Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame^] | 1 | /* |
| 2 | * numa.c |
| 3 | * |
| 4 | * numa: Simulate NUMA-sensitive workload and measure their NUMA performance |
| 5 | */ |
| 6 | |
| 7 | #include "../perf.h" |
| 8 | #include "../builtin.h" |
| 9 | #include "../util/util.h" |
| 10 | #include "../util/parse-options.h" |
| 11 | #include "../util/cloexec.h" |
| 12 | |
| 13 | #include "bench.h" |
| 14 | |
| 15 | #include <errno.h> |
| 16 | #include <sched.h> |
| 17 | #include <stdio.h> |
| 18 | #include <assert.h> |
| 19 | #include <malloc.h> |
| 20 | #include <signal.h> |
| 21 | #include <stdlib.h> |
| 22 | #include <string.h> |
| 23 | #include <unistd.h> |
| 24 | #include <pthread.h> |
| 25 | #include <sys/mman.h> |
| 26 | #include <sys/time.h> |
| 27 | #include <sys/resource.h> |
| 28 | #include <sys/wait.h> |
| 29 | #include <sys/prctl.h> |
| 30 | #include <sys/types.h> |
| 31 | |
| 32 | #include <numa.h> |
| 33 | #include <numaif.h> |
| 34 | |
| 35 | /* |
| 36 | * Regular printout to the terminal, supressed if -q is specified: |
| 37 | */ |
| 38 | #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0) |
| 39 | |
| 40 | /* |
| 41 | * Debug printf: |
| 42 | */ |
| 43 | #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0) |
| 44 | |
| 45 | struct thread_data { |
| 46 | int curr_cpu; |
| 47 | cpu_set_t bind_cpumask; |
| 48 | int bind_node; |
| 49 | u8 *process_data; |
| 50 | int process_nr; |
| 51 | int thread_nr; |
| 52 | int task_nr; |
| 53 | unsigned int loops_done; |
| 54 | u64 val; |
| 55 | u64 runtime_ns; |
| 56 | u64 system_time_ns; |
| 57 | u64 user_time_ns; |
| 58 | double speed_gbs; |
| 59 | pthread_mutex_t *process_lock; |
| 60 | }; |
| 61 | |
| 62 | /* Parameters set by options: */ |
| 63 | |
| 64 | struct params { |
| 65 | /* Startup synchronization: */ |
| 66 | bool serialize_startup; |
| 67 | |
| 68 | /* Task hierarchy: */ |
| 69 | int nr_proc; |
| 70 | int nr_threads; |
| 71 | |
| 72 | /* Working set sizes: */ |
| 73 | const char *mb_global_str; |
| 74 | const char *mb_proc_str; |
| 75 | const char *mb_proc_locked_str; |
| 76 | const char *mb_thread_str; |
| 77 | |
| 78 | double mb_global; |
| 79 | double mb_proc; |
| 80 | double mb_proc_locked; |
| 81 | double mb_thread; |
| 82 | |
| 83 | /* Access patterns to the working set: */ |
| 84 | bool data_reads; |
| 85 | bool data_writes; |
| 86 | bool data_backwards; |
| 87 | bool data_zero_memset; |
| 88 | bool data_rand_walk; |
| 89 | u32 nr_loops; |
| 90 | u32 nr_secs; |
| 91 | u32 sleep_usecs; |
| 92 | |
| 93 | /* Working set initialization: */ |
| 94 | bool init_zero; |
| 95 | bool init_random; |
| 96 | bool init_cpu0; |
| 97 | |
| 98 | /* Misc options: */ |
| 99 | int show_details; |
| 100 | int run_all; |
| 101 | int thp; |
| 102 | |
| 103 | long bytes_global; |
| 104 | long bytes_process; |
| 105 | long bytes_process_locked; |
| 106 | long bytes_thread; |
| 107 | |
| 108 | int nr_tasks; |
| 109 | bool show_quiet; |
| 110 | |
| 111 | bool show_convergence; |
| 112 | bool measure_convergence; |
| 113 | |
| 114 | int perturb_secs; |
| 115 | int nr_cpus; |
| 116 | int nr_nodes; |
| 117 | |
| 118 | /* Affinity options -C and -N: */ |
| 119 | char *cpu_list_str; |
| 120 | char *node_list_str; |
| 121 | }; |
| 122 | |
| 123 | |
| 124 | /* Global, read-writable area, accessible to all processes and threads: */ |
| 125 | |
| 126 | struct global_info { |
| 127 | u8 *data; |
| 128 | |
| 129 | pthread_mutex_t startup_mutex; |
| 130 | int nr_tasks_started; |
| 131 | |
| 132 | pthread_mutex_t startup_done_mutex; |
| 133 | |
| 134 | pthread_mutex_t start_work_mutex; |
| 135 | int nr_tasks_working; |
| 136 | |
| 137 | pthread_mutex_t stop_work_mutex; |
| 138 | u64 bytes_done; |
| 139 | |
| 140 | struct thread_data *threads; |
| 141 | |
| 142 | /* Convergence latency measurement: */ |
| 143 | bool all_converged; |
| 144 | bool stop_work; |
| 145 | |
| 146 | int print_once; |
| 147 | |
| 148 | struct params p; |
| 149 | }; |
| 150 | |
| 151 | static struct global_info *g = NULL; |
| 152 | |
| 153 | static int parse_cpus_opt(const struct option *opt, const char *arg, int unset); |
| 154 | static int parse_nodes_opt(const struct option *opt, const char *arg, int unset); |
| 155 | |
| 156 | struct params p0; |
| 157 | |
| 158 | static const struct option options[] = { |
| 159 | OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"), |
| 160 | OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"), |
| 161 | |
| 162 | OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"), |
| 163 | OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"), |
| 164 | OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"), |
| 165 | OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"), |
| 166 | |
| 167 | OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"), |
| 168 | OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"), |
| 169 | OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"), |
| 170 | |
| 171 | OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via writes (can be mixed with -W)"), |
| 172 | OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"), |
| 173 | OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"), |
| 174 | OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"), |
| 175 | OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"), |
| 176 | |
| 177 | |
| 178 | OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"), |
| 179 | OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"), |
| 180 | OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"), |
| 181 | OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"), |
| 182 | |
| 183 | OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"), |
| 184 | OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"), |
| 185 | OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"), |
| 186 | OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"), |
| 187 | OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"), |
| 188 | OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "quiet mode"), |
| 189 | OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"), |
| 190 | |
| 191 | /* Special option string parsing callbacks: */ |
| 192 | OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]", |
| 193 | "bind the first N tasks to these specific cpus (the rest is unbound)", |
| 194 | parse_cpus_opt), |
| 195 | OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]", |
| 196 | "bind the first N tasks to these specific memory nodes (the rest is unbound)", |
| 197 | parse_nodes_opt), |
| 198 | OPT_END() |
| 199 | }; |
| 200 | |
| 201 | static const char * const bench_numa_usage[] = { |
| 202 | "perf bench numa <options>", |
| 203 | NULL |
| 204 | }; |
| 205 | |
| 206 | static const char * const numa_usage[] = { |
| 207 | "perf bench numa mem [<options>]", |
| 208 | NULL |
| 209 | }; |
| 210 | |
| 211 | static cpu_set_t bind_to_cpu(int target_cpu) |
| 212 | { |
| 213 | cpu_set_t orig_mask, mask; |
| 214 | int ret; |
| 215 | |
| 216 | ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); |
| 217 | BUG_ON(ret); |
| 218 | |
| 219 | CPU_ZERO(&mask); |
| 220 | |
