Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (C) 2012 ARM Ltd. |
| 3 | * Author: Marc Zyngier <marc.zyngier@arm.com> |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or modify |
| 6 | * it under the terms of the GNU General Public License version 2 as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This program is distributed in the hope that it will be useful, |
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 | * GNU General Public License for more details. |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public License |
| 15 | * along with this program; if not, write to the Free Software |
| 16 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 17 | */ |
| 18 | |
| 19 | #include <linux/cpu.h> |
| 20 | #include <linux/kvm.h> |
| 21 | #include <linux/kvm_host.h> |
| 22 | #include <linux/interrupt.h> |
| 23 | #include <linux/io.h> |
| 24 | #include <linux/of.h> |
| 25 | #include <linux/of_address.h> |
| 26 | #include <linux/of_irq.h> |
| 27 | #include <linux/rculist.h> |
| 28 | #include <linux/uaccess.h> |
| 29 | |
| 30 | #include <asm/kvm_emulate.h> |
| 31 | #include <asm/kvm_arm.h> |
| 32 | #include <asm/kvm_mmu.h> |
| 33 | #include <trace/events/kvm.h> |
| 34 | #include <asm/kvm.h> |
| 35 | #include <kvm/iodev.h> |
| 36 | |
| 37 | #define CREATE_TRACE_POINTS |
| 38 | #include "trace.h" |
| 39 | |
| 40 | /* |
| 41 | * How the whole thing works (courtesy of Christoffer Dall): |
| 42 | * |
| 43 | * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if |
| 44 | * something is pending on the CPU interface. |
| 45 | * - Interrupts that are pending on the distributor are stored on the |
| 46 | * vgic.irq_pending vgic bitmap (this bitmap is updated by both user land |
| 47 | * ioctls and guest mmio ops, and other in-kernel peripherals such as the |
| 48 | * arch. timers). |
| 49 | * - Every time the bitmap changes, the irq_pending_on_cpu oracle is |
| 50 | * recalculated |
| 51 | * - To calculate the oracle, we need info for each cpu from |
| 52 | * compute_pending_for_cpu, which considers: |
| 53 | * - PPI: dist->irq_pending & dist->irq_enable |
| 54 | * - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target |
| 55 | * - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn |
| 56 | * registers, stored on each vcpu. We only keep one bit of |
| 57 | * information per interrupt, making sure that only one vcpu can |
| 58 | * accept the interrupt. |
| 59 | * - If any of the above state changes, we must recalculate the oracle. |
| 60 | * - The same is true when injecting an interrupt, except that we only |
| 61 | * consider a single interrupt at a time. The irq_spi_cpu array |
| 62 | * contains the target CPU for each SPI. |
| 63 | * |
| 64 | * The handling of level interrupts adds some extra complexity. We |
| 65 | * need to track when the interrupt has been EOIed, so we can sample |
| 66 | * the 'line' again. This is achieved as such: |
| 67 | * |
| 68 | * - When a level interrupt is moved onto a vcpu, the corresponding |
| 69 | * bit in irq_queued is set. As long as this bit is set, the line |
| 70 | * will be ignored for further interrupts. The interrupt is injected |
| 71 | * into the vcpu with the GICH_LR_EOI bit set (generate a |
| 72 | * maintenance interrupt on EOI). |
| 73 | * - When the interrupt is EOIed, the maintenance interrupt fires, |
| 74 | * and clears the corresponding bit in irq_queued. This allows the |
| 75 | * interrupt line to be sampled again. |
| 76 | * - Note that level-triggered interrupts can also be set to pending from |
| 77 | * writes to GICD_ISPENDRn and lowering the external input line does not |
| 78 | * cause the interrupt to become inactive in such a situation. |
| 79 | * Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become |
| 80 | * inactive as long as the external input line is held high. |
| 81 | * |
| 82 | * |
| 83 | * Initialization rules: there are multiple stages to the vgic |
| 84 | * initialization, both for the distributor and the CPU interfaces. |
| 85 | * |
| 86 | * Distributor: |
| 87 | * |
| 88 | * - kvm_vgic_early_init(): initialization of static data that doesn't |
| 89 | * depend on any sizing information or emulation type. No allocation |
| 90 | * is allowed there. |
| 91 | * |
| 92 | * - vgic_init(): allocation and initialization of the generic data |
| 93 | * structures that depend on sizing information (number of CPUs, |
| 94 | * number of interrupts). Also initializes the vcpu specific data |
| 95 | * structures. Can be executed lazily for GICv2. |
| 96 | * [to be renamed to kvm_vgic_init??] |
| 97 | * |
| 98 | * CPU Interface: |
| 99 | * |
| 100 | * - kvm_vgic_cpu_early_init(): initialization of static data that |
| 101 | * doesn't depend on any sizing information or emulation type. No |
| 102 | * allocation is allowed there. |
| 103 | */ |
| 104 | |
| 105 | #include "vgic.h" |
| 106 | |
| 107 | static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu); |
| 108 | static void vgic_retire_lr(int lr_nr, struct kvm_vcpu *vcpu); |
| 109 | static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr); |
| 110 | static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc); |
| 111 | static u64 vgic_get_elrsr(struct kvm_vcpu *vcpu); |
| 112 | static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu, |
| 113 | int virt_irq); |
| 114 | static int compute_pending_for_cpu(struct kvm_vcpu *vcpu); |
| 115 | |
| 116 | static const struct vgic_ops *vgic_ops; |
| 117 | static const struct vgic_params *vgic; |
| 118 | |
| 119 | static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source) |
| 120 | { |
| 121 | vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source); |
| 122 | } |
| 123 | |
| 124 | static bool queue_sgi(struct kvm_vcpu *vcpu, int irq) |
| 125 | { |
| 126 | return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq); |
| 127 | } |
| 128 | |
| 129 | int kvm_vgic_map_resources(struct kvm *kvm) |
| 130 | { |
| 131 | return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic); |
| 132 | } |
| 133 | |
| 134 | /* |
| 135 | * struct vgic_bitmap contains a bitmap made of unsigned longs, but |
| 136 | * extracts u32s out of them. |
| 137 | * |
| 138 | * This does not work on 64-bit BE systems, because the bitmap access |
| 139 | * will store two consecutive 32-bit words with the higher-addressed |
| 140 | * register's bits at the lower index and the lower-addressed register's |
| 141 | * bits at the higher index. |
| 142 | * |
| 143 | * Therefore, swizzle the register index when accessing the 32-bit word |
| 144 | * registers to access the right register's value. |
| 145 | */ |
| 146 | #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64 |
| 147 | #define REG_OFFSET_SWIZZLE 1 |
| 148 | #else |
| 149 | #define REG_OFFSET_SWIZZLE 0 |
| 150 | #endif |
| 151 | |
| 152 | static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs) |
| 153 | { |
| 154 | int nr_longs; |
| 155 | |
| 156 | nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS); |
| 157 | |
| 158 | b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL); |
| 159 | if (!b->private) |
| 160 | return -ENOMEM; |
| 161 | |
| 162 | b->shared = b->private + nr_cpus; |
| 163 | |
| 164 | return 0; |
| 165 | } |
| 166 | |
| 167 | static void vgic_free_bitmap(struct vgic_bitmap *b) |
| 168 | { |
| 169 | kfree(b->private); |
| 170 | b->private = NULL; |
| 171 | b->shared = NULL; |
| 172 | } |
| 173 | |
| 174 | /* |
| 175 | * Call this function to convert a u64 value to an unsigned long * bitmask |
| 176 | * in a way that works on both 32-bit and 64-bit LE and BE platforms. |
| 177 | * |
| 178 | * Warning: Calling this function may modify *val. |
| 179 | */ |
| 180 | static unsigned long *u64_to_bitmask(u64 *val) |
| 181 | { |
| 182 | #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32 |
| 183 | *val = (*val >> 32) | (*val << 32); |
| 184 | #endif |
| 185 | return (unsigned long *)val; |
| 186 | } |
| 187 | |
| 188 | u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset) |
| 189 | { |
| 190 | offset >>= 2; |
| 191 | if (!offset) |
| 192 | return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE; |
| 193 | else |
| 194 | return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE); |
| 195 | } |
| 196 | |
| 197 | static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x, |
| 198 | int cpuid, int irq) |
| 199 | { |
| 200 | if (irq < VGIC_NR_PRIVATE_IRQS) |
| 201 | return test_bit(irq, x->private + cpuid); |
| 202 | |
| 203 | return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared); |
| 204 | } |
| 205 | |
| 206 | void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid, |
| 207 | int irq, int val) |
| 208 | { |
| 209 | unsigned long *reg; |
| 210 | |
| 211 | if (irq < VGIC_NR_PRIVATE_IRQS) { |
| 212 | reg = x->private + cpuid; |
| 213 | } else { |
| 214 | reg = x->shared; |
| 215 | irq -= VGIC_NR_PRIVATE_IRQS; |
| 216 | } |
| 217 | |
| 218 | if (val) |
| 219 | set_bit(irq, reg); |
| 220 | else |
| 221 | clear_bit(irq, reg); |
| 222 | } |
| 223 | |
| 224 | static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid) |
| 225 | { |
| 226 | return x->private + cpuid; |
| 227 | } |
| 228 | |
| 229 | unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x) |
| 230 | { |
| 231 | return x->shared; |
| 232 | } |
| 233 | |
| 234 | static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs) |
| 235 | { |
| 236 | int size; |
| 237 | |
| 238 | size = nr_cpus * VGIC_NR_PRIVATE_IRQS; |
| 239 | size += nr_irqs - VGIC_NR_PRIVATE_IRQS; |
| 240 | |
| 241 | x->private = kzalloc(size, GFP_KERNEL); |
| 242 | if (!x->private) |
| 243 | return -ENOMEM; |
| 244 | |
| 245 | x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32); |
| 246 | return 0; |
| 247 | } |
| 248 | |
| 249 | static void vgic_free_bytemap(struct vgic_bytemap *b) |
| 250 | { |
| 251 | kfree(b->private); |
| 252 | b->private = NULL; |
| 253 | b->shared = NULL; |
| 254 | } |
| 255 | |
| 256 | u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset) |
| 257 | { |
| 258 | u32 *reg; |
| 259 | |
| 260 | if (offset < VGIC_NR_PRIVATE_IRQS) { |
| 261 | reg = x->private; |
| 262 | offset += cpuid * VGIC_NR_PRIVATE_IRQS; |
| 263 | } else { |
| 264 | reg = x->shared; |
| 265 | offset -= VGIC_NR_PRIVATE_IRQS; |
| 266 | } |
| 267 | |
| 268 | return reg + (offset / sizeof(u32)); |
| 269 | } |
| 270 | |
| 271 | #define VGIC_CFG_LEVEL 0 |
| 272 | #define VGIC_CFG_EDGE 1 |
| 273 | |
| 274 | static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq) |
| 275 | { |
| 276 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| 277 | int irq_val; |
| 278 | |
| 279 | irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq); |
| 280 | return irq_val == VGIC_CFG_EDGE; |
| 281 | } |
| 282 | |
| 283 | static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq) |
| 284 | { |
