Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2007-2014 Nicira, Inc. |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or |
| 5 | * modify it under the terms of version 2 of the GNU General Public |
| 6 | * License as published by the Free Software Foundation. |
| 7 | * |
| 8 | * This program is distributed in the hope that it will be useful, but |
| 9 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 11 | * General Public License for more details. |
| 12 | * |
| 13 | * You should have received a copy of the GNU General Public License |
| 14 | * along with this program; if not, write to the Free Software |
| 15 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
| 16 | * 02110-1301, USA |
| 17 | */ |
| 18 | |
| 19 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 20 | |
| 21 | #include <linux/skbuff.h> |
| 22 | #include <linux/in.h> |
| 23 | #include <linux/ip.h> |
| 24 | #include <linux/openvswitch.h> |
| 25 | #include <linux/netfilter_ipv6.h> |
| 26 | #include <linux/sctp.h> |
| 27 | #include <linux/tcp.h> |
| 28 | #include <linux/udp.h> |
| 29 | #include <linux/in6.h> |
| 30 | #include <linux/if_arp.h> |
| 31 | #include <linux/if_vlan.h> |
| 32 | |
| 33 | #include <net/dst.h> |
| 34 | #include <net/ip.h> |
| 35 | #include <net/ipv6.h> |
| 36 | #include <net/ip6_fib.h> |
| 37 | #include <net/checksum.h> |
| 38 | #include <net/dsfield.h> |
| 39 | #include <net/mpls.h> |
| 40 | #include <net/sctp/checksum.h> |
| 41 | |
| 42 | #include "datapath.h" |
| 43 | #include "flow.h" |
| 44 | #include "conntrack.h" |
| 45 | #include "vport.h" |
| 46 | |
| 47 | static int do_execute_actions(struct datapath *dp, struct sk_buff *skb, |
| 48 | struct sw_flow_key *key, |
| 49 | const struct nlattr *attr, int len); |
| 50 | |
| 51 | struct deferred_action { |
| 52 | struct sk_buff *skb; |
| 53 | const struct nlattr *actions; |
| 54 | |
| 55 | /* Store pkt_key clone when creating deferred action. */ |
| 56 | struct sw_flow_key pkt_key; |
| 57 | }; |
| 58 | |
| 59 | #define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN) |
| 60 | struct ovs_frag_data { |
| 61 | unsigned long dst; |
| 62 | struct vport *vport; |
| 63 | struct ovs_skb_cb cb; |
| 64 | __be16 inner_protocol; |
| 65 | __u16 vlan_tci; |
| 66 | __be16 vlan_proto; |
| 67 | unsigned int l2_len; |
| 68 | u8 l2_data[MAX_L2_LEN]; |
| 69 | }; |
| 70 | |
| 71 | static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage); |
| 72 | |
| 73 | #define DEFERRED_ACTION_FIFO_SIZE 10 |
| 74 | struct action_fifo { |
| 75 | int head; |
| 76 | int tail; |
| 77 | /* Deferred action fifo queue storage. */ |
| 78 | struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE]; |
| 79 | }; |
| 80 | |
| 81 | static struct action_fifo __percpu *action_fifos; |
| 82 | static DEFINE_PER_CPU(int, exec_actions_level); |
| 83 | |
| 84 | static void action_fifo_init(struct action_fifo *fifo) |
| 85 | { |
| 86 | fifo->head = 0; |
| 87 | fifo->tail = 0; |
| 88 | } |
| 89 | |
| 90 | static bool action_fifo_is_empty(const struct action_fifo *fifo) |
| 91 | { |
| 92 | return (fifo->head == fifo->tail); |
| 93 | } |
| 94 | |
| 95 | static struct deferred_action *action_fifo_get(struct action_fifo *fifo) |
| 96 | { |
| 97 | if (action_fifo_is_empty(fifo)) |
| 98 | return NULL; |
| 99 | |
| 100 | return &fifo->fifo[fifo->tail++]; |
| 101 | } |
| 102 | |
| 103 | static struct deferred_action *action_fifo_put(struct action_fifo *fifo) |
| 104 | { |
| 105 | if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1) |
| 106 | return NULL; |
| 107 | |
| 108 | return &fifo->fifo[fifo->head++]; |
| 109 | } |
| 110 | |
| 111 | /* Return true if fifo is not full */ |
| 112 | static struct deferred_action *add_deferred_actions(struct sk_buff *skb, |
| 113 | const struct sw_flow_key *key, |
| 114 | const struct nlattr *attr) |
| 115 | { |
| 116 | struct action_fifo *fifo; |
| 117 | struct deferred_action *da; |
| 118 | |
| 119 | fifo = this_cpu_ptr(action_fifos); |
| 120 | da = action_fifo_put(fifo); |
| 121 | if (da) { |
| 122 | da->skb = skb; |
| 123 | da->actions = attr; |
| 124 | da->pkt_key = *key; |
| 125 | } |
| 126 | |
| 127 | return da; |
| 128 | } |
| 129 | |
| 130 | static void invalidate_flow_key(struct sw_flow_key *key) |
| 131 | { |
| 132 | key->eth.type = htons(0); |
| 133 | } |
| 134 | |
| 135 | static bool is_flow_key_valid(const struct sw_flow_key *key) |
| 136 | { |
| 137 | return !!key->eth.type; |
| 138 | } |
| 139 | |
| 140 | static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key, |
| 141 | const struct ovs_action_push_mpls *mpls) |
| 142 | { |
| 143 | __be32 *new_mpls_lse; |
| 144 | struct ethhdr *hdr; |
| 145 | |
| 146 | /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */ |
| 147 | if (skb->encapsulation) |
| 148 | return -ENOTSUPP; |
| 149 | |
| 150 | if (skb_cow_head(skb, MPLS_HLEN) < 0) |
| 151 | return -ENOMEM; |
| 152 | |
| 153 | skb_push(skb, MPLS_HLEN); |