| 221 | if (target_cpu == -1) { |
| 222 | int cpu; |
| 223 | |
| 224 | for (cpu = 0; cpu < g->p.nr_cpus; cpu++) |
| 225 | CPU_SET(cpu, &mask); |
| 226 | } else { |
| 227 | BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus); |
| 228 | CPU_SET(target_cpu, &mask); |
| 229 | } |
| 230 | |
| 231 | ret = sched_setaffinity(0, sizeof(mask), &mask); |
| 232 | BUG_ON(ret); |
| 233 | |
| 234 | return orig_mask; |
| 235 | } |
| 236 | |
| 237 | static cpu_set_t bind_to_node(int target_node) |
| 238 | { |
| 239 | int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes; |
| 240 | cpu_set_t orig_mask, mask; |
| 241 | int cpu; |
| 242 | int ret; |
| 243 | |
| 244 | BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus); |
| 245 | BUG_ON(!cpus_per_node); |
| 246 | |
| 247 | ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); |
| 248 | BUG_ON(ret); |
| 249 | |
| 250 | CPU_ZERO(&mask); |
| 251 | |
| 252 | if (target_node == -1) { |
| 253 | for (cpu = 0; cpu < g->p.nr_cpus; cpu++) |
| 254 | CPU_SET(cpu, &mask); |
| 255 | } else { |
| 256 | int cpu_start = (target_node + 0) * cpus_per_node; |
| 257 | int cpu_stop = (target_node + 1) * cpus_per_node; |
| 258 | |
| 259 | BUG_ON(cpu_stop > g->p.nr_cpus); |
| 260 | |
| 261 | for (cpu = cpu_start; cpu < cpu_stop; cpu++) |
| 262 | CPU_SET(cpu, &mask); |
| 263 | } |
| 264 | |
| 265 | ret = sched_setaffinity(0, sizeof(mask), &mask); |
| 266 | BUG_ON(ret); |
| 267 | |
| 268 | return orig_mask; |
| 269 | } |
| 270 | |
| 271 | static void bind_to_cpumask(cpu_set_t mask) |
| 272 | { |
| 273 | int ret; |
| 274 | |
| 275 | ret = sched_setaffinity(0, sizeof(mask), &mask); |
| 276 | BUG_ON(ret); |
| 277 | } |
| 278 | |
| 279 | static void mempol_restore(void) |
| 280 | { |
| 281 | int ret; |
| 282 | |
| 283 | ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1); |
| 284 | |
| 285 | BUG_ON(ret); |
| 286 | } |
| 287 | |
| 288 | static void bind_to_memnode(int node) |
| 289 | { |
| 290 | unsigned long nodemask; |
| 291 | int ret; |
| 292 | |
| 293 | if (node == -1) |
| 294 | return; |
| 295 | |
| 296 | BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)); |
| 297 | nodemask = 1L << node; |
| 298 | |
| 299 | ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8); |
| 300 | dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret); |
| 301 | |
| 302 | BUG_ON(ret); |
| 303 | } |
| 304 | |
| 305 | #define HPSIZE (2*1024*1024) |
| 306 | |
| 307 | #define set_taskname(fmt...) \ |
| 308 | do { \ |
| 309 | char name[20]; \ |
| 310 | \ |
| 311 | snprintf(name, 20, fmt); \ |
| 312 | prctl(PR_SET_NAME, name); \ |
| 313 | } while (0) |
| 314 | |
| 315 | static u8 *alloc_data(ssize_t bytes0, int map_flags, |
| 316 | int init_zero, int init_cpu0, int thp, int init_random) |
| 317 | { |
| 318 | cpu_set_t orig_mask; |
| 319 | ssize_t bytes; |
| 320 | u8 *buf; |
| 321 | int ret; |
| 322 | |
| 323 | if (!bytes0) |
| 324 | return NULL; |
| 325 | |
| 326 | /* Allocate and initialize all memory on CPU#0: */ |
| 327 | if (init_cpu0) { |
| 328 | orig_mask = bind_to_node(0); |
| 329 | bind_to_memnode(0); |
| 330 | } |
| 331 | |
| 332 | bytes = bytes0 + HPSIZE; |
| 333 | |
| 334 | buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0); |
| 335 | BUG_ON(buf == (void *)-1); |
| 336 | |
| 337 | if (map_flags == MAP_PRIVATE) { |
| 338 | if (thp > 0) { |
| 339 | ret = madvise(buf, bytes, MADV_HUGEPAGE); |
| 340 | if (ret && !g->print_once) { |
| 341 | g->print_once = 1; |
| 342 | printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n"); |
| 343 | } |
| 344 | } |
| 345 | if (thp < 0) { |
| 346 | ret = madvise(buf, bytes, MADV_NOHUGEPAGE); |
| 347 | if (ret && !g->print_once) { |
| 348 | g->print_once = 1; |
| 349 | printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n"); |
| 350 | } |
| 351 | } |
| 352 | } |
| 353 | |
| 354 | if (init_zero) { |
| 355 | bzero(buf, bytes); |
| 356 | } else { |
| 357 | /* Initialize random contents, different in each word: */ |
| 358 | if (init_random) { |
| 359 | u64 *wbuf = (void *)buf; |
| 360 | long off = rand(); |
| 361 | long i; |
| 362 | |
| 363 | for (i = 0; i < bytes/8; i++) |
| 364 | wbuf[i] = i + off; |
| 365 | } |
| 366 | } |
| 367 | |
| 368 | /* Align to 2MB boundary: */ |
| 369 | buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1)); |
| 370 | |
| 371 | /* Restore affinity: */ |
| 372 | if (init_cpu0) { |
| 373 | bind_to_cpumask(orig_mask); |
| 374 | mempol_restore(); |
| 375 | } |
| 376 | |
| 377 | return buf; |
| 378 | } |
| 379 | |
| 380 | static void free_data(void *data, ssize_t bytes) |
| 381 | { |
| 382 | int ret; |
| 383 | |
| 384 | if (!data) |
| 385 | return; |
| 386 | |
| 387 | ret = munmap(data, bytes); |
| 388 | BUG_ON(ret); |
| 389 | } |
| 390 | |
| 391 | /* |
| 392 | * Create a shared memory buffer that can be shared between processes, zeroed: |
| 393 | */ |
| 394 | static void * zalloc_shared_data(ssize_t bytes) |
| 395 | { |
| 396 | return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random); |
| 397 | } |
| 398 | |
| 399 | /* |
| 400 | * Create a shared memory buffer that can be shared between processes: |
| 401 | */ |
| 402 | static void * setup_shared_data(ssize_t bytes) |
| 403 | { |
| 404 | return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); |
| 405 | } |
| 406 | |
| 407 | /* |
| 408 | * Allocate process-local memory - this will either be shared between |
| 409 | * threads of this process, or only be accessed by this thread: |
| 410 | */ |
| 411 | static void * setup_private_data(ssize_t bytes) |
| 412 | { |
| 413 | return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); |
| 414 | } |
| 415 | |
| 416 | /* |
| 417 | * Return a process-shared (global) mutex: |
| 418 | */ |
| 419 | static void init_global_mutex(pthread_mutex_t *mutex) |
| 420 | { |
| 421 | pthread_mutexattr_t attr; |
| 422 | |
| 423 | pthread_mutexattr_init(&attr); |
| 424 | pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED); |
| 425 | pthread_mutex_init(mutex, &attr); |
| 426 | } |
| 427 | |
| 428 | static int parse_cpu_list(const char *arg) |
| 429 | { |
| 430 | p0.cpu_list_str = strdup(arg); |
| 431 | |
| 432 | dprintf("got CPU list: {%s}\n", p0.cpu_list_str); |
| 433 | |
| 434 | return 0; |
| 435 | } |
| 436 | |
| 437 | static int parse_setup_cpu_list(void) |
| 438 | { |
| 439 | struct thread_data *td; |
| 440 | char *str0, *str; |
| 441 | int t; |
| 442 | |
| 443 | if (!g->p.cpu_list_str) |
| 444 | return 0; |
| 445 | |
| 446 | dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); |
| 447 | |
| 448 | str0 = str = strdup(g->p.cpu_list_str); |
| 449 | t = 0; |
| 450 | |
| 451 | BUG_ON(!str); |
| 452 | |
| 453 | tprintf("# binding tasks to CPUs:\n"); |
| 454 | tprintf("# "); |
| 455 | |
| 456 | while (true) { |
| 457 | int bind_cpu, bind_cpu_0, bind_cpu_1; |
| 458 | char *tok, *tok_end, *tok_step, *tok_len, *tok_mul; |
| 459 | int bind_len; |
| 460 | int step; |
| 461 | int mul; |
| 462 | |
| 463 | tok = strsep(&str, ","); |
| 464 | if (!tok) |
| 465 | break; |
| 466 | |
| 467 | tok_end = strstr(tok, "-"); |
| 468 | |
| 469 | dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); |
| 470 | if (!tok_end) { |
| 471 | /* Single CPU specified: */ |
