Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2002-2004, Instant802 Networks, Inc. |
| 3 | * Copyright 2005, Devicescape Software, Inc. |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or modify |
| 6 | * it under the terms of the GNU General Public License version 2 as |
| 7 | * published by the Free Software Foundation. |
| 8 | */ |
| 9 | #include <linux/kernel.h> |
| 10 | #include <linux/bitops.h> |
| 11 | #include <linux/types.h> |
| 12 | #include <linux/netdevice.h> |
| 13 | #include <linux/export.h> |
| 14 | #include <asm/unaligned.h> |
| 15 | |
| 16 | #include <net/mac80211.h> |
| 17 | #include "driver-ops.h" |
| 18 | #include "key.h" |
| 19 | #include "tkip.h" |
| 20 | #include "wep.h" |
| 21 | |
| 22 | #define PHASE1_LOOP_COUNT 8 |
| 23 | |
| 24 | /* |
| 25 | * 2-byte by 2-byte subset of the full AES S-box table; second part of this |
| 26 | * table is identical to first part but byte-swapped |
| 27 | */ |
| 28 | static const u16 tkip_sbox[256] = |
| 29 | { |
| 30 | 0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154, |
| 31 | 0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A, |
| 32 | 0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B, |
| 33 | 0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B, |
| 34 | 0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F, |
| 35 | 0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F, |
| 36 | 0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5, |
| 37 | 0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F, |
| 38 | 0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB, |
| 39 | 0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397, |
| 40 | 0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED, |
| 41 | 0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A, |
| 42 | 0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194, |
| 43 | 0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3, |
| 44 | 0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104, |
| 45 | 0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D, |
| 46 | 0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39, |
| 47 | 0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695, |
| 48 | 0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83, |
| 49 | 0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76, |
| 50 | 0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4, |
| 51 | 0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B, |
| 52 | 0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0, |
| 53 | 0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018, |
| 54 | 0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751, |
| 55 | 0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85, |
| 56 | 0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12, |
| 57 | 0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9, |
| 58 | 0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7, |
| 59 | 0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A, |
| 60 | 0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8, |
| 61 | 0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A, |
| 62 | }; |
| 63 | |
| 64 | static u16 tkipS(u16 val) |
| 65 | { |
| 66 | return tkip_sbox[val & 0xff] ^ swab16(tkip_sbox[val >> 8]); |
| 67 | } |
| 68 | |
| 69 | static u8 *write_tkip_iv(u8 *pos, u16 iv16) |