| 154 | memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), |
| 155 | skb->mac_len); |
| 156 | skb_reset_mac_header(skb); |
| 157 | |
| 158 | new_mpls_lse = (__be32 *)skb_mpls_header(skb); |
| 159 | *new_mpls_lse = mpls->mpls_lse; |
| 160 | |
| 161 | skb_postpush_rcsum(skb, new_mpls_lse, MPLS_HLEN); |
| 162 | |
| 163 | hdr = eth_hdr(skb); |
| 164 | hdr->h_proto = mpls->mpls_ethertype; |
| 165 | |
| 166 | if (!skb->inner_protocol) |
| 167 | skb_set_inner_protocol(skb, skb->protocol); |
| 168 | skb->protocol = mpls->mpls_ethertype; |
| 169 | |
| 170 | invalidate_flow_key(key); |
| 171 | return 0; |
| 172 | } |
| 173 | |
| 174 | static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key, |
| 175 | const __be16 ethertype) |
| 176 | { |
| 177 | struct ethhdr *hdr; |
| 178 | int err; |
| 179 | |
| 180 | err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); |
| 181 | if (unlikely(err)) |
| 182 | return err; |
| 183 | |
| 184 | skb_postpull_rcsum(skb, skb_mpls_header(skb), MPLS_HLEN); |
| 185 | |
| 186 | memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), |
| 187 | skb->mac_len); |
| 188 | |
| 189 | __skb_pull(skb, MPLS_HLEN); |
| 190 | skb_reset_mac_header(skb); |
| 191 | |
| 192 | /* skb_mpls_header() is used to locate the ethertype |
| 193 | * field correctly in the presence of VLAN tags. |
| 194 | */ |
| 195 | hdr = (struct ethhdr *)(skb_mpls_header(skb) - ETH_HLEN); |
| 196 | hdr->h_proto = ethertype; |
| 197 | if (eth_p_mpls(skb->protocol)) |
| 198 | skb->protocol = ethertype; |
| 199 | |
| 200 | invalidate_flow_key(key); |
| 201 | return 0; |
| 202 | } |
| 203 | |
| 204 | static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key, |
| 205 | const __be32 *mpls_lse, const __be32 *mask) |
| 206 | { |
| 207 | __be32 *stack; |
| 208 | __be32 lse; |
| 209 | int err; |
| 210 | |
| 211 | err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); |
| 212 | if (unlikely(err)) |
| 213 | return err; |
| 214 | |
| 215 | stack = (__be32 *)skb_mpls_header(skb); |
| 216 | lse = OVS_MASKED(*stack, *mpls_lse, *mask); |
| 217 | if (skb->ip_summed == CHECKSUM_COMPLETE) { |
| 218 | __be32 diff[] = { ~(*stack), lse }; |
| 219 | |
| 220 | skb->csum = ~csum_partial((char *)diff, sizeof(diff), |
| 221 | ~skb->csum); |
| 222 | } |
| 223 | |
| 224 | *stack = lse; |
| 225 | flow_key->mpls.top_lse = lse; |
| 226 | return 0; |
| 227 | } |
| 228 | |
| 229 | static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key) |
| 230 | { |
| 231 | int err; |
| 232 | |
| 233 | err = skb_vlan_pop(skb); |
| 234 | if (skb_vlan_tag_present(skb)) |
| 235 | invalidate_flow_key(key); |
| 236 | else |
| 237 | key->eth.tci = 0; |
| 238 | return err; |
| 239 | } |
| 240 | |
| 241 | static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key, |
| 242 | const struct ovs_action_push_vlan *vlan) |
| 243 | { |
| 244 | if (skb_vlan_tag_present(skb)) |
| 245 | invalidate_flow_key(key); |
| 246 | else |
| 247 | key->eth.tci = vlan->vlan_tci; |
| 248 | return skb_vlan_push(skb, vlan->vlan_tpid, |
| 249 | ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT); |
| 250 | } |
| 251 | |
| 252 | /* 'src' is already properly masked. */ |
| 253 | static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_) |
| 254 | { |
| 255 | u16 *dst = (u16 *)dst_; |
| 256 | const u16 *src = (const u16 *)src_; |
| 257 | const u16 *mask = (const u16 *)mask_; |
| 258 | |
| 259 | OVS_SET_MASKED(dst[0], src[0], mask[0]); |
| 260 | OVS_SET_MASKED(dst[1], src[1], mask[1]); |
| 261 | OVS_SET_MASKED(dst[2], src[2], mask[2]); |
| 262 | } |
| 263 | |
| 264 | static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key, |
| 265 | const struct ovs_key_ethernet *key, |
| 266 | const struct ovs_key_ethernet *mask) |
| 267 | { |
| 268 | int err; |
| 269 | |
| 270 | err = skb_ensure_writable(skb, ETH_HLEN); |
| 271 | if (unlikely(err)) |
| 272 | return err; |
| 273 | |
| 274 | skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2); |
| 275 | |
| 276 | ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src, |
| 277 | mask->eth_src); |
| 278 | ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst, |
| 279 | mask->eth_dst); |
| 280 | |
| 281 | skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2); |
| 282 | |
| 283 | ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source); |
| 284 | ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest); |
| 285 | return 0; |
| 286 | } |
| 287 | |
| 288 | static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh, |
| 289 | __be32 addr, __be32 new_addr) |
| 290 | { |
| 291 | int transport_len = skb->len - skb_transport_offset(skb); |
| 292 | |
| 293 | if (nh->frag_off & htons(IP_OFFSET)) |
| 294 | return; |
| 295 | |
| 296 | if (nh->protocol == IPPROTO_TCP) { |
| 297 | if (likely(transport_len >= sizeof(struct tcphdr))) |
| 298 | inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb, |
| 299 | addr, new_addr, true); |
| 300 | } else if (nh->protocol == IPPROTO_UDP) { |