| 472 | bind_cpu_0 = bind_cpu_1 = atol(tok); |
| 473 | } else { |
| 474 | /* CPU range specified (for example: "5-11"): */ |
| 475 | bind_cpu_0 = atol(tok); |
| 476 | bind_cpu_1 = atol(tok_end + 1); |
| 477 | } |
| 478 | |
| 479 | step = 1; |
| 480 | tok_step = strstr(tok, "#"); |
| 481 | if (tok_step) { |
| 482 | step = atol(tok_step + 1); |
| 483 | BUG_ON(step <= 0 || step >= g->p.nr_cpus); |
| 484 | } |
| 485 | |
| 486 | /* |
| 487 | * Mask length. |
| 488 | * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4', |
| 489 | * where the _4 means the next 4 CPUs are allowed. |
| 490 | */ |
| 491 | bind_len = 1; |
| 492 | tok_len = strstr(tok, "_"); |
| 493 | if (tok_len) { |
| 494 | bind_len = atol(tok_len + 1); |
| 495 | BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus); |
| 496 | } |
| 497 | |
| 498 | /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ |
| 499 | mul = 1; |
| 500 | tok_mul = strstr(tok, "x"); |
| 501 | if (tok_mul) { |
| 502 | mul = atol(tok_mul + 1); |
| 503 | BUG_ON(mul <= 0); |
| 504 | } |
| 505 | |
| 506 | dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul); |
| 507 | |
| 508 | if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) { |
| 509 | printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus); |
| 510 | return -1; |
| 511 | } |
| 512 | |
| 513 | BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0); |
| 514 | BUG_ON(bind_cpu_0 > bind_cpu_1); |
| 515 | |
| 516 | for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) { |
| 517 | int i; |
| 518 | |
| 519 | for (i = 0; i < mul; i++) { |
| 520 | int cpu; |
| 521 | |
| 522 | if (t >= g->p.nr_tasks) { |
| 523 | printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu); |
| 524 | goto out; |
| 525 | } |
| 526 | td = g->threads + t; |
| 527 | |
| 528 | if (t) |
| 529 | tprintf(","); |
| 530 | if (bind_len > 1) { |
| 531 | tprintf("%2d/%d", bind_cpu, bind_len); |
| 532 | } else { |
| 533 | tprintf("%2d", bind_cpu); |
| 534 | } |
| 535 | |
| 536 | CPU_ZERO(&td->bind_cpumask); |
| 537 | for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) { |
| 538 | BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus); |
| 539 | CPU_SET(cpu, &td->bind_cpumask); |
| 540 | } |
| 541 | t++; |
| 542 | } |
| 543 | } |
| 544 | } |
| 545 | out: |
| 546 | |
| 547 | tprintf("\n"); |
| 548 | |
| 549 | if (t < g->p.nr_tasks) |
| 550 | printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t); |
| 551 | |
| 552 | free(str0); |
| 553 | return 0; |
| 554 | } |
| 555 | |
| 556 | static int parse_cpus_opt(const struct option *opt __maybe_unused, |
| 557 | const char *arg, int unset __maybe_unused) |
| 558 | { |
| 559 | if (!arg) |
| 560 | return -1; |
| 561 | |
| 562 | return parse_cpu_list(arg); |
| 563 | } |
| 564 | |
| 565 | static int parse_node_list(const char *arg) |
| 566 | { |
| 567 | p0.node_list_str = strdup(arg); |
| 568 | |
| 569 | dprintf("got NODE list: {%s}\n", p0.node_list_str); |
| 570 | |
| 571 | return 0; |
| 572 | } |
| 573 | |
| 574 | static int parse_setup_node_list(void) |
| 575 | { |
| 576 | struct thread_data *td; |
| 577 | char *str0, *str; |
| 578 | int t; |
| 579 | |
| 580 | if (!g->p.node_list_str) |
| 581 | return 0; |
| 582 | |
| 583 | dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); |
| 584 | |
| 585 | str0 = str = strdup(g->p.node_list_str); |
| 586 | t = 0; |
| 587 | |
| 588 | BUG_ON(!str); |
| 589 | |
| 590 | tprintf("# binding tasks to NODEs:\n"); |
| 591 | tprintf("# "); |
| 592 | |
| 593 | while (true) { |
| 594 | int bind_node, bind_node_0, bind_node_1; |
| 595 | char *tok, *tok_end, *tok_step, *tok_mul; |
| 596 | int step; |
| 597 | int mul; |
| 598 | |
| 599 | tok = strsep(&str, ","); |
| 600 | if (!tok) |
| 601 | break; |
| 602 | |
| 603 | tok_end = strstr(tok, "-"); |
| 604 | |
| 605 | dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); |
| 606 | if (!tok_end) { |
| 607 | /* Single NODE specified: */ |
| 608 | bind_node_0 = bind_node_1 = atol(tok); |
| 609 | } else { |
| 610 | /* NODE range specified (for example: "5-11"): */ |
| 611 | bind_node_0 = atol(tok); |
| 612 | bind_node_1 = atol(tok_end + 1); |
| 613 | } |
| 614 | |
| 615 | step = 1; |
| 616 | tok_step = strstr(tok, "#"); |
| 617 | if (tok_step) { |
| 618 | step = atol(tok_step + 1); |
| 619 | BUG_ON(step <= 0 || step >= g->p.nr_nodes); |
| 620 | } |
| 621 | |
| 622 | /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ |
| 623 | mul = 1; |
| 624 | tok_mul = strstr(tok, "x"); |
| 625 | if (tok_mul) { |
| 626 | mul = atol(tok_mul + 1); |
| 627 | BUG_ON(mul <= 0); |
| 628 | } |
| 629 | |
| 630 | dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step); |
| 631 | |
| 632 | if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) { |
| 633 | printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes); |
| 634 | return -1; |
| 635 | } |
| 636 | |
| 637 | BUG_ON(bind_node_0 < 0 || bind_node_1 < 0); |
| 638 | BUG_ON(bind_node_0 > bind_node_1); |
| 639 | |
| 640 | for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) { |
| 641 | int i; |
| 642 | |
| 643 | for (i = 0; i < mul; i++) { |
| 644 | if (t >= g->p.nr_tasks) { |
| 645 | printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node); |
| 646 | goto out; |
| 647 | } |
| 648 | td = g->threads + t; |
| 649 | |
| 650 | if (!t) |
| 651 | tprintf(" %2d", bind_node); |
| 652 | else |
| 653 | tprintf(",%2d", bind_node); |
| 654 | |
| 655 | td->bind_node = bind_node; |
| 656 | t++; |
| 657 | } |
| 658 | } |
| 659 | } |
| 660 | out: |
| 661 | |
| 662 | tprintf("\n"); |
| 663 | |
| 664 | if (t < g->p.nr_tasks) |
| 665 | printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t); |
| 666 | |
| 667 | free(str0); |
| 668 | return 0; |
| 669 | } |
| 670 | |
| 671 | static int parse_nodes_opt(const struct option *opt __maybe_unused, |
| 672 | const char *arg, int unset __maybe_unused) |
| 673 | { |
| 674 | if (!arg) |
| 675 | return -1; |
| 676 | |
| 677 | return parse_node_list(arg); |
| 678 | |
| 679 | return 0; |
| 680 | } |
| 681 | |
| 682 | #define BIT(x) (1ul << x) |
| 683 | |
| 684 | static inline uint32_t lfsr_32(uint32_t lfsr) |
| 685 | { |
| 686 | const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31); |
| 687 | return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps); |
| 688 | } |
| 689 | |
| 690 | /* |
| 691 | * Make sure there's real data dependency to RAM (when read |
| 692 | * accesses are enabled), so the compiler, the CPU and the |
| 693 | * kernel (KSM, zero page, etc.) cannot optimize away RAM |
| 694 | * accesses: |
| 695 | */ |
| 696 | static inline u64 access_data(u64 *data __attribute__((unused)), u64 val) |
| 697 | { |
| 698 | if (g->p.data_reads) |
| 699 | val += *data; |
| 700 | if (g->p.data_writes) |
| 701 | *data = val + 1; |
| 702 | return val; |
| 703 | } |
| 704 | |
| 705 | /* |
| 706 | * The worker process does two types of work, a forwards going |
| 707 | * loop and a backwards going loop. |
| 708 | * |
| 709 | * We do this so that on multiprocessor systems we do not create |
| 710 | * a 'train' of processing, with highly synchronized processes, |
| 711 | * skewing the whole benchmark. |
| 712 | */ |
