Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. |
| 3 | * |
| 4 | * This software is available to you under a choice of one of two |
| 5 | * licenses. You may choose to be licensed under the terms of the GNU |
| 6 | * General Public License (GPL) Version 2, available from the file |
| 7 | * COPYING in the main directory of this source tree, or the BSD-type |
| 8 | * license below: |
| 9 | * |
| 10 | * Redistribution and use in source and binary forms, with or without |
| 11 | * modification, are permitted provided that the following conditions |
| 12 | * are met: |
| 13 | * |
| 14 | * Redistributions of source code must retain the above copyright |
| 15 | * notice, this list of conditions and the following disclaimer. |
| 16 | * |
| 17 | * Redistributions in binary form must reproduce the above |
| 18 | * copyright notice, this list of conditions and the following |
| 19 | * disclaimer in the documentation and/or other materials provided |
| 20 | * with the distribution. |
| 21 | * |
| 22 | * Neither the name of the Network Appliance, Inc. nor the names of |
| 23 | * its contributors may be used to endorse or promote products |
| 24 | * derived from this software without specific prior written |
| 25 | * permission. |
| 26 | * |
| 27 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 28 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 29 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 30 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 31 | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 32 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 33 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 34 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 35 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 36 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 37 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 38 | */ |
| 39 | |
| 40 | /* |
| 41 | * transport.c |
| 42 | * |
| 43 | * This file contains the top-level implementation of an RPC RDMA |
| 44 | * transport. |
| 45 | * |
| 46 | * Naming convention: functions beginning with xprt_ are part of the |
| 47 | * transport switch. All others are RPC RDMA internal. |
| 48 | */ |
| 49 | |
| 50 | #include <linux/module.h> |
| 51 | #include <linux/slab.h> |
| 52 | #include <linux/seq_file.h> |
| 53 | #include <linux/sunrpc/addr.h> |
| 54 | |
| 55 | #include "xprt_rdma.h" |
| 56 | |
| 57 | #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) |
| 58 | # define RPCDBG_FACILITY RPCDBG_TRANS |
| 59 | #endif |
| 60 | |
| 61 | /* |
| 62 | * tunables |
| 63 | */ |
| 64 | |
| 65 | static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE; |
| 66 | static unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE; |
| 67 | static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE; |
| 68 | static unsigned int xprt_rdma_inline_write_padding; |
| 69 | static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_FRMR; |
| 70 | int xprt_rdma_pad_optimize = 1; |
| 71 | |
| 72 | #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) |
| 73 | |
| 74 | static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE; |
| 75 | static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE; |
| 76 | static unsigned int zero; |
| 77 | static unsigned int max_padding = PAGE_SIZE; |
| 78 | static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS; |
| 79 | static unsigned int max_memreg = RPCRDMA_LAST - 1; |
| 80 | |
| 81 | static struct ctl_table_header *sunrpc_table_header; |
| 82 | |
