlen; |
| 465 | dropped = sfq_drop(sch); |
| 466 | /* Return Congestion Notification only if we dropped a packet |
| 467 | * from this flow. |
| 468 | */ |
| 469 | if (qlen != slot->qlen) { |
| 470 | qdisc_tree_reduce_backlog(sch, 0, dropped - qdisc_pkt_len(skb)); |
| 471 | return NET_XMIT_CN; |
| 472 | } |
| 473 | |
| 474 | /* As we dropped a packet, better let upper stack know this */ |
| 475 | qdisc_tree_reduce_backlog(sch, 1, dropped); |
| 476 | return NET_XMIT_SUCCESS; |
| 477 | } |
| 478 | |
| 479 | static struct sk_buff * |
| 480 | sfq_dequeue(struct Qdisc *sch) |
| 481 | { |
| 482 | struct sfq_sched_data *q = qdisc_priv(sch); |
| 483 | struct sk_buff *skb; |
| 484 | sfq_index a, next_a; |
| 485 | struct sfq_slot *slot; |
| 486 | |
| 487 | /* No active slots */ |
| 488 | if (q->tail == NULL) |
| 489 | return NULL; |
| 490 | |
| 491 | next_slot: |
| 492 | a = q->tail->next; |
| 493 | slot = &q->slots[a]; |
| 494 | if (slot->allot <= 0) { |
| 495 | q->tail = slot; |
| 496 | slot->allot += q->scaled_quantum; |
| 497 | goto next_slot; |
| 498 | } |
| 499 | skb = slot_dequeue_head(slot); |
| 500 | sfq_dec(q, a); |
| 501 | qdisc_bstats_update(sch, skb); |
| 502 | sch->q.qlen--; |
| 503 | qdisc_qstats_backlog_dec(sch, skb); |
| 504 | slot->backlog -= qdisc_pkt_len(skb); |
| 505 | /* Is the slot empty? */ |
| 506 | if (slot->qlen == 0) { |
| 507 | q->ht[slot->hash] = SFQ_EMPTY_SLOT; |
| 508 | next_a = slot->next; |
| 509 | if (a == next_a) { |
| 510 | q->tail = NULL; /* no more active slots */ |
| 511 | return skb; |
| 512 | } |
| 513 | q->tail->next = next_a; |
| 514 | } else { |
| 515 | slot->allot -= SFQ_ALLOT_SIZE(qdisc_pkt_len(skb)); |
| 516 | } |
| 517 | return skb; |
| 518 | } |
| 519 | |
| 520 | static void |
| 521 | sfq_reset(struct Qdisc *sch) |
| 522 | { |
| 523 | struct sk_buff *skb; |
| 524 | |
| 525 | while ((skb = sfq_dequeue(sch)) != NULL) |
| 526 | kfree_skb(skb); |
| 527 | } |
| 528 | |
| 529 | /* |
| 530 | * When q->perturbation is changed, we rehash all queued skbs |
| 531 | * to avoid OOO (Out Of Order) effects. |
| 532 | * We dont use sfq_dequeue()/sfq_enqueue() because we dont want to change |
| 533 | * counters. |
| 534 | */ |
| 535 | static void sfq_rehash(struct Qdisc *sch) |
| 536 | { |
| 537 | struct sfq_sched_data *q = qdisc_priv(sch); |
| 538 | struct sk_buff *skb; |
| 539 | int i; |
| 540 | struct sfq_slot *slot; |
| 541 | struct sk_buff_head list; |
| 542 | int dropped = 0; |
| 543 | unsigned int drop_len = 0; |
| 544 | |
| 545 | __skb_queue_head_init(&list); |
| 546 | |
| 547 | for (i = 0; i < q->maxflows; i++) { |
| 548 | slot = &q->slots[i]; |
| 549 | if (!slot->qlen) |
| 550 | continue; |
| 551 | while (slot->qlen) { |
| 552 | skb = slot_dequeue_head(slot); |
| 553 | sfq_dec(q, i); |
| 554 | __skb_queue_tail(&list, skb); |
| 555 | } |
| 556 | slot->backlog = 0; |
| 557 | red_set_vars(&slot->vars); |