| 713 | static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val) |
| 714 | { |
| 715 | long words = bytes/sizeof(u64); |
| 716 | u64 *data = (void *)__data; |
| 717 | long chunk_0, chunk_1; |
| 718 | u64 *d0, *d, *d1; |
| 719 | long off; |
| 720 | long i; |
| 721 | |
| 722 | BUG_ON(!data && words); |
| 723 | BUG_ON(data && !words); |
| 724 | |
| 725 | if (!data) |
| 726 | return val; |
| 727 | |
| 728 | /* Very simple memset() work variant: */ |
| 729 | if (g->p.data_zero_memset && !g->p.data_rand_walk) { |
| 730 | bzero(data, bytes); |
| 731 | return val; |
| 732 | } |
| 733 | |
| 734 | /* Spread out by PID/TID nr and by loop nr: */ |
| 735 | chunk_0 = words/nr_max; |
| 736 | chunk_1 = words/g->p.nr_loops; |
| 737 | off = nr*chunk_0 + loop*chunk_1; |
| 738 | |
| 739 | while (off >= words) |
| 740 | off -= words; |
| 741 | |
| 742 | if (g->p.data_rand_walk) { |
| 743 | u32 lfsr = nr + loop + val; |
| 744 | int j; |
| 745 | |
| 746 | for (i = 0; i < words/1024; i++) { |
| 747 | long start, end; |
| 748 | |
| 749 | lfsr = lfsr_32(lfsr); |
| 750 | |
| 751 | start = lfsr % words; |
| 752 | end = min(start + 1024, words-1); |
| 753 | |
| 754 | if (g->p.data_zero_memset) { |
| 755 | bzero(data + start, (end-start) * sizeof(u64)); |
| 756 | } else { |
| 757 | for (j = start; j < end; j++) |
| 758 | val = access_data(data + j, val); |
| 759 | } |
| 760 | } |
| 761 | } else if (!g->p.data_backwards || (nr + loop) & 1) { |
| 762 | |
| 763 | d0 = data + off; |
| 764 | d = data + off + 1; |
| 765 | d1 = data + words; |
| 766 | |
| 767 | /* Process data forwards: */ |
| 768 | for (;;) { |
| 769 | if (unlikely(d >= d1)) |
| 770 | d = data; |
| 771 | if (unlikely(d == d0)) |
| 772 | break; |
| 773 | |
| 774 | val = access_data(d, val); |
| 775 | |
| 776 | d++; |
| 777 | } |
| 778 | } else { |
| 779 | /* Process data backwards: */ |
| 780 | |
| 781 | d0 = data + off; |
| 782 | d = data + off - 1; |
| 783 | d1 = data + words; |
| 784 | |
| 785 | /* Process data forwards: */ |
| 786 | for (;;) { |
| 787 | if (unlikely(d < data)) |
| 788 | d = data + words-1; |
| 789 | if (unlikely(d == d0)) |
| 790 | break; |
| 791 | |
| 792 | val = access_data(d, val); |
| 793 | |
| 794 | d--; |
| 795 | } |
| 796 | } |
| 797 | |
| 798 | return val; |
| 799 | } |
| 800 | |
| 801 | static void update_curr_cpu(int task_nr, unsigned long bytes_worked) |
| 802 | { |
| 803 | unsigned int cpu; |
| 804 | |
| 805 | cpu = sched_getcpu(); |
| 806 | |
| 807 | g->threads[task_nr].curr_cpu = cpu; |
| 808 | prctl(0, bytes_worked); |
| 809 | } |
| 810 | |
| 811 | #define MAX_NR_NODES 64 |
| 812 | |
| 813 | /* |
| 814 | * Count the number of nodes a process's threads |
| 815 | * are spread out on. |
| 816 | * |
| 817 | * A count of 1 means that the process is compressed |
| 818 | * to a single node. A count of g->p.nr_nodes means it's |
| 819 | * spread out on the whole system. |
| 820 | */ |
| 821 | static int count_process_nodes(int process_nr) |
| 822 | { |
| 823 | char node_present[MAX_NR_NODES] = { 0, }; |
| 824 | int nodes; |
| 825 | int n, t; |
| 826 | |
| 827 | for (t = 0; t < g->p.nr_threads; t++) { |
| 828 | struct thread_data *td; |
| 829 | int task_nr; |
| 830 | int node; |
| 831 | |
| 832 | task_nr = process_nr*g->p.nr_threads + t; |
| 833 | td = g->threads + task_nr; |
| 834 | |
| 835 | node = numa_node_of_cpu(td->curr_cpu); |
| 836 | if (node < 0) /* curr_cpu was likely still -1 */ |
| 837 | return 0; |
| 838 | |
| 839 | node_present[node] = 1; |
| 840 | } |
| 841 | |
| 842 | nodes = 0; |
| 843 | |
| 844 | for (n = 0; n < MAX_NR_NODES; n++) |
| 845 | nodes += node_present[n]; |
| 846 | |
| 847 | return nodes; |
| 848 | } |
| 849 | |
| 850 | /* |
| 851 | * Count the number of distinct process-threads a node contains. |
| 852 | * |
| 853 | * A count of 1 means that the node contains only a single |
| 854 | * process. If all nodes on the system contain at most one |
| 855 | * process then we are well-converged. |
| 856 | */ |
| 857 | static int count_node_processes(int node) |
| 858 | { |
| 859 | int processes = 0; |
| 860 | int t, p; |
| 861 | |
| 862 | for (p = 0; p < g->p.nr_proc; p++) { |
| 863 | for (t = 0; t < g->p.nr_threads; t++) { |
| 864 | struct thread_data *td; |
| 865 | int task_nr; |
| 866 | int n; |
| 867 | |
| 868 | task_nr = p*g->p.nr_threads + t; |
| 869 | td = g->threads + task_nr; |
| 870 | |
| 871 | n = numa_node_of_cpu(td->curr_cpu); |
| 872 | if (n == node) { |
| 873 | processes++; |
| 874 | break; |
| 875 | } |
| 876 | } |
| 877 | } |
| 878 | |
| 879 | return processes; |
| 880 | } |
| 881 | |
| 882 | static void calc_convergence_compression(int *strong) |
| 883 | { |
| 884 | unsigned int nodes_min, nodes_max; |
| 885 | int p; |
| 886 | |
| 887 | nodes_min = -1; |
| 888 | nodes_max = 0; |
| 889 | |
| 890 | for (p = 0; p < g->p.nr_proc; p++) { |
| 891 | unsigned int nodes = count_process_nodes(p); |
| 892 | |
| 893 | if (!nodes) { |
| 894 | *strong = 0; |
| 895 | return; |
| 896 | } |
| 897 | |
| 898 | nodes_min = min(nodes, nodes_min); |
| 899 | nodes_max = max(nodes, nodes_max); |
| 900 | } |
| 901 | |
| 902 | /* Strong convergence: all threads compress on a single node: */ |
| 903 | if (nodes_min == 1 && nodes_max == 1) { |
| 904 | *strong = 1; |
| 905 | } else { |
| 906 | *strong = 0; |
| 907 | tprintf(" {%d-%d}", nodes_min, nodes_max); |
| 908 | } |
| 909 | } |
| 910 | |
| 911 | static void calc_convergence(double runtime_ns_max, double *convergence) |
| 912 | { |
| 913 | unsigned int loops_done_min, loops_done_max; |
| 914 | int process_groups; |
| 915 | int nodes[MAX_NR_NODES]; |
| 916 | int distance; |
| 917 | int nr_min; |
| 918 | int nr_max; |
| 919 | int strong; |
| 920 | int sum; |
| 921 | int nr; |
| 922 | int node; |
| 923 | int cpu; |
| 924 | int t; |
| 925 | |
| 926 | if (!g->p.show_convergence && !g->p.measure_convergence) |
| 927 | return; |
| 928 | |
| 929 | for (node = 0; node < g->p.nr_nodes; node++) |
| 930 | nodes[node] = 0; |
| 931 | |
| 932 | loops_done_min = -1; |
| 933 | loops_done_max = 0; |
| 934 | |
| 935 | for (t = 0; t < g->p.nr_tasks; t++) { |
| 936 | struct thread_data *td = g->threads + t; |
| 937 | unsigned int loops_done; |
| 938 | |
| 939 | cpu = td->curr_cpu; |
| 940 | |
| 941 | /* Not all threads have written it yet: */ |
| 942 | if (cpu < 0) |
| 943 | continue; |
| 944 | |
| 945 | node = numa_node_of_cpu(cpu); |
| 946 | |
| 947 | nodes[node]++; |
| 948 | |
| 949 | loops_done = td->loops_done; |
| 950 | loops_done_min = min(loops_done, loops_done_min); |
| 951 | loops_done_max = max(loops_done, loops_done_max); |
| 952 | } |
| 953 | |
| 954 | nr_max = 0; |
| 955 | nr_min = g->p.nr_tasks; |
| 956 | sum = 0; |
| 957 | |
| 958 | for (node = 0; node < g->p.nr_nodes; node++) { |
| 959 | nr = nodes[node]; |
| 960 | nr_min = min(nr, nr_min); |
| 961 | nr_max = max(nr, nr_max); |
| 962 | sum += nr; |
| 963 | } |
| 964 | BUG_ON(nr_min > nr_max); |
| 965 | |
| 966 | BUG_ON(sum > g->p.nr_tasks); |
| 967 | |
| 968 | if (0 && (sum < g->p.nr_tasks)) |
| 969 | return; |
| 970 | |
| 971 | /* |
| 972 | * Count the number of distinct process groups present |
| 973 | * on nodes - when we are converged this will decrease |