| 83 | static struct ctl_table xr_tunables_table[] = { |
| 84 | { |
| 85 | .procname = "rdma_slot_table_entries", |
| 86 | .data = &xprt_rdma_slot_table_entries, |
| 87 | .maxlen = sizeof(unsigned int), |
| 88 | .mode = 0644, |
| 89 | .proc_handler = proc_dointvec_minmax, |
| 90 | .extra1 = &min_slot_table_size, |
| 91 | .extra2 = &max_slot_table_size |
| 92 | }, |
| 93 | { |
| 94 | .procname = "rdma_max_inline_read", |
| 95 | .data = &xprt_rdma_max_inline_read, |
| 96 | .maxlen = sizeof(unsigned int), |
| 97 | .mode = 0644, |
| 98 | .proc_handler = proc_dointvec, |
| 99 | }, |
| 100 | { |
| 101 | .procname = "rdma_max_inline_write", |
| 102 | .data = &xprt_rdma_max_inline_write, |
| 103 | .maxlen = sizeof(unsigned int), |
| 104 | .mode = 0644, |
| 105 | .proc_handler = proc_dointvec, |
| 106 | }, |
| 107 | { |
| 108 | .procname = "rdma_inline_write_padding", |
| 109 | .data = &xprt_rdma_inline_write_padding, |
| 110 | .maxlen = sizeof(unsigned int), |
| 111 | .mode = 0644, |
| 112 | .proc_handler = proc_dointvec_minmax, |
| 113 | .extra1 = &zero, |
| 114 | .extra2 = &max_padding, |
| 115 | }, |
| 116 | { |
| 117 | .procname = "rdma_memreg_strategy", |
| 118 | .data = &xprt_rdma_memreg_strategy, |
| 119 | .maxlen = sizeof(unsigned int), |
| 120 | .mode = 0644, |
| 121 | .proc_handler = proc_dointvec_minmax, |
| 122 | .extra1 = &min_memreg, |
| 123 | .extra2 = &max_memreg, |
| 124 | }, |
| 125 | { |
| 126 | .procname = "rdma_pad_optimize", |
| 127 | .data = &xprt_rdma_pad_optimize, |
| 128 | .maxlen = sizeof(unsigned int), |
| 129 | .mode = 0644, |
| 130 | .proc_handler = proc_dointvec, |
| 131 | }, |
| 132 | { }, |
| 133 | }; |
| 134 | |
| 135 | static struct ctl_table sunrpc_table[] = { |
| 136 | { |
| 137 | .procname = "sunrpc", |
| 138 | .mode = 0555, |
| 139 | .child = xr_tunables_table |
| 140 | }, |
| 141 | { }, |
| 142 | }; |
| 143 | |
| 144 | #endif |
| 145 | |
| 146 | #define RPCRDMA_BIND_TO (60U * HZ) |
| 147 | #define RPCRDMA_INIT_REEST_TO (5U * HZ) |
| 148 | #define RPCRDMA_MAX_REEST_TO (30U * HZ) |
| 149 | #define RPCRDMA_IDLE_DISC_TO (5U * 60 * HZ) |
| 150 | |
| 151 | static struct rpc_xprt_ops xprt_rdma_procs; /* forward reference */ |
| 152 | |
| 153 | static void |
| 154 | xprt_rdma_format_addresses4(struct rpc_xprt *xprt, struct sockaddr *sap) |
| 155 | { |
| 156 | struct sockaddr_in *sin = (struct sockaddr_in *)sap; |
| 157 | char buf[20]; |
| 158 | |
| 159 | snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr)); |
| 160 | xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL); |
| 161 | |
| 162 | xprt->address_strings[RPC_DISPLAY_NETID] = RPCBIND_NETID_RDMA; |
| 163 | } |
| 164 | |
| 165 | static void |
| 166 | xprt_rdma_format_addresses6(struct rpc_xprt *xprt, struct sockaddr *sap) |
| 167 | { |
| 168 | struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sap; |
| 169 | char buf[40]; |
| 170 | |
| 171 | snprintf(buf, sizeof(buf), "%pi6", &sin6->sin6_addr); |
| 172 | xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL); |
| 173 | |
| 174 | xprt->address_strings[RPC_DISPLAY_NETID] = RPCBIND_NETID_RDMA6; |
| 175 | } |
| 176 | |
| 177 | static void |
| 178 | xprt_rdma_format_addresses(struct rpc_xprt *xprt, struct sockaddr *sap) |
| 179 | { |
| 180 | char buf[128]; |
| 181 | |
| 182 | switch (sap->sa_family) { |
| 183 | case AF_INET: |
| 184 | xprt_rdma_format_addresses4(xprt, sap); |
| 185 | break; |
| 186 | case AF_INET6: |
| 187 | xprt_rdma_format_addresses6(xprt, sap); |
| 188 | break; |
| 189 | default: |