| 301 | if (likely(transport_len >= sizeof(struct udphdr))) { |
| 302 | struct udphdr *uh = udp_hdr(skb); |
| 303 | |
| 304 | if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) { |
| 305 | inet_proto_csum_replace4(&uh->check, skb, |
| 306 | addr, new_addr, true); |
| 307 | if (!uh->check) |
| 308 | uh->check = CSUM_MANGLED_0; |
| 309 | } |
| 310 | } |
| 311 | } |
| 312 | } |
| 313 | |
| 314 | static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh, |
| 315 | __be32 *addr, __be32 new_addr) |
| 316 | { |
| 317 | update_ip_l4_checksum(skb, nh, *addr, new_addr); |
| 318 | csum_replace4(&nh->check, *addr, new_addr); |
| 319 | skb_clear_hash(skb); |
| 320 | *addr = new_addr; |
| 321 | } |
| 322 | |
| 323 | static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto, |
| 324 | __be32 addr[4], const __be32 new_addr[4]) |
| 325 | { |
| 326 | int transport_len = skb->len - skb_transport_offset(skb); |
| 327 | |
| 328 | if (l4_proto == NEXTHDR_TCP) { |
| 329 | if (likely(transport_len >= sizeof(struct tcphdr))) |
| 330 | inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb, |
| 331 | addr, new_addr, true); |
| 332 | } else if (l4_proto == NEXTHDR_UDP) { |
| 333 | if (likely(transport_len >= sizeof(struct udphdr))) { |
| 334 | struct udphdr *uh = udp_hdr(skb); |
| 335 | |
| 336 | if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) { |
| 337 | inet_proto_csum_replace16(&uh->check, skb, |
| 338 | addr, new_addr, true); |
| 339 | if (!uh->check) |
| 340 | uh->check = CSUM_MANGLED_0; |
| 341 | } |
| 342 | } |
| 343 | } else if (l4_proto == NEXTHDR_ICMP) { |
| 344 | if (likely(transport_len >= sizeof(struct icmp6hdr))) |
| 345 | inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum, |
| 346 | skb, addr, new_addr, true); |
| 347 | } |
| 348 | } |
| 349 | |
| 350 | static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4], |
| 351 | const __be32 mask[4], __be32 masked[4]) |
| 352 | { |
| 353 | masked[0] = OVS_MASKED(old[0], addr[0], mask[0]); |
| 354 | masked[1] = OVS_MASKED(old[1], addr[1], mask[1]); |
| 355 | masked[2] = OVS_MASKED(old[2], addr[2], mask[2]); |
| 356 | masked[3] = OVS_MASKED(old[3], addr[3], mask[3]); |
| 357 | } |
| 358 | |
| 359 | static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto, |
| 360 | __be32 addr[4], const __be32 new_addr[4], |
| 361 | bool recalculate_csum) |
| 362 | { |
| 363 | if (recalculate_csum) |
| 364 | update_ipv6_checksum(skb, l4_proto, addr, new_addr); |
| 365 | |
| 366 | skb_clear_hash(skb); |
| 367 | memcpy(addr, new_addr, sizeof(__be32[4])); |
| 368 | } |
| 369 | |
| 370 | static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask) |
| 371 | { |
| 372 | /* Bits 21-24 are always unmasked, so this retains their values. */ |
| 373 | OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16)); |
| 374 | OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8)); |
| 375 | OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask); |
| 376 | } |
| 377 | |
| 378 | static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl, |
| 379 | u8 mask) |
| 380 | { |
| 381 | new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask); |
| 382 | |
| 383 | csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8)); |
| 384 | nh->ttl = new_ttl; |
| 385 | } |
| 386 | |
| 387 | static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key, |
| 388 | const struct ovs_key_ipv4 *key, |
| 389 | const struct ovs_key_ipv4 *mask) |
| 390 | { |
| 391 | struct iphdr *nh; |
| 392 | __be32 new_addr; |
| 393 | int err; |
| 394 | |
| 395 | err = skb_ensure_writable(skb, skb_network_offset(skb) + |
| 396 | sizeof(struct iphdr)); |
| 397 | if (unlikely(err)) |
| 398 | return err; |
| 399 | |
| 400 | nh = ip_hdr(skb); |
| 401 | |
| 402 | /* Setting an IP addresses is typically only a side effect of |
| 403 | * matching on them in the current userspace implementation, so it |
| 404 | * makes sense to check if the value actually changed. |
| 405 | */ |
| 406 | if (mask->ipv4_src) { |
| 407 | new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src); |
| 408 | |
| 409 | if (unlikely(new_addr != nh->saddr)) { |
| 410 | set_ip_addr(skb, nh, &nh->saddr, new_addr); |
| 411 | flow_key->ipv4.addr.src = new_addr; |
| 412 | } |
| 413 | } |
| 414 | if (mask->ipv4_dst) { |
| 415 | new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst); |
| 416 | |
| 417 | if (unlikely(new_addr != nh->daddr)) { |
| 418 | set_ip_addr(skb, nh, &nh->daddr, new_addr); |
| 419 | flow_key->ipv4.addr.dst = new_addr; |
| 420 | } |
| 421 | } |
| 422 | if (mask->ipv4_tos) { |
| 423 | ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos); |
| 424 | flow_key->ip.tos = nh->tos; |
| 425 | } |
| 426 | if (mask->ipv4_ttl) { |
| 427 | set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl); |
| 428 | flow_key->ip.ttl = nh->ttl; |
| 429 | } |
| 430 | |
| 431 | return 0; |
| 432 | } |
| 433 | |
| 434 | static bool is_ipv6_mask_nonzero(const __be32 addr[4]) |