| 974 | * to g->p.nr_proc: |
| 975 | */ |
| 976 | process_groups = 0; |
| 977 | |
| 978 | for (node = 0; node < g->p.nr_nodes; node++) { |
| 979 | int processes = count_node_processes(node); |
| 980 | |
| 981 | nr = nodes[node]; |
| 982 | tprintf(" %2d/%-2d", nr, processes); |
| 983 | |
| 984 | process_groups += processes; |
| 985 | } |
| 986 | |
| 987 | distance = nr_max - nr_min; |
| 988 | |
| 989 | tprintf(" [%2d/%-2d]", distance, process_groups); |
| 990 | |
| 991 | tprintf(" l:%3d-%-3d (%3d)", |
| 992 | loops_done_min, loops_done_max, loops_done_max-loops_done_min); |
| 993 | |
| 994 | if (loops_done_min && loops_done_max) { |
| 995 | double skew = 1.0 - (double)loops_done_min/loops_done_max; |
| 996 | |
| 997 | tprintf(" [%4.1f%%]", skew * 100.0); |
| 998 | } |
| 999 | |
| 1000 | calc_convergence_compression(&strong); |
| 1001 | |
| 1002 | if (strong && process_groups == g->p.nr_proc) { |
| 1003 | if (!*convergence) { |
| 1004 | *convergence = runtime_ns_max; |
| 1005 | tprintf(" (%6.1fs converged)\n", *convergence/1e9); |
| 1006 | if (g->p.measure_convergence) { |
| 1007 | g->all_converged = true; |
| 1008 | g->stop_work = true; |
| 1009 | } |
| 1010 | } |
| 1011 | } else { |
| 1012 | if (*convergence) { |
| 1013 | tprintf(" (%6.1fs de-converged)", runtime_ns_max/1e9); |
| 1014 | *convergence = 0; |
| 1015 | } |
| 1016 | tprintf("\n"); |
| 1017 | } |
| 1018 | } |
| 1019 | |
| 1020 | static void show_summary(double runtime_ns_max, int l, double *convergence) |
| 1021 | { |
| 1022 | tprintf("\r # %5.1f%% [%.1f mins]", |
| 1023 | (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max/1e9 / 60.0); |
| 1024 | |
| 1025 | calc_convergence(runtime_ns_max, convergence); |
| 1026 | |
| 1027 | if (g->p.show_details >= 0) |
| 1028 | fflush(stdout); |
| 1029 | } |
| 1030 | |
| 1031 | static void *worker_thread(void *__tdata) |
| 1032 | { |
| 1033 | struct thread_data *td = __tdata; |
| 1034 | struct timeval start0, start, stop, diff; |
| 1035 | int process_nr = td->process_nr; |
| 1036 | int thread_nr = td->thread_nr; |
| 1037 | unsigned long last_perturbance; |
| 1038 | int task_nr = td->task_nr; |
| 1039 | int details = g->p.show_details; |
| 1040 | int first_task, last_task; |
| 1041 | double convergence = 0; |
| 1042 | u64 val = td->val; |
| 1043 | double runtime_ns_max; |
| 1044 | u8 *global_data; |
| 1045 | u8 *process_data; |
| 1046 | u8 *thread_data; |
| 1047 | u64 bytes_done; |
| 1048 | long work_done; |
| 1049 | u32 l; |
| 1050 | struct rusage rusage; |
| 1051 | |
| 1052 | bind_to_cpumask(td->bind_cpumask); |
| 1053 | bind_to_memnode(td->bind_node); |
| 1054 | |
| 1055 | set_taskname("thread %d/%d", process_nr, thread_nr); |
| 1056 | |
| 1057 | global_data = g->data; |
| 1058 | process_data = td->process_data; |
| 1059 | thread_data = setup_private_data(g->p.bytes_thread); |
| 1060 | |
| 1061 | bytes_done = 0; |
| 1062 | |
| 1063 | last_task = 0; |
| 1064 | if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1) |
| 1065 | last_task = 1; |
| 1066 | |
| 1067 | first_task = 0; |
| 1068 | if (process_nr == 0 && thread_nr == 0) |
| 1069 | first_task = 1; |
| 1070 | |
| 1071 | if (details >= 2) { |
| 1072 | printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n", |
| 1073 | process_nr, thread_nr, global_data, process_data, thread_data); |
| 1074 | } |
| 1075 | |
| 1076 | if (g->p.serialize_startup) { |
| 1077 | pthread_mutex_lock(&g->startup_mutex); |
| 1078 | g->nr_tasks_started++; |
| 1079 | pthread_mutex_unlock(&g->startup_mutex); |
| 1080 | |
| 1081 | /* Here we will wait for the main process to start us all at once: */ |
| 1082 | pthread_mutex_lock(&g->start_work_mutex); |
| 1083 | g->nr_tasks_working++; |
| 1084 | |
| 1085 | /* Last one wake the main process: */ |
| 1086 | if (g->nr_tasks_working == g->p.nr_tasks) |
| 1087 | pthread_mutex_unlock(&g->startup_done_mutex); |
| 1088 | |
| 1089 | pthread_mutex_unlock(&g->start_work_mutex); |
| 1090 | } |
| 1091 | |
| 1092 | gettimeofday(&start0, NULL); |
| 1093 | |
| 1094 | start = stop = start0; |
| 1095 | last_perturbance = start.tv_sec; |
| 1096 | |
| 1097 | for (l = 0; l < g->p.nr_loops; l++) { |
| 1098 | start = stop; |
| 1099 | |
| 1100 | if (g->stop_work) |
| 1101 | break; |
| 1102 | |
| 1103 | val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val); |
| 1104 | val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val); |
| 1105 | val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val); |
| 1106 | |
| 1107 | if (g->p.sleep_usecs) { |
| 1108 | pthread_mutex_lock(td->process_lock); |
| 1109 | usleep(g->p.sleep_usecs); |
| 1110 | pthread_mutex_unlock(td->process_lock); |
| 1111 | } |
| 1112 | /* |
| 1113 | * Amount of work to be done under a process-global lock: |
| 1114 | */ |
| 1115 | if (g->p.bytes_process_locked) { |
| 1116 | pthread_mutex_lock(td->process_lock); |
| 1117 | val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val); |
| 1118 | pthread_mutex_unlock(td->process_lock); |
| 1119 | } |
| 1120 | |
| 1121 | work_done = g->p.bytes_global + g->p.bytes_process + |
| 1122 | g->p.bytes_process_locked + g->p.bytes_thread; |
| 1123 | |
| 1124 | update_curr_cpu(task_nr, work_done); |
| 1125 | bytes_done += work_done; |
| 1126 | |
| 1127 | if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs) |
| 1128 | continue; |
| 1129 | |
| 1130 | td->loops_done = l; |
| 1131 | |
| 1132 | gettimeofday(&stop, NULL); |
| 1133 | |
| 1134 | /* Check whether our max runtime timed out: */ |
| 1135 | if (g->p.nr_secs) { |
| 1136 | timersub(&stop, &start0, &diff); |
| 1137 | if ((u32)diff.tv_sec >= g->p.nr_secs) { |
| 1138 | g->stop_work = true; |
| 1139 | break; |
| 1140 | } |
| 1141 | } |
| 1142 | |
| 1143 | /* Update the summary at most once per second: */ |
| 1144 | if (start.tv_sec == stop.tv_sec) |
| 1145 | continue; |
| 1146 | |
| 1147 | /* |
| 1148 | * Perturb the first task's equilibrium every g->p.perturb_secs seconds, |
| 1149 | * by migrating to CPU#0: |
| 1150 | */ |
| 1151 | if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) { |
| 1152 | cpu_set_t orig_mask; |
| 1153 | int target_cpu; |
| 1154 | int this_cpu; |
| 1155 | |
| 1156 | last_perturbance = stop.tv_sec; |
| 1157 | |
| 1158 | /* |
| 1159 | * Depending on where we are running, move into |
| 1160 | * the other half of the system, to create some |
| 1161 | * real disturbance: |
| 1162 | */ |
| 1163 | this_cpu = g->threads[task_nr].curr_cpu; |
| 1164 | if (this_cpu < g->p.nr_cpus/2) |
| 1165 | target_cpu = g->p.nr_cpus-1; |
| 1166 | else |
| 1167 | target_cpu = 0; |
| 1168 | |
| 1169 | orig_mask = bind_to_cpu(target_cpu); |
| 1170 | |
| 1171 | /* Here we are running on the target CPU already */ |
| 1172 | if (details >= 1) |
| 1173 | printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu); |
| 1174 | |
| 1175 | bind_to_cpumask(orig_mask); |
| 1176 | } |
| 1177 | |
| 1178 | if (details >= 3) { |
| 1179 | timersub(&stop, &start, &diff); |
| 1180 | runtime_ns_max = diff.tv_sec * 1000000000; |
| 1181 | runtime_ns_max += diff.tv_usec * 1000; |
| 1182 | |
| 1183 | if (details >= 0) { |
| 1184 | printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n", |