| 190 | pr_err("rpcrdma: Unrecognized address family\n"); |
| 191 | return; |
| 192 | } |
| 193 | |
| 194 | (void)rpc_ntop(sap, buf, sizeof(buf)); |
| 195 | xprt->address_strings[RPC_DISPLAY_ADDR] = kstrdup(buf, GFP_KERNEL); |
| 196 | |
| 197 | snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap)); |
| 198 | xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL); |
| 199 | |
| 200 | snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap)); |
| 201 | xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL); |
| 202 | |
| 203 | xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma"; |
| 204 | } |
| 205 | |
| 206 | static void |
| 207 | xprt_rdma_free_addresses(struct rpc_xprt *xprt) |
| 208 | { |
| 209 | unsigned int i; |
| 210 | |
| 211 | for (i = 0; i < RPC_DISPLAY_MAX; i++) |
| 212 | switch (i) { |
| 213 | case RPC_DISPLAY_PROTO: |
| 214 | case RPC_DISPLAY_NETID: |
| 215 | continue; |
| 216 | default: |
| 217 | kfree(xprt->address_strings[i]); |
| 218 | } |
| 219 | } |
| 220 | |
| 221 | static void |
| 222 | xprt_rdma_connect_worker(struct work_struct *work) |
| 223 | { |
| 224 | struct rpcrdma_xprt *r_xprt = container_of(work, struct rpcrdma_xprt, |
| 225 | rx_connect_worker.work); |
| 226 | struct rpc_xprt *xprt = &r_xprt->rx_xprt; |
| 227 | int rc = 0; |
| 228 | |
| 229 | xprt_clear_connected(xprt); |
| 230 | |
| 231 | dprintk("RPC: %s: %sconnect\n", __func__, |
| 232 | r_xprt->rx_ep.rep_connected != 0 ? "re" : ""); |
| 233 | rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia); |
| 234 | if (rc) |
| 235 | xprt_wake_pending_tasks(xprt, rc); |
| 236 | |
| 237 | dprintk("RPC: %s: exit\n", __func__); |
| 238 | xprt_clear_connecting(xprt); |
| 239 | } |
| 240 | |
| 241 | static void |
| 242 | xprt_rdma_inject_disconnect(struct rpc_xprt *xprt) |
| 243 | { |
| 244 | struct rpcrdma_xprt *r_xprt = container_of(xprt, struct rpcrdma_xprt, |
| 245 | rx_xprt); |
| 246 | |
| 247 | pr_info("rpcrdma: injecting transport disconnect on xprt=%p\n", xprt); |
| 248 | rdma_disconnect(r_xprt->rx_ia.ri_id); |
| 249 | } |
| 250 | |
| 251 | /* |
| 252 | * xprt_rdma_destroy |
| 253 | * |
| 254 | * Destroy the xprt. |
| 255 | * Free all memory associated with the object, including its own. |
| 256 | * NOTE: none of the *destroy methods free memory for their top-level |
| 257 | * objects, even though they may have allocated it (they do free |
| 258 | * private memory). It's up to the caller to handle it. In this |
| 259 | * case (RDMA transport), all structure memory is inlined with the |
| 260 | * struct rpcrdma_xprt. |
| 261 | */ |
| 262 | static void |
| 263 | xprt_rdma_destroy(struct rpc_xprt *xprt) |
| 264 | { |
| 265 | struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); |
| 266 | |
| 267 | dprintk("RPC: %s: called\n", __func__); |
| 268 | |
| 269 | cancel_delayed_work_sync(&r_xprt->rx_connect_worker); |
| 270 | |
| 271 | xprt_clear_connected(xprt); |
| 272 | |
| 273 | rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia); |
| 274 | rpcrdma_buffer_destroy(&r_xprt->rx_buf); |
| 275 | rpcrdma_ia_close(&r_xprt->rx_ia); |
| 276 | |
| 277 | xprt_rdma_free_addresses(xprt); |
| 278 | |
| 279 | xprt_free(xprt); |
| 280 | |
| 281 | dprintk("RPC: %s: returning\n", __func__); |
| 282 | |
| 283 | module_put(THIS_MODULE); |
| 284 | } |
| 285 | |
| 286 | static const struct rpc_timeout xprt_rdma_default_timeout = { |
| 287 | .to_initval = 60 * HZ, |
| 288 | .to_maxval = 60 * HZ, |
| 289 | }; |
| 290 | |
| 291 | /** |
| 292 | * xprt_setup_rdma - Set up transport to use RDMA |