| 285 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| 286 | |
| 287 | return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq); |
| 288 | } |
| 289 | |
| 290 | static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq) |
| 291 | { |
| 292 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| 293 | |
| 294 | return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq); |
| 295 | } |
| 296 | |
| 297 | static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq) |
| 298 | { |
| 299 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| 300 | |
| 301 | return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq); |
| 302 | } |
| 303 | |
| 304 | static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq) |
| 305 | { |
| 306 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| 307 | |
| 308 | vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1); |
| 309 | } |
| 310 | |
| 311 | static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq) |
| 312 | { |
| 313 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| 314 | |
| 315 | vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0); |
| 316 | } |
| 317 | |
| 318 | static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq) |
| 319 | { |
| 320 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| 321 | |
| 322 | vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1); |
| 323 | } |
| 324 | |
| 325 | static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq) |
| 326 | { |
| 327 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| 328 | |
| 329 | vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0); |
| 330 | } |
| 331 | |
| 332 | static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq) |
| 333 | { |
| 334 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| 335 | |
| 336 | return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq); |
| 337 | } |
| 338 | |
| 339 | static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq) |
| 340 | { |
| 341 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| 342 | |
| 343 | vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1); |
| 344 | } |
| 345 | |
| 346 | static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq) |
| 347 | { |
| 348 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| 349 | |
| 350 | vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0); |
| 351 | } |
| 352 | |
| 353 | static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq) |
| 354 | { |
| 355 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| 356 | |
| 357 | return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq); |
| 358 | } |
| 359 | |
| 360 | static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq) |
| 361 | { |
| 362 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| 363 | |
| 364 | vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0); |
| 365 | if (!vgic_dist_irq_get_level(vcpu, irq)) { |
| 366 | vgic_dist_irq_clear_pending(vcpu, irq); |
| 367 | if (!compute_pending_for_cpu(vcpu)) |
| 368 | clear_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu); |
| 369 | } |
| 370 | } |
| 371 | |
| 372 | static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq) |
| 373 | { |
| 374 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| 375 | |
| 376 | return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq); |
| 377 | } |
| 378 | |
| 379 | void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq) |
| 380 | { |
| 381 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| 382 | |
| 383 | vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1); |
| 384 | } |
| 385 | |
| 386 | void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq) |
| 387 | { |
| 388 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| 389 | |
| 390 | vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0); |
| 391 | } |
| 392 | |
| 393 | static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq) |
| 394 | { |
| 395 | if (irq < VGIC_NR_PRIVATE_IRQS) |
| 396 | set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu); |
| 397 | else |
| 398 | set_bit(irq - VGIC_NR_PRIVATE_IRQS, |
| 399 | vcpu->arch.vgic_cpu.pending_shared); |
| 400 | } |
| 401 | |
| 402 | void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq) |
| 403 | { |
| 404 | if (irq < VGIC_NR_PRIVATE_IRQS) |
| 405 | clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu); |
| 406 | else |
| 407 | clear_bit(irq - VGIC_NR_PRIVATE_IRQS, |
| 408 | vcpu->arch.vgic_cpu.pending_shared); |
| 409 | } |
| 410 | |
| 411 | static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq) |
| 412 | { |
| 413 | return !vgic_irq_is_queued(vcpu, irq); |
| 414 | } |
| 415 | |
| 416 | /** |
| 417 | * vgic_reg_access - access vgic register |
| 418 | * @mmio: pointer to the data describing the mmio access |
| 419 | * @reg: pointer to the virtual backing of vgic distributor data |
| 420 | * @offset: least significant 2 bits used for word offset |
| 421 | * @mode: ACCESS_ mode (see defines above) |
| 422 | * |
| 423 | * Helper to make vgic register access easier using one of the access |
| 424 | * modes defined for vgic register access |
| 425 | * (read,raz,write-ignored,setbit,clearbit,write) |
| 426 | */ |
| 427 | void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg, |
| 428 | phys_addr_t offset, int mode) |
| 429 | { |
| 430 | int word_offset = (offset & 3) * 8; |
| 431 | u32 mask = (1UL << (mmio->len * 8)) - 1; |
| 432 | u32 regval; |
| 433 | |
| 434 | /* |
| 435 | * Any alignment fault should have been delivered to the guest |
| 436 | * directly (ARM ARM B3.12.7 "Prioritization of aborts"). |
| 437 | */ |
| 438 | |
| 439 | if (reg) { |
| 440 | regval = *reg; |
| 441 | } else { |
| 442 | BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED)); |
| 443 | regval = 0; |
| 444 | } |
| 445 | |
| 446 | if (mmio->is_write) { |
| 447 | u32 data = mmio_data_read(mmio, mask) << word_offset; |
| 448 | switch (ACCESS_WRITE_MASK(mode)) { |
| 449 | case ACCESS_WRITE_IGNORED: |
| 450 | return; |
| 451 | |
| 452 | case ACCESS_WRITE_SETBIT: |
| 453 | regval |= data; |
| 454 | break; |
| 455 | |
| 456 | case ACCESS_WRITE_CLEARBIT: |
| 457 | regval &= ~data; |
| 458 | break; |
| 459 | |
| 460 | case ACCESS_WRITE_VALUE: |
| 461 | regval = (regval & ~(mask << word_offset)) | data; |
| 462 | break; |
| 463 | } |
| 464 | *reg = regval; |
| 465 | } else { |
| 466 | switch (ACCESS_READ_MASK(mode)) { |
| 467 | case ACCESS_READ_RAZ: |
| 468 | regval = 0; |
| 469 | /* fall through */ |
| 470 | |
| 471 | case ACCESS_READ_VALUE: |
| 472 | mmio_data_write(mmio, mask, regval >> word_offset); |
| 473 | } |
| 474 | } |
| 475 | } |
| 476 | |
| 477 | bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, |
| 478 | phys_addr_t offset) |
| 479 | { |
| 480 | vgic_reg_access(mmio, NULL, offset, |
| 481 | ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); |
| 482 | return false; |
| 483 | } |
| 484 | |
| 485 | bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio, |
| 486 | phys_addr_t offset, int vcpu_id, int access) |
| 487 | { |
| 488 | u32 *reg; |
| 489 | int mode = ACCESS_READ_VALUE | access; |
| 490 | struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id); |
| 491 | |
| 492 | reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset); |
| 493 | vgic_reg_access(mmio, reg, offset, mode); |
| 494 | if (mmio->is_write) { |
| 495 | if (access & ACCESS_WRITE_CLEARBIT) { |
| 496 | if (offset < 4) /* Force SGI enabled */ |
| 497 | *reg |= 0xffff; |
| 498 | vgic_retire_disabled_irqs(target_vcpu); |
| 499 | } |
| 500 | vgic_update_state(kvm); |
| 501 | return true; |
| 502 | } |
| 503 | |
| 504 | return false; |
| 505 | } |
| 506 | |
| 507 | bool vgic_handle_set_pending_reg(struct kvm *kvm, |
| 508 | struct kvm_exit_mmio *mmio, |
| 509 | phys_addr_t offset, int vcpu_id) |
| 510 | { |
| 511 | u32 *reg, orig; |
| 512 | u32 level_mask; |
| 513 | int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT; |
| 514 | struct vgic_dist *dist = &kvm->arch.vgic; |
| 515 | |
| 516 | reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset); |
| 517 | level_mask = (~(*reg)); |
| 518 | |
| 519 | /* Mark both level and edge triggered irqs as pending */ |
| 520 | reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset); |
| 521 | orig = *reg; |
| 522 | vgic_reg_access(mmio, reg, offset, mode); |
| 523 | |
| 524 | if (mmio->is_write) { |
| 525 | /* Set the soft-pending flag only for level-triggered irqs */ |
| 526 | reg = vgic_bitmap_get_reg(&dist->irq_soft_pend, |
| 527 | vcpu_id, offset); |
| 528 | vgic_reg_access(mmio, reg, offset, mode); |
| 529 | *reg &= level_mask; |
| 530 | |
| 531 | /* Ignore writes to SGIs */ |
| 532 | if (offset < 2) { |
| 533 | *reg &= ~0xffff; |
| 534 | *reg |= orig & 0xffff; |
| 535 | } |
| 536 | |
| 537 | vgic_update_state(kvm); |
| 538 | return true; |
| 539 | } |
| 540 | |
| 541 | return false; |
| 542 | } |
| 543 | |
| 544 | bool vgic_handle_clear_pending_reg(struct kvm *kvm, |
| 545 | struct kvm_exit_mmio *mmio, |
| 546 | phys_addr_t offset, int vcpu_id) |
| 547 | { |
| 548 | u32 *level_active; |
| 549 | u32 *reg, orig; |
| 550 | int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT; |
| 551 | struct vgic_dist *dist = &kvm->arch.vgic; |
| 552 | |
| 553 | reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset); |
| 554 | orig = *reg; |
| 555 | vgic_reg_access(mmio, reg, offset, mode); |
| 556 | if (mmio->is_write) { |
| 557 | /* Re-set level triggered level-active interrupts */ |
| 558 | level_active = vgic_bitmap_get_reg(&dist->irq_level, |
| 559 | vcpu_id, offset); |
| 560 | reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset); |
| 561 | *reg |= *level_active; |
| 562 | |
| 563 | /* Ignore writes to SGIs */ |
| 564 | if (offset < 2) { |
| 565 | *reg &= ~0xffff; |
| 566 | *reg |= orig & 0xffff; |
| 567 | } |
| 568 | |
| 569 | /* Clear soft-pending flags */ |
| 570 | reg = vgic_bitmap_get_reg(&dist->irq_soft_pend, |
| 571 | vcpu_id, offset); |
| 572 | vgic_reg_access(mmio, reg, offset, mode); |
| 573 | |
| 574 | vgic_update_state(kvm); |
| 575 | return true; |
| 576 | } |
| 577 | return false; |
| 578 | } |
| 579 | |
| 580 | bool vgic_handle_set_active_reg(struct kvm *kvm, |
| 581 | struct kvm_exit_mmio *mmio, |
| 582 | phys_addr_t offset, int vcpu_id) |
| 583 | { |
| 584 | u32 *reg; |
| 585 | struct vgic_dist *dist = &kvm->arch.vgic; |
| 586 | |
| 587 | reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset); |
| 588 | vgic_reg_access(mmio, reg, offset, |
| 589 | ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT); |
| 590 | |
| 591 | if (mmio->is_write) { |
| 592 | vgic_update_state(kvm); |
| 593 | return true; |
| 594 | } |
| 595 | |
| 596 | return false; |
| 597 | } |
| 598 | |
| 599 | bool vgic_handle_clear_active_reg(struct kvm *kvm, |
| 600 | struct kvm_exit_mmio *mmio, |
| 601 | phys_addr_t offset, int vcpu_id) |
| 602 | { |
| 603 | u32 *reg; |