| 1185 | process_nr, thread_nr, runtime_ns_max / bytes_done, val); |
| 1186 | } |
| 1187 | fflush(stdout); |
| 1188 | } |
| 1189 | if (!last_task) |
| 1190 | continue; |
| 1191 | |
| 1192 | timersub(&stop, &start0, &diff); |
| 1193 | runtime_ns_max = diff.tv_sec * 1000000000ULL; |
| 1194 | runtime_ns_max += diff.tv_usec * 1000ULL; |
| 1195 | |
| 1196 | show_summary(runtime_ns_max, l, &convergence); |
| 1197 | } |
| 1198 | |
| 1199 | gettimeofday(&stop, NULL); |
| 1200 | timersub(&stop, &start0, &diff); |
| 1201 | td->runtime_ns = diff.tv_sec * 1000000000ULL; |
| 1202 | td->runtime_ns += diff.tv_usec * 1000ULL; |
| 1203 | td->speed_gbs = bytes_done / (td->runtime_ns / 1e9) / 1e9; |
| 1204 | |
| 1205 | getrusage(RUSAGE_THREAD, &rusage); |
| 1206 | td->system_time_ns = rusage.ru_stime.tv_sec * 1000000000ULL; |
| 1207 | td->system_time_ns += rusage.ru_stime.tv_usec * 1000ULL; |
| 1208 | td->user_time_ns = rusage.ru_utime.tv_sec * 1000000000ULL; |
| 1209 | td->user_time_ns += rusage.ru_utime.tv_usec * 1000ULL; |
| 1210 | |
| 1211 | free_data(thread_data, g->p.bytes_thread); |
| 1212 | |
| 1213 | pthread_mutex_lock(&g->stop_work_mutex); |
| 1214 | g->bytes_done += bytes_done; |
| 1215 | pthread_mutex_unlock(&g->stop_work_mutex); |
| 1216 | |
| 1217 | return NULL; |
| 1218 | } |
| 1219 | |
| 1220 | /* |
| 1221 | * A worker process starts a couple of threads: |
| 1222 | */ |
| 1223 | static void worker_process(int process_nr) |
| 1224 | { |
| 1225 | pthread_mutex_t process_lock; |
| 1226 | struct thread_data *td; |
| 1227 | pthread_t *pthreads; |
| 1228 | u8 *process_data; |
| 1229 | int task_nr; |
| 1230 | int ret; |
| 1231 | int t; |
| 1232 | |
| 1233 | pthread_mutex_init(&process_lock, NULL); |
| 1234 | set_taskname("process %d", process_nr); |
| 1235 | |
| 1236 | /* |
| 1237 | * Pick up the memory policy and the CPU binding of our first thread, |
| 1238 | * so that we initialize memory accordingly: |
| 1239 | */ |
| 1240 | task_nr = process_nr*g->p.nr_threads; |
| 1241 | td = g->threads + task_nr; |
| 1242 | |
| 1243 | bind_to_memnode(td->bind_node); |
| 1244 | bind_to_cpumask(td->bind_cpumask); |
| 1245 | |
| 1246 | pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t)); |
| 1247 | process_data = setup_private_data(g->p.bytes_process); |
| 1248 | |
| 1249 | if (g->p.show_details >= 3) { |
| 1250 | printf(" # process %2d global mem: %p, process mem: %p\n", |
| 1251 | process_nr, g->data, process_data); |
| 1252 | } |
| 1253 | |
| 1254 | for (t = 0; t < g->p.nr_threads; t++) { |
| 1255 | task_nr = process_nr*g->p.nr_threads + t; |
| 1256 | td = g->threads + task_nr; |
| 1257 | |
| 1258 | td->process_data = process_data; |
| 1259 | td->process_nr = process_nr; |
| 1260 | td->thread_nr = t; |
| 1261 | td->task_nr = task_nr; |
| 1262 | td->val = rand(); |
| 1263 | td->curr_cpu = -1; |
| 1264 | td->process_lock = &process_lock; |
| 1265 | |
| 1266 | ret = pthread_create(pthreads + t, NULL, worker_thread, td); |
| 1267 | BUG_ON(ret); |
| 1268 | } |
| 1269 | |
| 1270 | for (t = 0; t < g->p.nr_threads; t++) { |
| 1271 | ret = pthread_join(pthreads[t], NULL); |
| 1272 | BUG_ON(ret); |
| 1273 | } |
| 1274 | |
| 1275 | free_data(process_data, g->p.bytes_process); |
| 1276 | free(pthreads); |
| 1277 | } |
| 1278 | |
| 1279 | static void print_summary(void) |
| 1280 | { |
| 1281 | if (g->p.show_details < 0) |
| 1282 | return; |
| 1283 | |
| 1284 | printf("\n ###\n"); |
| 1285 | printf(" # %d %s will execute (on %d nodes, %d CPUs):\n", |
| 1286 | g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus); |
| 1287 | printf(" # %5dx %5ldMB global shared mem operations\n", |
| 1288 | g->p.nr_loops, g->p.bytes_global/1024/1024); |
| 1289 | printf(" # %5dx %5ldMB process shared mem operations\n", |
| 1290 | g->p.nr_loops, g->p.bytes_process/1024/1024); |
| 1291 | printf(" # %5dx %5ldMB thread local mem operations\n", |
| 1292 | g->p.nr_loops, g->p.bytes_thread/1024/1024); |
| 1293 | |
| 1294 | printf(" ###\n"); |
| 1295 | |
| 1296 | printf("\n ###\n"); fflush(stdout); |
| 1297 | } |
| 1298 | |
| 1299 | static void init_thread_data(void) |
| 1300 | { |
| 1301 | ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; |
| 1302 | int t; |
| 1303 | |
| 1304 | g->threads = zalloc_shared_data(size); |
| 1305 | |
| 1306 | for (t = 0; t < g->p.nr_tasks; t++) { |
| 1307 | struct thread_data *td = g->threads + t; |
| 1308 | int cpu; |
| 1309 | |
| 1310 | /* Allow all nodes by default: */ |
| 1311 | td->bind_node = -1; |
| 1312 | |
| 1313 | /* Allow all CPUs by default: */ |
| 1314 | CPU_ZERO(&td->bind_cpumask); |
| 1315 | for (cpu = 0; cpu < g->p.nr_cpus; cpu++) |
| 1316 | CPU_SET(cpu, &td->bind_cpumask); |
| 1317 | } |
| 1318 | } |
| 1319 | |
| 1320 | static void deinit_thread_data(void) |
| 1321 | { |
| 1322 | ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; |
| 1323 | |
| 1324 | free_data(g->threads, size); |
| 1325 | } |
| 1326 | |
| 1327 | static int init(void) |
| 1328 | { |
| 1329 | g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0); |
| 1330 | |
| 1331 | /* Copy over options: */ |
| 1332 | g->p = p0; |
| 1333 | |
| 1334 | g->p.nr_cpus = numa_num_configured_cpus(); |
| 1335 | |
| 1336 | g->p.nr_nodes = numa_max_node() + 1; |
| 1337 | |
| 1338 | /* char array in count_process_nodes(): */ |
| 1339 | BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0); |
| 1340 | |
| 1341 | if (g->p.show_quiet && !g->p.show_details) |
| 1342 | g->p.show_details = -1; |
| 1343 | |
| 1344 | /* Some memory should be specified: */ |
| 1345 | if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str) |
| 1346 | return -1; |
| 1347 | |
| 1348 | if (g->p.mb_global_str) { |
| 1349 | g->p.mb_global = atof(g->p.mb_global_str); |
| 1350 | BUG_ON(g->p.mb_global < 0); |
| 1351 | } |
| 1352 | |
| 1353 | if (g->p.mb_proc_str) { |
| 1354 | g->p.mb_proc = atof(g->p.mb_proc_str); |
| 1355 | BUG_ON(g->p.mb_proc < 0); |
| 1356 | } |
| 1357 | |
| 1358 | if (g->p.mb_proc_locked_str) { |
| 1359 | g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str); |
| 1360 | BUG_ON(g->p.mb_proc_locked < 0); |
| 1361 | BUG_ON(g->p.mb_proc_locked > g->p.mb_proc); |
| 1362 | } |
| 1363 | |
| 1364 | if (g->p.mb_thread_str) { |
| 1365 | g->p.mb_thread = atof(g->p.mb_thread_str); |
| 1366 | BUG_ON(g->p.mb_thread < 0); |
| 1367 | } |
| 1368 | |
| 1369 | BUG_ON(g->p.nr_threads <= 0); |
| 1370 | BUG_ON(g->p.nr_proc <= 0); |
| 1371 | |
| 1372 | g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads; |
| 1373 | |
| 1374 | g->p.bytes_global = g->p.mb_global *1024L*1024L; |
| 1375 | g->p.bytes_process = g->p.mb_proc *1024L*1024L; |
| 1376 | g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L; |
| 1377 | g->p.bytes_thread = g->p.mb_thread *1024L*1024L; |
| 1378 | |
| 1379 | g->data = setup_shared_data(g->p.bytes_global); |
| 1380 | |
| 1381 | /* Startup serialization: */ |
| 1382 | init_global_mutex(&g->start_work_mutex); |
| 1383 | init_global_mutex(&g->startup_mutex); |
| 1384 | init_global_mutex(&g->startup_done_mutex); |
| 1385 | init_global_mutex(&g->stop_work_mutex); |
| 1386 | |
| 1387 | init_thread_data(); |
| 1388 | |
| 1389 | tprintf("#\n"); |
| 1390 | if (parse_setup_cpu_list() || parse_setup_node_list()) |