| 435 | { |
| 436 | return !!(addr[0] | addr[1] | addr[2] | addr[3]); |
| 437 | } |
| 438 | |
| 439 | static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key, |
| 440 | const struct ovs_key_ipv6 *key, |
| 441 | const struct ovs_key_ipv6 *mask) |
| 442 | { |
| 443 | struct ipv6hdr *nh; |
| 444 | int err; |
| 445 | |
| 446 | err = skb_ensure_writable(skb, skb_network_offset(skb) + |
| 447 | sizeof(struct ipv6hdr)); |
| 448 | if (unlikely(err)) |
| 449 | return err; |
| 450 | |
| 451 | nh = ipv6_hdr(skb); |
| 452 | |
| 453 | /* Setting an IP addresses is typically only a side effect of |
| 454 | * matching on them in the current userspace implementation, so it |
| 455 | * makes sense to check if the value actually changed. |
| 456 | */ |
| 457 | if (is_ipv6_mask_nonzero(mask->ipv6_src)) { |
| 458 | __be32 *saddr = (__be32 *)&nh->saddr; |
| 459 | __be32 masked[4]; |
| 460 | |
| 461 | mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked); |
| 462 | |
| 463 | if (unlikely(memcmp(saddr, masked, sizeof(masked)))) { |
| 464 | set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked, |
| 465 | true); |
| 466 | memcpy(&flow_key->ipv6.addr.src, masked, |
| 467 | sizeof(flow_key->ipv6.addr.src)); |
| 468 | } |
| 469 | } |
| 470 | if (is_ipv6_mask_nonzero(mask->ipv6_dst)) { |
| 471 | unsigned int offset = 0; |
| 472 | int flags = IP6_FH_F_SKIP_RH; |
| 473 | bool recalc_csum = true; |
| 474 | __be32 *daddr = (__be32 *)&nh->daddr; |
| 475 | __be32 masked[4]; |
| 476 | |
| 477 | mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked); |
| 478 | |
| 479 | if (unlikely(memcmp(daddr, masked, sizeof(masked)))) { |
| 480 | if (ipv6_ext_hdr(nh->nexthdr)) |
| 481 | recalc_csum = (ipv6_find_hdr(skb, &offset, |
| 482 | NEXTHDR_ROUTING, |
| 483 | NULL, &flags) |
| 484 | != NEXTHDR_ROUTING); |
| 485 | |
| 486 | set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked, |
| 487 | recalc_csum); |
| 488 | memcpy(&flow_key->ipv6.addr.dst, masked, |
| 489 | sizeof(flow_key->ipv6.addr.dst)); |
| 490 | } |
| 491 | } |
| 492 | if (mask->ipv6_tclass) { |
| 493 | ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass); |
| 494 | flow_key->ip.tos = ipv6_get_dsfield(nh); |
| 495 | } |
| 496 | if (mask->ipv6_label) { |
| 497 | set_ipv6_fl(nh, ntohl(key->ipv6_label), |
| 498 | ntohl(mask->ipv6_label)); |
| 499 | flow_key->ipv6.label = |
| 500 | *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); |
| 501 | } |
| 502 | if (mask->ipv6_hlimit) { |
| 503 | OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit, |
| 504 | mask->ipv6_hlimit); |
| 505 | flow_key->ip.ttl = nh->hop_limit; |
| 506 | } |
| 507 | return 0; |
| 508 | } |
| 509 | |
| 510 | /* Must follow skb_ensure_writable() since that can move the skb data. */ |
| 511 | static void set_tp_port(struct sk_buff *skb, __be16 *port, |
| 512 | __be16 new_port, __sum16 *check) |
| 513 | { |
| 514 | inet_proto_csum_replace2(check, skb, *port, new_port, false); |
| 515 | *port = new_port; |
| 516 | } |
| 517 | |
| 518 | static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key, |
| 519 | const struct ovs_key_udp *key, |
| 520 | const struct ovs_key_udp *mask) |
| 521 | { |
| 522 | struct udphdr *uh; |
| 523 | __be16 src, dst; |
| 524 | int err; |
| 525 | |
| 526 | err = skb_ensure_writable(skb, skb_transport_offset(skb) + |
| 527 | sizeof(struct udphdr)); |
| 528 | if (unlikely(err)) |
| 529 | return err; |
| 530 | |
| 531 | uh = udp_hdr(skb); |
| 532 | /* Either of the masks is non-zero, so do not bother checking them. */ |
| 533 | src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src); |
| 534 | dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst); |
| 535 | |
| 536 | if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) { |
| 537 | if (likely(src != uh->source)) { |
| 538 | set_tp_port(skb, &uh->source, src, &uh->check); |
| 539 | flow_key->tp.src = src; |
| 540 | } |
| 541 | if (likely(dst != uh->dest)) { |
| 542 | set_tp_port(skb, &uh->dest, dst, &uh->check); |
| 543 | flow_key->tp.dst = dst; |
| 544 | } |
| 545 | |
| 546 | if (unlikely(!uh->check)) |
| 547 | uh->check = CSUM_MANGLED_0; |
| 548 | } else { |
| 549 | uh->source = src; |
| 550 | uh->dest = dst; |
| 551 | flow_key->tp.src = src; |
| 552 | flow_key->tp.dst = dst; |
| 553 | } |
| 554 | |
| 555 | skb_clear_hash(skb); |
| 556 | |
| 557 | return 0; |
| 558 | } |
| 559 | |
| 560 | static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key, |
| 561 | const struct ovs_key_tcp *key, |
| 562 | const struct ovs_key_tcp *mask) |
| 563 | { |
| 564 | struct tcphdr *th; |
| 565 | __be16 src, dst; |
| 566 | int err; |
| 567 | |
| 568 | err = skb_ensure_writable(skb, skb_transport_offset(skb) + |
| 569 | sizeof(struct tcphdr)); |
| 570 | if (unlikely(err)) |
| 571 | return err; |
| 572 | |
| 573 | th = tcp_hdr(skb); |
| 574 | src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src); |
| 575 | if (likely(src != th->source)) { |
