Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2002-2005, Instant802 Networks, Inc. |
| 3 | * Copyright 2005-2006, Devicescape Software, Inc. |
| 4 | * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> |
| 5 | * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> |
| 6 | * Copyright 2013-2014 Intel Mobile Communications GmbH |
| 7 | * |
| 8 | * This program is free software; you can redistribute it and/or modify |
| 9 | * it under the terms of the GNU General Public License version 2 as |
| 10 | * published by the Free Software Foundation. |
| 11 | */ |
| 12 | |
| 13 | #include <linux/jiffies.h> |
| 14 | #include <linux/slab.h> |
| 15 | #include <linux/kernel.h> |
| 16 | #include <linux/skbuff.h> |
| 17 | #include <linux/netdevice.h> |
| 18 | #include <linux/etherdevice.h> |
| 19 | #include <linux/rcupdate.h> |
| 20 | #include <linux/export.h> |
| 21 | #include <net/mac80211.h> |
| 22 | #include <net/ieee80211_radiotap.h> |
| 23 | #include <asm/unaligned.h> |
| 24 | |
| 25 | #include "ieee80211_i.h" |
| 26 | #include "driver-ops.h" |
| 27 | #include "led.h" |
| 28 | #include "mesh.h" |
| 29 | #include "wep.h" |
| 30 | #include "wpa.h" |
| 31 | #include "tkip.h" |
| 32 | #include "wme.h" |
| 33 | #include "rate.h" |
| 34 | |
| 35 | static inline void ieee80211_rx_stats(struct net_device *dev, u32 len) |
| 36 | { |
| 37 | struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); |
| 38 | |
| 39 | u64_stats_update_begin(&tstats->syncp); |
| 40 | tstats->rx_packets++; |
| 41 | tstats->rx_bytes += len; |
| 42 | u64_stats_update_end(&tstats->syncp); |
| 43 | } |
| 44 | |
| 45 | static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, |
| 46 | enum nl80211_iftype type) |
| 47 | { |
| 48 | __le16 fc = hdr->frame_control; |
| 49 | |
| 50 | if (ieee80211_is_data(fc)) { |
| 51 | if (len < 24) /* drop incorrect hdr len (data) */ |
| 52 | return NULL; |
| 53 | |
| 54 | if (ieee80211_has_a4(fc)) |
| 55 | return NULL; |
| 56 | if (ieee80211_has_tods(fc)) |
| 57 | return hdr->addr1; |
| 58 | if (ieee80211_has_fromds(fc)) |
| 59 | return hdr->addr2; |
| 60 | |
| 61 | return hdr->addr3; |
| 62 | } |
| 63 | |
| 64 | if (ieee80211_is_mgmt(fc)) { |
| 65 | if (len < 24) /* drop incorrect hdr len (mgmt) */ |
| 66 | return NULL; |
| 67 | return hdr->addr3; |
| 68 | } |
| 69 | |
| 70 | if (ieee80211_is_ctl(fc)) { |
| 71 | if (ieee80211_is_pspoll(fc)) |
| 72 | return hdr->addr1; |
| 73 | |
| 74 | if (ieee80211_is_back_req(fc)) { |
| 75 | switch (type) { |
| 76 | case NL80211_IFTYPE_STATION: |
| 77 | return hdr->addr2; |
| 78 | case NL80211_IFTYPE_AP: |
| 79 | case NL80211_IFTYPE_AP_VLAN: |
| 80 | return hdr->addr1; |
| 81 | default: |
| 82 | break; /* fall through to the return */ |
| 83 | } |
| 84 | } |
| 85 | } |
| 86 | |
| 87 | return NULL; |
| 88 | } |
| 89 | |
| 90 | /* |
| 91 | * monitor mode reception |
| 92 | * |
| 93 | * This function cleans up the SKB, i.e. it removes all the stuff |
| 94 | * only useful for monitoring. |
| 95 | */ |
| 96 | static struct sk_buff *remove_monitor_info(struct ieee80211_local *local, |
| 97 | struct sk_buff *skb, |
| 98 | unsigned int rtap_vendor_space) |
| 99 | { |
| 100 | if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { |
| 101 | if (likely(skb->len > FCS_LEN)) |
| 102 | __pskb_trim(skb, skb->len - FCS_LEN); |
| 103 | else { |
| 104 | /* driver bug */ |
| 105 | WARN_ON(1); |
| 106 | dev_kfree_skb(skb); |
| 107 | return NULL; |
| 108 | } |
| 109 | } |
| 110 | |
| 111 | __pskb_pull(skb, rtap_vendor_space); |
| 112 | |
| 113 | return skb; |
| 114 | } |
| 115 | |
| 116 | static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, |
| 117 | unsigned int rtap_vendor_space) |
| 118 | { |
| 119 | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); |
| 120 | struct ieee80211_hdr *hdr; |
| 121 | |
| 122 | hdr = (void *)(skb->data + rtap_vendor_space); |
| 123 | |
| 124 | if (status->flag & (RX_FLAG_FAILED_FCS_CRC | |
| 125 | RX_FLAG_FAILED_PLCP_CRC)) |
| 126 | return true; |
| 127 | |
| 128 | if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space)) |
| 129 | return true; |
| 130 | |
| 131 | if (ieee80211_is_ctl(hdr->frame_control) && |
| 132 | !ieee80211_is_pspoll(hdr->frame_control) && |
| 133 | !ieee80211_is_back_req(hdr->frame_control)) |
| 134 | return true; |
| 135 | |
| 136 | return false; |
| 137 | } |
| 138 | |
| 139 | static int |
| 140 | ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, |
| 141 | struct ieee80211_rx_status *status, |
| 142 | struct sk_buff *skb) |
| 143 | { |
| 144 | int len; |
| 145 | |
| 146 | /* always present fields */ |
| 147 | len = sizeof(struct ieee80211_radiotap_header) + 8; |
| 148 | |
| 149 | /* allocate extra bitmaps */ |
| 150 | if (status->chains) |
| 151 | len += 4 * hweight8(status->chains); |
| 152 | |
| 153 | if (ieee80211_have_rx_timestamp(status)) { |
| 154 | len = ALIGN(len, 8); |
| 155 | len += 8; |
| 156 | } |
| 157 | if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) |
| 158 | len += 1; |
| 159 | |
| 160 | /* antenna field, if we don't have per-chain info */ |
| 161 | if (!status->chains) |
| 162 | len += 1; |
| 163 | |
| 164 | /* padding for RX_FLAGS if necessary */ |
| 165 | len = ALIGN(len, 2); |
| 166 | |
| 167 | if (status->flag & RX_FLAG_HT) /* HT info */ |
| 168 | len += 3; |
| 169 | |
| 170 | if (status->flag & RX_FLAG_AMPDU_DETAILS) { |
| 171 | len = ALIGN(len, 4); |
| 172 | len += 8; |
| 173 | } |
| 174 | |
| 175 | if (status->flag & RX_FLAG_VHT) { |
| 176 | len = ALIGN(len, 2); |
| 177 | len += 12; |
| 178 | } |
| 179 | |
| 180 | if (status->chains) { |
| 181 | /* antenna and antenna signal fields */ |
| 182 | len += 2 * hweight8(status->chains); |
| 183 | } |
| 184 | |
| 185 | if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { |
| 186 | struct ieee80211_vendor_radiotap *rtap = (void *)skb->data; |
| 187 | |
| 188 | /* vendor presence bitmap */ |
| 189 | len += 4; |
| 190 | /* alignment for fixed 6-byte vendor data header */ |
| 191 | len = ALIGN(len, 2); |
| 192 | /* vendor data header */ |
| 193 | len += 6; |
| 194 | if (WARN_ON(rtap->align == 0)) |
| 195 | rtap->align = 1; |
| 196 | len = ALIGN(len, rtap->align); |
| 197 | len += rtap->len + rtap->pad; |
| 198 | } |
| 199 | |
| 200 | return len; |
| 201 | } |
| 202 | |
| 203 | /* |
| 204 | * ieee80211_add_rx_radiotap_header - add radiotap header |
| 205 | * |
| 206 | * add a radiotap header containing all the fields which the hardware provided. |
| 207 | */ |
| 208 | static void |
| 209 | ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, |
| 210 | struct sk_buff *skb, |
| 211 | struct ieee80211_rate *rate, |
| 212 | int rtap_len, bool has_fcs) |
| 213 | { |
| 214 | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); |
| 215 | struct ieee80211_radiotap_header *rthdr; |
| 216 | unsigned char *pos; |
| 217 | __le32 *it_present; |
| 218 | u32 it_present_val; |
| 219 | u16 rx_flags = 0; |
| 220 | u16 channel_flags = 0; |
| 221 | int mpdulen, chain; |
| 222 | unsigned long chains = status->chains; |
| 223 | struct ieee80211_vendor_radiotap rtap = {}; |
| 224 | |
| 225 | if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { |
| 226 | rtap = *(struct ieee80211_vendor_radiotap *)skb->data; |
| 227 | /* rtap.len and rtap.pad are undone immediately */ |
| 228 | skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); |
| 229 | } |
| 230 | |
| 231 | mpdulen = skb->len; |
| 232 | if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) |
| 233 | mpdulen += FCS_LEN; |
| 234 | |
| 235 | rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len); |
| 236 | memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); |
| 237 | it_present = &rthdr->it_present; |
| 238 | |
| 239 | /* radiotap header, set always present flags */ |
| 240 | rthdr->it_len = cpu_to_le16(rtap_len); |
| 241 | it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | |
| 242 | BIT(IEEE80211_RADIOTAP_CHANNEL) | |
| 243 | BIT(IEEE80211_RADIOTAP_RX_FLAGS); |
| 244 | |
| 245 | if (!status->chains) |
| 246 | it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); |
| 247 | |
| 248 | for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { |
| 249 | it_present_val |= |
| 250 | BIT(IEEE80211_RADIOTAP_EXT) | |
| 251 | BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); |
| 252 | put_unaligned_le32(it_present_val, it_present); |
| 253 | it_present++; |
| 254 | it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | |
| 255 | BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); |
| 256 | } |
| 257 | |
| 258 | if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { |
| 259 | it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | |
| 260 | BIT(IEEE80211_RADIOTAP_EXT); |
| 261 | put_unaligned_le32(it_present_val, it_present); |
| 262 | it_present++; |
| 263 | it_present_val = rtap.present; |
| 264 | } |
| 265 | |
| 266 | put_unaligned_le32(it_present_val, it_present); |
| 267 | |
| 268 | pos = (void *)(it_present + 1); |
| 269 | |
| 270 | /* the order of the following fields is important */ |
| 271 | |
| 272 | /* IEEE80211_RADIOTAP_TSFT */ |
| 273 | if (ieee80211_have_rx_timestamp(status)) { |
| 274 | /* padding */ |
| 275 | while ((pos - (u8 *)rthdr) & 7) |
| 276 | *pos++ = 0; |
| 277 | put_unaligned_le64( |
| 278 | ieee80211_calculate_rx_timestamp(local, status, |
| 279 | mpdulen, 0), |
| 280 | pos); |
| 281 | rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); |
| 282 | pos += 8; |
| 283 | } |
| 284 | |
| 285 | /* IEEE80211_RADIOTAP_FLAGS */ |
| 286 | if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) |
| 287 | *pos |= IEEE80211_RADIOTAP_F_FCS; |
| 288 | if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) |
| 289 | *pos |= IEEE80211_RADIOTAP_F_BADFCS; |
| 290 | if (status->flag & RX_FLAG_SHORTPRE) |
| 291 | *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; |
| 292 | pos++; |
| 293 | |
| 294 | /* IEEE80211_RADIOTAP_RATE */ |
| 295 | if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) { |
| 296 | /* |
| 297 | * Without rate information don't add it. If we have, |
| 298 | * MCS information is a separate field in radiotap, |
| 299 | * added below. The byte here is needed as padding |
| 300 | * for the channel though, so initialise it to 0. |
| 301 | */ |
| 302 | *pos = 0; |
| 303 | } else { |
| 304 | int shift = 0; |
| 305 | rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); |
| 306 | if (status->flag & RX_FLAG_10MHZ) |
| 307 | shift = 1; |
| 308 | else if (status->flag & RX_FLAG_5MHZ) |
| 309 | shift = 2; |
| 310 | *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); |
| 311 | } |
| 312 | pos++; |
| 313 | |
| 314 | /* IEEE80211_RADIOTAP_CHANNEL */ |
| 315 | put_unaligned_le16(status->freq, pos); |
| 316 | pos += 2; |
| 317 | if (status->flag & RX_FLAG_10MHZ) |
| 318 | channel_flags |= IEEE80211_CHAN_HALF; |
| 319 | else if (status->flag & RX_FLAG_5MHZ) |
| 320 | channel_flags |= IEEE80211_CHAN_QUARTER; |
| 321 | |
| 322 | if (status->band == IEEE80211_BAND_5GHZ) |
| 323 | channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; |
| 324 | else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) |
| 325 | channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; |
| 326 | else if (rate && rate->flags & IEEE80211_RATE_ERP_G) |
| 327 | channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; |
| 328 | else if (rate) |
| 329 | channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; |
| 330 | else |
| 331 | channel_flags |= IEEE80211_CHAN_2GHZ; |
| 332 | put_unaligned_le16(channel_flags, pos); |
| 333 | pos += 2; |
| 334 | |
| 335 | /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ |
| 336 | if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && |
| 337 | !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { |
| 338 | *pos = status->signal; |
| 339 | rthdr->it_present |= |
| 340 | cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); |
| 341 | pos++; |
| 342 | } |
| 343 | |
| 344 | /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ |
| 345 | |
| 346 | if (!status->chains) { |
| 347 | /* IEEE80211_RADIOTAP_ANTENNA */ |
| 348 | *pos = status->antenna; |
| 349 | pos++; |
| 350 | } |
| 351 | |
| 352 | /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ |
| 353 | |
| 354 | /* IEEE80211_RADIOTAP_RX_FLAGS */ |
| 355 | /* ensure 2 byte alignment for the 2 byte field as required */ |
| 356 | if ((pos - (u8 *)rthdr) & 1) |
| 357 | *pos++ = 0; |
| 358 | if (status->flag & RX_FLAG_FAILED_PLCP_CRC) |
| 359 | rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; |
| 360 | put_unaligned_le16(rx_flags, pos); |
| 361 | pos += 2; |
| 362 | |
| 363 | if (status->flag & RX_FLAG_HT) { |
| 364 | unsigned int stbc; |
| 365 | |
| 366 | rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); |
| 367 | *pos++ = local->hw.radiotap_mcs_details; |
| 368 | *pos = 0; |
| 369 | if (status->flag & RX_FLAG_SHORT_GI) |
| 370 | *pos |= IEEE80211_RADIOTAP_MCS_SGI; |
| 371 | if (status->flag & RX_FLAG_40MHZ) |
| 372 | *pos |= IEEE80211_RADIOTAP_MCS_BW_40; |
| 373 | if (status->flag & RX_FLAG_HT_GF) |
| 374 | *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; |
| 375 | if (status->flag & RX_FLAG_LDPC) |
| 376 | *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; |
| 377 | stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT; |
| 378 | *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; |
| 379 | pos++; |
| 380 | *pos++ = status->rate_idx; |
| 381 | } |
| 382 | |
| 383 | if (status->flag & RX_FLAG_AMPDU_DETAILS) { |
| 384 | u16 flags = 0; |
| 385 | |
| 386 | /* ensure 4 byte alignment */ |
| 387 | while ((pos - (u8 *)rthdr) & 3) |
| 388 | pos++; |
| 389 | rthdr->it_present |= |
| 390 | cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); |
| 391 | put_unaligned_le32(status->ampdu_reference, pos); |
| 392 | pos += 4; |
| 393 | if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) |
| 394 | flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; |
| 395 | if (status->flag & RX_FLAG_AMPDU_IS_LAST) |
| 396 | flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; |
| 397 | if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) |
| 398 | flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; |
| 399 | if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) |
| 400 | flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; |
| 401 | put_unaligned_le16(flags, pos); |
| 402 | pos += 2; |
| 403 | if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) |
| 404 | *pos++ = status->ampdu_delimiter_crc; |
| 405 | else |
| 406 | *pos++ = 0; |
| 407 | *pos++ = 0; |
| 408 | } |
| 409 | |
| 410 | if (status->flag & RX_FLAG_VHT) { |
| 411 | u16 known = local->hw.radiotap_vht_details; |
| 412 | |
| 413 | rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); |
| 414 | put_unaligned_le16(known, pos); |
| 415 | pos += 2; |
| 416 | /* flags */ |
| 417 | if (status->flag & RX_FLAG_SHORT_GI) |
| 418 | *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; |
| 419 | /* in VHT, STBC is binary */ |
| 420 | if (status->flag & RX_FLAG_STBC_MASK) |
| 421 | *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; |
| 422 | if (status->vht_flag & RX_VHT_FLAG_BF) |
| 423 | *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; |
| 424 | pos++; |
| 425 | /* bandwidth */ |
| 426 | if (status->vht_flag & RX_VHT_FLAG_80MHZ) |
| 427 | *pos++ = 4; |
| 428 | else if (status->vht_flag & RX_VHT_FLAG_160MHZ) |
| 429 | *pos++ = 11; |
| 430 | else if (status->flag & RX_FLAG_40MHZ) |
| 431 | *pos++ = 1; |
| 432 | else /* 20 MHz */ |
| 433 | *pos++ = 0; |
| 434 | /* MCS/NSS */ |
| 435 | *pos = (status->rate_idx << 4) | status->vht_nss; |
| 436 | pos += 4; |
| 437 | /* coding field */ |
| 438 | if (status->flag & RX_FLAG_LDPC) |
| 439 | *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; |
| 440 | pos++; |
| 441 | /* group ID */ |
| 442 | pos++; |
| 443 | /* partial_aid */ |
| 444 | pos += 2; |
| 445 | } |
| 446 | |
| 447 | for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { |
| 448 | *pos++ = status->chain_signal[chain]; |
| 449 | *pos++ = chain; |
| 450 | } |
| 451 | |
| 452 | if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { |
| 453 | /* ensure 2 byte alignment for the vendor field as required */ |
| 454 | if ((pos - (u8 *)rthdr) & 1) |
| 455 | *pos++ = 0; |
| 456 | *pos++ = rtap.oui[0]; |
| 457 | *pos++ = rtap.oui[1]; |
| 458 | *pos++ = rtap.oui[2]; |
| 459 | *pos++ = rtap.subns; |
| 460 | put_unaligned_le16(rtap.len, pos); |
| 461 | pos += 2; |
| 462 | /* align the actual payload as requested */ |
| 463 | while ((pos - (u8 *)rthdr) & (rtap.align - 1)) |
| 464 | *pos++ = 0; |
| 465 | /* data (and possible padding) already follows */ |
| 466 | } |
| 467 | } |
| 468 | |
| 469 | /* |
| 470 | * This function copies a received frame to all monitor interfaces and |
| 471 | * returns a cleaned-up SKB that no longer includes the FCS nor the |
| 472 | * radiotap header the driver might have added. |
| 473 | */ |
| 474 | static struct sk_buff * |
| 475 | ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, |
| 476 | struct ieee80211_rate *rate) |
| 477 | { |
| 478 | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); |
| 479 | struct ieee80211_sub_if_data *sdata; |
| 480 | int rt_hdrlen, needed_headroom; |
| 481 | struct sk_buff *skb, *skb2; |