| 604 | struct vgic_dist *dist = &kvm->arch.vgic; |
| 605 | |
| 606 | reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset); |
| 607 | vgic_reg_access(mmio, reg, offset, |
| 608 | ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT); |
| 609 | |
| 610 | if (mmio->is_write) { |
| 611 | vgic_update_state(kvm); |
| 612 | return true; |
| 613 | } |
| 614 | |
| 615 | return false; |
| 616 | } |
| 617 | |
| 618 | static u32 vgic_cfg_expand(u16 val) |
| 619 | { |
| 620 | u32 res = 0; |
| 621 | int i; |
| 622 | |
| 623 | /* |
| 624 | * Turn a 16bit value like abcd...mnop into a 32bit word |
| 625 | * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is. |
| 626 | */ |
| 627 | for (i = 0; i < 16; i++) |
| 628 | res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1); |
| 629 | |
| 630 | return res; |
| 631 | } |
| 632 | |
| 633 | static u16 vgic_cfg_compress(u32 val) |
| 634 | { |
| 635 | u16 res = 0; |
| 636 | int i; |
| 637 | |
| 638 | /* |
| 639 | * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like |
| 640 | * abcd...mnop which is what we really care about. |
| 641 | */ |
| 642 | for (i = 0; i < 16; i++) |
| 643 | res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i; |
| 644 | |
| 645 | return res; |
| 646 | } |
| 647 | |
| 648 | /* |
| 649 | * The distributor uses 2 bits per IRQ for the CFG register, but the |
| 650 | * LSB is always 0. As such, we only keep the upper bit, and use the |
| 651 | * two above functions to compress/expand the bits |
| 652 | */ |
| 653 | bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio, |
| 654 | phys_addr_t offset) |
| 655 | { |
| 656 | u32 val; |
| 657 | |
| 658 | if (offset & 4) |
| 659 | val = *reg >> 16; |
| 660 | else |
| 661 | val = *reg & 0xffff; |
| 662 | |
| 663 | val = vgic_cfg_expand(val); |
| 664 | vgic_reg_access(mmio, &val, offset, |
| 665 | ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); |
| 666 | if (mmio->is_write) { |
| 667 | /* Ignore writes to read-only SGI and PPI bits */ |
| 668 | if (offset < 8) |
| 669 | return false; |
| 670 | |
| 671 | val = vgic_cfg_compress(val); |
| 672 | if (offset & 4) { |
| 673 | *reg &= 0xffff; |
| 674 | *reg |= val << 16; |
| 675 | } else { |
| 676 | *reg &= 0xffff << 16; |
| 677 | *reg |= val; |
| 678 | } |
| 679 | } |
| 680 | |
| 681 | return false; |
| 682 | } |
| 683 | |
| 684 | /** |
| 685 | * vgic_unqueue_irqs - move pending/active IRQs from LRs to the distributor |
| 686 | * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs |
| 687 | * |
| 688 | * Move any IRQs that have already been assigned to LRs back to the |
| 689 | * emulated distributor state so that the complete emulated state can be read |
| 690 | * from the main emulation structures without investigating the LRs. |
| 691 | */ |
| 692 | void vgic_unqueue_irqs(struct kvm_vcpu *vcpu) |
| 693 | { |
| 694 | struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; |
| 695 | u64 elrsr = vgic_get_elrsr(vcpu); |
| 696 | unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr); |
| 697 | int i; |
| 698 | |
| 699 | for_each_clear_bit(i, elrsr_ptr, vgic_cpu->nr_lr) { |
| 700 | struct vgic_lr lr = vgic_get_lr(vcpu, i); |
| 701 | |
| 702 | /* |
| 703 | * There are three options for the state bits: |
| 704 | * |
| 705 | * 01: pending |
| 706 | * 10: active |
| 707 | * 11: pending and active |
| 708 | */ |
| 709 | BUG_ON(!(lr.state & LR_STATE_MASK)); |
| 710 | |
| 711 | /* Reestablish SGI source for pending and active IRQs */ |
| 712 | if (lr.irq < VGIC_NR_SGIS) |
| 713 | add_sgi_source(vcpu, lr.irq, lr.source); |
| 714 | |
| 715 | /* |
| 716 | * If the LR holds an active (10) or a pending and active (11) |
| 717 | * interrupt then move the active state to the |
| 718 | * distributor tracking bit. |
| 719 | */ |
| 720 | if (lr.state & LR_STATE_ACTIVE) |
| 721 | vgic_irq_set_active(vcpu, lr.irq); |
| 722 | |
| 723 | /* |
| 724 | * Reestablish the pending state on the distributor and the |
| 725 | * CPU interface and mark the LR as free for other use. |
| 726 | */ |
| 727 | vgic_retire_lr(i, vcpu); |
| 728 | |
| 729 | /* Finally update the VGIC state. */ |
| 730 | vgic_update_state(vcpu->kvm); |
| 731 | } |
| 732 | } |
| 733 | |
| 734 | const |
| 735 | struct vgic_io_range *vgic_find_range(const struct vgic_io_range *ranges, |
| 736 | int len, gpa_t offset) |
| 737 | { |
| 738 | while (ranges->len) { |
| 739 | if (offset >= ranges->base && |
| 740 | (offset + len) <= (ranges->base + ranges->len)) |
| 741 | return ranges; |
| 742 | ranges++; |
| 743 | } |
| 744 | |
| 745 | return NULL; |
| 746 | } |
| 747 | |
| 748 | static bool vgic_validate_access(const struct vgic_dist *dist, |
| 749 | const struct vgic_io_range *range, |
| 750 | unsigned long offset) |
| 751 | { |
| 752 | int irq; |
| 753 | |
| 754 | if (!range->bits_per_irq) |
| 755 | return true; /* Not an irq-based access */ |
| 756 | |
| 757 | irq = offset * 8 / range->bits_per_irq; |
| 758 | if (irq >= dist->nr_irqs) |
| 759 | return false; |
| 760 | |
| 761 | return true; |
| 762 | } |
| 763 | |
| 764 | /* |
| 765 | * Call the respective handler function for the given range. |
| 766 | * We split up any 64 bit accesses into two consecutive 32 bit |
| 767 | * handler calls and merge the result afterwards. |
| 768 | * We do this in a little endian fashion regardless of the host's |
| 769 | * or guest's endianness, because the GIC is always LE and the rest of |
| 770 | * the code (vgic_reg_access) also puts it in a LE fashion already. |
| 771 | * At this point we have already identified the handle function, so |
| 772 | * range points to that one entry and offset is relative to this. |
| 773 | */ |
| 774 | static bool call_range_handler(struct kvm_vcpu *vcpu, |
| 775 | struct kvm_exit_mmio *mmio, |
| 776 | unsigned long offset, |
| 777 | const struct vgic_io_range *range) |
| 778 | { |
| 779 | struct kvm_exit_mmio mmio32; |
| 780 | bool ret; |
| 781 | |
| 782 | if (likely(mmio->len <= 4)) |
| 783 | return range->handle_mmio(vcpu, mmio, offset); |
| 784 | |
| 785 | /* |
| 786 | * Any access bigger than 4 bytes (that we currently handle in KVM) |
| 787 | * is actually 8 bytes long, caused by a 64-bit access |
| 788 | */ |
| 789 | |
| 790 | mmio32.len = 4; |
| 791 | mmio32.is_write = mmio->is_write; |
| 792 | mmio32.private = mmio->private; |
| 793 | |
| 794 | mmio32.phys_addr = mmio->phys_addr + 4; |
| 795 | mmio32.data = &((u32 *)mmio->data)[1]; |
| 796 | ret = range->handle_mmio(vcpu, &mmio32, offset + 4); |
| 797 | |
| 798 | mmio32.phys_addr = mmio->phys_addr; |
| 799 | mmio32.data = &((u32 *)mmio->data)[0]; |
| 800 | ret |= range->handle_mmio(vcpu, &mmio32, offset); |
| 801 | |
| 802 | return ret; |
| 803 | } |
| 804 | |
| 805 | /** |
| 806 | * vgic_handle_mmio_access - handle an in-kernel MMIO access |
| 807 | * This is called by the read/write KVM IO device wrappers below. |
| 808 | * @vcpu: pointer to the vcpu performing the access |
| 809 | * @this: pointer to the KVM IO device in charge |
| 810 | * @addr: guest physical address of the access |
| 811 | * @len: size of the access |
| 812 | * @val: pointer to the data region |
| 813 | * @is_write: read or write access |
| 814 | * |
| 815 | * returns true if the MMIO access could be performed |
| 816 | */ |
| 817 | static int vgic_handle_mmio_access(struct kvm_vcpu *vcpu, |
| 818 | struct kvm_io_device *this, gpa_t addr, |
| 819 | int len, void *val, bool is_write) |
| 820 | { |
| 821 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| 822 | struct vgic_io_device *iodev = container_of(this, |
| 823 | struct vgic_io_device, dev); |
| 824 | struct kvm_run *run = vcpu->run; |
| 825 | const struct vgic_io_range *range; |
| 826 | struct kvm_exit_mmio mmio; |
| 827 | bool updated_state; |
| 828 | gpa_t offset; |
| 829 | |
| 830 | offset = addr - iodev->addr; |
| 831 | range = vgic_find_range(iodev->reg_ranges, len, offset); |
| 832 | if (unlikely(!range || !range->handle_mmio)) { |
| 833 | pr_warn("Unhandled access %d %08llx %d\n", is_write, addr, len); |
| 834 | return -ENXIO; |
| 835 | } |
| 836 | |
| 837 | mmio.phys_addr = addr; |
| 838 | mmio.len = len; |
| 839 | mmio.is_write = is_write; |
| 840 | mmio.data = val; |
| 841 | mmio.private = iodev->redist_vcpu; |
| 842 | |
| 843 | spin_lock(&dist->lock); |
| 844 | offset -= range->base; |
| 845 | if (vgic_validate_access(dist, range, offset)) { |
| 846 | updated_state = call_range_handler(vcpu, &mmio, offset, range); |
| 847 | } else { |
| 848 | if (!is_write) |
| 849 | memset(val, 0, len); |
| 850 | updated_state = false; |
| 851 | } |
| 852 | spin_unlock(&dist->lock); |
| 853 | run->mmio.is_write = is_write; |
| 854 | run->mmio.len = len; |
| 855 | run->mmio.phys_addr = addr; |
| 856 | memcpy(run->mmio.data, val, len); |
| 857 | |
| 858 | kvm_handle_mmio_return(vcpu, run); |
| 859 | |
| 860 | if (updated_state) |
| 861 | vgic_kick_vcpus(vcpu->kvm); |
| 862 | |
| 863 | return 0; |
| 864 | } |
| 865 | |
| 866 | static int vgic_handle_mmio_read(struct kvm_vcpu *vcpu, |
| 867 | struct kvm_io_device *this, |
| 868 | gpa_t addr, int len, void *val) |
| 869 | { |
| 870 | return vgic_handle_mmio_access(vcpu, this, addr, len, val, false); |
| 871 | } |
| 872 | |
| 873 | static int vgic_handle_mmio_write(struct kvm_vcpu *vcpu, |
| 874 | struct kvm_io_device *this, |
| 875 | gpa_t addr, int len, const void *val) |
| 876 | { |
| 877 | return vgic_handle_mmio_access(vcpu, this, addr, len, (void *)val, |
| 878 | true); |
| 879 | } |
| 880 | |
| 881 | struct kvm_io_device_ops vgic_io_ops = { |
| 882 | .read = vgic_handle_mmio_read, |
| 883 | .write = vgic_handle_mmio_write, |
| 884 | }; |
| 885 | |
| 886 | /** |
| 887 | * vgic_register_kvm_io_dev - register VGIC register frame on the KVM I/O bus |
| 888 | * @kvm: The VM structure pointer |
| 889 | * @base: The (guest) base address for the register frame |
| 890 | * @len: Length of the register frame window |
| 891 | * @ranges: Describing the handler functions for each register |
| 892 | * @redist_vcpu_id: The VCPU ID to pass on to the handlers on call |
| 893 | * @iodev: Points to memory to be passed on to the handler |
| 894 | * |
| 895 | * @iodev stores the parameters of this function to be usable by the handler |
| 896 | * respectively the dispatcher function (since the KVM I/O bus framework lacks |
| 897 | * an opaque parameter). Initialization is done in this function, but the |
| 898 | * reference should be valid and unique for the whole VGIC lifetime. |
| 899 | * If the register frame is not mapped for a specific VCPU, pass -1 to |
| 900 | * @redist_vcpu_id. |
| 901 | */ |
| 902 | int vgic_register_kvm_io_dev(struct kvm *kvm, gpa_t base, int len, |
| 903 | const struct vgic_io_range *ranges, |
| 904 | int redist_vcpu_id, |
| 905 | struct vgic_io_device *iodev) |
| 906 | { |
| 907 | struct kvm_vcpu *vcpu = NULL; |
| 908 | int ret; |
| 909 | |
| 910 | if (redist_vcpu_id >= 0) |