| 558 | q->ht[slot->hash] = SFQ_EMPTY_SLOT; |
| 559 | } |
| 560 | q->tail = NULL; |
| 561 | |
| 562 | while ((skb = __skb_dequeue(&list)) != NULL) { |
| 563 | unsigned int hash = sfq_hash(q, skb); |
| 564 | sfq_index x = q->ht[hash]; |
| 565 | |
| 566 | slot = &q->slots[x]; |
| 567 | if (x == SFQ_EMPTY_SLOT) { |
| 568 | x = q->dep[0].next; /* get a free slot */ |
| 569 | if (x >= SFQ_MAX_FLOWS) { |
| 570 | drop: |
| 571 | qdisc_qstats_backlog_dec(sch, skb); |
| 572 | drop_len += qdisc_pkt_len(skb); |
| 573 | kfree_skb(skb); |
| 574 | dropped++; |
| 575 | continue; |
| 576 | } |
| 577 | q->ht[hash] = x; |
| 578 | slot = &q->slots[x]; |
| 579 | slot->hash = hash; |
| 580 | } |
| 581 | if (slot->qlen >= q->maxdepth) |
| 582 | goto drop; |
| 583 | slot_queue_add(slot, skb); |
| 584 | if (q->red_parms) |
| 585 | slot->vars.qavg = red_calc_qavg(q->red_parms, |
| 586 | &slot->vars, |
| 587 | slot->backlog); |
| 588 | slot->backlog += qdisc_pkt_len(skb); |
| 589 | sfq_inc(q, x); |
| 590 | if (slot->qlen == 1) { /* The flow is new */ |
| 591 | if (q->tail == NULL) { /* It is the first flow */ |
| 592 | slot->next = x; |
| 593 | } else { |
| 594 | slot->next = q->tail->next; |
| 595 | q->tail->next = x; |
| 596 | } |
| 597 | q->tail = slot; |
| 598 | slot->allot = q->scaled_quantum; |
| 599 | } |
| 600 | } |
| 601 | sch->q.qlen -= dropped; |
| 602 | qdisc_tree_reduce_backlog(sch, dropped, drop_len); |
| 603 | } |
| 604 | |
| 605 | static void sfq_perturbation(unsigned long arg) |
| 606 | { |
| 607 | struct Qdisc *sch = (struct Qdisc *)arg; |
| 608 | struct sfq_sched_data *q = qdisc_priv(sch); |
| 609 | spinlock_t *root_lock = qdisc_lock(qdisc_root_sleeping(sch)); |
| 610 | |
| 611 | spin_lock(root_lock); |
| 612 | q->perturbation = prandom_u32(); |
| 613 | if (!q->filter_list && q->tail) |
| 614 | sfq_rehash(sch); |
| 615 | spin_unlock(root_lock); |
| 616 | |
| 617 | if (q->perturb_period) |
| 618 | mod_timer(&q->perturb_timer, jiffies + q->perturb_period); |
| 619 | } |
| 620 | |
| 621 | static int sfq_change(struct Qdisc *sch, struct nlattr *opt) |
| 622 | { |
| 623 | struct sfq_sched_data *q = qdisc_priv(sch); |
| 624 | struct tc_sfq_qopt *ctl = nla_data(opt); |
| 625 | struct tc_sfq_qopt_v1 *ctl_v1 = NULL; |
| 626 | unsigned int qlen, dropped = 0; |
| 627 | struct red_parms *p = NULL; |
| 628 | |
| 629 | if (opt->nla_len < nla_attr_size(sizeof(*ctl))) |
| 630 | return -EINVAL; |
| 631 | if (opt->nla_len >= nla_attr_size(sizeof(*ctl_v1))) |
| 632 | ctl_v1 = nla_data(opt); |
| 633 | if (ctl->divisor && |
| 634 | (!is_power_of_2(ctl->divisor) || ctl->divisor > 65536)) |
| 635 | return -EINVAL; |
| 636 | if (ctl_v1 && ctl_v1->qth_min) { |
| 637 | p = kmalloc(sizeof(*p), GFP_KERNEL); |
| 638 | if (!p) |
| 639 | return -ENOMEM; |
| 640 | } |
| 641 | sch_tree_lock(sch); |
| 642 | if (ctl->quantum) { |
| 643 | q->quantum = ctl->quantum; |
| 644 | q->scaled_quantum = SFQ_ALLOT_SIZE(q->quantum); |