| 293 | * |
| 294 | * @args: rpc transport arguments |
| 295 | */ |
| 296 | static struct rpc_xprt * |
| 297 | xprt_setup_rdma(struct xprt_create *args) |
| 298 | { |
| 299 | struct rpcrdma_create_data_internal cdata; |
| 300 | struct rpc_xprt *xprt; |
| 301 | struct rpcrdma_xprt *new_xprt; |
| 302 | struct rpcrdma_ep *new_ep; |
| 303 | struct sockaddr *sap; |
| 304 | int rc; |
| 305 | |
| 306 | if (args->addrlen > sizeof(xprt->addr)) { |
| 307 | dprintk("RPC: %s: address too large\n", __func__); |
| 308 | return ERR_PTR(-EBADF); |
| 309 | } |
| 310 | |
| 311 | xprt = xprt_alloc(args->net, sizeof(struct rpcrdma_xprt), |
| 312 | xprt_rdma_slot_table_entries, |
| 313 | xprt_rdma_slot_table_entries); |
| 314 | if (xprt == NULL) { |
| 315 | dprintk("RPC: %s: couldn't allocate rpcrdma_xprt\n", |
| 316 | __func__); |
| 317 | return ERR_PTR(-ENOMEM); |
| 318 | } |
| 319 | |
| 320 | /* 60 second timeout, no retries */ |
| 321 | xprt->timeout = &xprt_rdma_default_timeout; |
| 322 | xprt->bind_timeout = RPCRDMA_BIND_TO; |
| 323 | xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO; |
| 324 | xprt->idle_timeout = RPCRDMA_IDLE_DISC_TO; |
| 325 | |
| 326 | xprt->resvport = 0; /* privileged port not needed */ |
| 327 | xprt->tsh_size = 0; /* RPC-RDMA handles framing */ |
| 328 | xprt->ops = &xprt_rdma_procs; |
| 329 | |
| 330 | /* |
| 331 | * Set up RDMA-specific connect data. |
| 332 | */ |
| 333 | |
| 334 | sap = (struct sockaddr *)&cdata.addr; |
| 335 | memcpy(sap, args->dstaddr, args->addrlen); |
| 336 | |
| 337 | /* Ensure xprt->addr holds valid server TCP (not RDMA) |
| 338 | * address, for any side protocols which peek at it */ |
| 339 | xprt->prot = IPPROTO_TCP; |
| 340 | xprt->addrlen = args->addrlen; |
| 341 | memcpy(&xprt->addr, sap, xprt->addrlen); |
| 342 | |
| 343 | if (rpc_get_port(sap)) |
| 344 | xprt_set_bound(xprt); |
| 345 | |
| 346 | cdata.max_requests = xprt->max_reqs; |
| 347 | |
| 348 | cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */ |
| 349 | cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */ |
| 350 | |
| 351 | cdata.inline_wsize = xprt_rdma_max_inline_write; |
| 352 | if (cdata.inline_wsize > cdata.wsize) |
| 353 | cdata.inline_wsize = cdata.wsize; |
| 354 | |
| 355 | cdata.inline_rsize = xprt_rdma_max_inline_read; |
| 356 | if (cdata.inline_rsize > cdata.rsize) |
| 357 | cdata.inline_rsize = cdata.rsize; |
| 358 | |
| 359 | cdata.padding = xprt_rdma_inline_write_padding; |
| 360 | |
| 361 | /* |
| 362 | * Create new transport instance, which includes initialized |
| 363 | * o ia |
| 364 | * o endpoint |
| 365 | * o buffers |
| 366 | */ |
| 367 | |
| 368 | new_xprt = rpcx_to_rdmax(xprt); |
| 369 | |
| 370 | rc = rpcrdma_ia_open(new_xprt, sap, xprt_rdma_memreg_strategy); |
| 371 | if (rc) |
| 372 | goto out1; |
| 373 | |
| 374 | /* |
| 375 | * initialize and create ep |
| 376 | */ |
| 377 | new_xprt->rx_data = cdata; |
| 378 | new_ep = &new_xprt->rx_ep; |
| 379 | new_ep->rep_remote_addr = cdata.addr; |
| 380 | |
| 381 | rc = rpcrdma_ep_create(&new_xprt->rx_ep, |
| 382 | &new_xprt->rx_ia, &new_xprt->rx_data); |
| 383 | if (rc) |
| 384 | goto out2; |
| 385 | |
| 386 | /* |
| 387 | * Allocate pre-registered send and receive buffers for headers and |
| 388 | * any inline data. Also specify any padding which will be provided |
| 389 | * from a preregistered zero buffer. |
| 390 | */ |
| 391 | rc = rpcrdma_buffer_create(new_xprt); |
| 392 | if (rc) |
| 393 | goto out3; |
| 394 | |
| 395 | /* |
| 396 | * Register a callback for connection events. This is necessary because |