| 70 | { |
| 71 | *pos++ = iv16 >> 8; |
| 72 | *pos++ = ((iv16 >> 8) | 0x20) & 0x7f; |
| 73 | *pos++ = iv16 & 0xFF; |
| 74 | return pos; |
| 75 | } |
| 76 | |
| 77 | /* |
| 78 | * P1K := Phase1(TA, TK, TSC) |
| 79 | * TA = transmitter address (48 bits) |
| 80 | * TK = dot11DefaultKeyValue or dot11KeyMappingValue (128 bits) |
| 81 | * TSC = TKIP sequence counter (48 bits, only 32 msb bits used) |
| 82 | * P1K: 80 bits |
| 83 | */ |
| 84 | static void tkip_mixing_phase1(const u8 *tk, struct tkip_ctx *ctx, |
| 85 | const u8 *ta, u32 tsc_IV32) |
| 86 | { |
| 87 | int i, j; |
| 88 | u16 *p1k = ctx->p1k; |
| 89 | |
| 90 | p1k[0] = tsc_IV32 & 0xFFFF; |
| 91 | p1k[1] = tsc_IV32 >> 16; |
| 92 | p1k[2] = get_unaligned_le16(ta + 0); |
| 93 | p1k[3] = get_unaligned_le16(ta + 2); |
| 94 | p1k[4] = get_unaligned_le16(ta + 4); |
| 95 | |
| 96 | for (i = 0; i < PHASE1_LOOP_COUNT; i++) { |
| 97 | j = 2 * (i & 1); |
| 98 | p1k[0] += tkipS(p1k[4] ^ get_unaligned_le16(tk + 0 + j)); |
| 99 | p1k[1] += tkipS(p1k[0] ^ get_unaligned_le16(tk + 4 + j)); |
| 100 | p1k[2] += tkipS(p1k[1] ^ get_unaligned_le16(tk + 8 + j)); |
| 101 | p1k[3] += tkipS(p1k[2] ^ get_unaligned_le16(tk + 12 + j)); |
| 102 | p1k[4] += tkipS(p1k[3] ^ get_unaligned_le16(tk + 0 + j)) + i; |
| 103 | } |
| 104 | ctx->state = TKIP_STATE_PHASE1_DONE; |
| 105 | ctx->p1k_iv32 = tsc_IV32; |
| 106 | } |
| 107 | |
| 108 | static void tkip_mixing_phase2(const u8 *tk, struct tkip_ctx *ctx, |
| 109 | u16 tsc_IV16, u8 *rc4key) |
| 110 | { |
| 111 | u16 ppk[6]; |
| 112 | const u16 *p1k = ctx->p1k; |
| 113 | int i; |
| 114 | |
| 115 | ppk[0] = p1k[0]; |
| 116 | ppk[1] = p1k[1]; |
| 117 | ppk[2] = p1k[2]; |
| 118 | ppk[3] = p1k[3]; |
| 119 | ppk[4] = p1k[4]; |
| 120 | ppk[5] = p1k[4] + tsc_IV16; |
| 121 | |
| 122 | ppk[0] += tkipS(ppk[5] ^ get_unaligned_le16(tk + 0)); |
| 123 | ppk[1] += tkipS(ppk[0] ^ get_unaligned_le16(tk + 2)); |
| 124 | ppk[2] += tkipS(ppk[1] ^ get_unaligned_le16(tk + 4)); |
| 125 | ppk[3] += tkipS(ppk[2] ^ get_unaligned_le16(tk + 6)); |
| 126 | ppk[4] += tkipS(ppk[3] ^ get_unaligned_le16(tk + 8)); |
| 127 | ppk[5] += tkipS(ppk[4] ^ get_unaligned_le16(tk + 10)); |
| 128 | ppk[0] += ror16(ppk[5] ^ get_unaligned_le16(tk + 12), 1); |
| 129 | ppk[1] += ror16(ppk[0] ^ get_unaligned_le16(tk + 14), 1); |
| 130 | ppk[2] += ror16(ppk[1], 1); |
| 131 | ppk[3] += ror16(ppk[2], 1); |
| 132 | ppk[4] += ror16(ppk[3], 1); |
| 133 | ppk[5] += ror16(ppk[4], 1); |
| 134 | |
| 135 | rc4key = write_tkip_iv(rc4key, tsc_IV16); |
| 136 | *rc4key++ = ((ppk[5] ^ get_unaligned_le16(tk)) >> 1) & 0xFF; |
| 137 | |
| 138 | for (i = 0; i < 6; i++) |
| 139 | put_unaligned_le16(ppk[i], rc4key + 2 * i); |
| 140 | } |
| 141 | |
| 142 | /* Add TKIP IV and Ext. IV at @pos. @iv0, @iv1, and @iv2 are the first octets |
| 143 | * of the IV. Returns pointer to the octet following IVs (i.e., beginning of |
| 144 | * the packet payload). */ |
| 145 | u8 *ieee80211_tkip_add_iv(u8 *pos, struct ieee80211_key *key) |
| 146 | { |
| 147 | lockdep_assert_held(&key->u.tkip.txlock); |
| 148 | |
| 149 | pos = write_tkip_iv(pos, key->u.tkip.tx.iv16); |
| 150 | *pos++ = (key->conf.keyidx << 6) | (1 << 5) /* Ext IV */; |
| 151 | put_unaligned_le32(key->u.tkip.tx.iv32, pos); |
| 152 | return pos + 4; |
| 153 | } |
| 154 | |