| 482 | struct net_device *prev_dev = NULL; |
| 483 | int present_fcs_len = 0; |
| 484 | unsigned int rtap_vendor_space = 0; |
| 485 | |
| 486 | if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { |
| 487 | struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data; |
| 488 | |
| 489 | rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad; |
| 490 | } |
| 491 | |
| 492 | /* |
| 493 | * First, we may need to make a copy of the skb because |
| 494 | * (1) we need to modify it for radiotap (if not present), and |
| 495 | * (2) the other RX handlers will modify the skb we got. |
| 496 | * |
| 497 | * We don't need to, of course, if we aren't going to return |
| 498 | * the SKB because it has a bad FCS/PLCP checksum. |
| 499 | */ |
| 500 | |
| 501 | if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) |
| 502 | present_fcs_len = FCS_LEN; |
| 503 | |
| 504 | /* ensure hdr->frame_control and vendor radiotap data are in skb head */ |
| 505 | if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) { |
| 506 | dev_kfree_skb(origskb); |
| 507 | return NULL; |
| 508 | } |
| 509 | |
| 510 | if (!local->monitors) { |
| 511 | if (should_drop_frame(origskb, present_fcs_len, |
| 512 | rtap_vendor_space)) { |
| 513 | dev_kfree_skb(origskb); |
| 514 | return NULL; |
| 515 | } |
| 516 | |
| 517 | return remove_monitor_info(local, origskb, rtap_vendor_space); |
| 518 | } |
| 519 | |
| 520 | /* room for the radiotap header based on driver features */ |
| 521 | rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb); |
| 522 | needed_headroom = rt_hdrlen - rtap_vendor_space; |
| 523 | |
| 524 | if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) { |
| 525 | /* only need to expand headroom if necessary */ |
| 526 | skb = origskb; |
| 527 | origskb = NULL; |
| 528 | |
| 529 | /* |
| 530 | * This shouldn't trigger often because most devices have an |
| 531 | * RX header they pull before we get here, and that should |
| 532 | * be big enough for our radiotap information. We should |
| 533 | * probably export the length to drivers so that we can have |
| 534 | * them allocate enough headroom to start with. |
| 535 | */ |
| 536 | if (skb_headroom(skb) < needed_headroom && |
| 537 | pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { |
| 538 | dev_kfree_skb(skb); |
| 539 | return NULL; |
| 540 | } |
| 541 | } else { |
| 542 | /* |
| 543 | * Need to make a copy and possibly remove radiotap header |
| 544 | * and FCS from the original. |
| 545 | */ |
| 546 | skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC); |
| 547 | |
| 548 | origskb = remove_monitor_info(local, origskb, |
| 549 | rtap_vendor_space); |
| 550 | |
| 551 | if (!skb) |
| 552 | return origskb; |
| 553 | } |
| 554 | |
| 555 | /* prepend radiotap information */ |
| 556 | ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); |
| 557 | |
| 558 | skb_reset_mac_header(skb); |
| 559 | skb->ip_summed = CHECKSUM_UNNECESSARY; |
| 560 | skb->pkt_type = PACKET_OTHERHOST; |
| 561 | skb->protocol = htons(ETH_P_802_2); |
| 562 | |
| 563 | list_for_each_entry_rcu(sdata, &local->interfaces, list) { |
| 564 | if (sdata->vif.type != NL80211_IFTYPE_MONITOR) |
| 565 | continue; |
| 566 | |
| 567 | if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES) |
| 568 | continue; |
| 569 | |
| 570 | if (!ieee80211_sdata_running(sdata)) |
| 571 | continue; |
| 572 | |
| 573 | if (prev_dev) { |
| 574 | skb2 = skb_clone(skb, GFP_ATOMIC); |
| 575 | if (skb2) { |
| 576 | skb2->dev = prev_dev; |
| 577 | netif_receive_skb(skb2); |
| 578 | } |
| 579 | } |
| 580 | |
| 581 | prev_dev = sdata->dev; |
| 582 | ieee80211_rx_stats(sdata->dev, skb->len); |
| 583 | } |
| 584 | |
| 585 | if (prev_dev) { |
| 586 | skb->dev = prev_dev; |
| 587 | netif_receive_skb(skb); |
| 588 | } else |
| 589 | dev_kfree_skb(skb); |
| 590 | |
| 591 | return origskb; |
| 592 | } |
| 593 | |
| 594 | static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) |
| 595 | { |
| 596 | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; |
| 597 | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); |
| 598 | int tid, seqno_idx, security_idx; |
| 599 | |
| 600 | /* does the frame have a qos control field? */ |
| 601 | if (ieee80211_is_data_qos(hdr->frame_control)) { |
| 602 | u8 *qc = ieee80211_get_qos_ctl(hdr); |
| 603 | /* frame has qos control */ |
| 604 | tid = *qc & IEEE80211_QOS_CTL_TID_MASK; |
| 605 | if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) |
| 606 | status->rx_flags |= IEEE80211_RX_AMSDU; |
| 607 | |
| 608 | seqno_idx = tid; |
| 609 | security_idx = tid; |
| 610 | } else { |
| 611 | /* |
| 612 | * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): |
| 613 | * |
| 614 | * Sequence numbers for management frames, QoS data |
| 615 | * frames with a broadcast/multicast address in the |
| 616 | * Address 1 field, and all non-QoS data frames sent |
| 617 | * by QoS STAs are assigned using an additional single |
| 618 | * modulo-4096 counter, [...] |
| 619 | * |
| 620 | * We also use that counter for non-QoS STAs. |
| 621 | */ |
| 622 | seqno_idx = IEEE80211_NUM_TIDS; |
| 623 | security_idx = 0; |
| 624 | if (ieee80211_is_mgmt(hdr->frame_control)) |
| 625 | security_idx = IEEE80211_NUM_TIDS; |
| 626 | tid = 0; |
| 627 | } |
| 628 | |
| 629 | rx->seqno_idx = seqno_idx; |
| 630 | rx->security_idx = security_idx; |
| 631 | /* Set skb->priority to 1d tag if highest order bit of TID is not set. |
| 632 | * For now, set skb->priority to 0 for other cases. */ |
| 633 | rx->skb->priority = (tid > 7) ? 0 : tid; |
| 634 | } |
| 635 | |
| 636 | /** |
| 637 | * DOC: Packet alignment |
| 638 | * |
| 639 | * Drivers always need to pass packets that are aligned to two-byte boundaries |
| 640 | * to the stack. |
| 641 | * |
| 642 | * Additionally, should, if possible, align the payload data in a way that |
| 643 | * guarantees that the contained IP header is aligned to a four-byte |
| 644 | * boundary. In the case of regular frames, this simply means aligning the |
| 645 | * payload to a four-byte boundary (because either the IP header is directly |
| 646 | * contained, or IV/RFC1042 headers that have a length divisible by four are |
| 647 | * in front of it). If the payload data is not properly aligned and the |
| 648 | * architecture doesn't support efficient unaligned operations, mac80211 |
| 649 | * will align the data. |
| 650 | * |
| 651 | * With A-MSDU frames, however, the payload data address must yield two modulo |
| 652 | * four because there are 14-byte 802.3 headers within the A-MSDU frames that |
| 653 | * push the IP header further back to a multiple of four again. Thankfully, the |
| 654 | * specs were sane enough this time around to require padding each A-MSDU |
| 655 | * subframe to a length that is a multiple of four. |
| 656 | * |
| 657 | * Padding like Atheros hardware adds which is between the 802.11 header and |
| 658 | * the payload is not supported, the driver is required to move the 802.11 |
| 659 | * header to be directly in front of the payload in that case. |
| 660 | */ |
| 661 | static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) |
| 662 | { |
| 663 | #ifdef CONFIG_MAC80211_VERBOSE_DEBUG |
| 664 | WARN_ONCE((unsigned long)rx->skb->data & 1, |
| 665 | "unaligned packet at 0x%p\n", rx->skb->data); |
| 666 | #endif |
| 667 | } |
| 668 | |
| 669 | |
| 670 | /* rx handlers */ |
| 671 | |
| 672 | static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) |
| 673 | { |
| 674 | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; |
| 675 | |
| 676 | if (is_multicast_ether_addr(hdr->addr1)) |
| 677 | return 0; |
| 678 | |
| 679 | return ieee80211_is_robust_mgmt_frame(skb); |
| 680 | } |
| 681 | |
| 682 | |
| 683 | static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) |
| 684 | { |
| 685 | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; |
| 686 | |
| 687 | if (!is_multicast_ether_addr(hdr->addr1)) |
| 688 | return 0; |
| 689 | |
| 690 | return ieee80211_is_robust_mgmt_frame(skb); |
| 691 | } |
| 692 | |
| 693 | |
| 694 | /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ |
| 695 | static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) |
| 696 | { |
| 697 | struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; |
| 698 | struct ieee80211_mmie *mmie; |
| 699 | struct ieee80211_mmie_16 *mmie16; |
| 700 | |
| 701 | if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) |
| 702 | return -1; |
| 703 | |
| 704 | if (!ieee80211_is_robust_mgmt_frame(skb)) |
| 705 | return -1; /* not a robust management frame */ |
| 706 | |
| 707 | mmie = (struct ieee80211_mmie *) |
| 708 | (skb->data + skb->len - sizeof(*mmie)); |
| 709 | if (mmie->element_id == WLAN_EID_MMIE && |
| 710 | mmie->length == sizeof(*mmie) - 2) |
| 711 | return le16_to_cpu(mmie->key_id); |
| 712 | |
| 713 | mmie16 = (struct ieee80211_mmie_16 *) |
| 714 | (skb->data + skb->len - sizeof(*mmie16)); |
| 715 | if (skb->len >= 24 + sizeof(*mmie16) && |
| 716 | mmie16->element_id == WLAN_EID_MMIE && |
| 717 | mmie16->length == sizeof(*mmie16) - 2) |
| 718 | return le16_to_cpu(mmie16->key_id); |
| 719 | |
| 720 | return -1; |
| 721 | } |
| 722 | |
| 723 | static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs, |
| 724 | struct sk_buff *skb) |
| 725 | { |
| 726 | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; |
| 727 | __le16 fc; |
| 728 | int hdrlen; |
| 729 | u8 keyid; |
| 730 | |
| 731 | fc = hdr->frame_control; |
| 732 | hdrlen = ieee80211_hdrlen(fc); |
| 733 | |
| 734 | if (skb->len < hdrlen + cs->hdr_len) |
| 735 | return -EINVAL; |
| 736 | |
| 737 | skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1); |
| 738 | keyid &= cs->key_idx_mask; |
| 739 | keyid >>= cs->key_idx_shift; |
| 740 | |
| 741 | return keyid; |
| 742 | } |
| 743 | |
| 744 | static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) |
| 745 | { |
| 746 | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; |
| 747 | char *dev_addr = rx->sdata->vif.addr; |
| 748 | |
| 749 | if (ieee80211_is_data(hdr->frame_control)) { |
| 750 | if (is_multicast_ether_addr(hdr->addr1)) { |
| 751 | if (ieee80211_has_tods(hdr->frame_control) || |
| 752 | !ieee80211_has_fromds(hdr->frame_control)) |
| 753 | return RX_DROP_MONITOR; |
| 754 | if (ether_addr_equal(hdr->addr3, dev_addr)) |
| 755 | return RX_DROP_MONITOR; |
| 756 | } else { |
| 757 | if (!ieee80211_has_a4(hdr->frame_control)) |
| 758 | return RX_DROP_MONITOR; |
| 759 | if (ether_addr_equal(hdr->addr4, dev_addr)) |
| 760 | return RX_DROP_MONITOR; |
| 761 | } |
| 762 | } |
| 763 | |
| 764 | /* If there is not an established peer link and this is not a peer link |
| 765 | * establisment frame, beacon or probe, drop the frame. |
| 766 | */ |
| 767 | |
| 768 | if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { |
| 769 | struct ieee80211_mgmt *mgmt; |
| 770 | |
| 771 | if (!ieee80211_is_mgmt(hdr->frame_control)) |
| 772 | return RX_DROP_MONITOR; |
| 773 | |
| 774 | if (ieee80211_is_action(hdr->frame_control)) { |
| 775 | u8 category; |
| 776 | |
| 777 | /* make sure category field is present */ |
| 778 | if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) |
| 779 | return RX_DROP_MONITOR; |
| 780 | |
| 781 | mgmt = (struct ieee80211_mgmt *)hdr; |
| 782 | category = mgmt->u.action.category; |
| 783 | if (category != WLAN_CATEGORY_MESH_ACTION && |
| 784 | category != WLAN_CATEGORY_SELF_PROTECTED) |
| 785 | return RX_DROP_MONITOR; |
| 786 | return RX_CONTINUE; |
| 787 | } |
| 788 | |
| 789 | if (ieee80211_is_probe_req(hdr->frame_control) || |
| 790 | ieee80211_is_probe_resp(hdr->frame_control) || |
| 791 | ieee80211_is_beacon(hdr->frame_control) || |
| 792 | ieee80211_is_auth(hdr->frame_control)) |
| 793 | return RX_CONTINUE; |
| 794 | |
| 795 | return RX_DROP_MONITOR; |
| 796 | } |
| 797 | |
| 798 | return RX_CONTINUE; |
| 799 | } |
| 800 | |
| 801 | static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, |
| 802 | struct tid_ampdu_rx *tid_agg_rx, |
| 803 | int index, |
| 804 | struct sk_buff_head *frames) |
| 805 | { |
| 806 | struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; |
| 807 | struct sk_buff *skb; |
| 808 | struct ieee80211_rx_status *status; |
| 809 | |
| 810 | lockdep_assert_held(&tid_agg_rx->reorder_lock); |
| 811 | |
| 812 | if (skb_queue_empty(skb_list)) |
| 813 | goto no_frame; |
| 814 | |
| 815 | if (!ieee80211_rx_reorder_ready(skb_list)) { |
| 816 | __skb_queue_purge(skb_list); |
| 817 | goto no_frame; |
| 818 | } |
| 819 | |
| 820 | /* release frames from the reorder ring buffer */ |
| 821 | tid_agg_rx->stored_mpdu_num--; |
| 822 | while ((skb = __skb_dequeue(skb_list))) { |
| 823 | status = IEEE80211_SKB_RXCB(skb); |
| 824 | status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; |
| 825 | __skb_queue_tail(frames, skb); |
| 826 | } |
| 827 | |
| 828 | no_frame: |
| 829 | tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); |
| 830 | } |
| 831 | |
| 832 | static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, |
| 833 | struct tid_ampdu_rx *tid_agg_rx, |
| 834 | u16 head_seq_num, |
| 835 | struct sk_buff_head *frames) |
| 836 | { |
| 837 | int index; |
| 838 | |
| 839 | lockdep_assert_held(&tid_agg_rx->reorder_lock); |
| 840 | |
| 841 | while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { |
| 842 | index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; |
| 843 | ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, |
| 844 | frames); |
| 845 | } |
| 846 | } |
| 847 | |
| 848 | /* |
| 849 | * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If |
| 850 | * the skb was added to the buffer longer than this time ago, the earlier |
| 851 | * frames that have not yet been received are assumed to be lost and the skb |
| 852 | * can be released for processing. This may also release other skb's from the |
| 853 | * reorder buffer if there are no additional gaps between the frames. |
| 854 | * |
| 855 | * Callers must hold tid_agg_rx->reorder_lock. |
| 856 | */ |
| 857 | #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) |
| 858 | |
| 859 | static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, |
| 860 | struct tid_ampdu_rx *tid_agg_rx, |
| 861 | struct sk_buff_head *frames) |
| 862 | { |
| 863 | int index, i, j; |
| 864 | |
| 865 | lockdep_assert_held(&tid_agg_rx->reorder_lock); |
| 866 | |
| 867 | /* release the buffer until next missing frame */ |
| 868 | index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; |
| 869 | if (!ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index]) && |
| 870 | tid_agg_rx->stored_mpdu_num) { |
| 871 | /* |
| 872 | * No buffers ready to be released, but check whether any |
| 873 | * frames in the reorder buffer have timed out. |
| 874 | */ |
| 875 | int skipped = 1; |
| 876 | for (j = (index + 1) % tid_agg_rx->buf_size; j != index; |
| 877 | j = (j + 1) % tid_agg_rx->buf_size) { |
| 878 | if (!ieee80211_rx_reorder_ready( |
| 879 | &tid_agg_rx->reorder_buf[j])) { |
| 880 | skipped++; |
| 881 | continue; |
| 882 | } |
| 883 | if (skipped && |
| 884 | !time_after(jiffies, tid_agg_rx->reorder_time[j] + |
| 885 | HT_RX_REORDER_BUF_TIMEOUT)) |
| 886 | goto set_release_timer; |
| 887 | |
| 888 | /* don't leave incomplete A-MSDUs around */ |
| 889 | for (i = (index + 1) % tid_agg_rx->buf_size; i != j; |
| 890 | i = (i + 1) % tid_agg_rx->buf_size) |
| 891 | __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); |
| 892 | |
| 893 | ht_dbg_ratelimited(sdata, |
| 894 | "release an RX reorder frame due to timeout on earlier frames\n"); |
| 895 | ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, |
| 896 | frames); |
| 897 | |
| 898 | /* |
| 899 | * Increment the head seq# also for the skipped slots. |
| 900 | */ |
| 901 | tid_agg_rx->head_seq_num = |
| 902 | (tid_agg_rx->head_seq_num + |
| 903 | skipped) & IEEE80211_SN_MASK; |
| 904 | skipped = 0; |
| 905 | } |
| 906 | } else while (ieee80211_rx_reorder_ready( |
| 907 | &tid_agg_rx->reorder_buf[index])) { |
| 908 | ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, |
| 909 | frames); |
| 910 | index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; |
| 911 | } |
| 912 | |
| 913 | if (tid_agg_rx->stored_mpdu_num) { |
| 914 | j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; |
| 915 | |
| 916 | for (; j != (index - 1) % tid_agg_rx->buf_size; |
| 917 | j = (j + 1) % tid_agg_rx->buf_size) { |
| 918 | if (ieee80211_rx_reorder_ready( |
| 919 | &tid_agg_rx->reorder_buf[j])) |
| 920 | break; |
| 921 | } |
| 922 | |
| 923 | set_release_timer: |
| 924 | |
| 925 | if (!tid_agg_rx->removed) |
| 926 | mod_timer(&tid_agg_rx->reorder_timer, |
| 927 | tid_agg_rx->reorder_time[j] + 1 + |
| 928 | HT_RX_REORDER_BUF_TIMEOUT); |
| 929 | } else { |
| 930 | del_timer(&tid_agg_rx->reorder_timer); |
| 931 | } |
| 932 | } |
| 933 | |
| 934 | /* |
| 935 | * As this function belongs to the RX path it must be under |
| 936 | * rcu_read_lock protection. It returns false if the frame |
| 937 | * can be processed immediately, true if it was consumed. |
| 938 | */ |
| 939 | static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, |
| 940 | struct tid_ampdu_rx *tid_agg_rx, |
| 941 | struct sk_buff *skb, |
| 942 | struct sk_buff_head *frames) |
| 943 | { |
| 944 | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; |
| 945 | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); |