| 397 | * connection loss notification is async. We also catch connection loss |
| 398 | * when reaping receives. |
| 399 | */ |
| 400 | INIT_DELAYED_WORK(&new_xprt->rx_connect_worker, |
| 401 | xprt_rdma_connect_worker); |
| 402 | |
| 403 | xprt_rdma_format_addresses(xprt, sap); |
| 404 | xprt->max_payload = new_xprt->rx_ia.ri_ops->ro_maxpages(new_xprt); |
| 405 | if (xprt->max_payload == 0) |
| 406 | goto out4; |
| 407 | xprt->max_payload <<= PAGE_SHIFT; |
| 408 | dprintk("RPC: %s: transport data payload maximum: %zu bytes\n", |
| 409 | __func__, xprt->max_payload); |
| 410 | |
| 411 | if (!try_module_get(THIS_MODULE)) |
| 412 | goto out4; |
| 413 | |
| 414 | dprintk("RPC: %s: %s:%s\n", __func__, |
| 415 | xprt->address_strings[RPC_DISPLAY_ADDR], |
| 416 | xprt->address_strings[RPC_DISPLAY_PORT]); |
| 417 | return xprt; |
| 418 | |
| 419 | out4: |
| 420 | xprt_rdma_free_addresses(xprt); |
| 421 | rc = -EINVAL; |
| 422 | out3: |
| 423 | rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia); |
| 424 | out2: |
| 425 | rpcrdma_ia_close(&new_xprt->rx_ia); |
| 426 | out1: |
| 427 | xprt_free(xprt); |
| 428 | return ERR_PTR(rc); |
| 429 | } |
| 430 | |
| 431 | /* |
| 432 | * Close a connection, during shutdown or timeout/reconnect |
| 433 | */ |
| 434 | static void |
| 435 | xprt_rdma_close(struct rpc_xprt *xprt) |
| 436 | { |
| 437 | struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); |
| 438 | |
| 439 | dprintk("RPC: %s: closing\n", __func__); |
| 440 | if (r_xprt->rx_ep.rep_connected > 0) |
| 441 | xprt->reestablish_timeout = 0; |
| 442 | xprt_disconnect_done(xprt); |
| 443 | rpcrdma_ep_disconnect(&r_xprt->rx_ep, &r_xprt->rx_ia); |
| 444 | } |
| 445 | |
| 446 | static void |
| 447 | xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port) |
| 448 | { |
| 449 | struct sockaddr_in *sap; |
| 450 | |
| 451 | sap = (struct sockaddr_in *)&xprt->addr; |
| 452 | sap->sin_port = htons(port); |
| 453 | sap = (struct sockaddr_in *)&rpcx_to_rdmad(xprt).addr; |
| 454 | sap->sin_port = htons(port); |
| 455 | dprintk("RPC: %s: %u\n", __func__, port); |
| 456 | } |
| 457 | |
| 458 | static void |
| 459 | xprt_rdma_connect(struct rpc_xprt *xprt, struct rpc_task *task) |
| 460 | { |
| 461 | struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); |
| 462 | |
| 463 | if (r_xprt->rx_ep.rep_connected != 0) { |
| 464 | /* Reconnect */ |
| 465 | schedule_delayed_work(&r_xprt->rx_connect_worker, |
| 466 | xprt->reestablish_timeout); |
| 467 | xprt->reestablish_timeout <<= 1; |
| 468 | if (xprt->reestablish_timeout > RPCRDMA_MAX_REEST_TO) |
| 469 | xprt->reestablish_timeout = RPCRDMA_MAX_REEST_TO; |
| 470 | else if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO) |
| 471 | xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO; |
| 472 | } else { |
| 473 | schedule_delayed_work(&r_xprt->rx_connect_worker, 0); |
| 474 | if (!RPC_IS_ASYNC(task)) |
| 475 | flush_delayed_work(&r_xprt->rx_connect_worker); |
| 476 | } |
| 477 | } |
| 478 | |
| 479 | /* |
| 480 | * The RDMA allocate/free functions need the task structure as a place |
| 481 | * to hide the struct rpcrdma_req, which is necessary for the actual send/recv |
| 482 | * sequence. |
| 483 | * |
| 484 | * The RPC layer allocates both send and receive buffers in the same call |
| 485 | * (rq_send_buf and rq_rcv_buf are both part of a single contiguous buffer). |
| 486 | * We may register rq_rcv_buf when using reply chunks. |
| 487 | */ |
| 488 | static void * |