| 576 | set_tp_port(skb, &th->source, src, &th->check); |
| 577 | flow_key->tp.src = src; |
| 578 | } |
| 579 | dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst); |
| 580 | if (likely(dst != th->dest)) { |
| 581 | set_tp_port(skb, &th->dest, dst, &th->check); |
| 582 | flow_key->tp.dst = dst; |
| 583 | } |
| 584 | skb_clear_hash(skb); |
| 585 | |
| 586 | return 0; |
| 587 | } |
| 588 | |
| 589 | static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key, |
| 590 | const struct ovs_key_sctp *key, |
| 591 | const struct ovs_key_sctp *mask) |
| 592 | { |
| 593 | unsigned int sctphoff = skb_transport_offset(skb); |
| 594 | struct sctphdr *sh; |
| 595 | __le32 old_correct_csum, new_csum, old_csum; |
| 596 | int err; |
| 597 | |
| 598 | err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr)); |
| 599 | if (unlikely(err)) |
| 600 | return err; |
| 601 | |
| 602 | sh = sctp_hdr(skb); |
| 603 | old_csum = sh->checksum; |
| 604 | old_correct_csum = sctp_compute_cksum(skb, sctphoff); |
| 605 | |
| 606 | sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src); |
| 607 | sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst); |
| 608 | |
| 609 | new_csum = sctp_compute_cksum(skb, sctphoff); |
| 610 | |
| 611 | /* Carry any checksum errors through. */ |
| 612 | sh->checksum = old_csum ^ old_correct_csum ^ new_csum; |
| 613 | |
| 614 | skb_clear_hash(skb); |
| 615 | flow_key->tp.src = sh->source; |
| 616 | flow_key->tp.dst = sh->dest; |
| 617 | |
| 618 | return 0; |
| 619 | } |
| 620 | |
| 621 | static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb) |
| 622 | { |
| 623 | struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage); |
| 624 | struct vport *vport = data->vport; |
| 625 | |
| 626 | if (skb_cow_head(skb, data->l2_len) < 0) { |
| 627 | kfree_skb(skb); |
| 628 | return -ENOMEM; |
| 629 | } |
| 630 | |
| 631 | __skb_dst_copy(skb, data->dst); |
| 632 | *OVS_CB(skb) = data->cb; |
| 633 | skb->inner_protocol = data->inner_protocol; |
| 634 | skb->vlan_tci = data->vlan_tci; |
| 635 | skb->vlan_proto = data->vlan_proto; |
| 636 | |
| 637 | /* Reconstruct the MAC header. */ |
| 638 | skb_push(skb, data->l2_len); |
| 639 | memcpy(skb->data, &data->l2_data, data->l2_len); |
| 640 | skb_postpush_rcsum(skb, skb->data, data->l2_len); |
| 641 | skb_reset_mac_header(skb); |
| 642 | |
| 643 | ovs_vport_send(vport, skb); |
| 644 | return 0; |
| 645 | } |
| 646 | |
| 647 | static unsigned int |
| 648 | ovs_dst_get_mtu(const struct dst_entry *dst) |
| 649 | { |
| 650 | return dst->dev->mtu; |
| 651 | } |
| 652 | |
| 653 | static struct dst_ops ovs_dst_ops = { |
| 654 | .family = AF_UNSPEC, |
| 655 | .mtu = ovs_dst_get_mtu, |
| 656 | }; |
| 657 | |
| 658 | /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is |
| 659 | * ovs_vport_output(), which is called once per fragmented packet. |
| 660 | */ |
| 661 | static void prepare_frag(struct vport *vport, struct sk_buff *skb) |
| 662 | { |
| 663 | unsigned int hlen = skb_network_offset(skb); |
| 664 | struct ovs_frag_data *data; |
| 665 | |
| 666 | data = this_cpu_ptr(&ovs_frag_data_storage); |
| 667 | data->dst = skb->_skb_refdst; |
| 668 | data->vport = vport; |
| 669 | data->cb = *OVS_CB(skb); |
| 670 | data->inner_protocol = skb->inner_protocol; |
| 671 | data->vlan_tci = skb->vlan_tci; |
| 672 | data->vlan_proto = skb->vlan_proto; |
| 673 | data->l2_len = hlen; |
| 674 | memcpy(&data->l2_data, skb->data, hlen); |
| 675 | |
| 676 | memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); |
| 677 | skb_pull(skb, hlen); |
| 678 | } |
| 679 | |
| 680 | static void ovs_fragment(struct net *net, struct vport *vport, |
| 681 | struct sk_buff *skb, u16 mru, __be16 ethertype) |
| 682 | { |
| 683 | if (skb_network_offset(skb) > MAX_L2_LEN) { |
| 684 | OVS_NLERR(1, "L2 header too long to fragment"); |
| 685 | goto err; |
| 686 | } |
| 687 | |
| 688 | if (ethertype == htons(ETH_P_IP)) { |
| 689 | struct dst_entry ovs_dst; |
| 690 | unsigned long orig_dst; |
| 691 | |
| 692 | prepare_frag(vport, skb); |
| 693 | dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1, |
| 694 | DST_OBSOLETE_NONE, DST_NOCOUNT); |
| 695 | ovs_dst.dev = vport->dev; |
| 696 | |
| 697 | orig_dst = skb->_skb_refdst; |
| 698 | skb_dst_set_noref(skb, &ovs_dst); |
| 699 | IPCB(skb)->frag_max_size = mru; |
| 700 | |
| 701 | ip_do_fragment(net, skb->sk, skb, ovs_vport_output); |
| 702 | refdst_drop(orig_dst); |
| 703 | } else if (ethertype == htons(ETH_P_IPV6)) { |
| 704 | const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops(); |
| 705 | unsigned long orig_dst; |
| 706 | struct rt6_info ovs_rt; |
| 707 | |
| 708 | if (!v6ops) { |
| 709 | goto err; |
| 710 | } |
| 711 | |
| 712 | prepare_frag(vport, skb); |
| 713 | memset(&ovs_rt, 0, sizeof(ovs_rt)); |
| 714 | dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1, |
| 715 | DST_OBSOLETE_NONE, DST_NOCOUNT); |
| 716 | ovs_rt.dst.dev = vport->dev; |
| 717 | |