| 946 | u16 sc = le16_to_cpu(hdr->seq_ctrl); |
| 947 | u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; |
| 948 | u16 head_seq_num, buf_size; |
| 949 | int index; |
| 950 | bool ret = true; |
| 951 | |
| 952 | spin_lock(&tid_agg_rx->reorder_lock); |
| 953 | |
| 954 | /* |
| 955 | * Offloaded BA sessions have no known starting sequence number so pick |
| 956 | * one from first Rxed frame for this tid after BA was started. |
| 957 | */ |
| 958 | if (unlikely(tid_agg_rx->auto_seq)) { |
| 959 | tid_agg_rx->auto_seq = false; |
| 960 | tid_agg_rx->ssn = mpdu_seq_num; |
| 961 | tid_agg_rx->head_seq_num = mpdu_seq_num; |
| 962 | } |
| 963 | |
| 964 | buf_size = tid_agg_rx->buf_size; |
| 965 | head_seq_num = tid_agg_rx->head_seq_num; |
| 966 | |
| 967 | /* frame with out of date sequence number */ |
| 968 | if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { |
| 969 | dev_kfree_skb(skb); |
| 970 | goto out; |
| 971 | } |
| 972 | |
| 973 | /* |
| 974 | * If frame the sequence number exceeds our buffering window |
| 975 | * size release some previous frames to make room for this one. |
| 976 | */ |
| 977 | if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { |
| 978 | head_seq_num = ieee80211_sn_inc( |
| 979 | ieee80211_sn_sub(mpdu_seq_num, buf_size)); |
| 980 | /* release stored frames up to new head to stack */ |
| 981 | ieee80211_release_reorder_frames(sdata, tid_agg_rx, |
| 982 | head_seq_num, frames); |
| 983 | } |
| 984 | |
| 985 | /* Now the new frame is always in the range of the reordering buffer */ |
| 986 | |
| 987 | index = mpdu_seq_num % tid_agg_rx->buf_size; |
| 988 | |
| 989 | /* check if we already stored this frame */ |
| 990 | if (ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index])) { |
| 991 | dev_kfree_skb(skb); |
| 992 | goto out; |
| 993 | } |
| 994 | |
| 995 | /* |
| 996 | * If the current MPDU is in the right order and nothing else |
| 997 | * is stored we can process it directly, no need to buffer it. |
| 998 | * If it is first but there's something stored, we may be able |
| 999 | * to release frames after this one. |
| 1000 | */ |
| 1001 | if (mpdu_seq_num == tid_agg_rx->head_seq_num && |
| 1002 | tid_agg_rx->stored_mpdu_num == 0) { |
| 1003 | if (!(status->flag & RX_FLAG_AMSDU_MORE)) |
| 1004 | tid_agg_rx->head_seq_num = |
| 1005 | ieee80211_sn_inc(tid_agg_rx->head_seq_num); |
| 1006 | ret = false; |
| 1007 | goto out; |
| 1008 | } |
| 1009 | |
| 1010 | /* put the frame in the reordering buffer */ |
| 1011 | __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); |
| 1012 | if (!(status->flag & RX_FLAG_AMSDU_MORE)) { |
| 1013 | tid_agg_rx->reorder_time[index] = jiffies; |
| 1014 | tid_agg_rx->stored_mpdu_num++; |
| 1015 | ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); |
| 1016 | } |
| 1017 | |
| 1018 | out: |
| 1019 | spin_unlock(&tid_agg_rx->reorder_lock); |
| 1020 | return ret; |
| 1021 | } |
| 1022 | |
| 1023 | /* |
| 1024 | * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns |
| 1025 | * true if the MPDU was buffered, false if it should be processed. |
| 1026 | */ |
| 1027 | static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, |
| 1028 | struct sk_buff_head *frames) |
| 1029 | { |
| 1030 | struct sk_buff *skb = rx->skb; |
| 1031 | struct ieee80211_local *local = rx->local; |
| 1032 | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; |
| 1033 | struct sta_info *sta = rx->sta; |
| 1034 | struct tid_ampdu_rx *tid_agg_rx; |
| 1035 | u16 sc; |
| 1036 | u8 tid, ack_policy; |
| 1037 | |
| 1038 | if (!ieee80211_is_data_qos(hdr->frame_control) || |
| 1039 | is_multicast_ether_addr(hdr->addr1)) |
| 1040 | goto dont_reorder; |
| 1041 | |
| 1042 | /* |
| 1043 | * filter the QoS data rx stream according to |
| 1044 | * STA/TID and check if this STA/TID is on aggregation |
| 1045 | */ |
| 1046 | |
| 1047 | if (!sta) |
| 1048 | goto dont_reorder; |
| 1049 | |
| 1050 | ack_policy = *ieee80211_get_qos_ctl(hdr) & |
| 1051 | IEEE80211_QOS_CTL_ACK_POLICY_MASK; |
| 1052 | tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; |
| 1053 | |
| 1054 | tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); |
| 1055 | if (!tid_agg_rx) |
| 1056 | goto dont_reorder; |
| 1057 | |
| 1058 | /* qos null data frames are excluded */ |
| 1059 | if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) |
| 1060 | goto dont_reorder; |
| 1061 | |
| 1062 | /* not part of a BA session */ |
| 1063 | if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && |
| 1064 | ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) |
| 1065 | goto dont_reorder; |
| 1066 | |
| 1067 | /* new, potentially un-ordered, ampdu frame - process it */ |
| 1068 | |
| 1069 | /* reset session timer */ |
| 1070 | if (tid_agg_rx->timeout) |
| 1071 | tid_agg_rx->last_rx = jiffies; |
| 1072 | |
| 1073 | /* if this mpdu is fragmented - terminate rx aggregation session */ |
| 1074 | sc = le16_to_cpu(hdr->seq_ctrl); |
| 1075 | if (sc & IEEE80211_SCTL_FRAG) { |
| 1076 | skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; |
| 1077 | skb_queue_tail(&rx->sdata->skb_queue, skb); |
| 1078 | ieee80211_queue_work(&local->hw, &rx->sdata->work); |
| 1079 | return; |
| 1080 | } |
| 1081 | |
| 1082 | /* |
| 1083 | * No locking needed -- we will only ever process one |
| 1084 | * RX packet at a time, and thus own tid_agg_rx. All |
| 1085 | * other code manipulating it needs to (and does) make |
| 1086 | * sure that we cannot get to it any more before doing |
| 1087 | * anything with it. |
| 1088 | */ |
| 1089 | if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, |
| 1090 | frames)) |
| 1091 | return; |
| 1092 | |
| 1093 | dont_reorder: |
| 1094 | __skb_queue_tail(frames, skb); |
| 1095 | } |
| 1096 | |
| 1097 | static ieee80211_rx_result debug_noinline |
| 1098 | ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) |
| 1099 | { |
| 1100 | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; |
| 1101 | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); |
| 1102 | |
| 1103 | /* |
| 1104 | * Drop duplicate 802.11 retransmissions |
| 1105 | * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") |
| 1106 | */ |
| 1107 | |
| 1108 | if (rx->skb->len < 24) |
| 1109 | return RX_CONTINUE; |
| 1110 | |
| 1111 | if (ieee80211_is_ctl(hdr->frame_control) || |
| 1112 | ieee80211_is_qos_nullfunc(hdr->frame_control) || |
| 1113 | is_multicast_ether_addr(hdr->addr1)) |
| 1114 | return RX_CONTINUE; |
| 1115 | |
| 1116 | if (!rx->sta) |
| 1117 | return RX_CONTINUE; |
| 1118 | |
| 1119 | if (unlikely(ieee80211_has_retry(hdr->frame_control) && |
| 1120 | rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { |
| 1121 | I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); |
| 1122 | rx->sta->rx_stats.num_duplicates++; |
| 1123 | return RX_DROP_UNUSABLE; |
| 1124 | } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { |
| 1125 | rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; |
| 1126 | } |
| 1127 | |
| 1128 | return RX_CONTINUE; |
| 1129 | } |
| 1130 | |
| 1131 | static ieee80211_rx_result debug_noinline |
| 1132 | ieee80211_rx_h_check(struct ieee80211_rx_data *rx) |
| 1133 | { |
| 1134 | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; |
| 1135 | |
| 1136 | /* Drop disallowed frame classes based on STA auth/assoc state; |
| 1137 | * IEEE 802.11, Chap 5.5. |
| 1138 | * |
| 1139 | * mac80211 filters only based on association state, i.e. it drops |
| 1140 | * Class 3 frames from not associated stations. hostapd sends |
| 1141 | * deauth/disassoc frames when needed. In addition, hostapd is |
| 1142 | * responsible for filtering on both auth and assoc states. |
| 1143 | */ |
| 1144 | |
| 1145 | if (ieee80211_vif_is_mesh(&rx->sdata->vif)) |
| 1146 | return ieee80211_rx_mesh_check(rx); |
| 1147 | |
| 1148 | if (unlikely((ieee80211_is_data(hdr->frame_control) || |
| 1149 | ieee80211_is_pspoll(hdr->frame_control)) && |
| 1150 | rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && |
| 1151 | rx->sdata->vif.type != NL80211_IFTYPE_WDS && |
| 1152 | rx->sdata->vif.type != NL80211_IFTYPE_OCB && |
| 1153 | (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { |
| 1154 | /* |
| 1155 | * accept port control frames from the AP even when it's not |
| 1156 | * yet marked ASSOC to prevent a race where we don't set the |
| 1157 | * assoc bit quickly enough before it sends the first frame |
| 1158 | */ |
| 1159 | if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && |
| 1160 | ieee80211_is_data_present(hdr->frame_control)) { |
| 1161 | unsigned int hdrlen; |
| 1162 | __be16 ethertype; |
| 1163 | |
| 1164 | hdrlen = ieee80211_hdrlen(hdr->frame_control); |
| 1165 | |
| 1166 | if (rx->skb->len < hdrlen + 8) |
| 1167 | return RX_DROP_MONITOR; |
| 1168 | |
| 1169 | skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); |
| 1170 | if (ethertype == rx->sdata->control_port_protocol) |
| 1171 | return RX_CONTINUE; |
| 1172 | } |
| 1173 | |
| 1174 | if (rx->sdata->vif.type == NL80211_IFTYPE_AP && |
| 1175 | cfg80211_rx_spurious_frame(rx->sdata->dev, |
| 1176 | hdr->addr2, |
| 1177 | GFP_ATOMIC)) |
| 1178 | return RX_DROP_UNUSABLE; |
| 1179 | |
| 1180 | return RX_DROP_MONITOR; |
| 1181 | } |
| 1182 | |
| 1183 | return RX_CONTINUE; |
| 1184 | } |
| 1185 | |
| 1186 | |
| 1187 | static ieee80211_rx_result debug_noinline |
| 1188 | ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) |
| 1189 | { |
| 1190 | struct ieee80211_local *local; |
| 1191 | struct ieee80211_hdr *hdr; |
| 1192 | struct sk_buff *skb; |
| 1193 | |
| 1194 | local = rx->local; |
| 1195 | skb = rx->skb; |
| 1196 | hdr = (struct ieee80211_hdr *) skb->data; |
| 1197 | |
| 1198 | if (!local->pspolling) |
| 1199 | return RX_CONTINUE; |
| 1200 | |
| 1201 | if (!ieee80211_has_fromds(hdr->frame_control)) |
| 1202 | /* this is not from AP */ |
| 1203 | return RX_CONTINUE; |
| 1204 | |
| 1205 | if (!ieee80211_is_data(hdr->frame_control)) |
| 1206 | return RX_CONTINUE; |
| 1207 | |
| 1208 | if (!ieee80211_has_moredata(hdr->frame_control)) { |
| 1209 | /* AP has no more frames buffered for us */ |
| 1210 | local->pspolling = false; |
| 1211 | return RX_CONTINUE; |
| 1212 | } |
| 1213 | |
| 1214 | /* more data bit is set, let's request a new frame from the AP */ |
| 1215 | ieee80211_send_pspoll(local, rx->sdata); |
| 1216 | |
| 1217 | return RX_CONTINUE; |
| 1218 | } |
| 1219 | |
| 1220 | static void sta_ps_start(struct sta_info *sta) |
| 1221 | { |
| 1222 | struct ieee80211_sub_if_data *sdata = sta->sdata; |
| 1223 | struct ieee80211_local *local = sdata->local; |
| 1224 | struct ps_data *ps; |
| 1225 | int tid; |
| 1226 | |
| 1227 | if (sta->sdata->vif.type == NL80211_IFTYPE_AP || |
| 1228 | sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) |
| 1229 | ps = &sdata->bss->ps; |
| 1230 | else |
| 1231 | return; |
| 1232 | |
| 1233 | atomic_inc(&ps->num_sta_ps); |
| 1234 | set_sta_flag(sta, WLAN_STA_PS_STA); |
| 1235 | if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) |
| 1236 | drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); |
| 1237 | ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", |
| 1238 | sta->sta.addr, sta->sta.aid); |
| 1239 | |
| 1240 | ieee80211_clear_fast_xmit(sta); |
| 1241 | |
| 1242 | if (!sta->sta.txq[0]) |
| 1243 | return; |
| 1244 | |
| 1245 | for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { |
| 1246 | struct txq_info *txqi = to_txq_info(sta->sta.txq[tid]); |
| 1247 | |
| 1248 | if (!skb_queue_len(&txqi->queue)) |
| 1249 | set_bit(tid, &sta->txq_buffered_tids); |
| 1250 | else |
| 1251 | clear_bit(tid, &sta->txq_buffered_tids); |
| 1252 | } |
| 1253 | } |
| 1254 | |
| 1255 | static void sta_ps_end(struct sta_info *sta) |
| 1256 | { |
| 1257 | ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", |
| 1258 | sta->sta.addr, sta->sta.aid); |
| 1259 | |
| 1260 | if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { |
| 1261 | /* |
| 1262 | * Clear the flag only if the other one is still set |
| 1263 | * so that the TX path won't start TX'ing new frames |
| 1264 | * directly ... In the case that the driver flag isn't |
| 1265 | * set ieee80211_sta_ps_deliver_wakeup() will clear it. |
| 1266 | */ |
| 1267 | clear_sta_flag(sta, WLAN_STA_PS_STA); |
| 1268 | ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", |
| 1269 | sta->sta.addr, sta->sta.aid); |
| 1270 | return; |
| 1271 | } |
| 1272 | |
| 1273 | set_sta_flag(sta, WLAN_STA_PS_DELIVER); |
| 1274 | clear_sta_flag(sta, WLAN_STA_PS_STA); |
| 1275 | ieee80211_sta_ps_deliver_wakeup(sta); |
| 1276 | } |
| 1277 | |
| 1278 | int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) |
| 1279 | { |
| 1280 | struct sta_info *sta = container_of(pubsta, struct sta_info, sta); |
| 1281 | bool in_ps; |
| 1282 | |
| 1283 | WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); |
| 1284 | |
| 1285 | /* Don't let the same PS state be set twice */ |
| 1286 | in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); |
| 1287 | if ((start && in_ps) || (!start && !in_ps)) |
| 1288 | return -EINVAL; |
| 1289 | |
| 1290 | if (start) |
| 1291 | sta_ps_start(sta); |
| 1292 | else |
| 1293 | sta_ps_end(sta); |
| 1294 | |
| 1295 | return 0; |
| 1296 | } |
| 1297 | EXPORT_SYMBOL(ieee80211_sta_ps_transition); |
| 1298 | |
| 1299 | static ieee80211_rx_result debug_noinline |
| 1300 | ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) |
| 1301 | { |
| 1302 | struct ieee80211_sub_if_data *sdata = rx->sdata; |
| 1303 | struct ieee80211_hdr *hdr = (void *)rx->skb->data; |
| 1304 | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); |
| 1305 | int tid, ac; |
| 1306 | |
| 1307 | if (!rx->sta) |
| 1308 | return RX_CONTINUE; |
| 1309 | |
| 1310 | if (sdata->vif.type != NL80211_IFTYPE_AP && |
| 1311 | sdata->vif.type != NL80211_IFTYPE_AP_VLAN) |
| 1312 | return RX_CONTINUE; |
| 1313 | |
| 1314 | /* |
| 1315 | * The device handles station powersave, so don't do anything about |
| 1316 | * uAPSD and PS-Poll frames (the latter shouldn't even come up from |
| 1317 | * it to mac80211 since they're handled.) |
| 1318 | */ |
| 1319 | if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) |
| 1320 | return RX_CONTINUE; |
| 1321 | |
| 1322 | /* |
| 1323 | * Don't do anything if the station isn't already asleep. In |
| 1324 | * the uAPSD case, the station will probably be marked asleep, |
| 1325 | * in the PS-Poll case the station must be confused ... |
| 1326 | */ |
| 1327 | if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) |
| 1328 | return RX_CONTINUE; |
| 1329 | |
| 1330 | if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { |
| 1331 | if (!test_sta_flag(rx->sta, WLAN_STA_SP)) { |
| 1332 | if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) |
| 1333 | ieee80211_sta_ps_deliver_poll_response(rx->sta); |
| 1334 | else |
| 1335 | set_sta_flag(rx->sta, WLAN_STA_PSPOLL); |
| 1336 | } |
| 1337 | |
| 1338 | /* Free PS Poll skb here instead of returning RX_DROP that would |
| 1339 | * count as an dropped frame. */ |
| 1340 | dev_kfree_skb(rx->skb); |
| 1341 | |
| 1342 | return RX_QUEUED; |
| 1343 | } else if (!ieee80211_has_morefrags(hdr->frame_control) && |
| 1344 | !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && |
| 1345 | ieee80211_has_pm(hdr->frame_control) && |
| 1346 | (ieee80211_is_data_qos(hdr->frame_control) || |
| 1347 | ieee80211_is_qos_nullfunc(hdr->frame_control))) { |
| 1348 | tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; |
| 1349 | ac = ieee802_1d_to_ac[tid & 7]; |
| 1350 | |
| 1351 | /* |
| 1352 | * If this AC is not trigger-enabled do nothing. |
| 1353 | * |
| 1354 | * NB: This could/should check a separate bitmap of trigger- |
| 1355 | * enabled queues, but for now we only implement uAPSD w/o |
| 1356 | * TSPEC changes to the ACs, so they're always the same. |
| 1357 | */ |
| 1358 | if (!(rx->sta->sta.uapsd_queues & BIT(ac))) |
| 1359 | return RX_CONTINUE; |
| 1360 | |
| 1361 | /* if we are in a service period, do nothing */ |
| 1362 | if (test_sta_flag(rx->sta, WLAN_STA_SP)) |
| 1363 | return RX_CONTINUE; |
| 1364 | |
| 1365 | if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) |
| 1366 | ieee80211_sta_ps_deliver_uapsd(rx->sta); |
| 1367 | else |
| 1368 | set_sta_flag(rx->sta, WLAN_STA_UAPSD); |
| 1369 | } |
| 1370 | |
| 1371 | return RX_CONTINUE; |
| 1372 | } |
| 1373 | |
| 1374 | static ieee80211_rx_result debug_noinline |
| 1375 | ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) |
| 1376 | { |
| 1377 | struct sta_info *sta = rx->sta; |
| 1378 | struct sk_buff *skb = rx->skb; |
| 1379 | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); |
| 1380 | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; |
| 1381 | int i; |
| 1382 | |
| 1383 | if (!sta) |
| 1384 | return RX_CONTINUE; |
| 1385 | |
| 1386 | /* |
| 1387 | * Update last_rx only for IBSS packets which are for the current |
| 1388 | * BSSID and for station already AUTHORIZED to avoid keeping the |
| 1389 | * current IBSS network alive in cases where other STAs start |
| 1390 | * using different BSSID. This will also give the station another |
| 1391 | * chance to restart the authentication/authorization in case |
| 1392 | * something went wrong the first time. |
| 1393 | */ |
| 1394 | if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { |
| 1395 | u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, |