| 911 | vcpu = kvm_get_vcpu(kvm, redist_vcpu_id); |
| 912 | |
| 913 | iodev->addr = base; |
| 914 | iodev->len = len; |
| 915 | iodev->reg_ranges = ranges; |
| 916 | iodev->redist_vcpu = vcpu; |
| 917 | |
| 918 | kvm_iodevice_init(&iodev->dev, &vgic_io_ops); |
| 919 | |
| 920 | mutex_lock(&kvm->slots_lock); |
| 921 | |
| 922 | ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, base, len, |
| 923 | &iodev->dev); |
| 924 | mutex_unlock(&kvm->slots_lock); |
| 925 | |
| 926 | /* Mark the iodev as invalid if registration fails. */ |
| 927 | if (ret) |
| 928 | iodev->dev.ops = NULL; |
| 929 | |
| 930 | return ret; |
| 931 | } |
| 932 | |
| 933 | static int vgic_nr_shared_irqs(struct vgic_dist *dist) |
| 934 | { |
| 935 | return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS; |
| 936 | } |
| 937 | |
| 938 | static int compute_active_for_cpu(struct kvm_vcpu *vcpu) |
| 939 | { |
| 940 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| 941 | unsigned long *active, *enabled, *act_percpu, *act_shared; |
| 942 | unsigned long active_private, active_shared; |
| 943 | int nr_shared = vgic_nr_shared_irqs(dist); |
| 944 | int vcpu_id; |
| 945 | |
| 946 | vcpu_id = vcpu->vcpu_id; |
| 947 | act_percpu = vcpu->arch.vgic_cpu.active_percpu; |
| 948 | act_shared = vcpu->arch.vgic_cpu.active_shared; |
| 949 | |
| 950 | active = vgic_bitmap_get_cpu_map(&dist->irq_active, vcpu_id); |
| 951 | enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id); |
| 952 | bitmap_and(act_percpu, active, enabled, VGIC_NR_PRIVATE_IRQS); |
| 953 | |
| 954 | active = vgic_bitmap_get_shared_map(&dist->irq_active); |
| 955 | enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled); |
| 956 | bitmap_and(act_shared, active, enabled, nr_shared); |
| 957 | bitmap_and(act_shared, act_shared, |
| 958 | vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]), |
| 959 | nr_shared); |
| 960 | |
| 961 | active_private = find_first_bit(act_percpu, VGIC_NR_PRIVATE_IRQS); |
| 962 | active_shared = find_first_bit(act_shared, nr_shared); |
| 963 | |
| 964 | return (active_private < VGIC_NR_PRIVATE_IRQS || |
| 965 | active_shared < nr_shared); |
| 966 | } |
| 967 | |
| 968 | static int compute_pending_for_cpu(struct kvm_vcpu *vcpu) |
| 969 | { |
| 970 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| 971 | unsigned long *pending, *enabled, *pend_percpu, *pend_shared; |
| 972 | unsigned long pending_private, pending_shared; |
| 973 | int nr_shared = vgic_nr_shared_irqs(dist); |
| 974 | int vcpu_id; |
| 975 | |
| 976 | vcpu_id = vcpu->vcpu_id; |
| 977 | pend_percpu = vcpu->arch.vgic_cpu.pending_percpu; |
| 978 | pend_shared = vcpu->arch.vgic_cpu.pending_shared; |
| 979 | |
| 980 | if (!dist->enabled) { |
| 981 | bitmap_zero(pend_percpu, VGIC_NR_PRIVATE_IRQS); |
| 982 | bitmap_zero(pend_shared, nr_shared); |
| 983 | return 0; |
| 984 | } |
| 985 | |
| 986 | pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id); |
| 987 | enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id); |
| 988 | bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS); |
| 989 | |
| 990 | pending = vgic_bitmap_get_shared_map(&dist->irq_pending); |
| 991 | enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled); |
| 992 | bitmap_and(pend_shared, pending, enabled, nr_shared); |
| 993 | bitmap_and(pend_shared, pend_shared, |
| 994 | vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]), |
| 995 | nr_shared); |
| 996 | |
| 997 | pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS); |
| 998 | pending_shared = find_first_bit(pend_shared, nr_shared); |
| 999 | return (pending_private < VGIC_NR_PRIVATE_IRQS || |
| 1000 | pending_shared < vgic_nr_shared_irqs(dist)); |
| 1001 | } |
| 1002 | |
| 1003 | /* |
| 1004 | * Update the interrupt state and determine which CPUs have pending |
| 1005 | * or active interrupts. Must be called with distributor lock held. |
| 1006 | */ |
| 1007 | void vgic_update_state(struct kvm *kvm) |
| 1008 | { |
| 1009 | struct vgic_dist *dist = &kvm->arch.vgic; |
| 1010 | struct kvm_vcpu *vcpu; |
| 1011 | int c; |
| 1012 | |
| 1013 | kvm_for_each_vcpu(c, vcpu, kvm) { |
| 1014 | if (compute_pending_for_cpu(vcpu)) |
| 1015 | set_bit(c, dist->irq_pending_on_cpu); |
| 1016 | |
| 1017 | if (compute_active_for_cpu(vcpu)) |
| 1018 | set_bit(c, dist->irq_active_on_cpu); |
| 1019 | else |
| 1020 | clear_bit(c, dist->irq_active_on_cpu); |
| 1021 | } |
| 1022 | } |
| 1023 | |
| 1024 | static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr) |
| 1025 | { |
| 1026 | return vgic_ops->get_lr(vcpu, lr); |
| 1027 | } |
| 1028 | |
| 1029 | static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, |
| 1030 | struct vgic_lr vlr) |
| 1031 | { |
| 1032 | vgic_ops->set_lr(vcpu, lr, vlr); |
| 1033 | } |
| 1034 | |
| 1035 | static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu) |
| 1036 | { |
| 1037 | return vgic_ops->get_elrsr(vcpu); |
| 1038 | } |
| 1039 | |
| 1040 | static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu) |
| 1041 | { |
| 1042 | return vgic_ops->get_eisr(vcpu); |
| 1043 | } |
| 1044 | |
| 1045 | static inline void vgic_clear_eisr(struct kvm_vcpu *vcpu) |
| 1046 | { |
| 1047 | vgic_ops->clear_eisr(vcpu); |
| 1048 | } |
| 1049 | |
| 1050 | static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu) |
| 1051 | { |
| 1052 | return vgic_ops->get_interrupt_status(vcpu); |
| 1053 | } |
| 1054 | |
| 1055 | static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu) |
| 1056 | { |
| 1057 | vgic_ops->enable_underflow(vcpu); |
| 1058 | } |
| 1059 | |
| 1060 | static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu) |
| 1061 | { |
| 1062 | vgic_ops->disable_underflow(vcpu); |
| 1063 | } |
| 1064 | |
| 1065 | void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr) |
| 1066 | { |
| 1067 | vgic_ops->get_vmcr(vcpu, vmcr); |
| 1068 | } |
| 1069 | |
| 1070 | void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr) |
| 1071 | { |
| 1072 | vgic_ops->set_vmcr(vcpu, vmcr); |
| 1073 | } |
| 1074 | |
| 1075 | static inline void vgic_enable(struct kvm_vcpu *vcpu) |
| 1076 | { |
| 1077 | vgic_ops->enable(vcpu); |
| 1078 | } |
| 1079 | |
| 1080 | static void vgic_retire_lr(int lr_nr, struct kvm_vcpu *vcpu) |
| 1081 | { |
| 1082 | struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr); |
| 1083 | |
| 1084 | vgic_irq_clear_queued(vcpu, vlr.irq); |
| 1085 | |
| 1086 | /* |
| 1087 | * We must transfer the pending state back to the distributor before |
| 1088 | * retiring the LR, otherwise we may loose edge-triggered interrupts. |
| 1089 | */ |
| 1090 | if (vlr.state & LR_STATE_PENDING) { |
| 1091 | vgic_dist_irq_set_pending(vcpu, vlr.irq); |
| 1092 | vlr.hwirq = 0; |
| 1093 | } |
| 1094 | |
| 1095 | vlr.state = 0; |
| 1096 | vgic_set_lr(vcpu, lr_nr, vlr); |
| 1097 | } |
| 1098 | |
| 1099 | static bool dist_active_irq(struct kvm_vcpu *vcpu) |
| 1100 | { |
| 1101 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| 1102 | |
| 1103 | return test_bit(vcpu->vcpu_id, dist->irq_active_on_cpu); |
| 1104 | } |
| 1105 | |
| 1106 | bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, struct irq_phys_map *map) |
| 1107 | { |
| 1108 | int i; |
| 1109 | |
| 1110 | for (i = 0; i < vcpu->arch.vgic_cpu.nr_lr; i++) { |
| 1111 | struct vgic_lr vlr = vgic_get_lr(vcpu, i); |
| 1112 | |
| 1113 | if (vlr.irq == map->virt_irq && vlr.state & LR_STATE_ACTIVE) |
| 1114 | return true; |
| 1115 | } |
| 1116 | |
| 1117 | return vgic_irq_is_active(vcpu, map->virt_irq); |
| 1118 | } |
| 1119 | |
| 1120 | /* |
| 1121 | * An interrupt may have been disabled after being made pending on the |
| 1122 | * CPU interface (the classic case is a timer running while we're |
| 1123 | * rebooting the guest - the interrupt would kick as soon as the CPU |
| 1124 | * interface gets enabled, with deadly consequences). |
| 1125 | * |
| 1126 | * The solution is to examine already active LRs, and check the |
| 1127 | * interrupt is still enabled. If not, just retire it. |
| 1128 | */ |
| 1129 | static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu) |
| 1130 | { |
| 1131 | u64 elrsr = vgic_get_elrsr(vcpu); |
| 1132 | unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr); |
| 1133 | int lr; |
| 1134 | |
| 1135 | for_each_clear_bit(lr, elrsr_ptr, vgic->nr_lr) { |
| 1136 | struct vgic_lr vlr = vgic_get_lr(vcpu, lr); |
| 1137 | |
| 1138 | if (!vgic_irq_is_enabled(vcpu, vlr.irq)) |
| 1139 | vgic_retire_lr(lr, vcpu); |
| 1140 | } |
| 1141 | } |
| 1142 | |
| 1143 | static void vgic_queue_irq_to_lr(struct kvm_vcpu *vcpu, int irq, |
| 1144 | int lr_nr, struct vgic_lr vlr) |
| 1145 | { |
| 1146 | if (vgic_irq_is_active(vcpu, irq)) { |
| 1147 | vlr.state |= LR_STATE_ACTIVE; |
| 1148 | kvm_debug("Set active, clear distributor: 0x%x\n", vlr.state); |
| 1149 | vgic_irq_clear_active(vcpu, irq); |
| 1150 | vgic_update_state(vcpu->kvm); |
| 1151 | } else { |
| 1152 | WARN_ON(!vgic_dist_irq_is_pending(vcpu, irq)); |
| 1153 | vlr.state |= LR_STATE_PENDING; |
| 1154 | kvm_debug("Set pending: 0x%x\n", vlr.state); |
| 1155 | } |
| 1156 | |
| 1157 | if (!vgic_irq_is_edge(vcpu, irq)) |
| 1158 | vlr.state |= LR_EOI_INT; |
| 1159 | |
| 1160 | if (vlr.irq >= VGIC_NR_SGIS) { |
| 1161 | struct irq_phys_map *map; |
| 1162 | map = vgic_irq_map_search(vcpu, irq); |
| 1163 | |
| 1164 | if (map) { |
| 1165 | vlr.hwirq = map->phys_irq; |
| 1166 | vlr.state |= LR_HW; |
| 1167 | vlr.state &= ~LR_EOI_INT; |
| 1168 | |
| 1169 | /* |
| 1170 | * Make sure we're not going to sample this |
| 1171 | * again, as a HW-backed interrupt cannot be |
| 1172 | * in the PENDING_ACTIVE stage. |
| 1173 | */ |
| 1174 | vgic_irq_set_queued(vcpu, irq); |
| 1175 | } |
| 1176 | } |
| 1177 | |
| 1178 | vgic_set_lr(vcpu, lr_nr, vlr); |
| 1179 | } |
| 1180 | |
| 1181 | /* |
| 1182 | * Queue an interrupt to a CPU virtual interface. Return true on success, |
| 1183 | * or false if it wasn't possible to queue it. |
| 1184 | * sgi_source must be zero for any non-SGI interrupts. |
| 1185 | */ |
| 1186 | bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq) |
| 1187 | { |
| 1188 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| 1189 | u64 elrsr = vgic_get_elrsr(vcpu); |
| 1190 | unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr); |
| 1191 | struct vgic_lr vlr; |
| 1192 | int lr; |
| 1193 | |
| 1194 | /* Sanitize the input... */ |
| 1195 | BUG_ON(sgi_source_id & ~7); |
| 1196 | BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS); |
| 1197 | BUG_ON(irq >= dist->nr_irqs); |
| 1198 | |
| 1199 | kvm_debug("Queue IRQ%d\n", irq); |
| 1200 | |
| 1201 | /* Do we have an active interrupt for the same CPUID? */ |
| 1202 | for_each_clear_bit(lr, elrsr_ptr, vgic->nr_lr) { |
| 1203 | vlr = vgic_get_lr(vcpu, lr); |
| 1204 | if (vlr.irq == irq && vlr.source == sgi_source_id) { |
| 1205 | kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq); |