| 718 | orig_dst = skb->_skb_refdst; |
| 719 | skb_dst_set_noref(skb, &ovs_rt.dst); |
| 720 | IP6CB(skb)->frag_max_size = mru; |
| 721 | |
| 722 | v6ops->fragment(net, skb->sk, skb, ovs_vport_output); |
| 723 | refdst_drop(orig_dst); |
| 724 | } else { |
| 725 | WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.", |
| 726 | ovs_vport_name(vport), ntohs(ethertype), mru, |
| 727 | vport->dev->mtu); |
| 728 | goto err; |
| 729 | } |
| 730 | |
| 731 | return; |
| 732 | err: |
| 733 | kfree_skb(skb); |
| 734 | } |
| 735 | |
| 736 | static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port, |
| 737 | struct sw_flow_key *key) |
| 738 | { |
| 739 | struct vport *vport = ovs_vport_rcu(dp, out_port); |
| 740 | |
| 741 | if (likely(vport)) { |
| 742 | u16 mru = OVS_CB(skb)->mru; |
| 743 | |
| 744 | if (likely(!mru || (skb->len <= mru + ETH_HLEN))) { |
| 745 | ovs_vport_send(vport, skb); |
| 746 | } else if (mru <= vport->dev->mtu) { |
| 747 | struct net *net = read_pnet(&dp->net); |
| 748 | __be16 ethertype = key->eth.type; |
| 749 | |
| 750 | if (!is_flow_key_valid(key)) { |
| 751 | if (eth_p_mpls(skb->protocol)) |
| 752 | ethertype = skb->inner_protocol; |
| 753 | else |
| 754 | ethertype = vlan_get_protocol(skb); |
| 755 | } |
| 756 | |
| 757 | ovs_fragment(net, vport, skb, mru, ethertype); |
| 758 | } else { |
| 759 | kfree_skb(skb); |
| 760 | } |
| 761 | } else { |
| 762 | kfree_skb(skb); |
| 763 | } |
| 764 | } |
| 765 | |
| 766 | static int output_userspace(struct datapath *dp, struct sk_buff *skb, |
| 767 | struct sw_flow_key *key, const struct nlattr *attr, |
| 768 | const struct nlattr *actions, int actions_len) |
| 769 | { |
| 770 | struct dp_upcall_info upcall; |
| 771 | const struct nlattr *a; |
| 772 | int rem; |
| 773 | |
| 774 | memset(&upcall, 0, sizeof(upcall)); |
| 775 | upcall.cmd = OVS_PACKET_CMD_ACTION; |
| 776 | upcall.mru = OVS_CB(skb)->mru; |
| 777 | |
| 778 | for (a = nla_data(attr), rem = nla_len(attr); rem > 0; |
| 779 | a = nla_next(a, &rem)) { |
| 780 | switch (nla_type(a)) { |
| 781 | case OVS_USERSPACE_ATTR_USERDATA: |
| 782 | upcall.userdata = a; |
| 783 | break; |
| 784 | |
| 785 | case OVS_USERSPACE_ATTR_PID: |
| 786 | upcall.portid = nla_get_u32(a); |
| 787 | break; |
| 788 | |
| 789 | case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: { |
| 790 | /* Get out tunnel info. */ |
| 791 | struct vport *vport; |
| 792 | |
| 793 | vport = ovs_vport_rcu(dp, nla_get_u32(a)); |
| 794 | if (vport) { |
| 795 | int err; |
| 796 | |
| 797 | err = dev_fill_metadata_dst(vport->dev, skb); |
| 798 | if (!err) |
| 799 | upcall.egress_tun_info = skb_tunnel_info(skb); |
| 800 | } |
| 801 | |
| 802 | break; |
| 803 | } |
| 804 | |
| 805 | case OVS_USERSPACE_ATTR_ACTIONS: { |
| 806 | /* Include actions. */ |
| 807 | upcall.actions = actions; |
| 808 | upcall.actions_len = actions_len; |
| 809 | break; |
| 810 | } |
| 811 | |
| 812 | } /* End of switch. */ |
| 813 | } |
| 814 | |
| 815 | return ovs_dp_upcall(dp, skb, key, &upcall); |
| 816 | } |
| 817 | |
| 818 | static int sample(struct datapath *dp, struct sk_buff *skb, |
| 819 | struct sw_flow_key *key, const struct nlattr *attr, |
| 820 | const struct nlattr *actions, int actions_len) |
| 821 | { |
| 822 | const struct nlattr *acts_list = NULL; |
| 823 | const struct nlattr *a; |
| 824 | int rem; |
| 825 | |
| 826 | for (a = nla_data(attr), rem = nla_len(attr); rem > 0; |
| 827 | a = nla_next(a, &rem)) { |
| 828 | u32 probability; |
| 829 | |
| 830 | switch (nla_type(a)) { |
| 831 | case OVS_SAMPLE_ATTR_PROBABILITY: |
| 832 | probability = nla_get_u32(a); |
| 833 | if (!probability || prandom_u32() > probability) |
| 834 | return 0; |
| 835 | break; |
| 836 | |
| 837 | case OVS_SAMPLE_ATTR_ACTIONS: |
| 838 | acts_list = a; |
| 839 | break; |
| 840 | } |
| 841 | } |
| 842 | |
| 843 | rem = nla_len(acts_list); |
| 844 | a = nla_data(acts_list); |
| 845 | |
| 846 | /* Actions list is empty, do nothing */ |
| 847 | if (unlikely(!rem)) |
| 848 | return 0; |
| 849 | |
| 850 | /* The only known usage of sample action is having a single user-space |
| 851 | * action. Treat this usage as a special case. |
| 852 | * The output_userspace() should clone the skb to be sent to the |
| 853 | * user space. This skb will be consumed by its caller. |
| 854 | */ |
| 855 | if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE && |
| 856 | nla_is_last(a, rem))) |
| 857 | return output_userspace(dp, skb, key, a, actions, actions_len); |
| 858 | |
| 859 | skb = skb_clone(skb, GFP_ATOMIC); |
| 860 | if (!skb) |
| 861 | /* Skip the sample action when out of memory. */ |
| 862 | return 0; |
| 863 | |
| 864 | if (!add_deferred_actions(skb, key, a)) { |
| 865 | if (net_ratelimit()) |
| 866 | pr_warn("%s: deferred actions limit reached, dropping sample action\n", |
| 867 | ovs_dp_name(dp)); |
| 868 | |
| 869 | kfree_skb(skb); |
| 870 | } |
| 871 | return 0; |
| 872 | } |
| 873 | |
