Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame] | 1 | /* |
| 2 | * linux/net/sunrpc/sched.c |
| 3 | * |
| 4 | * Scheduling for synchronous and asynchronous RPC requests. |
| 5 | * |
| 6 | * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de> |
| 7 | * |
| 8 | * TCP NFS related read + write fixes |
| 9 | * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie> |
| 10 | */ |
| 11 | |
| 12 | #include <linux/module.h> |
| 13 | |
| 14 | #include <linux/sched.h> |
| 15 | #include <linux/interrupt.h> |
| 16 | #include <linux/slab.h> |
| 17 | #include <linux/mempool.h> |
| 18 | #include <linux/smp.h> |
| 19 | #include <linux/spinlock.h> |
| 20 | #include <linux/mutex.h> |
| 21 | #include <linux/freezer.h> |
| 22 | |
| 23 | #include <linux/sunrpc/clnt.h> |
| 24 | |
| 25 | #include "sunrpc.h" |
| 26 | |
| 27 | #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) |
| 28 | #define RPCDBG_FACILITY RPCDBG_SCHED |
| 29 | #endif |
| 30 | |
| 31 | #define CREATE_TRACE_POINTS |
| 32 | #include <trace/events/sunrpc.h> |
| 33 | |
| 34 | /* |
| 35 | * RPC slabs and memory pools |
| 36 | */ |
| 37 | #define RPC_BUFFER_MAXSIZE (2048) |
| 38 | #define RPC_BUFFER_POOLSIZE (8) |
| 39 | #define RPC_TASK_POOLSIZE (8) |
| 40 | static struct kmem_cache *rpc_task_slabp __read_mostly; |
| 41 | static struct kmem_cache *rpc_buffer_slabp __read_mostly; |
| 42 | static mempool_t *rpc_task_mempool __read_mostly; |
| 43 | static mempool_t *rpc_buffer_mempool __read_mostly; |
| 44 | |
| 45 | static void rpc_async_schedule(struct work_struct *); |
| 46 | static void rpc_release_task(struct rpc_task *task); |
| 47 | static void __rpc_queue_timer_fn(unsigned long ptr); |
| 48 | |
| 49 | /* |
| 50 | * RPC tasks sit here while waiting for conditions to improve. |
| 51 | */ |
| 52 | static struct rpc_wait_queue delay_queue; |
| 53 | |
| 54 | /* |
| 55 | * rpciod-related stuff |
| 56 | */ |
| 57 | struct workqueue_struct *rpciod_workqueue; |
| 58 | |
| 59 | /* |
| 60 | * Disable the timer for a given RPC task. Should be called with |
| 61 | * queue->lock and bh_disabled in order to avoid races within |
| 62 | * rpc_run_timer(). |
| 63 | */ |
| 64 | static void |
| 65 | __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task) |
| 66 | { |
| 67 | if (task->tk_timeout == 0) |
| 68 | return; |
| 69 | dprintk("RPC: %5u disabling timer\n", task->tk_pid); |
| 70 | task->tk_timeout = 0; |
| 71 | list_del(&task->u.tk_wait.timer_list); |
| 72 | if (list_empty(&queue->timer_list.list)) |
| 73 | del_timer(&queue->timer_list.timer); |
| 74 | } |
| 75 | |
| 76 | static void |
| 77 | rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires) |
| 78 | { |
| 79 | queue->timer_list.expires = expires; |
| 80 | mod_timer(&queue->timer_list.timer, expires); |
| 81 | } |
| 82 | |
| 83 | /* |
| 84 | * Set up a timer for the current task. |
| 85 | */ |
| 86 | static void |
| 87 | __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task) |
| 88 | { |
| 89 | if (!task->tk_timeout) |
| 90 | return; |
| 91 | |
| 92 | dprintk("RPC: %5u setting alarm for %u ms\n", |
| 93 | task->tk_pid, jiffies_to_msecs(task->tk_timeout)); |
| 94 | |
| 95 | task->u.tk_wait.expires = jiffies + task->tk_timeout; |
| 96 | if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires)) |
| 97 | rpc_set_queue_timer(queue, task->u.tk_wait.expires); |
| 98 | list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list); |
| 99 | } |
| 100 | |
| 101 | static void rpc_rotate_queue_owner(struct rpc_wait_queue *queue) |
| 102 | { |
| 103 | struct list_head *q = &queue->tasks[queue->priority]; |
| 104 | struct rpc_task *task; |
| 105 | |
| 106 | if (!list_empty(q)) { |
| 107 | task = list_first_entry(q, struct rpc_task, u.tk_wait.list); |
| 108 | if (task->tk_owner == queue->owner) |
| 109 | list_move_tail(&task->u.tk_wait.list, q); |
| 110 | } |
| 111 | } |
| 112 | |
| 113 | static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority) |
| 114 | { |
| 115 | if (queue->priority != priority) { |
| 116 | /* Fairness: rotate the list when changing priority */ |
| 117 | rpc_rotate_queue_owner(queue); |
| 118 | queue->priority = priority; |
| 119 | } |
| 120 | } |
| 121 | |
| 122 | static void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid) |
| 123 | { |
| 124 | queue->owner = pid; |
| 125 | queue->nr = RPC_BATCH_COUNT; |
| 126 | } |
| 127 | |
| 128 | static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue) |