| 1396 | NL80211_IFTYPE_ADHOC); |
| 1397 | if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && |
| 1398 | test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { |
| 1399 | sta->rx_stats.last_rx = jiffies; |
| 1400 | if (ieee80211_is_data(hdr->frame_control) && |
| 1401 | !is_multicast_ether_addr(hdr->addr1)) { |
| 1402 | sta->rx_stats.last_rate_idx = |
| 1403 | status->rate_idx; |
| 1404 | sta->rx_stats.last_rate_flag = |
| 1405 | status->flag; |
| 1406 | sta->rx_stats.last_rate_vht_flag = |
| 1407 | status->vht_flag; |
| 1408 | sta->rx_stats.last_rate_vht_nss = |
| 1409 | status->vht_nss; |
| 1410 | } |
| 1411 | } |
| 1412 | } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { |
| 1413 | sta->rx_stats.last_rx = jiffies; |
| 1414 | } else if (!is_multicast_ether_addr(hdr->addr1)) { |
| 1415 | /* |
| 1416 | * Mesh beacons will update last_rx when if they are found to |
| 1417 | * match the current local configuration when processed. |
| 1418 | */ |
| 1419 | sta->rx_stats.last_rx = jiffies; |
| 1420 | if (ieee80211_is_data(hdr->frame_control)) { |
| 1421 | sta->rx_stats.last_rate_idx = status->rate_idx; |
| 1422 | sta->rx_stats.last_rate_flag = status->flag; |
| 1423 | sta->rx_stats.last_rate_vht_flag = status->vht_flag; |
| 1424 | sta->rx_stats.last_rate_vht_nss = status->vht_nss; |
| 1425 | } |
| 1426 | } |
| 1427 | |
| 1428 | if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) |
| 1429 | ieee80211_sta_rx_notify(rx->sdata, hdr); |
| 1430 | |
| 1431 | sta->rx_stats.fragments++; |
| 1432 | sta->rx_stats.bytes += rx->skb->len; |
| 1433 | if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { |
| 1434 | sta->rx_stats.last_signal = status->signal; |
| 1435 | ewma_signal_add(&sta->rx_stats.avg_signal, -status->signal); |
| 1436 | } |
| 1437 | |
| 1438 | if (status->chains) { |
| 1439 | sta->rx_stats.chains = status->chains; |
| 1440 | for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { |
| 1441 | int signal = status->chain_signal[i]; |
| 1442 | |
| 1443 | if (!(status->chains & BIT(i))) |
| 1444 | continue; |
| 1445 | |
| 1446 | sta->rx_stats.chain_signal_last[i] = signal; |
| 1447 | ewma_signal_add(&sta->rx_stats.chain_signal_avg[i], |
| 1448 | -signal); |
| 1449 | } |
| 1450 | } |
| 1451 | |
| 1452 | /* |
| 1453 | * Change STA power saving mode only at the end of a frame |
| 1454 | * exchange sequence. |
| 1455 | */ |
| 1456 | if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && |
| 1457 | !ieee80211_has_morefrags(hdr->frame_control) && |
| 1458 | !ieee80211_is_back_req(hdr->frame_control) && |
| 1459 | !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && |
| 1460 | (rx->sdata->vif.type == NL80211_IFTYPE_AP || |
| 1461 | rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && |
| 1462 | /* |
| 1463 | * PM bit is only checked in frames where it isn't reserved, |
| 1464 | * in AP mode it's reserved in non-bufferable management frames |
| 1465 | * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field) |
| 1466 | * BAR frames should be ignored as specified in |
| 1467 | * IEEE 802.11-2012 10.2.1.2. |
| 1468 | */ |
| 1469 | (!ieee80211_is_mgmt(hdr->frame_control) || |
| 1470 | ieee80211_is_bufferable_mmpdu(hdr->frame_control))) { |
| 1471 | if (test_sta_flag(sta, WLAN_STA_PS_STA)) { |
| 1472 | if (!ieee80211_has_pm(hdr->frame_control)) |
| 1473 | sta_ps_end(sta); |
| 1474 | } else { |
| 1475 | if (ieee80211_has_pm(hdr->frame_control)) |
| 1476 | sta_ps_start(sta); |
| 1477 | } |
| 1478 | } |
| 1479 | |
| 1480 | /* mesh power save support */ |
| 1481 | if (ieee80211_vif_is_mesh(&rx->sdata->vif)) |
| 1482 | ieee80211_mps_rx_h_sta_process(sta, hdr); |
| 1483 | |
| 1484 | /* |
| 1485 | * Drop (qos-)data::nullfunc frames silently, since they |
| 1486 | * are used only to control station power saving mode. |
| 1487 | */ |
| 1488 | if (ieee80211_is_nullfunc(hdr->frame_control) || |
| 1489 | ieee80211_is_qos_nullfunc(hdr->frame_control)) { |
| 1490 | I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); |
| 1491 | |
| 1492 | /* |
| 1493 | * If we receive a 4-addr nullfunc frame from a STA |
| 1494 | * that was not moved to a 4-addr STA vlan yet send |
| 1495 | * the event to userspace and for older hostapd drop |
| 1496 | * the frame to the monitor interface. |
| 1497 | */ |
| 1498 | if (ieee80211_has_a4(hdr->frame_control) && |
| 1499 | (rx->sdata->vif.type == NL80211_IFTYPE_AP || |
| 1500 | (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && |
| 1501 | !rx->sdata->u.vlan.sta))) { |
| 1502 | if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) |
| 1503 | cfg80211_rx_unexpected_4addr_frame( |
| 1504 | rx->sdata->dev, sta->sta.addr, |
| 1505 | GFP_ATOMIC); |
| 1506 | return RX_DROP_MONITOR; |
| 1507 | } |
| 1508 | /* |
| 1509 | * Update counter and free packet here to avoid |
| 1510 | * counting this as a dropped packed. |
| 1511 | */ |
| 1512 | sta->rx_stats.packets++; |
| 1513 | dev_kfree_skb(rx->skb); |
| 1514 | return RX_QUEUED; |
| 1515 | } |
| 1516 | |
| 1517 | return RX_CONTINUE; |
| 1518 | } /* ieee80211_rx_h_sta_process */ |
| 1519 | |
| 1520 | static ieee80211_rx_result debug_noinline |
| 1521 | ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) |
| 1522 | { |
| 1523 | struct sk_buff *skb = rx->skb; |
| 1524 | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); |
| 1525 | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; |
| 1526 | int keyidx; |
| 1527 | int hdrlen; |
| 1528 | ieee80211_rx_result result = RX_DROP_UNUSABLE; |
| 1529 | struct ieee80211_key *sta_ptk = NULL; |
| 1530 | int mmie_keyidx = -1; |
| 1531 | __le16 fc; |
| 1532 | const struct ieee80211_cipher_scheme *cs = NULL; |
| 1533 | |
| 1534 | /* |
| 1535 | * Key selection 101 |
| 1536 | * |
| 1537 | * There are four types of keys: |
| 1538 | * - GTK (group keys) |
| 1539 | * - IGTK (group keys for management frames) |
| 1540 | * - PTK (pairwise keys) |
| 1541 | * - STK (station-to-station pairwise keys) |
| 1542 | * |
| 1543 | * When selecting a key, we have to distinguish between multicast |
| 1544 | * (including broadcast) and unicast frames, the latter can only |
| 1545 | * use PTKs and STKs while the former always use GTKs and IGTKs. |
| 1546 | * Unless, of course, actual WEP keys ("pre-RSNA") are used, then |
| 1547 | * unicast frames can also use key indices like GTKs. Hence, if we |
| 1548 | * don't have a PTK/STK we check the key index for a WEP key. |
| 1549 | * |
| 1550 | * Note that in a regular BSS, multicast frames are sent by the |
| 1551 | * AP only, associated stations unicast the frame to the AP first |
| 1552 | * which then multicasts it on their behalf. |
| 1553 | * |
| 1554 | * There is also a slight problem in IBSS mode: GTKs are negotiated |
| 1555 | * with each station, that is something we don't currently handle. |
| 1556 | * The spec seems to expect that one negotiates the same key with |
| 1557 | * every station but there's no such requirement; VLANs could be |
| 1558 | * possible. |
| 1559 | */ |
| 1560 | |
| 1561 | /* start without a key */ |
| 1562 | rx->key = NULL; |
| 1563 | fc = hdr->frame_control; |
| 1564 | |
| 1565 | if (rx->sta) { |
| 1566 | int keyid = rx->sta->ptk_idx; |
| 1567 | |
| 1568 | if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) { |
| 1569 | cs = rx->sta->cipher_scheme; |
| 1570 | keyid = iwl80211_get_cs_keyid(cs, rx->skb); |
| 1571 | if (unlikely(keyid < 0)) |
| 1572 | return RX_DROP_UNUSABLE; |
| 1573 | } |
| 1574 | sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); |
| 1575 | } |
| 1576 | |
| 1577 | if (!ieee80211_has_protected(fc)) |
| 1578 | mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); |
| 1579 | |
| 1580 | if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { |
| 1581 | rx->key = sta_ptk; |
| 1582 | if ((status->flag & RX_FLAG_DECRYPTED) && |
| 1583 | (status->flag & RX_FLAG_IV_STRIPPED)) |
| 1584 | return RX_CONTINUE; |
| 1585 | /* Skip decryption if the frame is not protected. */ |
| 1586 | if (!ieee80211_has_protected(fc)) |
| 1587 | return RX_CONTINUE; |
| 1588 | } else if (mmie_keyidx >= 0) { |
| 1589 | /* Broadcast/multicast robust management frame / BIP */ |
| 1590 | if ((status->flag & RX_FLAG_DECRYPTED) && |
| 1591 | (status->flag & RX_FLAG_IV_STRIPPED)) |
| 1592 | return RX_CONTINUE; |
| 1593 | |
| 1594 | if (mmie_keyidx < NUM_DEFAULT_KEYS || |
| 1595 | mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) |
| 1596 | return RX_DROP_MONITOR; /* unexpected BIP keyidx */ |
| 1597 | if (rx->sta) |
| 1598 | rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); |
| 1599 | if (!rx->key) |
| 1600 | rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); |
| 1601 | } else if (!ieee80211_has_protected(fc)) { |
| 1602 | /* |
| 1603 | * The frame was not protected, so skip decryption. However, we |
| 1604 | * need to set rx->key if there is a key that could have been |
| 1605 | * used so that the frame may be dropped if encryption would |
| 1606 | * have been expected. |
| 1607 | */ |
| 1608 | struct ieee80211_key *key = NULL; |
| 1609 | struct ieee80211_sub_if_data *sdata = rx->sdata; |
| 1610 | int i; |
| 1611 | |
| 1612 | if (ieee80211_is_mgmt(fc) && |
| 1613 | is_multicast_ether_addr(hdr->addr1) && |
| 1614 | (key = rcu_dereference(rx->sdata->default_mgmt_key))) |
| 1615 | rx->key = key; |
| 1616 | else { |
| 1617 | if (rx->sta) { |
| 1618 | for (i = 0; i < NUM_DEFAULT_KEYS; i++) { |
| 1619 | key = rcu_dereference(rx->sta->gtk[i]); |
| 1620 | if (key) |
| 1621 | break; |
| 1622 | } |
| 1623 | } |
| 1624 | if (!key) { |
| 1625 | for (i = 0; i < NUM_DEFAULT_KEYS; i++) { |
| 1626 | key = rcu_dereference(sdata->keys[i]); |
| 1627 | if (key) |
| 1628 | break; |
| 1629 | } |
| 1630 | } |
| 1631 | if (key) |
| 1632 | rx->key = key; |
| 1633 | } |
| 1634 | return RX_CONTINUE; |
| 1635 | } else { |
| 1636 | u8 keyid; |
| 1637 | |
| 1638 | /* |
| 1639 | * The device doesn't give us the IV so we won't be |
| 1640 | * able to look up the key. That's ok though, we |
| 1641 | * don't need to decrypt the frame, we just won't |
| 1642 | * be able to keep statistics accurate. |
| 1643 | * Except for key threshold notifications, should |
| 1644 | * we somehow allow the driver to tell us which key |
| 1645 | * the hardware used if this flag is set? |
| 1646 | */ |
| 1647 | if ((status->flag & RX_FLAG_DECRYPTED) && |
| 1648 | (status->flag & RX_FLAG_IV_STRIPPED)) |
| 1649 | return RX_CONTINUE; |
| 1650 | |
| 1651 | hdrlen = ieee80211_hdrlen(fc); |
| 1652 | |
| 1653 | if (cs) { |
| 1654 | keyidx = iwl80211_get_cs_keyid(cs, rx->skb); |
| 1655 | |
| 1656 | if (unlikely(keyidx < 0)) |
| 1657 | return RX_DROP_UNUSABLE; |
| 1658 | } else { |
| 1659 | if (rx->skb->len < 8 + hdrlen) |
| 1660 | return RX_DROP_UNUSABLE; /* TODO: count this? */ |
| 1661 | /* |
| 1662 | * no need to call ieee80211_wep_get_keyidx, |
| 1663 | * it verifies a bunch of things we've done already |
| 1664 | */ |
| 1665 | skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1); |
| 1666 | keyidx = keyid >> 6; |
| 1667 | } |
| 1668 | |
| 1669 | /* check per-station GTK first, if multicast packet */ |
| 1670 | if (is_multicast_ether_addr(hdr->addr1) && rx->sta) |
| 1671 | rx->key = rcu_dereference(rx->sta->gtk[keyidx]); |
| 1672 | |
| 1673 | /* if not found, try default key */ |
| 1674 | if (!rx->key) { |
| 1675 | rx->key = rcu_dereference(rx->sdata->keys[keyidx]); |
| 1676 | |
| 1677 | /* |
| 1678 | * RSNA-protected unicast frames should always be |
| 1679 | * sent with pairwise or station-to-station keys, |
| 1680 | * but for WEP we allow using a key index as well. |
| 1681 | */ |
| 1682 | if (rx->key && |
| 1683 | rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && |
| 1684 | rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && |
| 1685 | !is_multicast_ether_addr(hdr->addr1)) |
| 1686 | rx->key = NULL; |
| 1687 | } |
| 1688 | } |
| 1689 | |
| 1690 | if (rx->key) { |
| 1691 | if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) |
| 1692 | return RX_DROP_MONITOR; |
| 1693 | |
| 1694 | /* TODO: add threshold stuff again */ |
| 1695 | } else { |
| 1696 | return RX_DROP_MONITOR; |
| 1697 | } |
| 1698 | |
| 1699 | switch (rx->key->conf.cipher) { |
| 1700 | case WLAN_CIPHER_SUITE_WEP40: |
| 1701 | case WLAN_CIPHER_SUITE_WEP104: |
| 1702 | result = ieee80211_crypto_wep_decrypt(rx); |
| 1703 | break; |
| 1704 | case WLAN_CIPHER_SUITE_TKIP: |
| 1705 | result = ieee80211_crypto_tkip_decrypt(rx); |
| 1706 | break; |
| 1707 | case WLAN_CIPHER_SUITE_CCMP: |
| 1708 | result = ieee80211_crypto_ccmp_decrypt( |
| 1709 | rx, IEEE80211_CCMP_MIC_LEN); |
| 1710 | break; |
| 1711 | case WLAN_CIPHER_SUITE_CCMP_256: |
| 1712 | result = ieee80211_crypto_ccmp_decrypt( |
| 1713 | rx, IEEE80211_CCMP_256_MIC_LEN); |
| 1714 | break; |
| 1715 | case WLAN_CIPHER_SUITE_AES_CMAC: |
| 1716 | result = ieee80211_crypto_aes_cmac_decrypt(rx); |
| 1717 | break; |
| 1718 | case WLAN_CIPHER_SUITE_BIP_CMAC_256: |
| 1719 | result = ieee80211_crypto_aes_cmac_256_decrypt(rx); |
| 1720 | break; |
| 1721 | case WLAN_CIPHER_SUITE_BIP_GMAC_128: |
| 1722 | case WLAN_CIPHER_SUITE_BIP_GMAC_256: |
| 1723 | result = ieee80211_crypto_aes_gmac_decrypt(rx); |
| 1724 | break; |
| 1725 | case WLAN_CIPHER_SUITE_GCMP: |
| 1726 | case WLAN_CIPHER_SUITE_GCMP_256: |
| 1727 | result = ieee80211_crypto_gcmp_decrypt(rx); |
| 1728 | break; |
| 1729 | default: |
| 1730 | result = ieee80211_crypto_hw_decrypt(rx); |
| 1731 | } |
| 1732 | |
| 1733 | /* the hdr variable is invalid after the decrypt handlers */ |
| 1734 | |
| 1735 | /* either the frame has been decrypted or will be dropped */ |
| 1736 | status->flag |= RX_FLAG_DECRYPTED; |
| 1737 | |
| 1738 | return result; |
| 1739 | } |
| 1740 | |
| 1741 | static inline struct ieee80211_fragment_entry * |
| 1742 | ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, |
| 1743 | unsigned int frag, unsigned int seq, int rx_queue, |
| 1744 | struct sk_buff **skb) |
| 1745 | { |
| 1746 | struct ieee80211_fragment_entry *entry; |
| 1747 | |
| 1748 | entry = &sdata->fragments[sdata->fragment_next++]; |
| 1749 | if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) |
| 1750 | sdata->fragment_next = 0; |
| 1751 | |
| 1752 | if (!skb_queue_empty(&entry->skb_list)) |
| 1753 | __skb_queue_purge(&entry->skb_list); |
| 1754 | |
| 1755 | __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ |
| 1756 | *skb = NULL; |
| 1757 | entry->first_frag_time = jiffies; |
| 1758 | entry->seq = seq; |
| 1759 | entry->rx_queue = rx_queue; |
| 1760 | entry->last_frag = frag; |
| 1761 | entry->check_sequential_pn = false; |
| 1762 | entry->extra_len = 0; |
| 1763 | |
| 1764 | return entry; |
| 1765 | } |
| 1766 | |
| 1767 | static inline struct ieee80211_fragment_entry * |
| 1768 | ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, |
| 1769 | unsigned int frag, unsigned int seq, |
| 1770 | int rx_queue, struct ieee80211_hdr *hdr) |
| 1771 | { |
| 1772 | struct ieee80211_fragment_entry *entry; |
| 1773 | int i, idx; |
| 1774 | |
| 1775 | idx = sdata->fragment_next; |
| 1776 | for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { |
| 1777 | struct ieee80211_hdr *f_hdr; |
| 1778 | |
| 1779 | idx--; |
| 1780 | if (idx < 0) |
| 1781 | idx = IEEE80211_FRAGMENT_MAX - 1; |
| 1782 | |
| 1783 | entry = &sdata->fragments[idx]; |
| 1784 | if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || |
| 1785 | entry->rx_queue != rx_queue || |
| 1786 | entry->last_frag + 1 != frag) |
| 1787 | continue; |
| 1788 | |
| 1789 | f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data; |
| 1790 | |
| 1791 | /* |
| 1792 | * Check ftype and addresses are equal, else check next fragment |
| 1793 | */ |
| 1794 | if (((hdr->frame_control ^ f_hdr->frame_control) & |
| 1795 | cpu_to_le16(IEEE80211_FCTL_FTYPE)) || |
| 1796 | !ether_addr_equal(hdr->addr1, f_hdr->addr1) || |
| 1797 | !ether_addr_equal(hdr->addr2, f_hdr->addr2)) |
| 1798 | continue; |
| 1799 | |
| 1800 | if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { |
| 1801 | __skb_queue_purge(&entry->skb_list); |
| 1802 | continue; |
| 1803 | } |
| 1804 | return entry; |
| 1805 | } |
| 1806 | |
| 1807 | return NULL; |
| 1808 | } |
| 1809 | |
| 1810 | static ieee80211_rx_result debug_noinline |
| 1811 | ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) |
| 1812 | { |
| 1813 | struct ieee80211_hdr *hdr; |
| 1814 | u16 sc; |
| 1815 | __le16 fc; |
| 1816 | unsigned int frag, seq; |
| 1817 | struct ieee80211_fragment_entry *entry; |
| 1818 | struct sk_buff *skb; |
| 1819 | struct ieee80211_rx_status *status; |
| 1820 | |
| 1821 | hdr = (struct ieee80211_hdr *)rx->skb->data; |
| 1822 | fc = hdr->frame_control; |
| 1823 | |
| 1824 | if (ieee80211_is_ctl(fc)) |
| 1825 | return RX_CONTINUE; |
| 1826 | |
| 1827 | sc = le16_to_cpu(hdr->seq_ctrl); |
| 1828 | frag = sc & IEEE80211_SCTL_FRAG; |
| 1829 | |
| 1830 | if (is_multicast_ether_addr(hdr->addr1)) { |
| 1831 | I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount); |
| 1832 | goto out_no_led; |
| 1833 | } |
| 1834 | |
| 1835 | if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) |
| 1836 | goto out; |
| 1837 | |
| 1838 | I802_DEBUG_INC(rx->local->rx_handlers_fragments); |
| 1839 | |
| 1840 | if (skb_linearize(rx->skb)) |
| 1841 | return RX_DROP_UNUSABLE; |
| 1842 | |
| 1843 | /* |