| 874 | static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key, |
| 875 | const struct nlattr *attr) |
| 876 | { |
| 877 | struct ovs_action_hash *hash_act = nla_data(attr); |
| 878 | u32 hash = 0; |
| 879 | |
| 880 | /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */ |
| 881 | hash = skb_get_hash(skb); |
| 882 | hash = jhash_1word(hash, hash_act->hash_basis); |
| 883 | if (!hash) |
| 884 | hash = 0x1; |
| 885 | |
| 886 | key->ovs_flow_hash = hash; |
| 887 | } |
| 888 | |
| 889 | static int execute_set_action(struct sk_buff *skb, |
| 890 | struct sw_flow_key *flow_key, |
| 891 | const struct nlattr *a) |
| 892 | { |
| 893 | /* Only tunnel set execution is supported without a mask. */ |
| 894 | if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) { |
| 895 | struct ovs_tunnel_info *tun = nla_data(a); |
| 896 | |
| 897 | skb_dst_drop(skb); |
| 898 | dst_hold((struct dst_entry *)tun->tun_dst); |
| 899 | skb_dst_set(skb, (struct dst_entry *)tun->tun_dst); |
| 900 | return 0; |
| 901 | } |
| 902 | |
| 903 | return -EINVAL; |
| 904 | } |
| 905 | |
| 906 | /* Mask is at the midpoint of the data. */ |
| 907 | #define get_mask(a, type) ((const type)nla_data(a) + 1) |
| 908 | |
| 909 | static int execute_masked_set_action(struct sk_buff *skb, |
| 910 | struct sw_flow_key *flow_key, |
| 911 | const struct nlattr *a) |
| 912 | { |
| 913 | int err = 0; |
| 914 | |
| 915 | switch (nla_type(a)) { |
| 916 | case OVS_KEY_ATTR_PRIORITY: |
| 917 | OVS_SET_MASKED(skb->priority, nla_get_u32(a), |
| 918 | *get_mask(a, u32 *)); |
| 919 | flow_key->phy.priority = skb->priority; |
| 920 | break; |
| 921 | |
| 922 | case OVS_KEY_ATTR_SKB_MARK: |
| 923 | OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *)); |
| 924 | flow_key->phy.skb_mark = skb->mark; |
| 925 | break; |
| 926 | |
| 927 | case OVS_KEY_ATTR_TUNNEL_INFO: |
| 928 | /* Masked data not supported for tunnel. */ |
| 929 | err = -EINVAL; |
| 930 | break; |
| 931 | |
| 932 | case OVS_KEY_ATTR_ETHERNET: |
| 933 | err = set_eth_addr(skb, flow_key, nla_data(a), |
| 934 | get_mask(a, struct ovs_key_ethernet *)); |
| 935 | break; |
| 936 | |
| 937 | case OVS_KEY_ATTR_IPV4: |
| 938 | err = set_ipv4(skb, flow_key, nla_data(a), |
| 939 | get_mask(a, struct ovs_key_ipv4 *)); |
| 940 | break; |
| 941 | |
| 942 | case OVS_KEY_ATTR_IPV6: |
| 943 | err = set_ipv6(skb, flow_key, nla_data(a), |
| 944 | get_mask(a, struct ovs_key_ipv6 *)); |
| 945 | break; |
| 946 | |
| 947 | case OVS_KEY_ATTR_TCP: |
| 948 | err = set_tcp(skb, flow_key, nla_data(a), |
| 949 | get_mask(a, struct ovs_key_tcp *)); |
| 950 | break; |
| 951 | |
| 952 | case OVS_KEY_ATTR_UDP: |
| 953 | err = set_udp(skb, flow_key, nla_data(a), |
| 954 | get_mask(a, struct ovs_key_udp *)); |
| 955 | break; |
| 956 | |
| 957 | case OVS_KEY_ATTR_SCTP: |
| 958 | err = set_sctp(skb, flow_key, nla_data(a), |
| 959 | get_mask(a, struct ovs_key_sctp *)); |
| 960 | break; |
| 961 | |
| 962 | case OVS_KEY_ATTR_MPLS: |
| 963 | err = set_mpls(skb, flow_key, nla_data(a), get_mask(a, |
| 964 | __be32 *)); |
| 965 | break; |
| 966 | |
| 967 | case OVS_KEY_ATTR_CT_STATE: |
| 968 | case OVS_KEY_ATTR_CT_ZONE: |
| 969 | case OVS_KEY_ATTR_CT_MARK: |
| 970 | case OVS_KEY_ATTR_CT_LABELS: |
| 971 | err = -EINVAL; |
| 972 | break; |
| 973 | } |
| 974 | |
| 975 | return err; |
| 976 | } |
| 977 | |
| 978 | static int execute_recirc(struct datapath *dp, struct sk_buff *skb, |
| 979 | struct sw_flow_key *key, |
| 980 | const struct nlattr *a, int rem) |
| 981 | { |
| 982 | struct deferred_action *da; |
| 983 | |
| 984 | if (!is_flow_key_valid(key)) { |
| 985 | int err; |
| 986 | |
| 987 | err = ovs_flow_key_update(skb, key); |
| 988 | if (err) |
| 989 | return err; |
| 990 | } |
| 991 | BUG_ON(!is_flow_key_valid(key)); |
| 992 | |
| 993 | if (!nla_is_last(a, rem)) { |
| 994 | /* Recirc action is the not the last action |
| 995 | * of the action list, need to clone the skb. |
| 996 | */ |
| 997 | skb = skb_clone(skb, GFP_ATOMIC); |
| 998 | |
| 999 | /* Skip the recirc action when out of memory, but |
| 1000 | * continue on with the rest of the action list. |
| 1001 | */ |
| 1002 | if (!skb) |
| 1003 | return 0; |
| 1004 | } |
| 1005 | |
| 1006 | da = add_deferred_actions(skb, key, NULL); |
| 1007 | if (da) { |
| 1008 | da->pkt_key.recirc_id = nla_get_u32(a); |
| 1009 | } else { |
| 1010 | kfree_skb(skb); |
| 1011 | |
| 1012 | if (net_ratelimit()) |
| 1013 | pr_warn("%s: deferred action limit reached, drop recirc action\n", |
| 1014 | ovs_dp_name(dp)); |
| 1015 | } |
| 1016 | |
| 1017 | return 0; |
| 1018 | } |
| 1019 | |
| 1020 | /* Execute a list of actions against 'skb'. */ |
| 1021 | static int do_execute_actions(struct datapath *dp, struct sk_buff *skb, |
| 1022 | struct sw_flow_key *key, |
| 1023 | const struct nlattr *attr, int len) |
| 1024 | { |
| 1025 | /* Every output action needs a separate clone of 'skb', but the common |
| 1026 | * case is just a single output action, so that doing a clone and |