| 489 | xprt_rdma_allocate(struct rpc_task *task, size_t size) |
| 490 | { |
| 491 | struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt; |
| 492 | struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); |
| 493 | struct rpcrdma_regbuf *rb; |
| 494 | struct rpcrdma_req *req; |
| 495 | size_t min_size; |
| 496 | gfp_t flags; |
| 497 | |
| 498 | req = rpcrdma_buffer_get(&r_xprt->rx_buf); |
| 499 | if (req == NULL) |
| 500 | return NULL; |
| 501 | |
| 502 | flags = GFP_NOIO | __GFP_NOWARN; |
| 503 | if (RPC_IS_SWAPPER(task)) |
| 504 | flags = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN; |
| 505 | |
| 506 | if (req->rl_rdmabuf == NULL) |
| 507 | goto out_rdmabuf; |
| 508 | if (req->rl_sendbuf == NULL) |
| 509 | goto out_sendbuf; |
| 510 | if (size > req->rl_sendbuf->rg_size) |
| 511 | goto out_sendbuf; |
| 512 | |
| 513 | out: |
| 514 | dprintk("RPC: %s: size %zd, request 0x%p\n", __func__, size, req); |
| 515 | req->rl_connect_cookie = 0; /* our reserved value */ |
| 516 | return req->rl_sendbuf->rg_base; |
| 517 | |
| 518 | out_rdmabuf: |
| 519 | min_size = RPCRDMA_INLINE_WRITE_THRESHOLD(task->tk_rqstp); |
| 520 | rb = rpcrdma_alloc_regbuf(&r_xprt->rx_ia, min_size, flags); |
| 521 | if (IS_ERR(rb)) |
| 522 | goto out_fail; |
| 523 | req->rl_rdmabuf = rb; |
| 524 | |
| 525 | out_sendbuf: |
| 526 | /* XDR encoding and RPC/RDMA marshaling of this request has not |
| 527 | * yet occurred. Thus a lower bound is needed to prevent buffer |
| 528 | * overrun during marshaling. |
| 529 | * |
| 530 | * RPC/RDMA marshaling may choose to send payload bearing ops |
| 531 | * inline, if the result is smaller than the inline threshold. |
| 532 | * The value of the "size" argument accounts for header |
| 533 | * requirements but not for the payload in these cases. |
| 534 | * |
| 535 | * Likewise, allocate enough space to receive a reply up to the |
| 536 | * size of the inline threshold. |
| 537 | * |
| 538 | * It's unlikely that both the send header and the received |
| 539 | * reply will be large, but slush is provided here to allow |
| 540 | * flexibility when marshaling. |
| 541 | */ |
| 542 | min_size = RPCRDMA_INLINE_READ_THRESHOLD(task->tk_rqstp); |
| 543 | min_size += RPCRDMA_INLINE_WRITE_THRESHOLD(task->tk_rqstp); |
| 544 | if (size < min_size) |
| 545 | size = min_size; |
| 546 | |
| 547 | rb = rpcrdma_alloc_regbuf(&r_xprt->rx_ia, size, flags); |
| 548 | if (IS_ERR(rb)) |
| 549 | goto out_fail; |
| 550 | rb->rg_owner = req; |
| 551 | |
| 552 | r_xprt->rx_stats.hardway_register_count += size; |
| 553 | rpcrdma_free_regbuf(&r_xprt->rx_ia, req->rl_sendbuf); |
| 554 | req->rl_sendbuf = rb; |
| 555 | goto out; |
| 556 | |
| 557 | out_fail: |
| 558 | rpcrdma_buffer_put(req); |
| 559 | r_xprt->rx_stats.failed_marshal_count++; |
| 560 | return NULL; |
| 561 | } |
| 562 | |
| 563 | /* |
| 564 | * This function returns all RDMA resources to the pool. |
| 565 | */ |
| 566 | static void |
| 567 | xprt_rdma_free(void *buffer) |
| 568 | { |
| 569 | struct rpcrdma_req *req; |
| 570 | struct rpcrdma_xprt *r_xprt; |
| 571 | struct rpcrdma_regbuf *rb; |
| 572 | int i; |
| 573 | |
| 574 | if (buffer == NULL) |
| 575 | return; |
| 576 | |
| 577 | rb = container_of(buffer, struct rpcrdma_regbuf, rg_base[0]); |
| 578 | req = rb->rg_owner; |
| 579 | r_xprt = container_of(req->rl_buffer, struct rpcrdma_xprt, rx_buf); |
| 580 | |
| 581 | dprintk("RPC: %s: called on 0x%p\n", __func__, req->rl_reply); |
| 582 | |
| 583 | for (i = 0; req->rl_nchunks;) { |
| 584 | --req->rl_nchunks; |