| 1391 | return -1; |
| 1392 | tprintf("#\n"); |
| 1393 | |
| 1394 | print_summary(); |
| 1395 | |
| 1396 | return 0; |
| 1397 | } |
| 1398 | |
| 1399 | static void deinit(void) |
| 1400 | { |
| 1401 | free_data(g->data, g->p.bytes_global); |
| 1402 | g->data = NULL; |
| 1403 | |
| 1404 | deinit_thread_data(); |
| 1405 | |
| 1406 | free_data(g, sizeof(*g)); |
| 1407 | g = NULL; |
| 1408 | } |
| 1409 | |
| 1410 | /* |
| 1411 | * Print a short or long result, depending on the verbosity setting: |
| 1412 | */ |
| 1413 | static void print_res(const char *name, double val, |
| 1414 | const char *txt_unit, const char *txt_short, const char *txt_long) |
| 1415 | { |
| 1416 | if (!name) |
| 1417 | name = "main,"; |
| 1418 | |
| 1419 | if (!g->p.show_quiet) |
| 1420 | printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short); |
| 1421 | else |
| 1422 | printf(" %14.3f %s\n", val, txt_long); |
| 1423 | } |
| 1424 | |
| 1425 | static int __bench_numa(const char *name) |
| 1426 | { |
| 1427 | struct timeval start, stop, diff; |
| 1428 | u64 runtime_ns_min, runtime_ns_sum; |
| 1429 | pid_t *pids, pid, wpid; |
| 1430 | double delta_runtime; |
| 1431 | double runtime_avg; |
| 1432 | double runtime_sec_max; |
| 1433 | double runtime_sec_min; |
| 1434 | int wait_stat; |
| 1435 | double bytes; |
| 1436 | int i, t, p; |
| 1437 | |
| 1438 | if (init()) |
| 1439 | return -1; |
| 1440 | |
| 1441 | pids = zalloc(g->p.nr_proc * sizeof(*pids)); |
| 1442 | pid = -1; |
| 1443 | |
| 1444 | /* All threads try to acquire it, this way we can wait for them to start up: */ |
| 1445 | pthread_mutex_lock(&g->start_work_mutex); |
| 1446 | |
| 1447 | if (g->p.serialize_startup) { |
| 1448 | tprintf(" #\n"); |
| 1449 | tprintf(" # Startup synchronization: ..."); fflush(stdout); |
| 1450 | } |
| 1451 | |
| 1452 | gettimeofday(&start, NULL); |
| 1453 | |
| 1454 | for (i = 0; i < g->p.nr_proc; i++) { |
| 1455 | pid = fork(); |
| 1456 | dprintf(" # process %2d: PID %d\n", i, pid); |
| 1457 | |
| 1458 | BUG_ON(pid < 0); |
| 1459 | if (!pid) { |
| 1460 | /* Child process: */ |
| 1461 | worker_process(i); |
| 1462 | |
| 1463 | exit(0); |
| 1464 | } |
| 1465 | pids[i] = pid; |
| 1466 | |
| 1467 | } |
| 1468 | /* Wait for all the threads to start up: */ |
| 1469 | while (g->nr_tasks_started != g->p.nr_tasks) |
| 1470 | usleep(1000); |
| 1471 | |
| 1472 | BUG_ON(g->nr_tasks_started != g->p.nr_tasks); |
| 1473 | |
| 1474 | if (g->p.serialize_startup) { |
| 1475 | double startup_sec; |
| 1476 | |
| 1477 | pthread_mutex_lock(&g->startup_done_mutex); |
| 1478 | |
| 1479 | /* This will start all threads: */ |
| 1480 | pthread_mutex_unlock(&g->start_work_mutex); |
| 1481 | |
| 1482 | /* This mutex is locked - the last started thread will wake us: */ |
| 1483 | pthread_mutex_lock(&g->startup_done_mutex); |
| 1484 | |
| 1485 | gettimeofday(&stop, NULL); |
| 1486 | |
| 1487 | timersub(&stop, &start, &diff); |
| 1488 | |
| 1489 | startup_sec = diff.tv_sec * 1000000000.0; |
| 1490 | startup_sec += diff.tv_usec * 1000.0; |
| 1491 | startup_sec /= 1e9; |
| 1492 | |
| 1493 | tprintf(" threads initialized in %.6f seconds.\n", startup_sec); |
| 1494 | tprintf(" #\n"); |
| 1495 | |
| 1496 | start = stop; |
| 1497 | pthread_mutex_unlock(&g->startup_done_mutex); |
| 1498 | } else { |
| 1499 | gettimeofday(&start, NULL); |
| 1500 | } |
| 1501 | |
| 1502 | /* Parent process: */ |
| 1503 | |
| 1504 | |
| 1505 | for (i = 0; i < g->p.nr_proc; i++) { |
| 1506 | wpid = waitpid(pids[i], &wait_stat, 0); |
| 1507 | BUG_ON(wpid < 0); |
| 1508 | BUG_ON(!WIFEXITED(wait_stat)); |
| 1509 | |
| 1510 | } |
| 1511 | |
| 1512 | runtime_ns_sum = 0; |
| 1513 | runtime_ns_min = -1LL; |
| 1514 | |
| 1515 | for (t = 0; t < g->p.nr_tasks; t++) { |
| 1516 | u64 thread_runtime_ns = g->threads[t].runtime_ns; |
| 1517 | |
| 1518 | runtime_ns_sum += thread_runtime_ns; |
| 1519 | runtime_ns_min = min(thread_runtime_ns, runtime_ns_min); |
| 1520 | } |
| 1521 | |
| 1522 | gettimeofday(&stop, NULL); |
| 1523 | timersub(&stop, &start, &diff); |
| 1524 | |
| 1525 | BUG_ON(bench_format != BENCH_FORMAT_DEFAULT); |
| 1526 | |
| 1527 | tprintf("\n ###\n"); |
| 1528 | tprintf("\n"); |
| 1529 | |
| 1530 | runtime_sec_max = diff.tv_sec * 1000000000.0; |
| 1531 | runtime_sec_max += diff.tv_usec * 1000.0; |
| 1532 | runtime_sec_max /= 1e9; |
| 1533 | |
| 1534 | runtime_sec_min = runtime_ns_min/1e9; |
| 1535 | |
| 1536 | bytes = g->bytes_done; |
| 1537 | runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / 1e9; |
| 1538 | |
| 1539 | if (g->p.measure_convergence) { |
| 1540 | print_res(name, runtime_sec_max, |
| 1541 | "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge"); |
| 1542 | } |
| 1543 | |
| 1544 | print_res(name, runtime_sec_max, |
| 1545 | "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime"); |
| 1546 | |
| 1547 | print_res(name, runtime_sec_min, |
| 1548 | "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime"); |
| 1549 | |
| 1550 | print_res(name, runtime_avg, |
| 1551 | "secs,", "runtime-avg/thread", "secs average thread-runtime"); |
| 1552 | |
| 1553 | delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0; |
| 1554 | print_res(name, delta_runtime / runtime_sec_max * 100.0, |
| 1555 | "%,", "spread-runtime/thread", "% difference between max/avg runtime"); |
| 1556 | |
| 1557 | print_res(name, bytes / g->p.nr_tasks / 1e9, |
| 1558 | "GB,", "data/thread", "GB data processed, per thread"); |
| 1559 | |
| 1560 | print_res(name, bytes / 1e9, |
| 1561 | "GB,", "data-total", "GB data processed, total"); |
| 1562 | |
| 1563 | print_res(name, runtime_sec_max * 1e9 / (bytes / g->p.nr_tasks), |
| 1564 | "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime"); |
| 1565 | |
| 1566 | print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max, |
| 1567 | "GB/sec,", "thread-speed", "GB/sec/thread speed"); |
| 1568 | |
| 1569 | print_res(name, bytes / runtime_sec_max / 1e9, |
| 1570 | "GB/sec,", "total-speed", "GB/sec total speed"); |
| 1571 | |
| 1572 | if (g->p.show_details >= 2) { |
| 1573 | char tname[14 + 2 * 10 + 1]; |
| 1574 | struct thread_data *td; |
| 1575 | for (p = 0; p < g->p.nr_proc; p++) { |
| 1576 | for (t = 0; t < g->p.nr_threads; t++) { |
| 1577 | memset(tname, 0, sizeof(tname)); |
| 1578 | td = g->threads + p*g->p.nr_threads + t; |
| 1579 | snprintf(tname, sizeof(tname), "process%d:thread%d", p, t); |
| 1580 | print_res(tname, td->speed_gbs, |
| 1581 | "GB/sec", "thread-speed", "GB/sec/thread speed"); |
| 1582 | print_res(tname, td->system_time_ns / 1e9, |
| 1583 | "secs", "thread-system-time", "system CPU time/thread"); |
| 1584 | print_res(tname, td->user_time_ns / 1e9, |
| 1585 | "secs", "thread-user-time", "user CPU time/thread"); |
| 1586 | } |
| 1587 | } |
| 1588 | } |
| 1589 | |
| 1590 | free(pids); |
| 1591 | |
| 1592 | deinit(); |
| 1593 | |
| 1594 | return 0; |
| 1595 | } |
| 1596 | |
| 1597 | #define MAX_ARGS 50 |
| 1598 | |
| 1599 | static int command_size(const char **argv) |
| 1600 | { |
| 1601 | int size = 0; |
| 1602 | |
| 1603 | while (*argv) { |
| 1604 | size++; |
| 1605 | argv++; |
| 1606 | } |
| 1607 | |
| 1608 | BUG_ON(size >= MAX_ARGS); |