| 1844 | * skb_linearize() might change the skb->data and |
| 1845 | * previously cached variables (in this case, hdr) need to |
| 1846 | * be refreshed with the new data. |
| 1847 | */ |
| 1848 | hdr = (struct ieee80211_hdr *)rx->skb->data; |
| 1849 | seq = (sc & IEEE80211_SCTL_SEQ) >> 4; |
| 1850 | |
| 1851 | if (frag == 0) { |
| 1852 | /* This is the first fragment of a new frame. */ |
| 1853 | entry = ieee80211_reassemble_add(rx->sdata, frag, seq, |
| 1854 | rx->seqno_idx, &(rx->skb)); |
| 1855 | if (rx->key && |
| 1856 | (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || |
| 1857 | rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || |
| 1858 | rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || |
| 1859 | rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && |
| 1860 | ieee80211_has_protected(fc)) { |
| 1861 | int queue = rx->security_idx; |
| 1862 | |
| 1863 | /* Store CCMP/GCMP PN so that we can verify that the |
| 1864 | * next fragment has a sequential PN value. |
| 1865 | */ |
| 1866 | entry->check_sequential_pn = true; |
| 1867 | memcpy(entry->last_pn, |
| 1868 | rx->key->u.ccmp.rx_pn[queue], |
| 1869 | IEEE80211_CCMP_PN_LEN); |
| 1870 | BUILD_BUG_ON(offsetof(struct ieee80211_key, |
| 1871 | u.ccmp.rx_pn) != |
| 1872 | offsetof(struct ieee80211_key, |
| 1873 | u.gcmp.rx_pn)); |
| 1874 | BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != |
| 1875 | sizeof(rx->key->u.gcmp.rx_pn[queue])); |
| 1876 | BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != |
| 1877 | IEEE80211_GCMP_PN_LEN); |
| 1878 | } |
| 1879 | return RX_QUEUED; |
| 1880 | } |
| 1881 | |
| 1882 | /* This is a fragment for a frame that should already be pending in |
| 1883 | * fragment cache. Add this fragment to the end of the pending entry. |
| 1884 | */ |
| 1885 | entry = ieee80211_reassemble_find(rx->sdata, frag, seq, |
| 1886 | rx->seqno_idx, hdr); |
| 1887 | if (!entry) { |
| 1888 | I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); |
| 1889 | return RX_DROP_MONITOR; |
| 1890 | } |
| 1891 | |
| 1892 | /* "The receiver shall discard MSDUs and MMPDUs whose constituent |
| 1893 | * MPDU PN values are not incrementing in steps of 1." |
| 1894 | * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) |
| 1895 | * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) |
| 1896 | */ |
| 1897 | if (entry->check_sequential_pn) { |
| 1898 | int i; |
| 1899 | u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; |
| 1900 | int queue; |
| 1901 | |
| 1902 | if (!rx->key || |
| 1903 | (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP && |
| 1904 | rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 && |
| 1905 | rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP && |
| 1906 | rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256)) |
| 1907 | return RX_DROP_UNUSABLE; |
| 1908 | memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); |
| 1909 | for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { |
| 1910 | pn[i]++; |
| 1911 | if (pn[i]) |
| 1912 | break; |
| 1913 | } |
| 1914 | queue = rx->security_idx; |
| 1915 | rpn = rx->key->u.ccmp.rx_pn[queue]; |
| 1916 | if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) |
| 1917 | return RX_DROP_UNUSABLE; |
| 1918 | memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); |
| 1919 | } |
| 1920 | |
| 1921 | skb_pull(rx->skb, ieee80211_hdrlen(fc)); |
| 1922 | __skb_queue_tail(&entry->skb_list, rx->skb); |
| 1923 | entry->last_frag = frag; |
| 1924 | entry->extra_len += rx->skb->len; |
| 1925 | if (ieee80211_has_morefrags(fc)) { |
| 1926 | rx->skb = NULL; |
| 1927 | return RX_QUEUED; |
| 1928 | } |
| 1929 | |
| 1930 | rx->skb = __skb_dequeue(&entry->skb_list); |
| 1931 | if (skb_tailroom(rx->skb) < entry->extra_len) { |
| 1932 | I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); |
| 1933 | if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, |
| 1934 | GFP_ATOMIC))) { |
| 1935 | I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); |
| 1936 | __skb_queue_purge(&entry->skb_list); |
| 1937 | return RX_DROP_UNUSABLE; |
| 1938 | } |
| 1939 | } |
| 1940 | while ((skb = __skb_dequeue(&entry->skb_list))) { |
| 1941 | memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len); |
| 1942 | dev_kfree_skb(skb); |
| 1943 | } |
| 1944 | |
| 1945 | /* Complete frame has been reassembled - process it now */ |
| 1946 | status = IEEE80211_SKB_RXCB(rx->skb); |
| 1947 | |
| 1948 | out: |
| 1949 | ieee80211_led_rx(rx->local); |
| 1950 | out_no_led: |
| 1951 | if (rx->sta) |
| 1952 | rx->sta->rx_stats.packets++; |
| 1953 | return RX_CONTINUE; |
| 1954 | } |
| 1955 | |
| 1956 | static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) |
| 1957 | { |
| 1958 | if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) |
| 1959 | return -EACCES; |
| 1960 | |
| 1961 | return 0; |
| 1962 | } |
| 1963 | |
| 1964 | static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) |
| 1965 | { |
| 1966 | struct sk_buff *skb = rx->skb; |
| 1967 | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); |
| 1968 | |
| 1969 | /* |
| 1970 | * Pass through unencrypted frames if the hardware has |
| 1971 | * decrypted them already. |
| 1972 | */ |
| 1973 | if (status->flag & RX_FLAG_DECRYPTED) |
| 1974 | return 0; |
| 1975 | |
| 1976 | /* Drop unencrypted frames if key is set. */ |
| 1977 | if (unlikely(!ieee80211_has_protected(fc) && |
| 1978 | !ieee80211_is_nullfunc(fc) && |
| 1979 | ieee80211_is_data(fc) && rx->key)) |
| 1980 | return -EACCES; |
| 1981 | |
| 1982 | return 0; |
| 1983 | } |
| 1984 | |
| 1985 | static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) |
| 1986 | { |
| 1987 | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; |
| 1988 | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); |
| 1989 | __le16 fc = hdr->frame_control; |
| 1990 | |
| 1991 | /* |
| 1992 | * Pass through unencrypted frames if the hardware has |
| 1993 | * decrypted them already. |
| 1994 | */ |
| 1995 | if (status->flag & RX_FLAG_DECRYPTED) |
| 1996 | return 0; |
| 1997 | |
| 1998 | if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { |
| 1999 | if (unlikely(!ieee80211_has_protected(fc) && |
| 2000 | ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && |
| 2001 | rx->key)) { |
| 2002 | if (ieee80211_is_deauth(fc) || |
| 2003 | ieee80211_is_disassoc(fc)) |
| 2004 | cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, |
| 2005 | rx->skb->data, |
| 2006 | rx->skb->len); |
| 2007 | return -EACCES; |
| 2008 | } |
| 2009 | /* BIP does not use Protected field, so need to check MMIE */ |
| 2010 | if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && |
| 2011 | ieee80211_get_mmie_keyidx(rx->skb) < 0)) { |
| 2012 | if (ieee80211_is_deauth(fc) || |
| 2013 | ieee80211_is_disassoc(fc)) |
| 2014 | cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, |
| 2015 | rx->skb->data, |
| 2016 | rx->skb->len); |
| 2017 | return -EACCES; |
| 2018 | } |
| 2019 | /* |
| 2020 | * When using MFP, Action frames are not allowed prior to |
| 2021 | * having configured keys. |
| 2022 | */ |
| 2023 | if (unlikely(ieee80211_is_action(fc) && !rx->key && |
| 2024 | ieee80211_is_robust_mgmt_frame(rx->skb))) |
| 2025 | return -EACCES; |
| 2026 | } |
| 2027 | |
| 2028 | return 0; |
| 2029 | } |
| 2030 | |
| 2031 | static int |
| 2032 | __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) |
| 2033 | { |
| 2034 | struct ieee80211_sub_if_data *sdata = rx->sdata; |
| 2035 | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; |
| 2036 | bool check_port_control = false; |
| 2037 | struct ethhdr *ehdr; |
| 2038 | int ret; |
| 2039 | |
| 2040 | *port_control = false; |
| 2041 | if (ieee80211_has_a4(hdr->frame_control) && |
| 2042 | sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) |
| 2043 | return -1; |
| 2044 | |
| 2045 | if (sdata->vif.type == NL80211_IFTYPE_STATION && |
| 2046 | !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { |
| 2047 | |
| 2048 | if (!sdata->u.mgd.use_4addr) |
| 2049 | return -1; |
| 2050 | else |
| 2051 | check_port_control = true; |
| 2052 | } |
| 2053 | |
| 2054 | if (is_multicast_ether_addr(hdr->addr1) && |
| 2055 | sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) |
| 2056 | return -1; |
| 2057 | |
| 2058 | ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); |
| 2059 | if (ret < 0) |
| 2060 | return ret; |
| 2061 | |
| 2062 | ehdr = (struct ethhdr *) rx->skb->data; |
| 2063 | if (ehdr->h_proto == rx->sdata->control_port_protocol) |
| 2064 | *port_control = true; |
| 2065 | else if (check_port_control) |
| 2066 | return -1; |
| 2067 | |
| 2068 | return 0; |
| 2069 | } |
| 2070 | |
| 2071 | /* |
| 2072 | * requires that rx->skb is a frame with ethernet header |
| 2073 | */ |
| 2074 | static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) |
| 2075 | { |
| 2076 | static const u8 pae_group_addr[ETH_ALEN] __aligned(2) |
| 2077 | = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; |
| 2078 | struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; |
| 2079 | |
| 2080 | /* |
| 2081 | * Allow EAPOL frames to us/the PAE group address regardless |
| 2082 | * of whether the frame was encrypted or not. |
| 2083 | */ |
| 2084 | if (ehdr->h_proto == rx->sdata->control_port_protocol && |
| 2085 | (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || |
| 2086 | ether_addr_equal(ehdr->h_dest, pae_group_addr))) |
| 2087 | return true; |
| 2088 | |
| 2089 | if (ieee80211_802_1x_port_control(rx) || |
| 2090 | ieee80211_drop_unencrypted(rx, fc)) |
| 2091 | return false; |
| 2092 | |
| 2093 | return true; |
| 2094 | } |
| 2095 | |
| 2096 | /* |
| 2097 | * requires that rx->skb is a frame with ethernet header |
| 2098 | */ |
| 2099 | static void |
| 2100 | ieee80211_deliver_skb(struct ieee80211_rx_data *rx) |
| 2101 | { |
| 2102 | struct ieee80211_sub_if_data *sdata = rx->sdata; |
| 2103 | struct net_device *dev = sdata->dev; |
| 2104 | struct sk_buff *skb, *xmit_skb; |
| 2105 | struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; |
| 2106 | struct sta_info *dsta; |
| 2107 | |
| 2108 | skb = rx->skb; |
| 2109 | xmit_skb = NULL; |
| 2110 | |
| 2111 | ieee80211_rx_stats(dev, skb->len); |
| 2112 | |
| 2113 | if ((sdata->vif.type == NL80211_IFTYPE_AP || |
| 2114 | sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && |
| 2115 | !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && |
| 2116 | (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { |
| 2117 | if (is_multicast_ether_addr(ehdr->h_dest)) { |
| 2118 | /* |
| 2119 | * send multicast frames both to higher layers in |
| 2120 | * local net stack and back to the wireless medium |
| 2121 | */ |
| 2122 | xmit_skb = skb_copy(skb, GFP_ATOMIC); |
| 2123 | if (!xmit_skb) |
| 2124 | net_info_ratelimited("%s: failed to clone multicast frame\n", |
| 2125 | dev->name); |
| 2126 | } else { |
| 2127 | dsta = sta_info_get(sdata, skb->data); |
| 2128 | if (dsta) { |
| 2129 | /* |
| 2130 | * The destination station is associated to |
| 2131 | * this AP (in this VLAN), so send the frame |
| 2132 | * directly to it and do not pass it to local |
| 2133 | * net stack. |
| 2134 | */ |
| 2135 | xmit_skb = skb; |
| 2136 | skb = NULL; |
| 2137 | } |
| 2138 | } |
| 2139 | } |
| 2140 | |
| 2141 | #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS |
| 2142 | if (skb) { |
| 2143 | /* 'align' will only take the values 0 or 2 here since all |
| 2144 | * frames are required to be aligned to 2-byte boundaries |
| 2145 | * when being passed to mac80211; the code here works just |
| 2146 | * as well if that isn't true, but mac80211 assumes it can |
| 2147 | * access fields as 2-byte aligned (e.g. for ether_addr_equal) |
| 2148 | */ |
| 2149 | int align; |
| 2150 | |
| 2151 | align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; |
| 2152 | if (align) { |
| 2153 | if (WARN_ON(skb_headroom(skb) < 3)) { |
| 2154 | dev_kfree_skb(skb); |
| 2155 | skb = NULL; |
| 2156 | } else { |
| 2157 | u8 *data = skb->data; |
| 2158 | size_t len = skb_headlen(skb); |
| 2159 | skb->data -= align; |
| 2160 | memmove(skb->data, data, len); |
| 2161 | skb_set_tail_pointer(skb, len); |
| 2162 | } |
| 2163 | } |
| 2164 | } |
| 2165 | #endif |
| 2166 | |
| 2167 | if (skb) { |
| 2168 | /* deliver to local stack */ |
| 2169 | skb->protocol = eth_type_trans(skb, dev); |
| 2170 | memset(skb->cb, 0, sizeof(skb->cb)); |
| 2171 | if (rx->napi) |
| 2172 | napi_gro_receive(rx->napi, skb); |
| 2173 | else |
| 2174 | netif_receive_skb(skb); |
| 2175 | } |
| 2176 | |
| 2177 | if (xmit_skb) { |
| 2178 | /* |
| 2179 | * Send to wireless media and increase priority by 256 to |
| 2180 | * keep the received priority instead of reclassifying |
| 2181 | * the frame (see cfg80211_classify8021d). |
| 2182 | */ |
| 2183 | xmit_skb->priority += 256; |
| 2184 | xmit_skb->protocol = htons(ETH_P_802_3); |
| 2185 | skb_reset_network_header(xmit_skb); |
| 2186 | skb_reset_mac_header(xmit_skb); |
| 2187 | dev_queue_xmit(xmit_skb); |
| 2188 | } |
| 2189 | } |
| 2190 | |
| 2191 | static ieee80211_rx_result debug_noinline |
| 2192 | ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) |
| 2193 | { |
| 2194 | struct net_device *dev = rx->sdata->dev; |
| 2195 | struct sk_buff *skb = rx->skb; |
| 2196 | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; |
| 2197 | __le16 fc = hdr->frame_control; |
| 2198 | struct sk_buff_head frame_list; |
| 2199 | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); |
| 2200 | |
| 2201 | if (unlikely(!ieee80211_is_data(fc))) |
| 2202 | return RX_CONTINUE; |
| 2203 | |
| 2204 | if (unlikely(!ieee80211_is_data_present(fc))) |
| 2205 | return RX_DROP_MONITOR; |
| 2206 | |
| 2207 | if (!(status->rx_flags & IEEE80211_RX_AMSDU)) |
| 2208 | return RX_CONTINUE; |
| 2209 | |
| 2210 | if (unlikely(ieee80211_has_a4(hdr->frame_control))) { |
| 2211 | switch (rx->sdata->vif.type) { |
| 2212 | case NL80211_IFTYPE_AP_VLAN: |
| 2213 | if (!rx->sdata->u.vlan.sta) |
| 2214 | return RX_DROP_UNUSABLE; |
| 2215 | break; |
| 2216 | case NL80211_IFTYPE_STATION: |
| 2217 | if (!rx->sdata->u.mgd.use_4addr) |
| 2218 | return RX_DROP_UNUSABLE; |
| 2219 | break; |
| 2220 | default: |
| 2221 | return RX_DROP_UNUSABLE; |
| 2222 | } |
| 2223 | } |
| 2224 | |
| 2225 | if (is_multicast_ether_addr(hdr->addr1)) |
| 2226 | return RX_DROP_UNUSABLE; |
| 2227 | |
| 2228 | skb->dev = dev; |
| 2229 | __skb_queue_head_init(&frame_list); |
| 2230 | |
| 2231 | if (skb_linearize(skb)) |
| 2232 | return RX_DROP_UNUSABLE; |
| 2233 | |
| 2234 | ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, |
| 2235 | rx->sdata->vif.type, |
| 2236 | rx->local->hw.extra_tx_headroom, true); |
| 2237 | |
| 2238 | while (!skb_queue_empty(&frame_list)) { |
| 2239 | rx->skb = __skb_dequeue(&frame_list); |
| 2240 | |
| 2241 | if (!ieee80211_frame_allowed(rx, fc)) { |
| 2242 | dev_kfree_skb(rx->skb); |
| 2243 | continue; |
| 2244 | } |
| 2245 | |
| 2246 | ieee80211_deliver_skb(rx); |
| 2247 | } |
| 2248 | |
| 2249 | return RX_QUEUED; |
| 2250 | } |
| 2251 | |
| 2252 | #ifdef CONFIG_MAC80211_MESH |
| 2253 | static ieee80211_rx_result |
| 2254 | ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) |
| 2255 | { |
| 2256 | struct ieee80211_hdr *fwd_hdr, *hdr; |
| 2257 | struct ieee80211_tx_info *info; |
| 2258 | struct ieee80211s_hdr *mesh_hdr; |
| 2259 | struct sk_buff *skb = rx->skb, *fwd_skb; |
| 2260 | struct ieee80211_local *local = rx->local; |
| 2261 | struct ieee80211_sub_if_data *sdata = rx->sdata; |
| 2262 | struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; |
| 2263 | u16 ac, q, hdrlen; |
| 2264 | |
| 2265 | hdr = (struct ieee80211_hdr *) skb->data; |
| 2266 | hdrlen = ieee80211_hdrlen(hdr->frame_control); |
| 2267 | |
| 2268 | /* make sure fixed part of mesh header is there, also checks skb len */ |
| 2269 | if (!pskb_may_pull(rx->skb, hdrlen + 6)) |
| 2270 | return RX_DROP_MONITOR; |
| 2271 | |
| 2272 | mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); |
| 2273 | |
| 2274 | /* make sure full mesh header is there, also checks skb len */ |
| 2275 | if (!pskb_may_pull(rx->skb, |
| 2276 | hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) |
| 2277 | return RX_DROP_MONITOR; |
| 2278 | |
| 2279 | /* reload pointers */ |
| 2280 | hdr = (struct ieee80211_hdr *) skb->data; |
| 2281 | mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); |
| 2282 | |
| 2283 | if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) |
| 2284 | return RX_DROP_MONITOR; |
| 2285 | |
| 2286 | /* frame is in RMC, don't forward */ |
| 2287 | if (ieee80211_is_data(hdr->frame_control) && |
| 2288 | is_multicast_ether_addr(hdr->addr1) && |
| 2289 | mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) |
| 2290 | return RX_DROP_MONITOR; |
| 2291 | |
| 2292 | if (!ieee80211_is_data(hdr->frame_control)) |
| 2293 | return RX_CONTINUE; |
| 2294 | |
| 2295 | if (!mesh_hdr->ttl) |
| 2296 | return RX_DROP_MONITOR; |
| 2297 | |
| 2298 | if (mesh_hdr->flags & MESH_FLAGS_AE) { |
| 2299 | struct mesh_path *mppath; |
| 2300 | char *proxied_addr; |
| 2301 | char *mpp_addr; |
| 2302 | |
| 2303 | if (is_multicast_ether_addr(hdr->addr1)) { |
| 2304 | mpp_addr = hdr->addr3; |
| 2305 | proxied_addr = mesh_hdr->eaddr1; |
| 2306 | } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) { |
| 2307 | /* has_a4 already checked in ieee80211_rx_mesh_check */ |