| 585 | i += r_xprt->rx_ia.ri_ops->ro_unmap(r_xprt, |
| 586 | &req->rl_segments[i]); |
| 587 | } |
| 588 | |
| 589 | rpcrdma_buffer_put(req); |
| 590 | } |
| 591 | |
| 592 | /* |
| 593 | * send_request invokes the meat of RPC RDMA. It must do the following: |
| 594 | * 1. Marshal the RPC request into an RPC RDMA request, which means |
| 595 | * putting a header in front of data, and creating IOVs for RDMA |
| 596 | * from those in the request. |
| 597 | * 2. In marshaling, detect opportunities for RDMA, and use them. |
| 598 | * 3. Post a recv message to set up asynch completion, then send |
| 599 | * the request (rpcrdma_ep_post). |
| 600 | * 4. No partial sends are possible in the RPC-RDMA protocol (as in UDP). |
| 601 | */ |
| 602 | |
| 603 | static int |
| 604 | xprt_rdma_send_request(struct rpc_task *task) |
| 605 | { |
| 606 | struct rpc_rqst *rqst = task->tk_rqstp; |
| 607 | struct rpc_xprt *xprt = rqst->rq_xprt; |
| 608 | struct rpcrdma_req *req = rpcr_to_rdmar(rqst); |
| 609 | struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); |
| 610 | int rc = 0; |
| 611 | |
| 612 | rc = rpcrdma_marshal_req(rqst); |
| 613 | if (rc < 0) |
| 614 | goto failed_marshal; |
| 615 | |
| 616 | if (req->rl_reply == NULL) /* e.g. reconnection */ |
| 617 | rpcrdma_recv_buffer_get(req); |
| 618 | |
| 619 | /* Must suppress retransmit to maintain credits */ |
| 620 | if (req->rl_connect_cookie == xprt->connect_cookie) |
| 621 | goto drop_connection; |
| 622 | req->rl_connect_cookie = xprt->connect_cookie; |
| 623 | |
| 624 | if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req)) |
| 625 | goto drop_connection; |
| 626 | |
| 627 | rqst->rq_xmit_bytes_sent += rqst->rq_snd_buf.len; |
| 628 | rqst->rq_bytes_sent = 0; |
| 629 | return 0; |
| 630 | |
| 631 | failed_marshal: |
| 632 | r_xprt->rx_stats.failed_marshal_count++; |
| 633 | dprintk("RPC: %s: rpcrdma_marshal_req failed, status %i\n", |
| 634 | __func__, rc); |
| 635 | if (rc == -EIO) |
| 636 | return -EIO; |
| 637 | drop_connection: |
| 638 | xprt_disconnect_done(xprt); |
| 639 | return -ENOTCONN; /* implies disconnect */ |
| 640 | } |
| 641 | |
| 642 | static void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq) |
| 643 | { |
| 644 | struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); |
| 645 | long idle_time = 0; |
| 646 | |
| 647 | if (xprt_connected(xprt)) |
| 648 | idle_time = (long)(jiffies - xprt->last_used) / HZ; |
| 649 | |
| 650 | seq_puts(seq, "\txprt:\trdma "); |
| 651 | seq_printf(seq, "%u %lu %lu %lu %ld %lu %lu %lu %llu %llu ", |
| 652 | 0, /* need a local port? */ |
| 653 | xprt->stat.bind_count, |
| 654 | xprt->stat.connect_count, |
| 655 | xprt->stat.connect_time, |
| 656 | idle_time, |
| 657 | xprt->stat.sends, |
| 658 | xprt->stat.recvs, |
| 659 | xprt->stat.bad_xids, |
| 660 | xprt->stat.req_u, |
| 661 | xprt->stat.bklog_u); |
| 662 | seq_printf(seq, "%lu %lu %lu %llu %llu %llu %llu %lu %lu %lu %lu\n", |
| 663 | r_xprt->rx_stats.read_chunk_count, |
| 664 | r_xprt->rx_stats.write_chunk_count, |
| 665 | r_xprt->rx_stats.reply_chunk_count, |
| 666 | r_xprt->rx_stats.total_rdma_request, |
| 667 | r_xprt->rx_stats.total_rdma_reply, |
| 668 | r_xprt->rx_stats.pullup_copy_count, |
| 669 | r_xprt->rx_stats.fixup_copy_count, |
| 670 | r_xprt->rx_stats.hardway_register_count, |
| 671 | r_xprt->rx_stats.failed_marshal_count, |
| 672 | r_xprt->rx_stats.bad_reply_count, |
| 673 | r_xprt->rx_stats.nomsg_call_count); |
| 674 | } |
| 675 | |
| 676 | static int |