| 155 | static void ieee80211_compute_tkip_p1k(struct ieee80211_key *key, u32 iv32) |
| 156 | { |
| 157 | struct ieee80211_sub_if_data *sdata = key->sdata; |
| 158 | struct tkip_ctx *ctx = &key->u.tkip.tx; |
| 159 | const u8 *tk = &key->conf.key[NL80211_TKIP_DATA_OFFSET_ENCR_KEY]; |
| 160 | |
| 161 | lockdep_assert_held(&key->u.tkip.txlock); |
| 162 | |
| 163 | /* |
| 164 | * Update the P1K when the IV32 is different from the value it |
| 165 | * had when we last computed it (or when not initialised yet). |
| 166 | * This might flip-flop back and forth if packets are processed |
| 167 | * out-of-order due to the different ACs, but then we have to |
| 168 | * just compute the P1K more often. |
| 169 | */ |
| 170 | if (ctx->p1k_iv32 != iv32 || ctx->state == TKIP_STATE_NOT_INIT) |
| 171 | tkip_mixing_phase1(tk, ctx, sdata->vif.addr, iv32); |
| 172 | } |
| 173 | |
| 174 | void ieee80211_get_tkip_p1k_iv(struct ieee80211_key_conf *keyconf, |
| 175 | u32 iv32, u16 *p1k) |
| 176 | { |
| 177 | struct ieee80211_key *key = (struct ieee80211_key *) |
| 178 | container_of(keyconf, struct ieee80211_key, conf); |
| 179 | struct tkip_ctx *ctx = &key->u.tkip.tx; |
| 180 | |
| 181 | spin_lock_bh(&key->u.tkip.txlock); |
| 182 | ieee80211_compute_tkip_p1k(key, iv32); |
| 183 | memcpy(p1k, ctx->p1k, sizeof(ctx->p1k)); |
| 184 | spin_unlock_bh(&key->u.tkip.txlock); |
| 185 | } |
| 186 | EXPORT_SYMBOL(ieee80211_get_tkip_p1k_iv); |
| 187 | |
| 188 | void ieee80211_get_tkip_rx_p1k(struct ieee80211_key_conf *keyconf, |
| 189 | const u8 *ta, u32 iv32, u16 *p1k) |
| 190 | { |
| 191 | const u8 *tk = &keyconf->key[NL80211_TKIP_DATA_OFFSET_ENCR_KEY]; |
| 192 | struct tkip_ctx ctx; |
| 193 | |
| 194 | tkip_mixing_phase1(tk, &ctx, ta, iv32); |
| 195 | memcpy(p1k, ctx.p1k, sizeof(ctx.p1k)); |
| 196 | } |
| 197 | EXPORT_SYMBOL(ieee80211_get_tkip_rx_p1k); |
| 198 | |
| 199 | void ieee80211_get_tkip_p2k(struct ieee80211_key_conf *keyconf, |
| 200 | struct sk_buff *skb, u8 *p2k) |
| 201 | { |
| 202 | struct ieee80211_key *key = (struct ieee80211_key *) |
| 203 | container_of(keyconf, struct ieee80211_key, conf); |
| 204 | const u8 *tk = &key->conf.key[NL80211_TKIP_DATA_OFFSET_ENCR_KEY]; |
| 205 | struct tkip_ctx *ctx = &key->u.tkip.tx; |
| 206 | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; |
| 207 | const u8 *data = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); |
| 208 | u32 iv32 = get_unaligned_le32(&data[4]); |
| 209 | u16 iv16 = data[2] | (data[0] << 8); |
| 210 | |
| 211 | spin_lock(&key->u.tkip.txlock); |
| 212 | ieee80211_compute_tkip_p1k(key, iv32); |
| 213 | tkip_mixing_phase2(tk, ctx, iv16, p2k); |
| 214 | spin_unlock(&key->u.tkip.txlock); |
| 215 | } |
| 216 | EXPORT_SYMBOL(ieee80211_get_tkip_p2k); |
| 217 | |
| 218 | /* |
| 219 | * Encrypt packet payload with TKIP using @key. @pos is a pointer to the |
| 220 | * beginning of the buffer containing payload. This payload must include |
| 221 | * the IV/Ext.IV and space for (taildroom) four octets for ICV. |
| 222 | * @payload_len is the length of payload (_not_ including IV/ICV length). |
| 223 | * @ta is the transmitter addresses. |
| 224 | */ |
| 225 | int ieee80211_tkip_encrypt_data(struct crypto_cipher *tfm, |
| 226 | struct ieee80211_key *key, |
| 227 | struct sk_buff *skb, |
| 228 | u8 *payload, size_t payload_len) |
| 229 | { |