| 645 | } |
| 646 | q->perturb_period = ctl->perturb_period * HZ; |
| 647 | if (ctl->flows) |
| 648 | q->maxflows = min_t(u32, ctl->flows, SFQ_MAX_FLOWS); |
| 649 | if (ctl->divisor) { |
| 650 | q->divisor = ctl->divisor; |
| 651 | q->maxflows = min_t(u32, q->maxflows, q->divisor); |
| 652 | } |
| 653 | if (ctl_v1) { |
| 654 | if (ctl_v1->depth) |
| 655 | q->maxdepth = min_t(u32, ctl_v1->depth, SFQ_MAX_DEPTH); |
| 656 | if (p) { |
| 657 | swap(q->red_parms, p); |
| 658 | red_set_parms(q->red_parms, |
| 659 | ctl_v1->qth_min, ctl_v1->qth_max, |
| 660 | ctl_v1->Wlog, |
| 661 | ctl_v1->Plog, ctl_v1->Scell_log, |
| 662 | NULL, |
| 663 | ctl_v1->max_P); |
| 664 | } |
| 665 | q->flags = ctl_v1->flags; |
| 666 | q->headdrop = ctl_v1->headdrop; |
| 667 | } |
| 668 | if (ctl->limit) { |
| 669 | q->limit = min_t(u32, ctl->limit, q->maxdepth * q->maxflows); |
| 670 | q->maxflows = min_t(u32, q->maxflows, q->limit); |
| 671 | } |
| 672 | |
| 673 | qlen = sch->q.qlen; |
| 674 | while (sch->q.qlen > q->limit) |
| 675 | dropped += sfq_drop(sch); |
| 676 | qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen, dropped); |
| 677 | |
| 678 | del_timer(&q->perturb_timer); |
| 679 | if (q->perturb_period) { |
| 680 | mod_timer(&q->perturb_timer, jiffies + q->perturb_period); |
| 681 | q->perturbation = prandom_u32(); |
| 682 | } |
| 683 | sch_tree_unlock(sch); |
| 684 | kfree(p); |
| 685 | return 0; |
| 686 | } |
| 687 | |
| 688 | static void *sfq_alloc(size_t sz) |
| 689 | { |
| 690 | void *ptr = kmalloc(sz, GFP_KERNEL | __GFP_NOWARN); |
| 691 | |
| 692 | if (!ptr) |
| 693 | ptr = vmalloc(sz); |
| 694 | return ptr; |
| 695 | } |
| 696 | |
| 697 | static void sfq_free(void *addr) |
| 698 | { |
| 699 | kvfree(addr); |
| 700 | } |
| 701 | |
| 702 | static void sfq_destroy(struct Qdisc *sch) |
| 703 | { |
| 704 | struct sfq_sched_data *q = qdisc_priv(sch); |
| 705 | |
| 706 | tcf_destroy_chain(&q->filter_list); |
| 707 | q->perturb_period = 0; |
| 708 | del_timer_sync(&q->perturb_timer); |
| 709 | sfq_free(q->ht); |
| 710 | sfq_free(q->slots); |
| 711 | kfree(q->red_parms); |
| 712 | } |
| 713 | |
| 714 | static int sfq_init(struct Qdisc *sch, struct nlattr *opt) |
| 715 | { |
| 716 | struct sfq_sched_data *q = qdisc_priv(sch); |
| 717 | int i; |
| 718 | |
| 719 | q->perturb_timer.function = sfq_perturbation; |
| 720 | q->perturb_timer.data = (unsigned long)sch; |
| 721 | init_timer_deferrable(&q->perturb_timer); |
| 722 | |
| 723 | for (i = 0; i < SFQ_MAX_DEPTH + 1; i++) { |
| 724 | q->dep[i].next = i + SFQ_MAX_FLOWS; |
| 725 | q->dep[i].prev = i + SFQ_MAX_FLOWS; |
| 726 | } |
| 727 | |
| 728 | q->limit = SFQ_MAX_DEPTH; |
| 729 | q->maxdepth = SFQ_MAX_DEPTH; |
| 730 | q->cur_depth = 0; |
| 731 | q->tail = NULL; |
| 732 | q->divisor = SFQ_DEFAULT_HASH_DIVISOR; |
| 733 | q->maxflows = SFQ_DEFAULT_FLOWS; |
| 734 | q->quantum = psched_mtu(qdisc_dev(sch)); |