| 2308 | mpp_addr = hdr->addr4; |
| 2309 | proxied_addr = mesh_hdr->eaddr2; |
| 2310 | } else { |
| 2311 | return RX_DROP_MONITOR; |
| 2312 | } |
| 2313 | |
| 2314 | rcu_read_lock(); |
| 2315 | mppath = mpp_path_lookup(sdata, proxied_addr); |
| 2316 | if (!mppath) { |
| 2317 | mpp_path_add(sdata, proxied_addr, mpp_addr); |
| 2318 | } else { |
| 2319 | spin_lock_bh(&mppath->state_lock); |
| 2320 | if (!ether_addr_equal(mppath->mpp, mpp_addr)) |
| 2321 | memcpy(mppath->mpp, mpp_addr, ETH_ALEN); |
| 2322 | spin_unlock_bh(&mppath->state_lock); |
| 2323 | } |
| 2324 | rcu_read_unlock(); |
| 2325 | } |
| 2326 | |
| 2327 | /* Frame has reached destination. Don't forward */ |
| 2328 | if (!is_multicast_ether_addr(hdr->addr1) && |
| 2329 | ether_addr_equal(sdata->vif.addr, hdr->addr3)) |
| 2330 | return RX_CONTINUE; |
| 2331 | |
| 2332 | ac = ieee80211_select_queue_80211(sdata, skb, hdr); |
| 2333 | q = sdata->vif.hw_queue[ac]; |
| 2334 | if (ieee80211_queue_stopped(&local->hw, q)) { |
| 2335 | IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); |
| 2336 | return RX_DROP_MONITOR; |
| 2337 | } |
| 2338 | skb_set_queue_mapping(skb, q); |
| 2339 | |
| 2340 | if (!--mesh_hdr->ttl) { |
| 2341 | IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); |
| 2342 | goto out; |
| 2343 | } |
| 2344 | |
| 2345 | if (!ifmsh->mshcfg.dot11MeshForwarding) |
| 2346 | goto out; |
| 2347 | |
| 2348 | fwd_skb = skb_copy(skb, GFP_ATOMIC); |
| 2349 | if (!fwd_skb) { |
| 2350 | net_info_ratelimited("%s: failed to clone mesh frame\n", |
| 2351 | sdata->name); |
| 2352 | goto out; |
| 2353 | } |
| 2354 | |
| 2355 | fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; |
| 2356 | fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); |
| 2357 | info = IEEE80211_SKB_CB(fwd_skb); |
| 2358 | memset(info, 0, sizeof(*info)); |
| 2359 | info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; |
| 2360 | info->control.vif = &rx->sdata->vif; |
| 2361 | info->control.jiffies = jiffies; |
| 2362 | if (is_multicast_ether_addr(fwd_hdr->addr1)) { |
| 2363 | IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); |
| 2364 | memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); |
| 2365 | /* update power mode indication when forwarding */ |
| 2366 | ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); |
| 2367 | } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { |
| 2368 | /* mesh power mode flags updated in mesh_nexthop_lookup */ |
| 2369 | IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); |
| 2370 | } else { |
| 2371 | /* unable to resolve next hop */ |
| 2372 | mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, |
| 2373 | fwd_hdr->addr3, 0, |
| 2374 | WLAN_REASON_MESH_PATH_NOFORWARD, |
| 2375 | fwd_hdr->addr2); |
| 2376 | IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); |
| 2377 | kfree_skb(fwd_skb); |
| 2378 | return RX_DROP_MONITOR; |
| 2379 | } |
| 2380 | |
| 2381 | IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); |
| 2382 | ieee80211_add_pending_skb(local, fwd_skb); |
| 2383 | out: |
| 2384 | if (is_multicast_ether_addr(hdr->addr1)) |
| 2385 | return RX_CONTINUE; |
| 2386 | return RX_DROP_MONITOR; |
| 2387 | } |
| 2388 | #endif |
| 2389 | |
| 2390 | static ieee80211_rx_result debug_noinline |
| 2391 | ieee80211_rx_h_data(struct ieee80211_rx_data *rx) |
| 2392 | { |
| 2393 | struct ieee80211_sub_if_data *sdata = rx->sdata; |
| 2394 | struct ieee80211_local *local = rx->local; |
| 2395 | struct net_device *dev = sdata->dev; |
| 2396 | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; |
| 2397 | __le16 fc = hdr->frame_control; |
| 2398 | bool port_control; |
| 2399 | int err; |
| 2400 | |
| 2401 | if (unlikely(!ieee80211_is_data(hdr->frame_control))) |
| 2402 | return RX_CONTINUE; |
| 2403 | |
| 2404 | if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) |
| 2405 | return RX_DROP_MONITOR; |
| 2406 | |
| 2407 | if (rx->sta) { |
| 2408 | /* The seqno index has the same property as needed |
| 2409 | * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS |
| 2410 | * for non-QoS-data frames. Here we know it's a data |
| 2411 | * frame, so count MSDUs. |
| 2412 | */ |
| 2413 | rx->sta->rx_stats.msdu[rx->seqno_idx]++; |
| 2414 | } |
| 2415 | |
| 2416 | /* |
| 2417 | * Send unexpected-4addr-frame event to hostapd. For older versions, |
| 2418 | * also drop the frame to cooked monitor interfaces. |
| 2419 | */ |
| 2420 | if (ieee80211_has_a4(hdr->frame_control) && |
| 2421 | sdata->vif.type == NL80211_IFTYPE_AP) { |
| 2422 | if (rx->sta && |
| 2423 | !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) |
| 2424 | cfg80211_rx_unexpected_4addr_frame( |
| 2425 | rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); |
| 2426 | return RX_DROP_MONITOR; |
| 2427 | } |
| 2428 | |
| 2429 | err = __ieee80211_data_to_8023(rx, &port_control); |
| 2430 | if (unlikely(err)) |
| 2431 | return RX_DROP_UNUSABLE; |
| 2432 | |
| 2433 | if (!ieee80211_frame_allowed(rx, fc)) |
| 2434 | return RX_DROP_MONITOR; |
| 2435 | |
| 2436 | /* directly handle TDLS channel switch requests/responses */ |
| 2437 | if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == |
| 2438 | cpu_to_be16(ETH_P_TDLS))) { |
| 2439 | struct ieee80211_tdls_data *tf = (void *)rx->skb->data; |
| 2440 | |
| 2441 | if (pskb_may_pull(rx->skb, |
| 2442 | offsetof(struct ieee80211_tdls_data, u)) && |
| 2443 | tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && |
| 2444 | tf->category == WLAN_CATEGORY_TDLS && |
| 2445 | (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || |
| 2446 | tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { |
| 2447 | skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb); |
| 2448 | schedule_work(&local->tdls_chsw_work); |
| 2449 | if (rx->sta) |
| 2450 | rx->sta->rx_stats.packets++; |
| 2451 | |
| 2452 | return RX_QUEUED; |
| 2453 | } |
| 2454 | } |
| 2455 | |
| 2456 | if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && |
| 2457 | unlikely(port_control) && sdata->bss) { |
| 2458 | sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, |
| 2459 | u.ap); |
| 2460 | dev = sdata->dev; |
| 2461 | rx->sdata = sdata; |
| 2462 | } |
| 2463 | |
| 2464 | rx->skb->dev = dev; |
| 2465 | |
| 2466 | if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && |
| 2467 | !is_multicast_ether_addr( |
| 2468 | ((struct ethhdr *)rx->skb->data)->h_dest) && |
| 2469 | (!local->scanning && |
| 2470 | !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) { |
| 2471 | mod_timer(&local->dynamic_ps_timer, jiffies + |
| 2472 | msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); |
| 2473 | } |
| 2474 | |
| 2475 | ieee80211_deliver_skb(rx); |
| 2476 | |
| 2477 | return RX_QUEUED; |
| 2478 | } |
| 2479 | |
| 2480 | static ieee80211_rx_result debug_noinline |
| 2481 | ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) |
| 2482 | { |
| 2483 | struct sk_buff *skb = rx->skb; |
| 2484 | struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; |
| 2485 | struct tid_ampdu_rx *tid_agg_rx; |
| 2486 | u16 start_seq_num; |
| 2487 | u16 tid; |
| 2488 | |
| 2489 | if (likely(!ieee80211_is_ctl(bar->frame_control))) |
| 2490 | return RX_CONTINUE; |
| 2491 | |
| 2492 | if (ieee80211_is_back_req(bar->frame_control)) { |
| 2493 | struct { |
| 2494 | __le16 control, start_seq_num; |
| 2495 | } __packed bar_data; |
| 2496 | struct ieee80211_event event = { |
| 2497 | .type = BAR_RX_EVENT, |
| 2498 | }; |
| 2499 | |
| 2500 | if (!rx->sta) |
| 2501 | return RX_DROP_MONITOR; |
| 2502 | |
| 2503 | if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), |
| 2504 | &bar_data, sizeof(bar_data))) |
| 2505 | return RX_DROP_MONITOR; |
| 2506 | |
| 2507 | tid = le16_to_cpu(bar_data.control) >> 12; |
| 2508 | |
| 2509 | tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); |
| 2510 | if (!tid_agg_rx) |
| 2511 | return RX_DROP_MONITOR; |
| 2512 | |
| 2513 | start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; |
| 2514 | event.u.ba.tid = tid; |
| 2515 | event.u.ba.ssn = start_seq_num; |
| 2516 | event.u.ba.sta = &rx->sta->sta; |
| 2517 | |
| 2518 | /* reset session timer */ |
| 2519 | if (tid_agg_rx->timeout) |
| 2520 | mod_timer(&tid_agg_rx->session_timer, |
| 2521 | TU_TO_EXP_TIME(tid_agg_rx->timeout)); |
| 2522 | |
| 2523 | spin_lock(&tid_agg_rx->reorder_lock); |
| 2524 | /* release stored frames up to start of BAR */ |
| 2525 | ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, |
| 2526 | start_seq_num, frames); |
| 2527 | spin_unlock(&tid_agg_rx->reorder_lock); |
| 2528 | |
| 2529 | drv_event_callback(rx->local, rx->sdata, &event); |
| 2530 | |
| 2531 | kfree_skb(skb); |
| 2532 | return RX_QUEUED; |
| 2533 | } |
| 2534 | |
| 2535 | /* |
| 2536 | * After this point, we only want management frames, |
| 2537 | * so we can drop all remaining control frames to |
| 2538 | * cooked monitor interfaces. |
| 2539 | */ |
| 2540 | return RX_DROP_MONITOR; |
| 2541 | } |
| 2542 | |
| 2543 | static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, |
| 2544 | struct ieee80211_mgmt *mgmt, |
| 2545 | size_t len) |
| 2546 | { |
| 2547 | struct ieee80211_local *local = sdata->local; |
| 2548 | struct sk_buff *skb; |
| 2549 | struct ieee80211_mgmt *resp; |
| 2550 | |
| 2551 | if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { |
| 2552 | /* Not to own unicast address */ |
| 2553 | return; |
| 2554 | } |
| 2555 | |
| 2556 | if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || |
| 2557 | !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { |
| 2558 | /* Not from the current AP or not associated yet. */ |
| 2559 | return; |
| 2560 | } |
| 2561 | |
| 2562 | if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { |
| 2563 | /* Too short SA Query request frame */ |
| 2564 | return; |
| 2565 | } |
| 2566 | |
| 2567 | skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); |
| 2568 | if (skb == NULL) |
| 2569 | return; |
| 2570 | |
| 2571 | skb_reserve(skb, local->hw.extra_tx_headroom); |
| 2572 | resp = (struct ieee80211_mgmt *) skb_put(skb, 24); |
| 2573 | memset(resp, 0, 24); |
| 2574 | memcpy(resp->da, mgmt->sa, ETH_ALEN); |
| 2575 | memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); |
| 2576 | memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); |
| 2577 | resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | |
| 2578 | IEEE80211_STYPE_ACTION); |
| 2579 | skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); |
| 2580 | resp->u.action.category = WLAN_CATEGORY_SA_QUERY; |
| 2581 | resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; |
| 2582 | memcpy(resp->u.action.u.sa_query.trans_id, |
| 2583 | mgmt->u.action.u.sa_query.trans_id, |
| 2584 | WLAN_SA_QUERY_TR_ID_LEN); |
| 2585 | |
| 2586 | ieee80211_tx_skb(sdata, skb); |
| 2587 | } |
| 2588 | |
| 2589 | static ieee80211_rx_result debug_noinline |
| 2590 | ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) |
| 2591 | { |
| 2592 | struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; |
| 2593 | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); |
| 2594 | |
| 2595 | /* |
| 2596 | * From here on, look only at management frames. |
| 2597 | * Data and control frames are already handled, |
| 2598 | * and unknown (reserved) frames are useless. |
| 2599 | */ |
| 2600 | if (rx->skb->len < 24) |
| 2601 | return RX_DROP_MONITOR; |
| 2602 | |
| 2603 | if (!ieee80211_is_mgmt(mgmt->frame_control)) |
| 2604 | return RX_DROP_MONITOR; |
| 2605 | |
| 2606 | if (rx->sdata->vif.type == NL80211_IFTYPE_AP && |
| 2607 | ieee80211_is_beacon(mgmt->frame_control) && |
| 2608 | !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { |
| 2609 | int sig = 0; |
| 2610 | |
| 2611 | if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM)) |
| 2612 | sig = status->signal; |
| 2613 | |
| 2614 | cfg80211_report_obss_beacon(rx->local->hw.wiphy, |
| 2615 | rx->skb->data, rx->skb->len, |
| 2616 | status->freq, sig); |
| 2617 | rx->flags |= IEEE80211_RX_BEACON_REPORTED; |
| 2618 | } |
| 2619 | |
| 2620 | if (ieee80211_drop_unencrypted_mgmt(rx)) |
| 2621 | return RX_DROP_UNUSABLE; |
| 2622 | |
| 2623 | return RX_CONTINUE; |
| 2624 | } |
| 2625 | |
| 2626 | static ieee80211_rx_result debug_noinline |
| 2627 | ieee80211_rx_h_action(struct ieee80211_rx_data *rx) |
| 2628 | { |
| 2629 | struct ieee80211_local *local = rx->local; |
| 2630 | struct ieee80211_sub_if_data *sdata = rx->sdata; |
| 2631 | struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; |
| 2632 | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); |
| 2633 | int len = rx->skb->len; |
| 2634 | |
| 2635 | if (!ieee80211_is_action(mgmt->frame_control)) |
| 2636 | return RX_CONTINUE; |
| 2637 | |
| 2638 | /* drop too small frames */ |
| 2639 | if (len < IEEE80211_MIN_ACTION_SIZE) |
| 2640 | return RX_DROP_UNUSABLE; |
| 2641 | |
| 2642 | if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && |
| 2643 | mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && |
| 2644 | mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) |
| 2645 | return RX_DROP_UNUSABLE; |
| 2646 | |
| 2647 | switch (mgmt->u.action.category) { |
| 2648 | case WLAN_CATEGORY_HT: |
| 2649 | /* reject HT action frames from stations not supporting HT */ |
| 2650 | if (!rx->sta->sta.ht_cap.ht_supported) |
| 2651 | goto invalid; |
| 2652 | |
| 2653 | if (sdata->vif.type != NL80211_IFTYPE_STATION && |
| 2654 | sdata->vif.type != NL80211_IFTYPE_MESH_POINT && |
| 2655 | sdata->vif.type != NL80211_IFTYPE_AP_VLAN && |
| 2656 | sdata->vif.type != NL80211_IFTYPE_AP && |
| 2657 | sdata->vif.type != NL80211_IFTYPE_ADHOC) |
| 2658 | break; |
| 2659 | |
| 2660 | /* verify action & smps_control/chanwidth are present */ |
| 2661 | if (len < IEEE80211_MIN_ACTION_SIZE + 2) |
| 2662 | goto invalid; |
| 2663 | |
| 2664 | switch (mgmt->u.action.u.ht_smps.action) { |
| 2665 | case WLAN_HT_ACTION_SMPS: { |
| 2666 | struct ieee80211_supported_band *sband; |
| 2667 | enum ieee80211_smps_mode smps_mode; |
| 2668 | |
| 2669 | /* convert to HT capability */ |
| 2670 | switch (mgmt->u.action.u.ht_smps.smps_control) { |
| 2671 | case WLAN_HT_SMPS_CONTROL_DISABLED: |
| 2672 | smps_mode = IEEE80211_SMPS_OFF; |
| 2673 | break; |
| 2674 | case WLAN_HT_SMPS_CONTROL_STATIC: |
| 2675 | smps_mode = IEEE80211_SMPS_STATIC; |
| 2676 | break; |
| 2677 | case WLAN_HT_SMPS_CONTROL_DYNAMIC: |
| 2678 | smps_mode = IEEE80211_SMPS_DYNAMIC; |
| 2679 | break; |
| 2680 | default: |
| 2681 | goto invalid; |
| 2682 | } |
| 2683 | |
| 2684 | /* if no change do nothing */ |
| 2685 | if (rx->sta->sta.smps_mode == smps_mode) |
| 2686 | goto handled; |
| 2687 | rx->sta->sta.smps_mode = smps_mode; |
| 2688 | |
| 2689 | sband = rx->local->hw.wiphy->bands[status->band]; |
| 2690 | |
| 2691 | rate_control_rate_update(local, sband, rx->sta, |
| 2692 | IEEE80211_RC_SMPS_CHANGED); |
| 2693 | goto handled; |
| 2694 | } |
| 2695 | case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { |
| 2696 | struct ieee80211_supported_band *sband; |
| 2697 | u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; |
| 2698 | enum ieee80211_sta_rx_bandwidth max_bw, new_bw; |
| 2699 | |
| 2700 | /* If it doesn't support 40 MHz it can't change ... */ |
| 2701 | if (!(rx->sta->sta.ht_cap.cap & |
| 2702 | IEEE80211_HT_CAP_SUP_WIDTH_20_40)) |
| 2703 | goto handled; |
| 2704 | |
| 2705 | if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) |
| 2706 | max_bw = IEEE80211_STA_RX_BW_20; |
| 2707 | else |
| 2708 | max_bw = ieee80211_sta_cap_rx_bw(rx->sta); |
| 2709 | |
| 2710 | /* set cur_max_bandwidth and recalc sta bw */ |
| 2711 | rx->sta->cur_max_bandwidth = max_bw; |
| 2712 | new_bw = ieee80211_sta_cur_vht_bw(rx->sta); |
| 2713 | |
| 2714 | if (rx->sta->sta.bandwidth == new_bw) |
| 2715 | goto handled; |
| 2716 | |
| 2717 | rx->sta->sta.bandwidth = new_bw; |
| 2718 | sband = rx->local->hw.wiphy->bands[status->band]; |
| 2719 | |
| 2720 | rate_control_rate_update(local, sband, rx->sta, |
| 2721 | IEEE80211_RC_BW_CHANGED); |
| 2722 | goto handled; |
| 2723 | } |
| 2724 | default: |
| 2725 | goto invalid; |
| 2726 | } |
| 2727 | |
| 2728 | break; |
| 2729 | case WLAN_CATEGORY_PUBLIC: |
| 2730 | if (len < IEEE80211_MIN_ACTION_SIZE + 1) |
| 2731 | goto invalid; |
| 2732 | if (sdata->vif.type != NL80211_IFTYPE_STATION) |
| 2733 | break; |
| 2734 | if (!rx->sta) |
| 2735 | break; |
| 2736 | if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) |
| 2737 | break; |
| 2738 | if (mgmt->u.action.u.ext_chan_switch.action_code != |
| 2739 | WLAN_PUB_ACTION_EXT_CHANSW_ANN) |
| 2740 | break; |
| 2741 | if (len < offsetof(struct ieee80211_mgmt, |
| 2742 | u.action.u.ext_chan_switch.variable)) |
| 2743 | goto invalid; |
| 2744 | goto queue; |
| 2745 | case WLAN_CATEGORY_VHT: |
| 2746 | if (sdata->vif.type != NL80211_IFTYPE_STATION && |
| 2747 | sdata->vif.type != NL80211_IFTYPE_MESH_POINT && |
| 2748 | sdata->vif.type != NL80211_IFTYPE_AP_VLAN && |
| 2749 | sdata->vif.type != NL80211_IFTYPE_AP && |
| 2750 | sdata->vif.type != NL80211_IFTYPE_ADHOC) |
| 2751 | break; |
| 2752 | |
| 2753 | /* verify action code is present */ |
| 2754 | if (len < IEEE80211_MIN_ACTION_SIZE + 1) |
| 2755 | goto invalid; |
| 2756 | |
| 2757 | switch (mgmt->u.action.u.vht_opmode_notif.action_code) { |
| 2758 | case WLAN_VHT_ACTION_OPMODE_NOTIF: { |
| 2759 | u8 opmode; |