| 230 | u8 rc4key[16]; |
| 231 | |
| 232 | ieee80211_get_tkip_p2k(&key->conf, skb, rc4key); |
| 233 | |
| 234 | return ieee80211_wep_encrypt_data(tfm, rc4key, 16, |
| 235 | payload, payload_len); |
| 236 | } |
| 237 | |
| 238 | /* Decrypt packet payload with TKIP using @key. @pos is a pointer to the |
| 239 | * beginning of the buffer containing IEEE 802.11 header payload, i.e., |
| 240 | * including IV, Ext. IV, real data, Michael MIC, ICV. @payload_len is the |
| 241 | * length of payload, including IV, Ext. IV, MIC, ICV. */ |
| 242 | int ieee80211_tkip_decrypt_data(struct crypto_cipher *tfm, |
| 243 | struct ieee80211_key *key, |
| 244 | u8 *payload, size_t payload_len, u8 *ta, |
| 245 | u8 *ra, int only_iv, int queue, |
| 246 | u32 *out_iv32, u16 *out_iv16) |
| 247 | { |
| 248 | u32 iv32; |
| 249 | u32 iv16; |
| 250 | u8 rc4key[16], keyid, *pos = payload; |
| 251 | int res; |
| 252 | const u8 *tk = &key->conf.key[NL80211_TKIP_DATA_OFFSET_ENCR_KEY]; |
| 253 | |
| 254 | if (payload_len < 12) |
| 255 | return -1; |
| 256 | |
| 257 | iv16 = (pos[0] << 8) | pos[2]; |
| 258 | keyid = pos[3]; |
| 259 | iv32 = get_unaligned_le32(pos + 4); |
| 260 | pos += 8; |
| 261 | |
| 262 | if (!(keyid & (1 << 5))) |
| 263 | return TKIP_DECRYPT_NO_EXT_IV; |
| 264 | |
| 265 | if ((keyid >> 6) != key->conf.keyidx) |
| 266 | return TKIP_DECRYPT_INVALID_KEYIDX; |
| 267 | |
| 268 | if (key->u.tkip.rx[queue].state != TKIP_STATE_NOT_INIT && |
| 269 | (iv32 < key->u.tkip.rx[queue].iv32 || |
| 270 | (iv32 == key->u.tkip.rx[queue].iv32 && |
| 271 | iv16 <= key->u.tkip.rx[queue].iv16))) |
| 272 | return TKIP_DECRYPT_REPLAY; |
| 273 | |
| 274 | if (only_iv) { |
| 275 | res = TKIP_DECRYPT_OK; |
| 276 | key->u.tkip.rx[queue].state = TKIP_STATE_PHASE1_HW_UPLOADED; |
| 277 | goto done; |
| 278 | } |
| 279 | |
| 280 | if (key->u.tkip.rx[queue].state == TKIP_STATE_NOT_INIT || |
| 281 | key->u.tkip.rx[queue].iv32 != iv32) { |
| 282 | /* IV16 wrapped around - perform TKIP phase 1 */ |
| 283 | tkip_mixing_phase1(tk, &key->u.tkip.rx[queue], ta, iv32); |
| 284 | } |
| 285 | if (key->local->ops->update_tkip_key && |
| 286 | key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE && |
| 287 | key->u.tkip.rx[queue].state != TKIP_STATE_PHASE1_HW_UPLOADED) { |
| 288 | struct ieee80211_sub_if_data *sdata = key->sdata; |
| 289 | |
| 290 | if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) |
| 291 | sdata = container_of(key->sdata->bss, |
| 292 | struct ieee80211_sub_if_data, u.ap); |
| 293 | drv_update_tkip_key(key->local, sdata, &key->conf, key->sta, |
| 294 | iv32, key->u.tkip.rx[queue].p1k); |
| 295 | key->u.tkip.rx[queue].state = TKIP_STATE_PHASE1_HW_UPLOADED; |
| 296 | } |
| 297 | |
| 298 | tkip_mixing_phase2(tk, &key->u.tkip.rx[queue], iv16, rc4key); |
| 299 | |
| 300 | res = ieee80211_wep_decrypt_data(tfm, rc4key, 16, pos, payload_len - 12); |
| 301 | done: |
| 302 | if (res == TKIP_DECRYPT_OK) { |
| 303 | /* |
| 304 | * Record previously received IV, will be copied into the |
| 305 | * key information after MIC verification. It is possible |
| 306 | * that we don't catch replays of fragments but that's ok |
| 307 | * because the Michael MIC verication will then fail. |
| 308 | */ |
| 309 | *out_iv32 = iv32; |
| 310 | *out_iv16 = iv16; |
| 311 | } |
| 312 | |
| 313 | return res; |
| 314 | } |