| 1609 | |
| 1610 | return size; |
| 1611 | } |
| 1612 | |
| 1613 | static void init_params(struct params *p, const char *name, int argc, const char **argv) |
| 1614 | { |
| 1615 | int i; |
| 1616 | |
| 1617 | printf("\n # Running %s \"perf bench numa", name); |
| 1618 | |
| 1619 | for (i = 0; i < argc; i++) |
| 1620 | printf(" %s", argv[i]); |
| 1621 | |
| 1622 | printf("\"\n"); |
| 1623 | |
| 1624 | memset(p, 0, sizeof(*p)); |
| 1625 | |
| 1626 | /* Initialize nonzero defaults: */ |
| 1627 | |
| 1628 | p->serialize_startup = 1; |
| 1629 | p->data_reads = true; |
| 1630 | p->data_writes = true; |
| 1631 | p->data_backwards = true; |
| 1632 | p->data_rand_walk = true; |
| 1633 | p->nr_loops = -1; |
| 1634 | p->init_random = true; |
| 1635 | p->mb_global_str = "1"; |
| 1636 | p->nr_proc = 1; |
| 1637 | p->nr_threads = 1; |
| 1638 | p->nr_secs = 5; |
| 1639 | p->run_all = argc == 1; |
| 1640 | } |
| 1641 | |
| 1642 | static int run_bench_numa(const char *name, const char **argv) |
| 1643 | { |
| 1644 | int argc = command_size(argv); |
| 1645 | |
| 1646 | init_params(&p0, name, argc, argv); |
| 1647 | argc = parse_options(argc, argv, options, bench_numa_usage, 0); |
| 1648 | if (argc) |
| 1649 | goto err; |
| 1650 | |
| 1651 | if (__bench_numa(name)) |
| 1652 | goto err; |
| 1653 | |
| 1654 | return 0; |
| 1655 | |
| 1656 | err: |
| 1657 | return -1; |
| 1658 | } |
| 1659 | |
| 1660 | #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk" |
| 1661 | #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1" |
| 1662 | |
| 1663 | #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1" |
| 1664 | #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1" |
| 1665 | |
| 1666 | #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1" |
| 1667 | #define OPT_BW_NOTHP OPT_BW, "--thp", "-1" |
| 1668 | |
| 1669 | /* |
| 1670 | * The built-in test-suite executed by "perf bench numa -a". |
| 1671 | * |
| 1672 | * (A minimum of 4 nodes and 16 GB of RAM is recommended.) |
| 1673 | */ |
| 1674 | static const char *tests[][MAX_ARGS] = { |
| 1675 | /* Basic single-stream NUMA bandwidth measurements: */ |
| 1676 | { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024", |
| 1677 | "-C" , "0", "-M", "0", OPT_BW_RAM }, |
| 1678 | { "RAM-bw-local-NOTHP,", |
| 1679 | "mem", "-p", "1", "-t", "1", "-P", "1024", |
| 1680 | "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP }, |
| 1681 | { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024", |
| 1682 | "-C" , "0", "-M", "1", OPT_BW_RAM }, |
| 1683 | |
| 1684 | /* 2-stream NUMA bandwidth measurements: */ |
| 1685 | { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", |
| 1686 | "-C", "0,2", "-M", "0x2", OPT_BW_RAM }, |
| 1687 | { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", |
| 1688 | "-C", "0,2", "-M", "1x2", OPT_BW_RAM }, |
| 1689 | |
| 1690 | /* Cross-stream NUMA bandwidth measurement: */ |
| 1691 | { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024", |
| 1692 | "-C", "0,8", "-M", "1,0", OPT_BW_RAM }, |
| 1693 | |
| 1694 | /* Convergence latency measurements: */ |
| 1695 | { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV }, |
| 1696 | { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV }, |
| 1697 | { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV }, |
| 1698 | { " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, |
| 1699 | { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, |
| 1700 | { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV }, |
| 1701 | { " 4x4-convergence-NOTHP,", |
| 1702 | "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, |
| 1703 | { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV }, |
| 1704 | { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV }, |
| 1705 | { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV }, |
| 1706 | { " 8x4-convergence-NOTHP,", |
| 1707 | "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, |
| 1708 | { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV }, |
| 1709 | { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV }, |
| 1710 | { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV }, |
| 1711 | { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV }, |
| 1712 | { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV }, |
| 1713 | |
| 1714 | /* Various NUMA process/thread layout bandwidth measurements: */ |
| 1715 | { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW }, |
| 1716 | { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW }, |
| 1717 | { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW }, |
| 1718 | { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW }, |
| 1719 | { " 8x1-bw-process-NOTHP,", |
| 1720 | "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP }, |
| 1721 | { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW }, |
| 1722 | |
| 1723 | { " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW }, |
| 1724 | { " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW }, |
| 1725 | { "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW }, |
| 1726 | { "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW }, |
| 1727 | |
| 1728 | { " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW }, |
| 1729 | { " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW }, |
| 1730 | { " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW }, |
| 1731 | { " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW }, |
| 1732 | { " 4x8-bw-thread-NOTHP,", |
| 1733 | "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP }, |
| 1734 | { " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW }, |
| 1735 | { " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW }, |
| 1736 | |
| 1737 | { "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW }, |
| 1738 | { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW }, |
| 1739 | |
| 1740 | { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW }, |
| 1741 | { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP }, |
| 1742 | { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW }, |
| 1743 | { "numa01-bw-thread-NOTHP,", |
| 1744 | "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP }, |
| 1745 | }; |
| 1746 | |
| 1747 | static int bench_all(void) |
| 1748 | { |
| 1749 | int nr = ARRAY_SIZE(tests); |
| 1750 | int ret; |
| 1751 | int i; |
| 1752 | |
| 1753 | ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'"); |
| 1754 | BUG_ON(ret < 0); |
| 1755 | |
| 1756 | for (i = 0; i < nr; i++) { |
| 1757 | run_bench_numa(tests[i][0], tests[i] + 1); |
| 1758 | } |
| 1759 | |
| 1760 | printf("\n"); |
| 1761 | |
| 1762 | return 0; |
| 1763 | } |
| 1764 | |
| 1765 | int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused) |
| 1766 | { |
| 1767 | init_params(&p0, "main,", argc, argv); |
| 1768 | argc = parse_options(argc, argv, options, bench_numa_usage, 0); |
| 1769 | if (argc) |
| 1770 | goto err; |
| 1771 | |
| 1772 | if (p0.run_all) |
| 1773 | return bench_all(); |
| 1774 | |
| 1775 | if (__bench_numa(NULL)) |
| 1776 | goto err; |
| 1777 | |
| 1778 | return 0; |
| 1779 | |
| 1780 | err: |
| 1781 | usage_with_options(numa_usage, options); |
| 1782 | return -1; |
| 1783 | } |