| 2760 | |
| 2761 | /* verify opmode is present */ |
| 2762 | if (len < IEEE80211_MIN_ACTION_SIZE + 2) |
| 2763 | goto invalid; |
| 2764 | |
| 2765 | opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode; |
| 2766 | |
| 2767 | ieee80211_vht_handle_opmode(rx->sdata, rx->sta, |
| 2768 | opmode, status->band); |
| 2769 | goto handled; |
| 2770 | } |
| 2771 | default: |
| 2772 | break; |
| 2773 | } |
| 2774 | break; |
| 2775 | case WLAN_CATEGORY_BACK: |
| 2776 | if (sdata->vif.type != NL80211_IFTYPE_STATION && |
| 2777 | sdata->vif.type != NL80211_IFTYPE_MESH_POINT && |
| 2778 | sdata->vif.type != NL80211_IFTYPE_AP_VLAN && |
| 2779 | sdata->vif.type != NL80211_IFTYPE_AP && |
| 2780 | sdata->vif.type != NL80211_IFTYPE_ADHOC) |
| 2781 | break; |
| 2782 | |
| 2783 | /* verify action_code is present */ |
| 2784 | if (len < IEEE80211_MIN_ACTION_SIZE + 1) |
| 2785 | break; |
| 2786 | |
| 2787 | switch (mgmt->u.action.u.addba_req.action_code) { |
| 2788 | case WLAN_ACTION_ADDBA_REQ: |
| 2789 | if (len < (IEEE80211_MIN_ACTION_SIZE + |
| 2790 | sizeof(mgmt->u.action.u.addba_req))) |
| 2791 | goto invalid; |
| 2792 | break; |
| 2793 | case WLAN_ACTION_ADDBA_RESP: |
| 2794 | if (len < (IEEE80211_MIN_ACTION_SIZE + |
| 2795 | sizeof(mgmt->u.action.u.addba_resp))) |
| 2796 | goto invalid; |
| 2797 | break; |
| 2798 | case WLAN_ACTION_DELBA: |
| 2799 | if (len < (IEEE80211_MIN_ACTION_SIZE + |
| 2800 | sizeof(mgmt->u.action.u.delba))) |
| 2801 | goto invalid; |
| 2802 | break; |
| 2803 | default: |
| 2804 | goto invalid; |
| 2805 | } |
| 2806 | |
| 2807 | goto queue; |
| 2808 | case WLAN_CATEGORY_SPECTRUM_MGMT: |
| 2809 | /* verify action_code is present */ |
| 2810 | if (len < IEEE80211_MIN_ACTION_SIZE + 1) |
| 2811 | break; |
| 2812 | |
| 2813 | switch (mgmt->u.action.u.measurement.action_code) { |
| 2814 | case WLAN_ACTION_SPCT_MSR_REQ: |
| 2815 | if (status->band != IEEE80211_BAND_5GHZ) |
| 2816 | break; |
| 2817 | |
| 2818 | if (len < (IEEE80211_MIN_ACTION_SIZE + |
| 2819 | sizeof(mgmt->u.action.u.measurement))) |
| 2820 | break; |
| 2821 | |
| 2822 | if (sdata->vif.type != NL80211_IFTYPE_STATION) |
| 2823 | break; |
| 2824 | |
| 2825 | ieee80211_process_measurement_req(sdata, mgmt, len); |
| 2826 | goto handled; |
| 2827 | case WLAN_ACTION_SPCT_CHL_SWITCH: { |
| 2828 | u8 *bssid; |
| 2829 | if (len < (IEEE80211_MIN_ACTION_SIZE + |
| 2830 | sizeof(mgmt->u.action.u.chan_switch))) |
| 2831 | break; |
| 2832 | |
| 2833 | if (sdata->vif.type != NL80211_IFTYPE_STATION && |
| 2834 | sdata->vif.type != NL80211_IFTYPE_ADHOC && |
| 2835 | sdata->vif.type != NL80211_IFTYPE_MESH_POINT) |
| 2836 | break; |
| 2837 | |
| 2838 | if (sdata->vif.type == NL80211_IFTYPE_STATION) |
| 2839 | bssid = sdata->u.mgd.bssid; |
| 2840 | else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) |
| 2841 | bssid = sdata->u.ibss.bssid; |
| 2842 | else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) |
| 2843 | bssid = mgmt->sa; |
| 2844 | else |
| 2845 | break; |
| 2846 | |
| 2847 | if (!ether_addr_equal(mgmt->bssid, bssid)) |
| 2848 | break; |
| 2849 | |
| 2850 | goto queue; |
| 2851 | } |
| 2852 | } |
| 2853 | break; |
| 2854 | case WLAN_CATEGORY_SA_QUERY: |
| 2855 | if (len < (IEEE80211_MIN_ACTION_SIZE + |
| 2856 | sizeof(mgmt->u.action.u.sa_query))) |
| 2857 | break; |
| 2858 | |
| 2859 | switch (mgmt->u.action.u.sa_query.action) { |
| 2860 | case WLAN_ACTION_SA_QUERY_REQUEST: |
| 2861 | if (sdata->vif.type != NL80211_IFTYPE_STATION) |
| 2862 | break; |
| 2863 | ieee80211_process_sa_query_req(sdata, mgmt, len); |
| 2864 | goto handled; |
| 2865 | } |
| 2866 | break; |
| 2867 | case WLAN_CATEGORY_SELF_PROTECTED: |
| 2868 | if (len < (IEEE80211_MIN_ACTION_SIZE + |
| 2869 | sizeof(mgmt->u.action.u.self_prot.action_code))) |
| 2870 | break; |
| 2871 | |
| 2872 | switch (mgmt->u.action.u.self_prot.action_code) { |
| 2873 | case WLAN_SP_MESH_PEERING_OPEN: |
| 2874 | case WLAN_SP_MESH_PEERING_CLOSE: |
| 2875 | case WLAN_SP_MESH_PEERING_CONFIRM: |
| 2876 | if (!ieee80211_vif_is_mesh(&sdata->vif)) |
| 2877 | goto invalid; |
| 2878 | if (sdata->u.mesh.user_mpm) |
| 2879 | /* userspace handles this frame */ |
| 2880 | break; |
| 2881 | goto queue; |
| 2882 | case WLAN_SP_MGK_INFORM: |
| 2883 | case WLAN_SP_MGK_ACK: |
| 2884 | if (!ieee80211_vif_is_mesh(&sdata->vif)) |
| 2885 | goto invalid; |
| 2886 | break; |
| 2887 | } |
| 2888 | break; |
| 2889 | case WLAN_CATEGORY_MESH_ACTION: |
| 2890 | if (len < (IEEE80211_MIN_ACTION_SIZE + |
| 2891 | sizeof(mgmt->u.action.u.mesh_action.action_code))) |
| 2892 | break; |
| 2893 | |
| 2894 | if (!ieee80211_vif_is_mesh(&sdata->vif)) |
| 2895 | break; |
| 2896 | if (mesh_action_is_path_sel(mgmt) && |
| 2897 | !mesh_path_sel_is_hwmp(sdata)) |
| 2898 | break; |
| 2899 | goto queue; |
| 2900 | } |
| 2901 | |
| 2902 | return RX_CONTINUE; |
| 2903 | |
| 2904 | invalid: |
| 2905 | status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; |
| 2906 | /* will return in the next handlers */ |
| 2907 | return RX_CONTINUE; |
| 2908 | |
| 2909 | handled: |
| 2910 | if (rx->sta) |
| 2911 | rx->sta->rx_stats.packets++; |
| 2912 | dev_kfree_skb(rx->skb); |
| 2913 | return RX_QUEUED; |
| 2914 | |
| 2915 | queue: |
| 2916 | rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; |
| 2917 | skb_queue_tail(&sdata->skb_queue, rx->skb); |
| 2918 | ieee80211_queue_work(&local->hw, &sdata->work); |
| 2919 | if (rx->sta) |
| 2920 | rx->sta->rx_stats.packets++; |
| 2921 | return RX_QUEUED; |
| 2922 | } |
| 2923 | |
| 2924 | static ieee80211_rx_result debug_noinline |
| 2925 | ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) |
| 2926 | { |
| 2927 | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); |
| 2928 | int sig = 0; |
| 2929 | |
| 2930 | /* skip known-bad action frames and return them in the next handler */ |
| 2931 | if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) |
| 2932 | return RX_CONTINUE; |
| 2933 | |
| 2934 | /* |
| 2935 | * Getting here means the kernel doesn't know how to handle |
| 2936 | * it, but maybe userspace does ... include returned frames |
| 2937 | * so userspace can register for those to know whether ones |
| 2938 | * it transmitted were processed or returned. |
| 2939 | */ |
| 2940 | |
| 2941 | if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM)) |
| 2942 | sig = status->signal; |
| 2943 | |
| 2944 | if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig, |
| 2945 | rx->skb->data, rx->skb->len, 0)) { |
| 2946 | if (rx->sta) |
| 2947 | rx->sta->rx_stats.packets++; |
| 2948 | dev_kfree_skb(rx->skb); |
| 2949 | return RX_QUEUED; |
| 2950 | } |
| 2951 | |
| 2952 | return RX_CONTINUE; |
| 2953 | } |
| 2954 | |
| 2955 | static ieee80211_rx_result debug_noinline |
| 2956 | ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) |
| 2957 | { |
| 2958 | struct ieee80211_local *local = rx->local; |
| 2959 | struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; |
| 2960 | struct sk_buff *nskb; |
| 2961 | struct ieee80211_sub_if_data *sdata = rx->sdata; |
| 2962 | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); |
| 2963 | |
| 2964 | if (!ieee80211_is_action(mgmt->frame_control)) |
| 2965 | return RX_CONTINUE; |
| 2966 | |
| 2967 | /* |
| 2968 | * For AP mode, hostapd is responsible for handling any action |
| 2969 | * frames that we didn't handle, including returning unknown |
| 2970 | * ones. For all other modes we will return them to the sender, |
| 2971 | * setting the 0x80 bit in the action category, as required by |
| 2972 | * 802.11-2012 9.24.4. |
| 2973 | * Newer versions of hostapd shall also use the management frame |
| 2974 | * registration mechanisms, but older ones still use cooked |
| 2975 | * monitor interfaces so push all frames there. |
| 2976 | */ |
| 2977 | if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && |
| 2978 | (sdata->vif.type == NL80211_IFTYPE_AP || |
| 2979 | sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) |
| 2980 | return RX_DROP_MONITOR; |
| 2981 | |
| 2982 | if (is_multicast_ether_addr(mgmt->da)) |
| 2983 | return RX_DROP_MONITOR; |
| 2984 | |
| 2985 | /* do not return rejected action frames */ |
| 2986 | if (mgmt->u.action.category & 0x80) |
| 2987 | return RX_DROP_UNUSABLE; |
| 2988 | |
| 2989 | nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, |
| 2990 | GFP_ATOMIC); |
| 2991 | if (nskb) { |
| 2992 | struct ieee80211_mgmt *nmgmt = (void *)nskb->data; |
| 2993 | |
| 2994 | nmgmt->u.action.category |= 0x80; |
| 2995 | memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); |
| 2996 | memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); |
| 2997 | |
| 2998 | memset(nskb->cb, 0, sizeof(nskb->cb)); |
| 2999 | |
| 3000 | if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { |
| 3001 | struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); |
| 3002 | |
| 3003 | info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | |
| 3004 | IEEE80211_TX_INTFL_OFFCHAN_TX_OK | |
| 3005 | IEEE80211_TX_CTL_NO_CCK_RATE; |
| 3006 | if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) |
| 3007 | info->hw_queue = |
| 3008 | local->hw.offchannel_tx_hw_queue; |
| 3009 | } |
| 3010 | |
| 3011 | __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, |
| 3012 | status->band); |
| 3013 | } |
| 3014 | dev_kfree_skb(rx->skb); |
| 3015 | return RX_QUEUED; |
| 3016 | } |
| 3017 | |
| 3018 | static ieee80211_rx_result debug_noinline |
| 3019 | ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) |
| 3020 | { |
| 3021 | struct ieee80211_sub_if_data *sdata = rx->sdata; |
| 3022 | struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; |
| 3023 | __le16 stype; |
| 3024 | |
| 3025 | stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); |
| 3026 | |
| 3027 | if (!ieee80211_vif_is_mesh(&sdata->vif) && |
| 3028 | sdata->vif.type != NL80211_IFTYPE_ADHOC && |
| 3029 | sdata->vif.type != NL80211_IFTYPE_OCB && |
| 3030 | sdata->vif.type != NL80211_IFTYPE_STATION) |
| 3031 | return RX_DROP_MONITOR; |
| 3032 | |
| 3033 | switch (stype) { |
| 3034 | case cpu_to_le16(IEEE80211_STYPE_AUTH): |
| 3035 | case cpu_to_le16(IEEE80211_STYPE_BEACON): |
| 3036 | case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): |
| 3037 | /* process for all: mesh, mlme, ibss */ |
| 3038 | break; |
| 3039 | case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): |
| 3040 | case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): |
| 3041 | case cpu_to_le16(IEEE80211_STYPE_DEAUTH): |
| 3042 | case cpu_to_le16(IEEE80211_STYPE_DISASSOC): |
| 3043 | if (is_multicast_ether_addr(mgmt->da) && |
| 3044 | !is_broadcast_ether_addr(mgmt->da)) |
| 3045 | return RX_DROP_MONITOR; |
| 3046 | |
| 3047 | /* process only for station */ |
| 3048 | if (sdata->vif.type != NL80211_IFTYPE_STATION) |
| 3049 | return RX_DROP_MONITOR; |
| 3050 | break; |
| 3051 | case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): |
| 3052 | /* process only for ibss and mesh */ |
| 3053 | if (sdata->vif.type != NL80211_IFTYPE_ADHOC && |
| 3054 | sdata->vif.type != NL80211_IFTYPE_MESH_POINT) |
| 3055 | return RX_DROP_MONITOR; |
| 3056 | break; |
| 3057 | default: |
| 3058 | return RX_DROP_MONITOR; |
| 3059 | } |
| 3060 | |
| 3061 | /* queue up frame and kick off work to process it */ |
| 3062 | rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; |
| 3063 | skb_queue_tail(&sdata->skb_queue, rx->skb); |
| 3064 | ieee80211_queue_work(&rx->local->hw, &sdata->work); |
| 3065 | if (rx->sta) |
| 3066 | rx->sta->rx_stats.packets++; |
| 3067 | |
| 3068 | return RX_QUEUED; |
| 3069 | } |
| 3070 | |
| 3071 | static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, |
| 3072 | struct ieee80211_rate *rate) |
| 3073 | { |
| 3074 | struct ieee80211_sub_if_data *sdata; |
| 3075 | struct ieee80211_local *local = rx->local; |
| 3076 | struct sk_buff *skb = rx->skb, *skb2; |
| 3077 | struct net_device *prev_dev = NULL; |
| 3078 | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); |
| 3079 | int needed_headroom; |
| 3080 | |
| 3081 | /* |
| 3082 | * If cooked monitor has been processed already, then |
| 3083 | * don't do it again. If not, set the flag. |
| 3084 | */ |
| 3085 | if (rx->flags & IEEE80211_RX_CMNTR) |
| 3086 | goto out_free_skb; |
| 3087 | rx->flags |= IEEE80211_RX_CMNTR; |
| 3088 | |
| 3089 | /* If there are no cooked monitor interfaces, just free the SKB */ |
| 3090 | if (!local->cooked_mntrs) |
| 3091 | goto out_free_skb; |
| 3092 | |
| 3093 | /* vendor data is long removed here */ |
| 3094 | status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; |
| 3095 | /* room for the radiotap header based on driver features */ |
| 3096 | needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); |
| 3097 | |
| 3098 | if (skb_headroom(skb) < needed_headroom && |
| 3099 | pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) |
| 3100 | goto out_free_skb; |
| 3101 | |
| 3102 | /* prepend radiotap information */ |
| 3103 | ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, |
| 3104 | false); |
| 3105 | |
| 3106 | skb_set_mac_header(skb, 0); |
| 3107 | skb->ip_summed = CHECKSUM_UNNECESSARY; |
| 3108 | skb->pkt_type = PACKET_OTHERHOST; |
| 3109 | skb->protocol = htons(ETH_P_802_2); |
| 3110 | |
| 3111 | list_for_each_entry_rcu(sdata, &local->interfaces, list) { |
| 3112 | if (!ieee80211_sdata_running(sdata)) |
| 3113 | continue; |
| 3114 | |
| 3115 | if (sdata->vif.type != NL80211_IFTYPE_MONITOR || |
| 3116 | !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)) |
| 3117 | continue; |
| 3118 | |
| 3119 | if (prev_dev) { |
| 3120 | skb2 = skb_clone(skb, GFP_ATOMIC); |
| 3121 | if (skb2) { |
| 3122 | skb2->dev = prev_dev; |
| 3123 | netif_receive_skb(skb2); |
| 3124 | } |
| 3125 | } |
| 3126 | |
| 3127 | prev_dev = sdata->dev; |
| 3128 | ieee80211_rx_stats(sdata->dev, skb->len); |
| 3129 | } |
| 3130 | |
| 3131 | if (prev_dev) { |
| 3132 | skb->dev = prev_dev; |
| 3133 | netif_receive_skb(skb); |
| 3134 | return; |
| 3135 | } |
| 3136 | |
| 3137 | out_free_skb: |
| 3138 | dev_kfree_skb(skb); |
| 3139 | } |
| 3140 | |
| 3141 | static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, |
| 3142 | ieee80211_rx_result res) |
| 3143 | { |
| 3144 | switch (res) { |
| 3145 | case RX_DROP_MONITOR: |
| 3146 | I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); |
| 3147 | if (rx->sta) |
| 3148 | rx->sta->rx_stats.dropped++; |
| 3149 | /* fall through */ |
| 3150 | case RX_CONTINUE: { |
| 3151 | struct ieee80211_rate *rate = NULL; |
| 3152 | struct ieee80211_supported_band *sband; |
| 3153 | struct ieee80211_rx_status *status; |
| 3154 | |
| 3155 | status = IEEE80211_SKB_RXCB((rx->skb)); |
| 3156 | |
| 3157 | sband = rx->local->hw.wiphy->bands[status->band]; |
| 3158 | if (!(status->flag & RX_FLAG_HT) && |
| 3159 | !(status->flag & RX_FLAG_VHT)) |
| 3160 | rate = &sband->bitrates[status->rate_idx]; |
| 3161 | |
| 3162 | ieee80211_rx_cooked_monitor(rx, rate); |
| 3163 | break; |
| 3164 | } |
| 3165 | case RX_DROP_UNUSABLE: |
| 3166 | I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); |
| 3167 | if (rx->sta) |
| 3168 | rx->sta->rx_stats.dropped++; |
| 3169 | dev_kfree_skb(rx->skb); |
| 3170 | break; |
| 3171 | case RX_QUEUED: |
| 3172 | I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); |
| 3173 | break; |
| 3174 | } |
| 3175 | } |
| 3176 | |
| 3177 | static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, |
| 3178 | struct sk_buff_head *frames) |
| 3179 | { |
| 3180 | ieee80211_rx_result res = RX_DROP_MONITOR; |
| 3181 | struct sk_buff *skb; |
| 3182 | |
| 3183 | #define CALL_RXH(rxh) \ |
| 3184 | do { \ |
| 3185 | res = rxh(rx); \ |
| 3186 | if (res != RX_CONTINUE) \ |
| 3187 | goto rxh_next; \ |
| 3188 | } while (0); |
| 3189 | |
| 3190 | /* Lock here to avoid hitting all of the data used in the RX |
| 3191 | * path (e.g. key data, station data, ...) concurrently when |
| 3192 | * a frame is released from the reorder buffer due to timeout |
| 3193 | * from the timer, potentially concurrently with RX from the |
| 3194 | * driver. |
| 3195 | */ |
| 3196 | spin_lock_bh(&rx->local->rx_path_lock); |
| 3197 | |
| 3198 | while ((skb = __skb_dequeue(frames))) { |
| 3199 | /* |
| 3200 | * all the other fields are valid across frames |
| 3201 | * that belong to an aMPDU since they are on the |
| 3202 | * same TID from the same station |
| 3203 | */ |
| 3204 | rx->skb = skb; |
| 3205 | |
| 3206 | CALL_RXH(ieee80211_rx_h_check_more_data) |
| 3207 | CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll) |
| 3208 | CALL_RXH(ieee80211_rx_h_sta_process) |
| 3209 | CALL_RXH(ieee80211_rx_h_decrypt) |
| 3210 | CALL_RXH(ieee80211_rx_h_defragment) |
| 3211 | CALL_RXH(ieee80211_rx_h_michael_mic_verify) |
| 3212 | /* must be after MMIC verify so header is counted in MPDU mic */ |
| 3213 | #ifdef CONFIG_MAC80211_MESH |
| 3214 | if (ieee80211_vif_is_mesh(&rx->sdata->vif)) |
| 3215 | CALL_RXH(ieee80211_rx_h_mesh_fwding); |
| 3216 | #endif |
| 3217 | CALL_RXH(ieee80211_rx_h_amsdu) |
| 3218 | CALL_RXH(ieee80211_rx_h_data) |
| 3219 | |
| 3220 | /* special treatment -- needs the queue */ |
| 3221 | res = ieee80211_rx_h_ctrl(rx, frames); |
| 3222 | if (res != RX_CONTINUE) |
| 3223 | goto rxh_next; |
| 3224 | |
| 3225 | CALL_RXH(ieee80211_rx_h_mgmt_check) |
| 3226 | CALL_RXH(ieee80211_rx_h_action) |
| 3227 | CALL_RXH(ieee80211_rx_h_userspace_mgmt) |