| 1206 | vgic_queue_irq_to_lr(vcpu, irq, lr, vlr); |
| 1207 | return true; |
| 1208 | } |
| 1209 | } |
| 1210 | |
| 1211 | /* Try to use another LR for this interrupt */ |
| 1212 | lr = find_first_bit(elrsr_ptr, vgic->nr_lr); |
| 1213 | if (lr >= vgic->nr_lr) |
| 1214 | return false; |
| 1215 | |
| 1216 | kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id); |
| 1217 | |
| 1218 | vlr.irq = irq; |
| 1219 | vlr.source = sgi_source_id; |
| 1220 | vlr.state = 0; |
| 1221 | vgic_queue_irq_to_lr(vcpu, irq, lr, vlr); |
| 1222 | |
| 1223 | return true; |
| 1224 | } |
| 1225 | |
| 1226 | static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq) |
| 1227 | { |
| 1228 | if (!vgic_can_sample_irq(vcpu, irq)) |
| 1229 | return true; /* level interrupt, already queued */ |
| 1230 | |
| 1231 | if (vgic_queue_irq(vcpu, 0, irq)) { |
| 1232 | if (vgic_irq_is_edge(vcpu, irq)) { |
| 1233 | vgic_dist_irq_clear_pending(vcpu, irq); |
| 1234 | vgic_cpu_irq_clear(vcpu, irq); |
| 1235 | } else { |
| 1236 | vgic_irq_set_queued(vcpu, irq); |
| 1237 | } |
| 1238 | |
| 1239 | return true; |
| 1240 | } |
| 1241 | |
| 1242 | return false; |
| 1243 | } |
| 1244 | |
| 1245 | /* |
| 1246 | * Fill the list registers with pending interrupts before running the |
| 1247 | * guest. |
| 1248 | */ |
| 1249 | static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu) |
| 1250 | { |
| 1251 | struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; |
| 1252 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| 1253 | unsigned long *pa_percpu, *pa_shared; |
| 1254 | int i, vcpu_id; |
| 1255 | int overflow = 0; |
| 1256 | int nr_shared = vgic_nr_shared_irqs(dist); |
| 1257 | |
| 1258 | vcpu_id = vcpu->vcpu_id; |
| 1259 | |
| 1260 | pa_percpu = vcpu->arch.vgic_cpu.pend_act_percpu; |
| 1261 | pa_shared = vcpu->arch.vgic_cpu.pend_act_shared; |
| 1262 | |
| 1263 | bitmap_or(pa_percpu, vgic_cpu->pending_percpu, vgic_cpu->active_percpu, |
| 1264 | VGIC_NR_PRIVATE_IRQS); |
| 1265 | bitmap_or(pa_shared, vgic_cpu->pending_shared, vgic_cpu->active_shared, |
| 1266 | nr_shared); |
| 1267 | /* |
| 1268 | * We may not have any pending interrupt, or the interrupts |
| 1269 | * may have been serviced from another vcpu. In all cases, |
| 1270 | * move along. |
| 1271 | */ |
| 1272 | if (!kvm_vgic_vcpu_pending_irq(vcpu) && !dist_active_irq(vcpu)) |
| 1273 | goto epilog; |
| 1274 | |
| 1275 | /* SGIs */ |
| 1276 | for_each_set_bit(i, pa_percpu, VGIC_NR_SGIS) { |
| 1277 | if (!queue_sgi(vcpu, i)) |
| 1278 | overflow = 1; |
| 1279 | } |
| 1280 | |
| 1281 | /* PPIs */ |
| 1282 | for_each_set_bit_from(i, pa_percpu, VGIC_NR_PRIVATE_IRQS) { |
| 1283 | if (!vgic_queue_hwirq(vcpu, i)) |
| 1284 | overflow = 1; |
| 1285 | } |
| 1286 | |
| 1287 | /* SPIs */ |
| 1288 | for_each_set_bit(i, pa_shared, nr_shared) { |
| 1289 | if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS)) |
| 1290 | overflow = 1; |
| 1291 | } |
| 1292 | |
| 1293 | |
| 1294 | |
| 1295 | |
| 1296 | epilog: |
| 1297 | if (overflow) { |
| 1298 | vgic_enable_underflow(vcpu); |
| 1299 | } else { |
| 1300 | vgic_disable_underflow(vcpu); |
| 1301 | /* |
| 1302 | * We're about to run this VCPU, and we've consumed |
| 1303 | * everything the distributor had in store for |
| 1304 | * us. Claim we don't have anything pending. We'll |
| 1305 | * adjust that if needed while exiting. |
| 1306 | */ |
| 1307 | clear_bit(vcpu_id, dist->irq_pending_on_cpu); |
| 1308 | } |
| 1309 | } |
| 1310 | |
| 1311 | static int process_queued_irq(struct kvm_vcpu *vcpu, |
| 1312 | int lr, struct vgic_lr vlr) |
| 1313 | { |
| 1314 | int pending = 0; |
| 1315 | |
| 1316 | /* |
| 1317 | * If the IRQ was EOIed (called from vgic_process_maintenance) or it |
| 1318 | * went from active to non-active (called from vgic_sync_hwirq) it was |
| 1319 | * also ACKed and we we therefore assume we can clear the soft pending |
| 1320 | * state (should it had been set) for this interrupt. |
| 1321 | * |
| 1322 | * Note: if the IRQ soft pending state was set after the IRQ was |
| 1323 | * acked, it actually shouldn't be cleared, but we have no way of |
| 1324 | * knowing that unless we start trapping ACKs when the soft-pending |
| 1325 | * state is set. |
| 1326 | */ |
| 1327 | vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq); |
| 1328 | |
| 1329 | /* |
| 1330 | * Tell the gic to start sampling this interrupt again. |
| 1331 | */ |
| 1332 | vgic_irq_clear_queued(vcpu, vlr.irq); |
| 1333 | |
| 1334 | /* Any additional pending interrupt? */ |
| 1335 | if (vgic_irq_is_edge(vcpu, vlr.irq)) { |
| 1336 | BUG_ON(!(vlr.state & LR_HW)); |
| 1337 | pending = vgic_dist_irq_is_pending(vcpu, vlr.irq); |
| 1338 | } else { |
| 1339 | if (vgic_dist_irq_get_level(vcpu, vlr.irq)) { |
| 1340 | vgic_cpu_irq_set(vcpu, vlr.irq); |
| 1341 | pending = 1; |
| 1342 | } else { |
| 1343 | vgic_dist_irq_clear_pending(vcpu, vlr.irq); |
| 1344 | vgic_cpu_irq_clear(vcpu, vlr.irq); |
| 1345 | } |
| 1346 | } |
| 1347 | |
| 1348 | /* |
| 1349 | * Despite being EOIed, the LR may not have |
| 1350 | * been marked as empty. |
| 1351 | */ |
| 1352 | vlr.state = 0; |
| 1353 | vlr.hwirq = 0; |
| 1354 | vgic_set_lr(vcpu, lr, vlr); |
| 1355 | |
| 1356 | return pending; |
| 1357 | } |
| 1358 | |
| 1359 | static bool vgic_process_maintenance(struct kvm_vcpu *vcpu) |
| 1360 | { |
| 1361 | u32 status = vgic_get_interrupt_status(vcpu); |
| 1362 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| 1363 | struct kvm *kvm = vcpu->kvm; |
| 1364 | int level_pending = 0; |
| 1365 | |
| 1366 | kvm_debug("STATUS = %08x\n", status); |
| 1367 | |
| 1368 | if (status & INT_STATUS_EOI) { |
| 1369 | /* |
| 1370 | * Some level interrupts have been EOIed. Clear their |
| 1371 | * active bit. |
| 1372 | */ |
| 1373 | u64 eisr = vgic_get_eisr(vcpu); |
| 1374 | unsigned long *eisr_ptr = u64_to_bitmask(&eisr); |
| 1375 | int lr; |
| 1376 | |
| 1377 | for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) { |
| 1378 | struct vgic_lr vlr = vgic_get_lr(vcpu, lr); |
| 1379 | |
| 1380 | WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq)); |
| 1381 | WARN_ON(vlr.state & LR_STATE_MASK); |
| 1382 | |
| 1383 | |
| 1384 | /* |
| 1385 | * kvm_notify_acked_irq calls kvm_set_irq() |
| 1386 | * to reset the IRQ level, which grabs the dist->lock |
| 1387 | * so we call this before taking the dist->lock. |
| 1388 | */ |
| 1389 | kvm_notify_acked_irq(kvm, 0, |
| 1390 | vlr.irq - VGIC_NR_PRIVATE_IRQS); |
| 1391 | |
| 1392 | spin_lock(&dist->lock); |
| 1393 | level_pending |= process_queued_irq(vcpu, lr, vlr); |
| 1394 | spin_unlock(&dist->lock); |
| 1395 | } |
| 1396 | } |
| 1397 | |
| 1398 | if (status & INT_STATUS_UNDERFLOW) |
| 1399 | vgic_disable_underflow(vcpu); |
| 1400 | |
| 1401 | /* |
| 1402 | * In the next iterations of the vcpu loop, if we sync the vgic state |
| 1403 | * after flushing it, but before entering the guest (this happens for |
| 1404 | * pending signals and vmid rollovers), then make sure we don't pick |
| 1405 | * up any old maintenance interrupts here. |
| 1406 | */ |
| 1407 | vgic_clear_eisr(vcpu); |
| 1408 | |
| 1409 | return level_pending; |
| 1410 | } |
| 1411 | |
| 1412 | /* |
| 1413 | * Save the physical active state, and reset it to inactive. |
| 1414 | * |
| 1415 | * Return true if there's a pending forwarded interrupt to queue. |
| 1416 | */ |
| 1417 | static bool vgic_sync_hwirq(struct kvm_vcpu *vcpu, int lr, struct vgic_lr vlr) |
| 1418 | { |
| 1419 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| 1420 | bool level_pending; |
| 1421 | |
| 1422 | if (!(vlr.state & LR_HW)) |
| 1423 | return false; |
| 1424 | |
| 1425 | if (vlr.state & LR_STATE_ACTIVE) |
| 1426 | return false; |
| 1427 | |
| 1428 | spin_lock(&dist->lock); |
| 1429 | level_pending = process_queued_irq(vcpu, lr, vlr); |
| 1430 | spin_unlock(&dist->lock); |
| 1431 | return level_pending; |
| 1432 | } |
| 1433 | |
| 1434 | /* Sync back the VGIC state after a guest run */ |
| 1435 | static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu) |
| 1436 | { |
| 1437 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| 1438 | u64 elrsr; |
| 1439 | unsigned long *elrsr_ptr; |
| 1440 | int lr, pending; |
| 1441 | bool level_pending; |
| 1442 | |
| 1443 | level_pending = vgic_process_maintenance(vcpu); |
| 1444 | |
| 1445 | /* Deal with HW interrupts, and clear mappings for empty LRs */ |
| 1446 | for (lr = 0; lr < vgic->nr_lr; lr++) { |
| 1447 | struct vgic_lr vlr = vgic_get_lr(vcpu, lr); |
| 1448 | |
| 1449 | level_pending |= vgic_sync_hwirq(vcpu, lr, vlr); |
| 1450 | BUG_ON(vlr.irq >= dist->nr_irqs); |
| 1451 | } |
| 1452 | |
| 1453 | /* Check if we still have something up our sleeve... */ |
| 1454 | elrsr = vgic_get_elrsr(vcpu); |
| 1455 | elrsr_ptr = u64_to_bitmask(&elrsr); |
| 1456 | pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr); |
| 1457 | if (level_pending || pending < vgic->nr_lr) |
| 1458 | set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu); |
| 1459 | } |
| 1460 | |
| 1461 | void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu) |
| 1462 | { |
| 1463 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| 1464 | |
| 1465 | if (!irqchip_in_kernel(vcpu->kvm)) |
| 1466 | return; |
| 1467 | |
| 1468 | spin_lock(&dist->lock); |
| 1469 | __kvm_vgic_flush_hwstate(vcpu); |
| 1470 | spin_unlock(&dist->lock); |
| 1471 | } |
| 1472 | |
| 1473 | void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu) |
| 1474 | { |
| 1475 | if (!irqchip_in_kernel(vcpu->kvm)) |
| 1476 | return; |
| 1477 | |
| 1478 | __kvm_vgic_sync_hwstate(vcpu); |
| 1479 | } |
| 1480 | |
| 1481 | int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu) |
| 1482 | { |
| 1483 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| 1484 | |
| 1485 | if (!irqchip_in_kernel(vcpu->kvm)) |
| 1486 | return 0; |
| 1487 | |
| 1488 | return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu); |
| 1489 | } |
| 1490 | |
| 1491 | void vgic_kick_vcpus(struct kvm *kvm) |
| 1492 | { |
| 1493 | struct kvm_vcpu *vcpu; |
| 1494 | int c; |
| 1495 | |
| 1496 | /* |
| 1497 | * We've injected an interrupt, time to find out who deserves |
| 1498 | * a good kick... |
| 1499 | */ |
| 1500 | kvm_for_each_vcpu(c, vcpu, kvm) { |
| 1501 | if (kvm_vgic_vcpu_pending_irq(vcpu)) |
| 1502 | kvm_vcpu_kick(vcpu); |
| 1503 | } |
| 1504 | } |
| 1505 | |
| 1506 | static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level) |
| 1507 | { |
| 1508 | int edge_triggered = vgic_irq_is_edge(vcpu, irq); |
| 1509 | |
| 1510 | /* |
| 1511 | * Only inject an interrupt if: |
| 1512 | * - edge triggered and we have a rising edge |
| 1513 | * - level triggered and we change level |
| 1514 | */ |
| 1515 | if (edge_triggered) { |
| 1516 | int state = vgic_dist_irq_is_pending(vcpu, irq); |
| 1517 | return level > state; |
| 1518 | } else { |