| 1027 | * then freeing the original skbuff is wasteful. So the following code |
| 1028 | * is slightly obscure just to avoid that. |
| 1029 | */ |
| 1030 | int prev_port = -1; |
| 1031 | const struct nlattr *a; |
| 1032 | int rem; |
| 1033 | |
| 1034 | for (a = attr, rem = len; rem > 0; |
| 1035 | a = nla_next(a, &rem)) { |
| 1036 | int err = 0; |
| 1037 | |
| 1038 | if (unlikely(prev_port != -1)) { |
| 1039 | struct sk_buff *out_skb = skb_clone(skb, GFP_ATOMIC); |
| 1040 | |
| 1041 | if (out_skb) |
| 1042 | do_output(dp, out_skb, prev_port, key); |
| 1043 | |
| 1044 | prev_port = -1; |
| 1045 | } |
| 1046 | |
| 1047 | switch (nla_type(a)) { |
| 1048 | case OVS_ACTION_ATTR_OUTPUT: |
| 1049 | prev_port = nla_get_u32(a); |
| 1050 | break; |
| 1051 | |
| 1052 | case OVS_ACTION_ATTR_USERSPACE: |
| 1053 | output_userspace(dp, skb, key, a, attr, len); |
| 1054 | break; |
| 1055 | |
| 1056 | case OVS_ACTION_ATTR_HASH: |
| 1057 | execute_hash(skb, key, a); |
| 1058 | break; |
| 1059 | |
| 1060 | case OVS_ACTION_ATTR_PUSH_MPLS: |
| 1061 | err = push_mpls(skb, key, nla_data(a)); |
| 1062 | break; |
| 1063 | |
| 1064 | case OVS_ACTION_ATTR_POP_MPLS: |
| 1065 | err = pop_mpls(skb, key, nla_get_be16(a)); |
| 1066 | break; |
| 1067 | |
| 1068 | case OVS_ACTION_ATTR_PUSH_VLAN: |
| 1069 | err = push_vlan(skb, key, nla_data(a)); |
| 1070 | break; |
| 1071 | |
| 1072 | case OVS_ACTION_ATTR_POP_VLAN: |
| 1073 | err = pop_vlan(skb, key); |
| 1074 | break; |
| 1075 | |
| 1076 | case OVS_ACTION_ATTR_RECIRC: |
| 1077 | err = execute_recirc(dp, skb, key, a, rem); |
| 1078 | if (nla_is_last(a, rem)) { |
| 1079 | /* If this is the last action, the skb has |
| 1080 | * been consumed or freed. |
| 1081 | * Return immediately. |
| 1082 | */ |
| 1083 | return err; |
| 1084 | } |
| 1085 | break; |
| 1086 | |
| 1087 | case OVS_ACTION_ATTR_SET: |
| 1088 | err = execute_set_action(skb, key, nla_data(a)); |
| 1089 | break; |
| 1090 | |
| 1091 | case OVS_ACTION_ATTR_SET_MASKED: |
| 1092 | case OVS_ACTION_ATTR_SET_TO_MASKED: |
| 1093 | err = execute_masked_set_action(skb, key, nla_data(a)); |
| 1094 | break; |
| 1095 | |
| 1096 | case OVS_ACTION_ATTR_SAMPLE: |
| 1097 | err = sample(dp, skb, key, a, attr, len); |
| 1098 | break; |
| 1099 | |
| 1100 | case OVS_ACTION_ATTR_CT: |
| 1101 | if (!is_flow_key_valid(key)) { |
| 1102 | err = ovs_flow_key_update(skb, key); |
| 1103 | if (err) |
| 1104 | return err; |
| 1105 | } |
| 1106 | |
| 1107 | err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key, |
| 1108 | nla_data(a)); |
| 1109 | |
| 1110 | /* Hide stolen IP fragments from user space. */ |
| 1111 | if (err) |
| 1112 | return err == -EINPROGRESS ? 0 : err; |
| 1113 | break; |
| 1114 | } |
| 1115 | |
| 1116 | if (unlikely(err)) { |
| 1117 | kfree_skb(skb); |
| 1118 | return err; |
| 1119 | } |
| 1120 | } |
| 1121 | |
| 1122 | if (prev_port != -1) |
| 1123 | do_output(dp, skb, prev_port, key); |
| 1124 | else |
| 1125 | consume_skb(skb); |
| 1126 | |
| 1127 | return 0; |
| 1128 | } |
| 1129 | |
| 1130 | static void process_deferred_actions(struct datapath *dp) |
| 1131 | { |
| 1132 | struct action_fifo *fifo = this_cpu_ptr(action_fifos); |
| 1133 | |
| 1134 | /* Do not touch the FIFO in case there is no deferred actions. */ |
| 1135 | if (action_fifo_is_empty(fifo)) |
| 1136 | return; |
| 1137 | |
| 1138 | /* Finishing executing all deferred actions. */ |
| 1139 | do { |
| 1140 | struct deferred_action *da = action_fifo_get(fifo); |
| 1141 | struct sk_buff *skb = da->skb; |
| 1142 | struct sw_flow_key *key = &da->pkt_key; |
| 1143 | const struct nlattr *actions = da->actions; |
| 1144 | |
| 1145 | if (actions) |
| 1146 | do_execute_actions(dp, skb, key, actions, |
| 1147 | nla_len(actions)); |
| 1148 | else |
| 1149 | ovs_dp_process_packet(skb, key); |
| 1150 | } while (!action_fifo_is_empty(fifo)); |
| 1151 | |
| 1152 | /* Reset FIFO for the next packet. */ |
| 1153 | action_fifo_init(fifo); |
| 1154 | } |
| 1155 | |
| 1156 | /* Execute a list of actions against 'skb'. */ |
| 1157 | int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb, |
| 1158 | const struct sw_flow_actions *acts, |
| 1159 | struct sw_flow_key *key) |
| 1160 | { |
| 1161 | int level = this_cpu_read(exec_actions_level); |
| 1162 | int err; |
| 1163 | |
| 1164 | this_cpu_inc(exec_actions_level); |
| 1165 | err = do_execute_actions(dp, skb, key, |
| 1166 | acts->actions, acts->actions_len); |
| 1167 | |
| 1168 | if (!level) |
| 1169 | process_deferred_actions(dp); |
| 1170 | |
| 1171 | this_cpu_dec(exec_actions_level); |
| 1172 | return err; |
| 1173 | } |
| 1174 | |
| 1175 | int action_fifos_init(void) |
| 1176 | { |
| 1177 | action_fifos = alloc_percpu(struct action_fifo); |
| 1178 | if (!action_fifos) |
| 1179 | return -ENOMEM; |
| 1180 | |
| 1181 | return 0; |
| 1182 | } |
| 1183 | |
| 1184 | void action_fifos_exit(void) |
| 1185 | { |
| 1186 | free_percpu(action_fifos); |
| 1187 | } |