| 3228 | CALL_RXH(ieee80211_rx_h_action_return) |
| 3229 | CALL_RXH(ieee80211_rx_h_mgmt) |
| 3230 | |
| 3231 | rxh_next: |
| 3232 | ieee80211_rx_handlers_result(rx, res); |
| 3233 | |
| 3234 | #undef CALL_RXH |
| 3235 | } |
| 3236 | |
| 3237 | spin_unlock_bh(&rx->local->rx_path_lock); |
| 3238 | } |
| 3239 | |
| 3240 | static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) |
| 3241 | { |
| 3242 | struct sk_buff_head reorder_release; |
| 3243 | ieee80211_rx_result res = RX_DROP_MONITOR; |
| 3244 | |
| 3245 | __skb_queue_head_init(&reorder_release); |
| 3246 | |
| 3247 | #define CALL_RXH(rxh) \ |
| 3248 | do { \ |
| 3249 | res = rxh(rx); \ |
| 3250 | if (res != RX_CONTINUE) \ |
| 3251 | goto rxh_next; \ |
| 3252 | } while (0); |
| 3253 | |
| 3254 | CALL_RXH(ieee80211_rx_h_check_dup) |
| 3255 | CALL_RXH(ieee80211_rx_h_check) |
| 3256 | |
| 3257 | ieee80211_rx_reorder_ampdu(rx, &reorder_release); |
| 3258 | |
| 3259 | ieee80211_rx_handlers(rx, &reorder_release); |
| 3260 | return; |
| 3261 | |
| 3262 | rxh_next: |
| 3263 | ieee80211_rx_handlers_result(rx, res); |
| 3264 | |
| 3265 | #undef CALL_RXH |
| 3266 | } |
| 3267 | |
| 3268 | /* |
| 3269 | * This function makes calls into the RX path, therefore |
| 3270 | * it has to be invoked under RCU read lock. |
| 3271 | */ |
| 3272 | void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) |
| 3273 | { |
| 3274 | struct sk_buff_head frames; |
| 3275 | struct ieee80211_rx_data rx = { |
| 3276 | .sta = sta, |
| 3277 | .sdata = sta->sdata, |
| 3278 | .local = sta->local, |
| 3279 | /* This is OK -- must be QoS data frame */ |
| 3280 | .security_idx = tid, |
| 3281 | .seqno_idx = tid, |
| 3282 | .napi = NULL, /* must be NULL to not have races */ |
| 3283 | }; |
| 3284 | struct tid_ampdu_rx *tid_agg_rx; |
| 3285 | |
| 3286 | tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); |
| 3287 | if (!tid_agg_rx) |
| 3288 | return; |
| 3289 | |
| 3290 | __skb_queue_head_init(&frames); |
| 3291 | |
| 3292 | spin_lock(&tid_agg_rx->reorder_lock); |
| 3293 | ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); |
| 3294 | spin_unlock(&tid_agg_rx->reorder_lock); |
| 3295 | |
| 3296 | if (!skb_queue_empty(&frames)) { |
| 3297 | struct ieee80211_event event = { |
| 3298 | .type = BA_FRAME_TIMEOUT, |
| 3299 | .u.ba.tid = tid, |
| 3300 | .u.ba.sta = &sta->sta, |
| 3301 | }; |
| 3302 | drv_event_callback(rx.local, rx.sdata, &event); |
| 3303 | } |
| 3304 | |
| 3305 | ieee80211_rx_handlers(&rx, &frames); |
| 3306 | } |
| 3307 | |
| 3308 | /* main receive path */ |
| 3309 | |
| 3310 | static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) |
| 3311 | { |
| 3312 | struct ieee80211_sub_if_data *sdata = rx->sdata; |
| 3313 | struct sk_buff *skb = rx->skb; |
| 3314 | struct ieee80211_hdr *hdr = (void *)skb->data; |
| 3315 | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); |
| 3316 | u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); |
| 3317 | int multicast = is_multicast_ether_addr(hdr->addr1); |
| 3318 | |
| 3319 | switch (sdata->vif.type) { |
| 3320 | case NL80211_IFTYPE_STATION: |
| 3321 | if (!bssid && !sdata->u.mgd.use_4addr) |
| 3322 | return false; |
| 3323 | if (multicast) |
| 3324 | return true; |
| 3325 | return ether_addr_equal(sdata->vif.addr, hdr->addr1); |
| 3326 | case NL80211_IFTYPE_ADHOC: |
| 3327 | if (!bssid) |
| 3328 | return false; |
| 3329 | if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || |
| 3330 | ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2)) |
| 3331 | return false; |
| 3332 | if (ieee80211_is_beacon(hdr->frame_control)) |
| 3333 | return true; |
| 3334 | if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) |
| 3335 | return false; |
| 3336 | if (!multicast && |
| 3337 | !ether_addr_equal(sdata->vif.addr, hdr->addr1)) |
| 3338 | return false; |
| 3339 | if (!rx->sta) { |
| 3340 | int rate_idx; |
| 3341 | if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) |
| 3342 | rate_idx = 0; /* TODO: HT/VHT rates */ |
| 3343 | else |
| 3344 | rate_idx = status->rate_idx; |
| 3345 | ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, |
| 3346 | BIT(rate_idx)); |
| 3347 | } |
| 3348 | return true; |
| 3349 | case NL80211_IFTYPE_OCB: |
| 3350 | if (!bssid) |
| 3351 | return false; |
| 3352 | if (!ieee80211_is_data_present(hdr->frame_control)) |
| 3353 | return false; |
| 3354 | if (!is_broadcast_ether_addr(bssid)) |
| 3355 | return false; |
| 3356 | if (!multicast && |
| 3357 | !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) |
| 3358 | return false; |
| 3359 | if (!rx->sta) { |
| 3360 | int rate_idx; |
| 3361 | if (status->flag & RX_FLAG_HT) |
| 3362 | rate_idx = 0; /* TODO: HT rates */ |
| 3363 | else |
| 3364 | rate_idx = status->rate_idx; |
| 3365 | ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, |
| 3366 | BIT(rate_idx)); |
| 3367 | } |
| 3368 | return true; |
| 3369 | case NL80211_IFTYPE_MESH_POINT: |
| 3370 | if (multicast) |
| 3371 | return true; |
| 3372 | return ether_addr_equal(sdata->vif.addr, hdr->addr1); |
| 3373 | case NL80211_IFTYPE_AP_VLAN: |
| 3374 | case NL80211_IFTYPE_AP: |
| 3375 | if (!bssid) |
| 3376 | return ether_addr_equal(sdata->vif.addr, hdr->addr1); |
| 3377 | |
| 3378 | if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { |
| 3379 | /* |
| 3380 | * Accept public action frames even when the |
| 3381 | * BSSID doesn't match, this is used for P2P |
| 3382 | * and location updates. Note that mac80211 |
| 3383 | * itself never looks at these frames. |
| 3384 | */ |
| 3385 | if (!multicast && |
| 3386 | !ether_addr_equal(sdata->vif.addr, hdr->addr1)) |
| 3387 | return false; |
| 3388 | if (ieee80211_is_public_action(hdr, skb->len)) |
| 3389 | return true; |
| 3390 | return ieee80211_is_beacon(hdr->frame_control); |
| 3391 | } |
| 3392 | |
| 3393 | if (!ieee80211_has_tods(hdr->frame_control)) { |
| 3394 | /* ignore data frames to TDLS-peers */ |
| 3395 | if (ieee80211_is_data(hdr->frame_control)) |
| 3396 | return false; |
| 3397 | /* ignore action frames to TDLS-peers */ |
| 3398 | if (ieee80211_is_action(hdr->frame_control) && |
| 3399 | !is_broadcast_ether_addr(bssid) && |
| 3400 | !ether_addr_equal(bssid, hdr->addr1)) |
| 3401 | return false; |
| 3402 | } |
| 3403 | |
| 3404 | /* |
| 3405 | * 802.11-2016 Table 9-26 says that for data frames, A1 must be |
| 3406 | * the BSSID - we've checked that already but may have accepted |
| 3407 | * the wildcard (ff:ff:ff:ff:ff:ff). |
| 3408 | * |
| 3409 | * It also says: |
| 3410 | * The BSSID of the Data frame is determined as follows: |
| 3411 | * a) If the STA is contained within an AP or is associated |
| 3412 | * with an AP, the BSSID is the address currently in use |
| 3413 | * by the STA contained in the AP. |
| 3414 | * |
| 3415 | * So we should not accept data frames with an address that's |
| 3416 | * multicast. |
| 3417 | * |
| 3418 | * Accepting it also opens a security problem because stations |
| 3419 | * could encrypt it with the GTK and inject traffic that way. |
| 3420 | */ |
| 3421 | if (ieee80211_is_data(hdr->frame_control) && multicast) |
| 3422 | return false; |
| 3423 | |
| 3424 | return true; |
| 3425 | case NL80211_IFTYPE_WDS: |
| 3426 | if (bssid || !ieee80211_is_data(hdr->frame_control)) |
| 3427 | return false; |
| 3428 | return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2); |
| 3429 | case NL80211_IFTYPE_P2P_DEVICE: |
| 3430 | return ieee80211_is_public_action(hdr, skb->len) || |
| 3431 | ieee80211_is_probe_req(hdr->frame_control) || |
| 3432 | ieee80211_is_probe_resp(hdr->frame_control) || |
| 3433 | ieee80211_is_beacon(hdr->frame_control); |
| 3434 | default: |
| 3435 | break; |
| 3436 | } |
| 3437 | |
| 3438 | WARN_ON_ONCE(1); |
| 3439 | return false; |
| 3440 | } |
| 3441 | |
| 3442 | /* |
| 3443 | * This function returns whether or not the SKB |
| 3444 | * was destined for RX processing or not, which, |
| 3445 | * if consume is true, is equivalent to whether |
| 3446 | * or not the skb was consumed. |
| 3447 | */ |
| 3448 | static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, |
| 3449 | struct sk_buff *skb, bool consume) |
| 3450 | { |
| 3451 | struct ieee80211_local *local = rx->local; |
| 3452 | struct ieee80211_sub_if_data *sdata = rx->sdata; |
| 3453 | |
| 3454 | rx->skb = skb; |
| 3455 | |
| 3456 | if (!ieee80211_accept_frame(rx)) |
| 3457 | return false; |
| 3458 | |
| 3459 | if (!consume) { |
| 3460 | skb = skb_copy(skb, GFP_ATOMIC); |
| 3461 | if (!skb) { |
| 3462 | if (net_ratelimit()) |
| 3463 | wiphy_debug(local->hw.wiphy, |
| 3464 | "failed to copy skb for %s\n", |
| 3465 | sdata->name); |
| 3466 | return true; |
| 3467 | } |
| 3468 | |
| 3469 | rx->skb = skb; |
| 3470 | } |
| 3471 | |
| 3472 | ieee80211_invoke_rx_handlers(rx); |
| 3473 | return true; |
| 3474 | } |
| 3475 | |
| 3476 | /* |
| 3477 | * This is the actual Rx frames handler. as it belongs to Rx path it must |
| 3478 | * be called with rcu_read_lock protection. |
| 3479 | */ |
| 3480 | static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, |
| 3481 | struct sk_buff *skb, |
| 3482 | struct napi_struct *napi) |
| 3483 | { |
| 3484 | struct ieee80211_local *local = hw_to_local(hw); |
| 3485 | struct ieee80211_sub_if_data *sdata; |
| 3486 | struct ieee80211_hdr *hdr; |
| 3487 | __le16 fc; |
| 3488 | struct ieee80211_rx_data rx; |
| 3489 | struct ieee80211_sub_if_data *prev; |
| 3490 | struct sta_info *sta, *prev_sta; |
| 3491 | struct rhash_head *tmp; |
| 3492 | int err = 0; |
| 3493 | |
| 3494 | fc = ((struct ieee80211_hdr *)skb->data)->frame_control; |
| 3495 | memset(&rx, 0, sizeof(rx)); |
| 3496 | rx.skb = skb; |
| 3497 | rx.local = local; |
| 3498 | rx.napi = napi; |
| 3499 | |
| 3500 | if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) |
| 3501 | I802_DEBUG_INC(local->dot11ReceivedFragmentCount); |
| 3502 | |
| 3503 | if (ieee80211_is_mgmt(fc)) { |
| 3504 | /* drop frame if too short for header */ |
| 3505 | if (skb->len < ieee80211_hdrlen(fc)) |
| 3506 | err = -ENOBUFS; |
| 3507 | else |
| 3508 | err = skb_linearize(skb); |
| 3509 | } else { |
| 3510 | err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); |
| 3511 | } |
| 3512 | |
| 3513 | if (err) { |
| 3514 | dev_kfree_skb(skb); |
| 3515 | return; |
| 3516 | } |
| 3517 | |
| 3518 | hdr = (struct ieee80211_hdr *)skb->data; |
| 3519 | ieee80211_parse_qos(&rx); |
| 3520 | ieee80211_verify_alignment(&rx); |
| 3521 | |
| 3522 | if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || |
| 3523 | ieee80211_is_beacon(hdr->frame_control))) |
| 3524 | ieee80211_scan_rx(local, skb); |
| 3525 | |
| 3526 | if (ieee80211_is_data(fc)) { |
| 3527 | const struct bucket_table *tbl; |
| 3528 | |
| 3529 | prev_sta = NULL; |
| 3530 | |
| 3531 | tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash); |
| 3532 | |
| 3533 | for_each_sta_info(local, tbl, hdr->addr2, sta, tmp) { |
| 3534 | if (!prev_sta) { |
| 3535 | prev_sta = sta; |
| 3536 | continue; |
| 3537 | } |
| 3538 | |
| 3539 | rx.sta = prev_sta; |
| 3540 | rx.sdata = prev_sta->sdata; |
| 3541 | ieee80211_prepare_and_rx_handle(&rx, skb, false); |
| 3542 | |
| 3543 | prev_sta = sta; |
| 3544 | } |
| 3545 | |
| 3546 | if (prev_sta) { |
| 3547 | rx.sta = prev_sta; |
| 3548 | rx.sdata = prev_sta->sdata; |
| 3549 | |
| 3550 | if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) |
| 3551 | return; |
| 3552 | goto out; |
| 3553 | } |
| 3554 | } |
| 3555 | |
| 3556 | prev = NULL; |
| 3557 | |
| 3558 | list_for_each_entry_rcu(sdata, &local->interfaces, list) { |
| 3559 | if (!ieee80211_sdata_running(sdata)) |
| 3560 | continue; |
| 3561 | |
| 3562 | if (sdata->vif.type == NL80211_IFTYPE_MONITOR || |
| 3563 | sdata->vif.type == NL80211_IFTYPE_AP_VLAN) |
| 3564 | continue; |
| 3565 | |
| 3566 | /* |
| 3567 | * frame is destined for this interface, but if it's |
| 3568 | * not also for the previous one we handle that after |
| 3569 | * the loop to avoid copying the SKB once too much |
| 3570 | */ |
| 3571 | |
| 3572 | if (!prev) { |
| 3573 | prev = sdata; |
| 3574 | continue; |
| 3575 | } |
| 3576 | |
| 3577 | rx.sta = sta_info_get_bss(prev, hdr->addr2); |
| 3578 | rx.sdata = prev; |
| 3579 | ieee80211_prepare_and_rx_handle(&rx, skb, false); |
| 3580 | |
| 3581 | prev = sdata; |
| 3582 | } |
| 3583 | |
| 3584 | if (prev) { |
| 3585 | rx.sta = sta_info_get_bss(prev, hdr->addr2); |
| 3586 | rx.sdata = prev; |
| 3587 | |
| 3588 | if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) |
| 3589 | return; |
| 3590 | } |
| 3591 | |
| 3592 | out: |
| 3593 | dev_kfree_skb(skb); |
| 3594 | } |
| 3595 | |
| 3596 | /* |
| 3597 | * This is the receive path handler. It is called by a low level driver when an |
| 3598 | * 802.11 MPDU is received from the hardware. |
| 3599 | */ |
| 3600 | void ieee80211_rx_napi(struct ieee80211_hw *hw, struct sk_buff *skb, |
| 3601 | struct napi_struct *napi) |
| 3602 | { |
| 3603 | struct ieee80211_local *local = hw_to_local(hw); |
| 3604 | struct ieee80211_rate *rate = NULL; |
| 3605 | struct ieee80211_supported_band *sband; |
| 3606 | struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); |
| 3607 | |
| 3608 | WARN_ON_ONCE(softirq_count() == 0); |
| 3609 | |
| 3610 | if (WARN_ON(status->band >= IEEE80211_NUM_BANDS)) |
| 3611 | goto drop; |
| 3612 | |
| 3613 | sband = local->hw.wiphy->bands[status->band]; |
| 3614 | if (WARN_ON(!sband)) |
| 3615 | goto drop; |
| 3616 | |
| 3617 | /* |
| 3618 | * If we're suspending, it is possible although not too likely |
| 3619 | * that we'd be receiving frames after having already partially |
| 3620 | * quiesced the stack. We can't process such frames then since |
| 3621 | * that might, for example, cause stations to be added or other |
| 3622 | * driver callbacks be invoked. |
| 3623 | */ |
| 3624 | if (unlikely(local->quiescing || local->suspended)) |
| 3625 | goto drop; |
| 3626 | |
| 3627 | /* We might be during a HW reconfig, prevent Rx for the same reason */ |
| 3628 | if (unlikely(local->in_reconfig)) |
| 3629 | goto drop; |
| 3630 | |
| 3631 | /* |
| 3632 | * The same happens when we're not even started, |
| 3633 | * but that's worth a warning. |
| 3634 | */ |
| 3635 | if (WARN_ON(!local->started)) |
| 3636 | goto drop; |
| 3637 | |
| 3638 | if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { |
| 3639 | /* |
| 3640 | * Validate the rate, unless a PLCP error means that |
| 3641 | * we probably can't have a valid rate here anyway. |
| 3642 | */ |
| 3643 | |
| 3644 | if (status->flag & RX_FLAG_HT) { |
| 3645 | /* |
| 3646 | * rate_idx is MCS index, which can be [0-76] |
| 3647 | * as documented on: |
| 3648 | * |
| 3649 | * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n |
| 3650 | * |
| 3651 | * Anything else would be some sort of driver or |
| 3652 | * hardware error. The driver should catch hardware |
| 3653 | * errors. |
| 3654 | */ |
| 3655 | if (WARN(status->rate_idx > 76, |
| 3656 | "Rate marked as an HT rate but passed " |
| 3657 | "status->rate_idx is not " |
| 3658 | "an MCS index [0-76]: %d (0x%02x)\n", |
| 3659 | status->rate_idx, |
| 3660 | status->rate_idx)) |
| 3661 | goto drop; |
| 3662 | } else if (status->flag & RX_FLAG_VHT) { |
| 3663 | if (WARN_ONCE(status->rate_idx > 9 || |
| 3664 | !status->vht_nss || |
| 3665 | status->vht_nss > 8, |
| 3666 | "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", |
| 3667 | status->rate_idx, status->vht_nss)) |
| 3668 | goto drop; |
| 3669 | } else { |
| 3670 | if (WARN_ON(status->rate_idx >= sband->n_bitrates)) |
| 3671 | goto drop; |
| 3672 | rate = &sband->bitrates[status->rate_idx]; |
| 3673 | } |
| 3674 | } |
| 3675 | |
| 3676 | status->rx_flags = 0; |
| 3677 | |
| 3678 | /* |
| 3679 | * key references and virtual interfaces are protected using RCU |
| 3680 | * and this requires that we are in a read-side RCU section during |
| 3681 | * receive processing |
| 3682 | */ |
| 3683 | rcu_read_lock(); |
| 3684 | |
| 3685 | /* |
| 3686 | * Frames with failed FCS/PLCP checksum are not returned, |
| 3687 | * all other frames are returned without radiotap header |
| 3688 | * if it was previously present. |
| 3689 | * Also, frames with less than 16 bytes are dropped. |
| 3690 | */ |
| 3691 | skb = ieee80211_rx_monitor(local, skb, rate); |
| 3692 | if (!skb) { |
| 3693 | rcu_read_unlock(); |
| 3694 | return; |
| 3695 | } |
| 3696 | |
| 3697 | ieee80211_tpt_led_trig_rx(local, |
| 3698 | ((struct ieee80211_hdr *)skb->data)->frame_control, |
| 3699 | skb->len); |
| 3700 | __ieee80211_rx_handle_packet(hw, skb, napi); |
| 3701 | |
| 3702 | rcu_read_unlock(); |
| 3703 | |
| 3704 | return; |
| 3705 | drop: |
| 3706 | kfree_skb(skb); |
| 3707 | } |
| 3708 | EXPORT_SYMBOL(ieee80211_rx_napi); |
| 3709 | |
| 3710 | /* This is a version of the rx handler that can be called from hard irq |
| 3711 | * context. Post the skb on the queue and schedule the tasklet */ |
| 3712 | void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) |
| 3713 | { |
| 3714 | struct ieee80211_local *local = hw_to_local(hw); |
| 3715 | |
| 3716 | BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); |
| 3717 | |
| 3718 | skb->pkt_type = IEEE80211_RX_MSG; |
| 3719 | skb_queue_tail(&local->skb_queue, skb); |
| 3720 | tasklet_schedule(&local->tasklet); |
| 3721 | } |
| 3722 | EXPORT_SYMBOL(ieee80211_rx_irqsafe); |