| 1519 | int state = vgic_dist_irq_get_level(vcpu, irq); |
| 1520 | return level != state; |
| 1521 | } |
| 1522 | } |
| 1523 | |
| 1524 | static int vgic_update_irq_pending(struct kvm *kvm, int cpuid, |
| 1525 | struct irq_phys_map *map, |
| 1526 | unsigned int irq_num, bool level) |
| 1527 | { |
| 1528 | struct vgic_dist *dist = &kvm->arch.vgic; |
| 1529 | struct kvm_vcpu *vcpu; |
| 1530 | int edge_triggered, level_triggered; |
| 1531 | int enabled; |
| 1532 | bool ret = true, can_inject = true; |
| 1533 | |
| 1534 | trace_vgic_update_irq_pending(cpuid, irq_num, level); |
| 1535 | |
| 1536 | if (irq_num >= min(kvm->arch.vgic.nr_irqs, 1020)) |
| 1537 | return -EINVAL; |
| 1538 | |
| 1539 | spin_lock(&dist->lock); |
| 1540 | |
| 1541 | vcpu = kvm_get_vcpu(kvm, cpuid); |
| 1542 | edge_triggered = vgic_irq_is_edge(vcpu, irq_num); |
| 1543 | level_triggered = !edge_triggered; |
| 1544 | |
| 1545 | if (!vgic_validate_injection(vcpu, irq_num, level)) { |
| 1546 | ret = false; |
| 1547 | goto out; |
| 1548 | } |
| 1549 | |
| 1550 | if (irq_num >= VGIC_NR_PRIVATE_IRQS) { |
| 1551 | cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS]; |
| 1552 | if (cpuid == VCPU_NOT_ALLOCATED) { |
| 1553 | /* Pretend we use CPU0, and prevent injection */ |
| 1554 | cpuid = 0; |
| 1555 | can_inject = false; |
| 1556 | } |
| 1557 | vcpu = kvm_get_vcpu(kvm, cpuid); |
| 1558 | } |
| 1559 | |
| 1560 | kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid); |
| 1561 | |
| 1562 | if (level) { |
| 1563 | if (level_triggered) |
| 1564 | vgic_dist_irq_set_level(vcpu, irq_num); |
| 1565 | vgic_dist_irq_set_pending(vcpu, irq_num); |
| 1566 | } else { |
| 1567 | if (level_triggered) { |
| 1568 | vgic_dist_irq_clear_level(vcpu, irq_num); |
| 1569 | if (!vgic_dist_irq_soft_pend(vcpu, irq_num)) { |
| 1570 | vgic_dist_irq_clear_pending(vcpu, irq_num); |
| 1571 | vgic_cpu_irq_clear(vcpu, irq_num); |
| 1572 | if (!compute_pending_for_cpu(vcpu)) |
| 1573 | clear_bit(cpuid, dist->irq_pending_on_cpu); |
| 1574 | } |
| 1575 | } |
| 1576 | |
| 1577 | ret = false; |
| 1578 | goto out; |
| 1579 | } |
| 1580 | |
| 1581 | enabled = vgic_irq_is_enabled(vcpu, irq_num); |
| 1582 | |
| 1583 | if (!enabled || !can_inject) { |
| 1584 | ret = false; |
| 1585 | goto out; |
| 1586 | } |
| 1587 | |
| 1588 | if (!vgic_can_sample_irq(vcpu, irq_num)) { |
| 1589 | /* |
| 1590 | * Level interrupt in progress, will be picked up |
| 1591 | * when EOId. |
| 1592 | */ |
| 1593 | ret = false; |
| 1594 | goto out; |
| 1595 | } |
| 1596 | |
| 1597 | if (level) { |
| 1598 | vgic_cpu_irq_set(vcpu, irq_num); |
| 1599 | set_bit(cpuid, dist->irq_pending_on_cpu); |
| 1600 | } |
| 1601 | |
| 1602 | out: |
| 1603 | spin_unlock(&dist->lock); |
| 1604 | |
| 1605 | if (ret) { |
| 1606 | /* kick the specified vcpu */ |
| 1607 | kvm_vcpu_kick(kvm_get_vcpu(kvm, cpuid)); |
| 1608 | } |
| 1609 | |
| 1610 | return 0; |
| 1611 | } |
| 1612 | |
| 1613 | static int vgic_lazy_init(struct kvm *kvm) |
| 1614 | { |
| 1615 | int ret = 0; |
| 1616 | |
| 1617 | if (unlikely(!vgic_initialized(kvm))) { |
| 1618 | /* |
| 1619 | * We only provide the automatic initialization of the VGIC |
| 1620 | * for the legacy case of a GICv2. Any other type must |
| 1621 | * be explicitly initialized once setup with the respective |
| 1622 | * KVM device call. |
| 1623 | */ |
| 1624 | if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) |
| 1625 | return -EBUSY; |
| 1626 | |
| 1627 | mutex_lock(&kvm->lock); |
| 1628 | ret = vgic_init(kvm); |
| 1629 | mutex_unlock(&kvm->lock); |
| 1630 | } |
| 1631 | |
| 1632 | return ret; |
| 1633 | } |
| 1634 | |
| 1635 | /** |
| 1636 | * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic |
| 1637 | * @kvm: The VM structure pointer |
| 1638 | * @cpuid: The CPU for PPIs |
| 1639 | * @irq_num: The IRQ number that is assigned to the device. This IRQ |
| 1640 | * must not be mapped to a HW interrupt. |
| 1641 | * @level: Edge-triggered: true: to trigger the interrupt |
| 1642 | * false: to ignore the call |
| 1643 | * Level-sensitive true: raise the input signal |
| 1644 | * false: lower the input signal |
| 1645 | * |
| 1646 | * The GIC is not concerned with devices being active-LOW or active-HIGH for |
| 1647 | * level-sensitive interrupts. You can think of the level parameter as 1 |
| 1648 | * being HIGH and 0 being LOW and all devices being active-HIGH. |
| 1649 | */ |
| 1650 | int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num, |
| 1651 | bool level) |
| 1652 | { |
| 1653 | struct irq_phys_map *map; |
| 1654 | int ret; |
| 1655 | |
| 1656 | ret = vgic_lazy_init(kvm); |
| 1657 | if (ret) |
| 1658 | return ret; |
| 1659 | |
| 1660 | map = vgic_irq_map_search(kvm_get_vcpu(kvm, cpuid), irq_num); |
| 1661 | if (map) |
| 1662 | return -EINVAL; |
| 1663 | |
| 1664 | return vgic_update_irq_pending(kvm, cpuid, NULL, irq_num, level); |
| 1665 | } |
| 1666 | |
| 1667 | /** |
| 1668 | * kvm_vgic_inject_mapped_irq - Inject a physically mapped IRQ to the vgic |
| 1669 | * @kvm: The VM structure pointer |
| 1670 | * @cpuid: The CPU for PPIs |
| 1671 | * @map: Pointer to a irq_phys_map structure describing the mapping |
| 1672 | * @level: Edge-triggered: true: to trigger the interrupt |
| 1673 | * false: to ignore the call |
| 1674 | * Level-sensitive true: raise the input signal |
| 1675 | * false: lower the input signal |
| 1676 | * |
| 1677 | * The GIC is not concerned with devices being active-LOW or active-HIGH for |
| 1678 | * level-sensitive interrupts. You can think of the level parameter as 1 |
| 1679 | * being HIGH and 0 being LOW and all devices being active-HIGH. |
| 1680 | */ |
| 1681 | int kvm_vgic_inject_mapped_irq(struct kvm *kvm, int cpuid, |
| 1682 | struct irq_phys_map *map, bool level) |
| 1683 | { |
| 1684 | int ret; |
| 1685 | |
| 1686 | ret = vgic_lazy_init(kvm); |
| 1687 | if (ret) |
| 1688 | return ret; |
| 1689 | |
| 1690 | return vgic_update_irq_pending(kvm, cpuid, map, map->virt_irq, level); |
| 1691 | } |
| 1692 | |
| 1693 | static irqreturn_t vgic_maintenance_handler(int irq, void *data) |
| 1694 | { |
| 1695 | /* |
| 1696 | * We cannot rely on the vgic maintenance interrupt to be |
| 1697 | * delivered synchronously. This means we can only use it to |
| 1698 | * exit the VM, and we perform the handling of EOIed |
| 1699 | * interrupts on the exit path (see vgic_process_maintenance). |
| 1700 | */ |
| 1701 | return IRQ_HANDLED; |
| 1702 | } |
| 1703 | |
| 1704 | static struct list_head *vgic_get_irq_phys_map_list(struct kvm_vcpu *vcpu, |
| 1705 | int virt_irq) |
| 1706 | { |
| 1707 | if (virt_irq < VGIC_NR_PRIVATE_IRQS) |
| 1708 | return &vcpu->arch.vgic_cpu.irq_phys_map_list; |
| 1709 | else |
| 1710 | return &vcpu->kvm->arch.vgic.irq_phys_map_list; |
| 1711 | } |
| 1712 | |
| 1713 | /** |
| 1714 | * kvm_vgic_map_phys_irq - map a virtual IRQ to a physical IRQ |
| 1715 | * @vcpu: The VCPU pointer |
| 1716 | * @virt_irq: The virtual irq number |
| 1717 | * @irq: The Linux IRQ number |
| 1718 | * |
| 1719 | * Establish a mapping between a guest visible irq (@virt_irq) and a |
| 1720 | * Linux irq (@irq). On injection, @virt_irq will be associated with |
| 1721 | * the physical interrupt represented by @irq. This mapping can be |
| 1722 | * established multiple times as long as the parameters are the same. |
| 1723 | * |
| 1724 | * Returns a valid pointer on success, and an error pointer otherwise |
| 1725 | */ |
| 1726 | struct irq_phys_map *kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, |
| 1727 | int virt_irq, int irq) |
| 1728 | { |
| 1729 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| 1730 | struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq); |
| 1731 | struct irq_phys_map *map; |
| 1732 | struct irq_phys_map_entry *entry; |
| 1733 | struct irq_desc *desc; |
| 1734 | struct irq_data *data; |
| 1735 | int phys_irq; |
| 1736 | |
| 1737 | desc = irq_to_desc(irq); |
| 1738 | if (!desc) { |
| 1739 | kvm_err("%s: no interrupt descriptor\n", __func__); |
| 1740 | return ERR_PTR(-EINVAL); |
| 1741 | } |
| 1742 | |
| 1743 | data = irq_desc_get_irq_data(desc); |
| 1744 | while (data->parent_data) |
| 1745 | data = data->parent_data; |
| 1746 | |
| 1747 | phys_irq = data->hwirq; |
| 1748 | |
| 1749 | /* Create a new mapping */ |
| 1750 | entry = kzalloc(sizeof(*entry), GFP_KERNEL); |
| 1751 | if (!entry) |
| 1752 | return ERR_PTR(-ENOMEM); |
| 1753 | |
| 1754 | spin_lock(&dist->irq_phys_map_lock); |
| 1755 | |
| 1756 | /* Try to match an existing mapping */ |
| 1757 | map = vgic_irq_map_search(vcpu, virt_irq); |
| 1758 | if (map) { |
| 1759 | /* Make sure this mapping matches */ |
| 1760 | if (map->phys_irq != phys_irq || |
| 1761 | map->irq != irq) |
| 1762 | map = ERR_PTR(-EINVAL); |
| 1763 | |
| 1764 | /* Found an existing, valid mapping */ |
| 1765 | goto out; |
| 1766 | } |
| 1767 | |
| 1768 | map = &entry->map; |
| 1769 | map->virt_irq = virt_irq; |
| 1770 | map->phys_irq = phys_irq; |
| 1771 | map->irq = irq; |
| 1772 | |
| 1773 | list_add_tail_rcu(&entry->entry, root); |
| 1774 | |
| 1775 | out: |
| 1776 | spin_unlock(&dist->irq_phys_map_lock); |
| 1777 | /* If we've found a hit in the existing list, free the useless |
| 1778 | * entry */ |
| 1779 | if (IS_ERR(map) || map != &entry->map) |
| 1780 | kfree(entry); |
| 1781 | return map; |
| 1782 | } |
| 1783 | |
| 1784 | static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu, |
| 1785 | int virt_irq) |
| 1786 | { |
| 1787 | struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq); |
| 1788 | struct irq_phys_map_entry *entry; |
| 1789 | struct irq_phys_map *map; |
| 1790 | |
| 1791 | rcu_read_lock(); |
| 1792 | |
| 1793 | list_for_each_entry_rcu(entry, root, entry) { |
| 1794 | map = &entry->map; |
| 1795 | if (map->virt_irq == virt_irq) { |
| 1796 | rcu_read_unlock(); |
| 1797 | return map; |
| 1798 | } |
| 1799 | } |
| 1800 | |
| 1801 | rcu_read_unlock(); |
| 1802 | |
| 1803 | return NULL; |
| 1804 | } |
| 1805 | |
| 1806 | static void vgic_free_phys_irq_map_rcu(struct rcu_head *rcu) |
| 1807 | { |
| 1808 | struct irq_phys_map_entry *entry; |
| 1809 | |
| 1810 | entry = container_of(rcu, struct irq_phys_map_entry, rcu); |
| 1811 | kfree(entry); |
| 1812 | } |
| 1813 | |
| 1814 | /** |
| 1815 | * kvm_vgic_unmap_phys_irq - Remove a virtual to physical IRQ mapping |
| 1816 | * @vcpu: The VCPU pointer |
| 1817 | * @map: The pointer to a mapping obtained through kvm_vgic_map_phys_irq |
| 1818 | * |
| 1819 | * Remove an existing mapping between virtual and physical interrupts. |
| 1820 | */ |
| 1821 | int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, struct irq_phys_map *map) |
| 1822 | { |
| 1823 | struct vgic_dist *dist = &vcpu->kvm->arch.vgic; |
| 1824 | struct irq_phys_map_entry *entry; |
| 1825 | struct list_head *root; |
| 1826 | |
| 1827 | if (!map) |
| 1828 | return -EINVAL; |
| 1829 | |