| 677 | xprt_rdma_enable_swap(struct rpc_xprt *xprt) |
| 678 | { |
| 679 | return 0; |
| 680 | } |
| 681 | |
| 682 | static void |
| 683 | xprt_rdma_disable_swap(struct rpc_xprt *xprt) |
| 684 | { |
| 685 | } |
| 686 | |
| 687 | /* |
| 688 | * Plumbing for rpc transport switch and kernel module |
| 689 | */ |
| 690 | |
| 691 | static struct rpc_xprt_ops xprt_rdma_procs = { |
| 692 | .reserve_xprt = xprt_reserve_xprt_cong, |
| 693 | .release_xprt = xprt_release_xprt_cong, /* sunrpc/xprt.c */ |
| 694 | .alloc_slot = xprt_alloc_slot, |
| 695 | .release_request = xprt_release_rqst_cong, /* ditto */ |
| 696 | .set_retrans_timeout = xprt_set_retrans_timeout_def, /* ditto */ |
| 697 | .rpcbind = rpcb_getport_async, /* sunrpc/rpcb_clnt.c */ |
| 698 | .set_port = xprt_rdma_set_port, |
| 699 | .connect = xprt_rdma_connect, |
| 700 | .buf_alloc = xprt_rdma_allocate, |
| 701 | .buf_free = xprt_rdma_free, |
| 702 | .send_request = xprt_rdma_send_request, |
| 703 | .close = xprt_rdma_close, |
| 704 | .destroy = xprt_rdma_destroy, |
| 705 | .print_stats = xprt_rdma_print_stats, |
| 706 | .enable_swap = xprt_rdma_enable_swap, |
| 707 | .disable_swap = xprt_rdma_disable_swap, |
| 708 | .inject_disconnect = xprt_rdma_inject_disconnect, |
| 709 | #if defined(CONFIG_SUNRPC_BACKCHANNEL) |
| 710 | .bc_setup = xprt_rdma_bc_setup, |
| 711 | .bc_up = xprt_rdma_bc_up, |
| 712 | .bc_free_rqst = xprt_rdma_bc_free_rqst, |
| 713 | .bc_destroy = xprt_rdma_bc_destroy, |
| 714 | #endif |
| 715 | }; |
| 716 | |
| 717 | static struct xprt_class xprt_rdma = { |
| 718 | .list = LIST_HEAD_INIT(xprt_rdma.list), |
| 719 | .name = "rdma", |
| 720 | .owner = THIS_MODULE, |
| 721 | .ident = XPRT_TRANSPORT_RDMA, |
| 722 | .setup = xprt_setup_rdma, |
| 723 | }; |
| 724 | |
| 725 | void xprt_rdma_cleanup(void) |
| 726 | { |
| 727 | int rc; |
| 728 | |
| 729 | dprintk("RPCRDMA Module Removed, deregister RPC RDMA transport\n"); |
| 730 | #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) |
| 731 | if (sunrpc_table_header) { |
| 732 | unregister_sysctl_table(sunrpc_table_header); |
| 733 | sunrpc_table_header = NULL; |
| 734 | } |
| 735 | #endif |
| 736 | rc = xprt_unregister_transport(&xprt_rdma); |
| 737 | if (rc) |
| 738 | dprintk("RPC: %s: xprt_unregister returned %i\n", |
| 739 | __func__, rc); |
| 740 | |
| 741 | rpcrdma_destroy_wq(); |
| 742 | frwr_destroy_recovery_wq(); |
| 743 | } |
| 744 | |
| 745 | int xprt_rdma_init(void) |
| 746 | { |
| 747 | int rc; |
| 748 | |
| 749 | rc = frwr_alloc_recovery_wq(); |
| 750 | if (rc) |
| 751 | return rc; |
| 752 | |
| 753 | rc = rpcrdma_alloc_wq(); |
| 754 | if (rc) { |
| 755 | frwr_destroy_recovery_wq(); |
| 756 | return rc; |
| 757 | } |
| 758 | |
| 759 | rc = xprt_register_transport(&xprt_rdma); |
| 760 | if (rc) { |
| 761 | rpcrdma_destroy_wq(); |
| 762 | frwr_destroy_recovery_wq(); |
| 763 | return rc; |
| 764 | } |
| 765 | |
| 766 | dprintk("RPCRDMA Module Init, register RPC RDMA transport\n"); |
| 767 | |
| 768 | dprintk("Defaults:\n"); |
| 769 | dprintk("\tSlots %d\n" |
| 770 | "\tMaxInlineRead %d\n\tMaxInlineWrite %d\n", |
| 771 | xprt_rdma_slot_table_entries, |
| 772 | xprt_rdma_max_inline_read, xprt_rdma_max_inline_write); |
| 773 | dprintk("\tPadding %d\n\tMemreg %d\n", |
| 774 | xprt_rdma_inline_write_padding, xprt_rdma_memreg_strategy); |
| 775 | |
| 776 | #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) |
| 777 | if (!sunrpc_table_header) |
| 778 | sunrpc_table_header = register_sysctl_table(sunrpc_table); |
| 779 | #endif |
| 780 | return 0; |
| 781 | } |