| 735 | q->scaled_quantum = SFQ_ALLOT_SIZE(q->quantum); |
| 736 | q->perturb_period = 0; |
| 737 | q->perturbation = prandom_u32(); |
| 738 | |
| 739 | if (opt) { |
| 740 | int err = sfq_change(sch, opt); |
| 741 | if (err) |
| 742 | return err; |
| 743 | } |
| 744 | |
| 745 | q->ht = sfq_alloc(sizeof(q->ht[0]) * q->divisor); |
| 746 | q->slots = sfq_alloc(sizeof(q->slots[0]) * q->maxflows); |
| 747 | if (!q->ht || !q->slots) { |
| 748 | /* Note: sfq_destroy() will be called by our caller */ |
| 749 | return -ENOMEM; |
| 750 | } |
| 751 | |
| 752 | for (i = 0; i < q->divisor; i++) |
| 753 | q->ht[i] = SFQ_EMPTY_SLOT; |
| 754 | |
| 755 | for (i = 0; i < q->maxflows; i++) { |
| 756 | slot_queue_init(&q->slots[i]); |
| 757 | sfq_link(q, i); |
| 758 | } |
| 759 | if (q->limit >= 1) |
| 760 | sch->flags |= TCQ_F_CAN_BYPASS; |
| 761 | else |
| 762 | sch->flags &= ~TCQ_F_CAN_BYPASS; |
| 763 | return 0; |
| 764 | } |
| 765 | |
| 766 | static int sfq_dump(struct Qdisc *sch, struct sk_buff *skb) |
| 767 | { |
| 768 | struct sfq_sched_data *q = qdisc_priv(sch); |
| 769 | unsigned char *b = skb_tail_pointer(skb); |
| 770 | struct tc_sfq_qopt_v1 opt; |
| 771 | struct red_parms *p = q->red_parms; |
| 772 | |
| 773 | memset(&opt, 0, sizeof(opt)); |
| 774 | opt.v0.quantum = q->quantum; |
| 775 | opt.v0.perturb_period = q->perturb_period / HZ; |
| 776 | opt.v0.limit = q->limit; |
| 777 | opt.v0.divisor = q->divisor; |
| 778 | opt.v0.flows = q->maxflows; |
| 779 | opt.depth = q->maxdepth; |
| 780 | opt.headdrop = q->headdrop; |
| 781 | |
| 782 | if (p) { |
| 783 | opt.qth_min = p->qth_min >> p->Wlog; |
| 784 | opt.qth_max = p->qth_max >> p->Wlog; |
| 785 | opt.Wlog = p->Wlog; |
| 786 | opt.Plog = p->Plog; |
| 787 | opt.Scell_log = p->Scell_log; |
| 788 | opt.max_P = p->max_P; |
| 789 | } |
| 790 | memcpy(&opt.stats, &q->stats, sizeof(opt.stats)); |
| 791 | opt.flags = q->flags; |
| 792 | |
| 793 | if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt)) |
| 794 | goto nla_put_failure; |
| 795 | |
| 796 | return skb->len; |
| 797 | |
| 798 | nla_put_failure: |
| 799 | nlmsg_trim(skb, b); |
| 800 | return -1; |
| 801 | } |
| 802 | |
| 803 | static struct Qdisc *sfq_leaf(struct Qdisc *sch, unsigned long arg) |
| 804 | { |
| 805 | return NULL; |
| 806 | } |
| 807 | |
| 808 | static unsigned long sfq_get(struct Qdisc *sch, u32 classid) |
| 809 | { |
| 810 | return 0; |
| 811 | } |
| 812 | |
| 813 | static unsigned long sfq_bind(struct Qdisc *sch, unsigned long parent, |
| 814 | u32 classid) |
| 815 | { |
| 816 | /* we cannot bypass queue discipline anymore */ |
| 817 | sch->flags &= ~TCQ_F_CAN_BYPASS; |
| 818 | return 0; |
| 819 | } |
| 820 | |
| 821 | static void sfq_put(struct Qdisc *q, unsigned long cl) |
| 822 | { |
| 823 | } |
| 824 | |
| 825 | static struct tcf_proto __rcu **sfq_find_tcf(struct Qdisc *sch, |
| 826 | unsigned long cl) |
| 827 | { |
| 828 | struct sfq_sched_data *q = qdisc_priv(sch); |