| 1830 | root = vgic_get_irq_phys_map_list(vcpu, map->virt_irq); |
| 1831 | |
| 1832 | spin_lock(&dist->irq_phys_map_lock); |
| 1833 | |
| 1834 | list_for_each_entry(entry, root, entry) { |
| 1835 | if (&entry->map == map) { |
| 1836 | list_del_rcu(&entry->entry); |
| 1837 | call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu); |
| 1838 | break; |
| 1839 | } |
| 1840 | } |
| 1841 | |
| 1842 | spin_unlock(&dist->irq_phys_map_lock); |
| 1843 | |
| 1844 | return 0; |
| 1845 | } |
| 1846 | |
| 1847 | static void vgic_destroy_irq_phys_map(struct kvm *kvm, struct list_head *root) |
| 1848 | { |
| 1849 | struct vgic_dist *dist = &kvm->arch.vgic; |
| 1850 | struct irq_phys_map_entry *entry; |
| 1851 | |
| 1852 | spin_lock(&dist->irq_phys_map_lock); |
| 1853 | |
| 1854 | list_for_each_entry(entry, root, entry) { |
| 1855 | list_del_rcu(&entry->entry); |
| 1856 | call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu); |
| 1857 | } |
| 1858 | |
| 1859 | spin_unlock(&dist->irq_phys_map_lock); |
| 1860 | } |
| 1861 | |
| 1862 | void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu) |
| 1863 | { |
| 1864 | struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; |
| 1865 | |
| 1866 | kfree(vgic_cpu->pending_shared); |
| 1867 | kfree(vgic_cpu->active_shared); |
| 1868 | kfree(vgic_cpu->pend_act_shared); |
| 1869 | vgic_destroy_irq_phys_map(vcpu->kvm, &vgic_cpu->irq_phys_map_list); |
| 1870 | vgic_cpu->pending_shared = NULL; |
| 1871 | vgic_cpu->active_shared = NULL; |
| 1872 | vgic_cpu->pend_act_shared = NULL; |
| 1873 | } |
| 1874 | |
| 1875 | static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs) |
| 1876 | { |
| 1877 | struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; |
| 1878 | int nr_longs = BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS); |
| 1879 | int sz = nr_longs * sizeof(unsigned long); |
| 1880 | vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL); |
| 1881 | vgic_cpu->active_shared = kzalloc(sz, GFP_KERNEL); |
| 1882 | vgic_cpu->pend_act_shared = kzalloc(sz, GFP_KERNEL); |
| 1883 | |
| 1884 | if (!vgic_cpu->pending_shared |
| 1885 | || !vgic_cpu->active_shared |
| 1886 | || !vgic_cpu->pend_act_shared) { |
| 1887 | kvm_vgic_vcpu_destroy(vcpu); |
| 1888 | return -ENOMEM; |
| 1889 | } |
| 1890 | |
| 1891 | /* |
| 1892 | * Store the number of LRs per vcpu, so we don't have to go |
| 1893 | * all the way to the distributor structure to find out. Only |
| 1894 | * assembly code should use this one. |
| 1895 | */ |
| 1896 | vgic_cpu->nr_lr = vgic->nr_lr; |
| 1897 | |
| 1898 | return 0; |
| 1899 | } |
| 1900 | |
| 1901 | /** |
| 1902 | * kvm_vgic_vcpu_early_init - Earliest possible per-vcpu vgic init stage |
| 1903 | * |
| 1904 | * No memory allocation should be performed here, only static init. |
| 1905 | */ |
| 1906 | void kvm_vgic_vcpu_early_init(struct kvm_vcpu *vcpu) |
| 1907 | { |
| 1908 | struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; |
| 1909 | INIT_LIST_HEAD(&vgic_cpu->irq_phys_map_list); |
| 1910 | } |
| 1911 | |
| 1912 | /** |
| 1913 | * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW |
| 1914 | * |
| 1915 | * The host's GIC naturally limits the maximum amount of VCPUs a guest |
| 1916 | * can use. |
| 1917 | */ |
| 1918 | int kvm_vgic_get_max_vcpus(void) |
| 1919 | { |
| 1920 | return vgic->max_gic_vcpus; |
| 1921 | } |
| 1922 | |
| 1923 | void kvm_vgic_destroy(struct kvm *kvm) |
| 1924 | { |
| 1925 | struct vgic_dist *dist = &kvm->arch.vgic; |
| 1926 | struct kvm_vcpu *vcpu; |
| 1927 | int i; |
| 1928 | |
| 1929 | kvm_for_each_vcpu(i, vcpu, kvm) |
| 1930 | kvm_vgic_vcpu_destroy(vcpu); |
| 1931 | |
| 1932 | vgic_free_bitmap(&dist->irq_enabled); |
| 1933 | vgic_free_bitmap(&dist->irq_level); |
| 1934 | vgic_free_bitmap(&dist->irq_pending); |
| 1935 | vgic_free_bitmap(&dist->irq_soft_pend); |
| 1936 | vgic_free_bitmap(&dist->irq_queued); |
| 1937 | vgic_free_bitmap(&dist->irq_cfg); |
| 1938 | vgic_free_bytemap(&dist->irq_priority); |
| 1939 | if (dist->irq_spi_target) { |
| 1940 | for (i = 0; i < dist->nr_cpus; i++) |
| 1941 | vgic_free_bitmap(&dist->irq_spi_target[i]); |
| 1942 | } |
| 1943 | kfree(dist->irq_sgi_sources); |
| 1944 | kfree(dist->irq_spi_cpu); |
| 1945 | kfree(dist->irq_spi_mpidr); |
| 1946 | kfree(dist->irq_spi_target); |
| 1947 | kfree(dist->irq_pending_on_cpu); |
| 1948 | kfree(dist->irq_active_on_cpu); |
| 1949 | vgic_destroy_irq_phys_map(kvm, &dist->irq_phys_map_list); |
| 1950 | dist->irq_sgi_sources = NULL; |
| 1951 | dist->irq_spi_cpu = NULL; |
| 1952 | dist->irq_spi_target = NULL; |
| 1953 | dist->irq_pending_on_cpu = NULL; |
| 1954 | dist->irq_active_on_cpu = NULL; |
| 1955 | dist->nr_cpus = 0; |
| 1956 | } |
| 1957 | |
| 1958 | /* |
| 1959 | * Allocate and initialize the various data structures. Must be called |
| 1960 | * with kvm->lock held! |
| 1961 | */ |
| 1962 | int vgic_init(struct kvm *kvm) |
| 1963 | { |
| 1964 | struct vgic_dist *dist = &kvm->arch.vgic; |
| 1965 | struct kvm_vcpu *vcpu; |
| 1966 | int nr_cpus, nr_irqs; |
| 1967 | int ret, i, vcpu_id; |
| 1968 | |
| 1969 | if (vgic_initialized(kvm)) |
| 1970 | return 0; |
| 1971 | |
| 1972 | nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus); |
| 1973 | if (!nr_cpus) /* No vcpus? Can't be good... */ |
| 1974 | return -ENODEV; |
| 1975 | |
| 1976 | /* |
| 1977 | * If nobody configured the number of interrupts, use the |
| 1978 | * legacy one. |
| 1979 | */ |
| 1980 | if (!dist->nr_irqs) |
| 1981 | dist->nr_irqs = VGIC_NR_IRQS_LEGACY; |
| 1982 | |
| 1983 | nr_irqs = dist->nr_irqs; |
| 1984 | |
| 1985 | ret = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs); |
| 1986 | ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs); |
| 1987 | ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs); |
| 1988 | ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs); |
| 1989 | ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs); |
| 1990 | ret |= vgic_init_bitmap(&dist->irq_active, nr_cpus, nr_irqs); |
| 1991 | ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs); |
| 1992 | ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs); |
| 1993 | |
| 1994 | if (ret) |
| 1995 | goto out; |
| 1996 | |
| 1997 | dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL); |
| 1998 | dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL); |
| 1999 | dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus, |
| 2000 | GFP_KERNEL); |
| 2001 | dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long), |
| 2002 | GFP_KERNEL); |
| 2003 | dist->irq_active_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long), |
| 2004 | GFP_KERNEL); |
| 2005 | if (!dist->irq_sgi_sources || |
| 2006 | !dist->irq_spi_cpu || |
| 2007 | !dist->irq_spi_target || |
| 2008 | !dist->irq_pending_on_cpu || |
| 2009 | !dist->irq_active_on_cpu) { |
| 2010 | ret = -ENOMEM; |
| 2011 | goto out; |
| 2012 | } |
| 2013 | |
| 2014 | for (i = 0; i < nr_cpus; i++) |
| 2015 | ret |= vgic_init_bitmap(&dist->irq_spi_target[i], |
| 2016 | nr_cpus, nr_irqs); |
| 2017 | |
| 2018 | if (ret) |
| 2019 | goto out; |
| 2020 | |
| 2021 | ret = kvm->arch.vgic.vm_ops.init_model(kvm); |
| 2022 | if (ret) |
| 2023 | goto out; |
| 2024 | |
| 2025 | kvm_for_each_vcpu(vcpu_id, vcpu, kvm) { |
| 2026 | ret = vgic_vcpu_init_maps(vcpu, nr_irqs); |
| 2027 | if (ret) { |
| 2028 | kvm_err("VGIC: Failed to allocate vcpu memory\n"); |
| 2029 | break; |
| 2030 | } |
| 2031 | |
| 2032 | /* |
| 2033 | * Enable and configure all SGIs to be edge-triggere and |
| 2034 | * configure all PPIs as level-triggered. |
| 2035 | */ |
| 2036 | for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) { |
| 2037 | if (i < VGIC_NR_SGIS) { |
| 2038 | /* SGIs */ |
| 2039 | vgic_bitmap_set_irq_val(&dist->irq_enabled, |
| 2040 | vcpu->vcpu_id, i, 1); |
| 2041 | vgic_bitmap_set_irq_val(&dist->irq_cfg, |
| 2042 | vcpu->vcpu_id, i, |
| 2043 | VGIC_CFG_EDGE); |
| 2044 | } else if (i < VGIC_NR_PRIVATE_IRQS) { |
| 2045 | /* PPIs */ |
| 2046 | vgic_bitmap_set_irq_val(&dist->irq_cfg, |
| 2047 | vcpu->vcpu_id, i, |
| 2048 | VGIC_CFG_LEVEL); |
| 2049 | } |
| 2050 | } |
| 2051 | |
| 2052 | vgic_enable(vcpu); |
| 2053 | } |
| 2054 | |
| 2055 | out: |
| 2056 | if (ret) |
| 2057 | kvm_vgic_destroy(kvm); |
| 2058 | |
| 2059 | return ret; |
| 2060 | } |
| 2061 | |
| 2062 | static int init_vgic_model(struct kvm *kvm, int type) |
| 2063 | { |
| 2064 | switch (type) { |
| 2065 | case KVM_DEV_TYPE_ARM_VGIC_V2: |
| 2066 | vgic_v2_init_emulation(kvm); |
| 2067 | break; |
| 2068 | #ifdef CONFIG_KVM_ARM_VGIC_V3 |
| 2069 | case KVM_DEV_TYPE_ARM_VGIC_V3: |
| 2070 | vgic_v3_init_emulation(kvm); |
| 2071 | break; |
| 2072 | #endif |
| 2073 | default: |
| 2074 | return -ENODEV; |
| 2075 | } |
| 2076 | |
| 2077 | if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus) |
| 2078 | return -E2BIG; |
| 2079 | |
| 2080 | return 0; |
| 2081 | } |
| 2082 | |
| 2083 | /** |
| 2084 | * kvm_vgic_early_init - Earliest possible vgic initialization stage |
| 2085 | * |
| 2086 | * No memory allocation should be performed here, only static init. |
| 2087 | */ |
| 2088 | void kvm_vgic_early_init(struct kvm *kvm) |
| 2089 | { |
| 2090 | spin_lock_init(&kvm->arch.vgic.lock); |
| 2091 | spin_lock_init(&kvm->arch.vgic.irq_phys_map_lock); |
| 2092 | INIT_LIST_HEAD(&kvm->arch.vgic.irq_phys_map_list); |
| 2093 | } |
| 2094 | |
| 2095 | int kvm_vgic_create(struct kvm *kvm, u32 type) |
| 2096 | { |
| 2097 | int i, vcpu_lock_idx = -1, ret; |
| 2098 | struct kvm_vcpu *vcpu; |
| 2099 | |
| 2100 | mutex_lock(&kvm->lock); |
| 2101 | |
| 2102 | if (irqchip_in_kernel(kvm)) { |
| 2103 | ret = -EEXIST; |
| 2104 | goto out; |
| 2105 | } |
| 2106 | |
| 2107 | /* |
| 2108 | * This function is also called by the KVM_CREATE_IRQCHIP handler, |
| 2109 | * which had no chance yet to check the availability of the GICv2 |
| 2110 | * emulation. So check this here again. KVM_CREATE_DEVICE does |
| 2111 | * the proper checks already. |
| 2112 | */ |
| 2113 | if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2) { |
| 2114 | ret = -ENODEV; |
| 2115 | goto out; |
| 2116 | } |
| 2117 | |
| 2118 | /* |
| 2119 | * Any time a vcpu is run, vcpu_load is called which tries to grab the |
| 2120 | * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure |
| 2121 | * that no other VCPUs are run while we create the vgic. |
| 2122 | */ |
| 2123 | ret = -EBUSY; |
| 2124 | kvm_for_each_vcpu(i, vcpu, kvm) { |
| 2125 | if (!mutex_trylock(&vcpu->mutex)) |
| 2126 | goto out_unlock; |
| 2127 | vcpu_lock_idx = i; |
| 2128 | } |
| 2129 | |
| 2130 | kvm_for_each_vcpu(i, vcpu, kvm) { |
| 2131 | if (vcpu->arch.has_run_once) |
| 2132 | goto out_unlock; |
| 2133 | } |
| 2134 | ret = 0; |
| 2135 | |
| 2136 | ret = init_vgic_model(kvm, type); |
| 2137 | if (ret) |
| 2138 | goto out_unlock; |
| 2139 | |
| 2140 | kvm->arch.vgic.in_kernel = true; |
| 2141 | kvm->arch.vgic.vgic_model = type; |
| 2142 | kvm->arch.vgic.vctrl_base = vgic->vctrl_base; |
| 2143 | kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF; |
| 2144 | kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF; |
| 2145 | kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF; |
| 2146 | |
| 2147 | out_unlock: |
| 2148 | for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) { |
| 2149 | vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx); |
| 2150 | mutex_unlock(&vcpu->mutex); |
| 2151 | } |
| 2152 | |
| 2153 | out: |
| 2154 | mutex_unlock(&kvm->lock); |
| 2155 | return ret; |
| 2156 | } |
| 2157 | |
| 2158 | static int vgic_ioaddr_overlap(struct kvm *kvm) |
| 2159 | { |
| 2160 | phys_addr_t dist = kvm->arch.vgic.vgic_dist_base; |
| 2161 | phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base; |
| 2162 | |
| 2163 | if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu)) |
| 2164 | return 0; |
| 2165 | if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) || |
| 2166 | (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist)) |
| 2167 | return -EBUSY; |
| 2168 | return 0; |
| 2169 | } |
| 2170 | |
| 2171 | static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr, |
| 2172 | phys_addr_t addr, phys_addr_t size) |
| 2173 | { |
| 2174 | int ret; |
| 2175 | |
| 2176 | if (addr & ~KVM_PHYS_MASK) |
| 2177 | return -E2BIG; |
| 2178 | |
| 2179 | if (addr & (SZ_4K - 1)) |
| 2180 | return -EINVAL; |
| 2181 | |
| 2182 | if (!IS_VGIC_ADDR_UNDEF(*ioaddr)) |
| 2183 | return -EEXIST; |
| 2184 | if (addr + size < addr) |
| 2185 | return -EINVAL; |
| 2186 | |
| 2187 | *ioaddr = addr; |
| 2188 | ret = vgic_ioaddr_overlap(kvm); |
| 2189 | if (ret) |
| 2190 | *ioaddr = VGIC_ADDR_UNDEF; |
| 2191 | |
| 2192 | return ret; |
| 2193 | } |
| 2194 | |
| 2195 | /** |
| 2196 | * kvm_vgic_addr - set or get vgic VM base addresses |
| 2197 | * @kvm: pointer to the vm struct |
| 2198 | * @type: the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX |
| 2199 | * @addr: pointer to address value |
| 2200 | * @write: if true set the address in the VM address space, if false read the |
| 2201 | * address |
| 2202 | * |
| 2203 | * Set or get the vgic base addresses for the distributor and the virtual CPU |
| 2204 | * interface in the VM physical address space. These addresses are properties |
| 2205 | * of the emulated core/SoC and therefore user space initially knows this |
| 2206 | * information. |
| 2207 | */ |
| 2208 | int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write) |
| 2209 | { |
| 2210 | int r = 0; |
| 2211 | struct vgic_dist *vgic = &kvm->arch.vgic; |
| 2212 | int type_needed; |
| 2213 | phys_addr_t *addr_ptr, block_size; |
| 2214 | phys_addr_t alignment; |
| 2215 | |
| 2216 | mutex_lock(&kvm->lock); |
| 2217 | switch (type) { |
| 2218 | case KVM_VGIC_V2_ADDR_TYPE_DIST: |
| 2219 | type_needed = KVM_DEV_TYPE_ARM_VGIC_V2; |
| 2220 | addr_ptr = &vgic->vgic_dist_base; |
| 2221 | block_size = KVM_VGIC_V2_DIST_SIZE; |
| 2222 | alignment = SZ_4K; |
| 2223 | break; |
| 2224 | case KVM_VGIC_V2_ADDR_TYPE_CPU: |
| 2225 | type_needed = KVM_DEV_TYPE_ARM_VGIC_V2; |
| 2226 | addr_ptr = &vgic->vgic_cpu_base; |
| 2227 | block_size = KVM_VGIC_V2_CPU_SIZE; |
| 2228 | alignment = SZ_4K; |
| 2229 | break; |
| 2230 | #ifdef CONFIG_KVM_ARM_VGIC_V3 |
| 2231 | case KVM_VGIC_V3_ADDR_TYPE_DIST: |
| 2232 | type_needed = KVM_DEV_TYPE_ARM_VGIC_V3; |
| 2233 | addr_ptr = &vgic->vgic_dist_base; |
| 2234 | block_size = KVM_VGIC_V3_DIST_SIZE; |
| 2235 | alignment = SZ_64K; |
| 2236 | break; |
| 2237 | case KVM_VGIC_V3_ADDR_TYPE_REDIST: |
| 2238 | type_needed = KVM_DEV_TYPE_ARM_VGIC_V3; |
| 2239 | addr_ptr = &vgic->vgic_redist_base; |
| 2240 | block_size = KVM_VGIC_V3_REDIST_SIZE; |
| 2241 | alignment = SZ_64K; |
| 2242 | break; |
| 2243 | #endif |
| 2244 | default: |
| 2245 | r = -ENODEV; |
| 2246 | goto out; |
| 2247 | } |
| 2248 | |
| 2249 | if (vgic->vgic_model != type_needed) { |
| 2250 | r = -ENODEV; |
| 2251 | goto out; |
| 2252 | } |
| 2253 | |
| 2254 | if (write) { |
| 2255 | if (!IS_ALIGNED(*addr, alignment)) |
| 2256 | r = -EINVAL; |
| 2257 | else |
| 2258 | r = vgic_ioaddr_assign(kvm, addr_ptr, *addr, |
| 2259 | block_size); |
| 2260 | } else { |
| 2261 | *addr = *addr_ptr; |
| 2262 | } |
| 2263 | |
| 2264 | out: |
| 2265 | mutex_unlock(&kvm->lock); |
| 2266 | return r; |
| 2267 | } |
| 2268 | |
| 2269 | int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr) |
| 2270 | { |
| 2271 | int r; |
| 2272 | |
| 2273 | switch (attr->group) { |
| 2274 | case KVM_DEV_ARM_VGIC_GRP_ADDR: { |
| 2275 | u64 __user *uaddr = (u64 __user *)(long)attr->addr; |
| 2276 | u64 addr; |
| 2277 | unsigned long type = (unsigned long)attr->attr; |
| 2278 | |
| 2279 | if (copy_from_user(&addr, uaddr, sizeof(addr))) |
| 2280 | return -EFAULT; |
| 2281 | |
| 2282 | r = kvm_vgic_addr(dev->kvm, type, &addr, true); |
| 2283 | return (r == -ENODEV) ? -ENXIO : r; |
| 2284 | } |
| 2285 | case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: { |
| 2286 | u32 __user *uaddr = (u32 __user *)(long)attr->addr; |
| 2287 | u32 val; |
| 2288 | int ret = 0; |
| 2289 | |
| 2290 | if (get_user(val, uaddr)) |
| 2291 | return -EFAULT; |
| 2292 | |
| 2293 | /* |
| 2294 | * We require: |
| 2295 | * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs |
| 2296 | * - at most 1024 interrupts |
| 2297 | * - a multiple of 32 interrupts |
| 2298 | */ |
| 2299 | if (val < (VGIC_NR_PRIVATE_IRQS + 32) || |
| 2300 | val > VGIC_MAX_IRQS || |
| 2301 | (val & 31)) |
| 2302 | return -EINVAL; |
| 2303 | |
| 2304 | mutex_lock(&dev->kvm->lock); |
| 2305 | |
| 2306 | if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs) |
| 2307 | ret = -EBUSY; |
| 2308 | else |
| 2309 | dev->kvm->arch.vgic.nr_irqs = val; |
| 2310 | |
| 2311 | mutex_unlock(&dev->kvm->lock); |
| 2312 | |
| 2313 | return ret; |
| 2314 | } |
| 2315 | case KVM_DEV_ARM_VGIC_GRP_CTRL: { |
| 2316 | switch (attr->attr) { |
| 2317 | case KVM_DEV_ARM_VGIC_CTRL_INIT: |
| 2318 | r = vgic_init(dev->kvm); |
| 2319 | return r; |
| 2320 | } |
| 2321 | break; |
| 2322 | } |
| 2323 | } |
| 2324 | |
| 2325 | return -ENXIO; |
| 2326 | } |
| 2327 | |
| 2328 | int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr) |
| 2329 | { |
| 2330 | int r = -ENXIO; |
| 2331 | |
| 2332 | switch (attr->group) { |
| 2333 | case KVM_DEV_ARM_VGIC_GRP_ADDR: { |
| 2334 | u64 __user *uaddr = (u64 __user *)(long)attr->addr; |
| 2335 | u64 addr; |
| 2336 | unsigned long type = (unsigned long)attr->attr; |
| 2337 | |
| 2338 | r = kvm_vgic_addr(dev->kvm, type, &addr, false); |
| 2339 | if (r) |
| 2340 | return (r == -ENODEV) ? -ENXIO : r; |
| 2341 | |
| 2342 | if (copy_to_user(uaddr, &addr, sizeof(addr))) |
| 2343 | return -EFAULT; |
| 2344 | break; |
| 2345 | } |
| 2346 | case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: { |
| 2347 | u32 __user *uaddr = (u32 __user *)(long)attr->addr; |
| 2348 | |
| 2349 | r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr); |
| 2350 | break; |
| 2351 | } |
| 2352 | |
| 2353 | } |
| 2354 | |
| 2355 | return r; |
| 2356 | } |
| 2357 | |
| 2358 | int vgic_has_attr_regs(const struct vgic_io_range *ranges, phys_addr_t offset) |
| 2359 | { |
| 2360 | if (vgic_find_range(ranges, 4, offset)) |
| 2361 | return 0; |
| 2362 | else |
| 2363 | return -ENXIO; |
| 2364 | } |
| 2365 | |
| 2366 | static void vgic_init_maintenance_interrupt(void *info) |
| 2367 | { |
| 2368 | enable_percpu_irq(vgic->maint_irq, 0); |
| 2369 | } |
| 2370 | |
| 2371 | static int vgic_cpu_notify(struct notifier_block *self, |
| 2372 | unsigned long action, void *cpu) |
| 2373 | { |
| 2374 | switch (action) { |
| 2375 | case CPU_STARTING: |
| 2376 | case CPU_STARTING_FROZEN: |
| 2377 | vgic_init_maintenance_interrupt(NULL); |
| 2378 | break; |
| 2379 | case CPU_DYING: |
| 2380 | case CPU_DYING_FROZEN: |
| 2381 | disable_percpu_irq(vgic->maint_irq); |
| 2382 | break; |
| 2383 | } |
| 2384 | |
| 2385 | return NOTIFY_OK; |
| 2386 | } |
| 2387 | |
| 2388 | static struct notifier_block vgic_cpu_nb = { |
| 2389 | .notifier_call = vgic_cpu_notify, |
| 2390 | }; |
| 2391 | |
| 2392 | static const struct of_device_id vgic_ids[] = { |
| 2393 | { .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, }, |
| 2394 | { .compatible = "arm,cortex-a7-gic", .data = vgic_v2_probe, }, |
| 2395 | { .compatible = "arm,gic-400", .data = vgic_v2_probe, }, |
| 2396 | { .compatible = "arm,gic-v3", .data = vgic_v3_probe, }, |
| 2397 | {}, |
| 2398 | }; |
| 2399 | |
| 2400 | int kvm_vgic_hyp_init(void) |
| 2401 | { |
| 2402 | const struct of_device_id *matched_id; |
| 2403 | const int (*vgic_probe)(struct device_node *,const struct vgic_ops **, |
| 2404 | const struct vgic_params **); |
| 2405 | struct device_node *vgic_node; |
| 2406 | int ret; |
| 2407 | |
| 2408 | vgic_node = of_find_matching_node_and_match(NULL, |
| 2409 | vgic_ids, &matched_id); |
| 2410 | if (!vgic_node) { |
| 2411 | kvm_err("error: no compatible GIC node found\n"); |
| 2412 | return -ENODEV; |
| 2413 | } |
| 2414 | |
| 2415 | vgic_probe = matched_id->data; |
| 2416 | ret = vgic_probe(vgic_node, &vgic_ops, &vgic); |
| 2417 | if (ret) |
| 2418 | return ret; |
| 2419 | |
| 2420 | ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler, |
| 2421 | "vgic", kvm_get_running_vcpus()); |
| 2422 | if (ret) { |
| 2423 | kvm_err("Cannot register interrupt %d\n", vgic->maint_irq); |
| 2424 | return ret; |
| 2425 | } |
| 2426 | |
| 2427 | ret = __register_cpu_notifier(&vgic_cpu_nb); |
| 2428 | if (ret) { |
| 2429 | kvm_err("Cannot register vgic CPU notifier\n"); |
| 2430 | goto out_free_irq; |
| 2431 | } |
| 2432 | |
| 2433 | on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1); |
| 2434 | |
| 2435 | return 0; |
| 2436 | |
| 2437 | out_free_irq: |
| 2438 | free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus()); |
| 2439 | return ret; |
| 2440 | } |
| 2441 | |
| 2442 | int kvm_irq_map_gsi(struct kvm *kvm, |
| 2443 | struct kvm_kernel_irq_routing_entry *entries, |
| 2444 | int gsi) |
| 2445 | { |
| 2446 | return 0; |
| 2447 | } |
| 2448 | |
| 2449 | int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin) |
| 2450 | { |
| 2451 | return pin; |
| 2452 | } |
| 2453 | |
| 2454 | int kvm_set_irq(struct kvm *kvm, int irq_source_id, |
| 2455 | u32 irq, int level, bool line_status) |
| 2456 | { |
| 2457 | unsigned int spi = irq + VGIC_NR_PRIVATE_IRQS; |
| 2458 | |
| 2459 | trace_kvm_set_irq(irq, level, irq_source_id); |
| 2460 | |
| 2461 | BUG_ON(!vgic_initialized(kvm)); |
| 2462 | |
| 2463 | return kvm_vgic_inject_irq(kvm, 0, spi, level); |
| 2464 | } |
| 2465 | |
| 2466 | /* MSI not implemented yet */ |
| 2467 | int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, |
| 2468 | struct kvm *kvm, int irq_source_id, |
| 2469 | int level, bool line_status) |
| 2470 | { |
| 2471 | return 0; |
| 2472 | } |