| 829 | |
| 830 | if (cl) |
| 831 | return NULL; |
| 832 | return &q->filter_list; |
| 833 | } |
| 834 | |
| 835 | static int sfq_dump_class(struct Qdisc *sch, unsigned long cl, |
| 836 | struct sk_buff *skb, struct tcmsg *tcm) |
| 837 | { |
| 838 | tcm->tcm_handle |= TC_H_MIN(cl); |
| 839 | return 0; |
| 840 | } |
| 841 | |
| 842 | static int sfq_dump_class_stats(struct Qdisc *sch, unsigned long cl, |
| 843 | struct gnet_dump *d) |
| 844 | { |
| 845 | struct sfq_sched_data *q = qdisc_priv(sch); |
| 846 | sfq_index idx = q->ht[cl - 1]; |
| 847 | struct gnet_stats_queue qs = { 0 }; |
| 848 | struct tc_sfq_xstats xstats = { 0 }; |
| 849 | |
| 850 | if (idx != SFQ_EMPTY_SLOT) { |
| 851 | const struct sfq_slot *slot = &q->slots[idx]; |
| 852 | |
| 853 | xstats.allot = slot->allot << SFQ_ALLOT_SHIFT; |
| 854 | qs.qlen = slot->qlen; |
| 855 | qs.backlog = slot->backlog; |
| 856 | } |
| 857 | if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0) |
| 858 | return -1; |
| 859 | return gnet_stats_copy_app(d, &xstats, sizeof(xstats)); |
| 860 | } |
| 861 | |
| 862 | static void sfq_walk(struct Qdisc *sch, struct qdisc_walker *arg) |
| 863 | { |
| 864 | struct sfq_sched_data *q = qdisc_priv(sch); |
| 865 | unsigned int i; |
| 866 | |
| 867 | if (arg->stop) |
| 868 | return; |
| 869 | |
| 870 | for (i = 0; i < q->divisor; i++) { |
| 871 | if (q->ht[i] == SFQ_EMPTY_SLOT || |
| 872 | arg->count < arg->skip) { |
| 873 | arg->count++; |
| 874 | continue; |
| 875 | } |
| 876 | if (arg->fn(sch, i + 1, arg) < 0) { |
| 877 | arg->stop = 1; |
| 878 | break; |
| 879 | } |
| 880 | arg->count++; |
| 881 | } |
| 882 | } |
| 883 | |
| 884 | static const struct Qdisc_class_ops sfq_class_ops = { |
| 885 | .leaf = sfq_leaf, |
| 886 | .get = sfq_get, |
| 887 | .put = sfq_put, |
| 888 | .tcf_chain = sfq_find_tcf, |
| 889 | .bind_tcf = sfq_bind, |
| 890 | .unbind_tcf = sfq_put, |
| 891 | .dump = sfq_dump_class, |
| 892 | .dump_stats = sfq_dump_class_stats, |
| 893 | .walk = sfq_walk, |
| 894 | }; |
| 895 | |
| 896 | static struct Qdisc_ops sfq_qdisc_ops __read_mostly = { |
| 897 | .cl_ops = &sfq_class_ops, |
| 898 | .id = "sfq", |
| 899 | .priv_size = sizeof(struct sfq_sched_data), |
| 900 | .enqueue = sfq_enqueue, |
| 901 | .dequeue = sfq_dequeue, |
| 902 | .peek = qdisc_peek_dequeued, |
| 903 | .drop = sfq_drop, |
| 904 | .init = sfq_init, |
| 905 | .reset = sfq_reset, |
| 906 | .destroy = sfq_destroy, |
| 907 | .change = NULL, |
| 908 | .dump = sfq_dump, |
| 909 | .owner = THIS_MODULE, |
| 910 | }; |
| 911 | |
| 912 | static int __init sfq_module_init(void) |
| 913 | { |
| 914 | return register_qdisc(&sfq_qdisc_ops); |
| 915 | } |
| 916 | static void __exit sfq_module_exit(void) |
| 917 | { |
| 918 | unregister_qdisc(&sfq_qdisc_ops); |
| 919 | } |
| 920 | module_init(sfq_module_init) |
| 921 | module_exit(sfq_module_exit) |
| 922 | MODULE_LICENSE("GPL"); |