| 129 | { |
| 130 | rpc_set_waitqueue_priority(queue, queue->maxpriority); |
| 131 | rpc_set_waitqueue_owner(queue, 0); |
| 132 | } |
| 133 | |
| 134 | /* |
| 135 | * Add new request to a priority queue. |
| 136 | */ |
| 137 | static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, |
| 138 | struct rpc_task *task, |
| 139 | unsigned char queue_priority) |
| 140 | { |
| 141 | struct list_head *q; |
| 142 | struct rpc_task *t; |
| 143 | |
| 144 | INIT_LIST_HEAD(&task->u.tk_wait.links); |
| 145 | if (unlikely(queue_priority > queue->maxpriority)) |
| 146 | queue_priority = queue->maxpriority; |
| 147 | if (queue_priority > queue->priority) |
| 148 | rpc_set_waitqueue_priority(queue, queue_priority); |
| 149 | q = &queue->tasks[queue_priority]; |
| 150 | list_for_each_entry(t, q, u.tk_wait.list) { |
| 151 | if (t->tk_owner == task->tk_owner) { |
| 152 | list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links); |
| 153 | return; |
| 154 | } |
| 155 | } |
| 156 | list_add_tail(&task->u.tk_wait.list, q); |
| 157 | } |
| 158 | |
| 159 | /* |
| 160 | * Add new request to wait queue. |
| 161 | * |
| 162 | * Swapper tasks always get inserted at the head of the queue. |
| 163 | * This should avoid many nasty memory deadlocks and hopefully |
| 164 | * improve overall performance. |
| 165 | * Everyone else gets appended to the queue to ensure proper FIFO behavior. |
| 166 | */ |
| 167 | static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, |
| 168 | struct rpc_task *task, |
| 169 | unsigned char queue_priority) |
| 170 | { |
| 171 | WARN_ON_ONCE(RPC_IS_QUEUED(task)); |
| 172 | if (RPC_IS_QUEUED(task)) |
| 173 | return; |
| 174 | |
| 175 | if (RPC_IS_PRIORITY(queue)) |
| 176 | __rpc_add_wait_queue_priority(queue, task, queue_priority); |
| 177 | else if (RPC_IS_SWAPPER(task)) |
| 178 | list_add(&task->u.tk_wait.list, &queue->tasks[0]); |
| 179 | else |
| 180 | list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]); |
| 181 | task->tk_waitqueue = queue; |
| 182 | queue->qlen++; |
| 183 | /* barrier matches the read in rpc_wake_up_task_queue_locked() */ |
| 184 | smp_wmb(); |
| 185 | rpc_set_queued(task); |
| 186 | |
| 187 | dprintk("RPC: %5u added to queue %p \"%s\"\n", |
| 188 | task->tk_pid, queue, rpc_qname(queue)); |
| 189 | } |
| 190 | |
| 191 | /* |
| 192 | * Remove request from a priority queue. |
| 193 | */ |
| 194 | static void __rpc_remove_wait_queue_priority(struct rpc_task *task) |
| 195 | { |
| 196 | struct rpc_task *t; |
| 197 | |
| 198 | if (!list_empty(&task->u.tk_wait.links)) { |
| 199 | t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list); |
| 200 | list_move(&t->u.tk_wait.list, &task->u.tk_wait.list); |
| 201 | list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links); |
| 202 | } |
| 203 | } |
| 204 | |
| 205 | /* |
| 206 | * Remove request from queue. |
| 207 | * Note: must be called with spin lock held. |
| 208 | */ |
| 209 | static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task) |
| 210 | { |
| 211 | __rpc_disable_timer(queue, task); |
| 212 | if (RPC_IS_PRIORITY(queue)) |
| 213 | __rpc_remove_wait_queue_priority(task); |
| 214 | list_del(&task->u.tk_wait.list); |
| 215 | queue->qlen--; |
| 216 | dprintk("RPC: %5u removed from queue %p \"%s\"\n", |
| 217 | task->tk_pid, queue, rpc_qname(queue)); |
| 218 | } |
| 219 | |
| 220 | static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues) |
| 221 | { |
| 222 | int i; |
| 223 | |
| 224 | spin_lock_init(&queue->lock); |
| 225 | for (i = 0; i < ARRAY_SIZE(queue->tasks); i++) |
| 226 | INIT_LIST_HEAD(&queue->tasks[i]); |
| 227 | queue->maxpriority = nr_queues - 1; |
| 228 | rpc_reset_waitqueue_priority(queue); |
| 229 | queue->qlen = 0; |
| 230 | setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue); |
| 231 | INIT_LIST_HEAD(&queue->timer_list.list); |
| 232 | rpc_assign_waitqueue_name(queue, qname); |
| 233 | } |
| 234 | |
| 235 | void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname) |
| 236 | { |
| 237 | __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY); |
| 238 | } |
| 239 | EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue); |
| 240 | |
| 241 | void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname) |
| 242 | { |
| 243 | __rpc_init_priority_wait_queue(queue, qname, 1); |
| 244 | } |
| 245 | EXPORT_SYMBOL_GPL(rpc_init_wait_queue); |
| 246 | |
| 247 | void rpc_destroy_wait_queue(struct rpc_wait_queue *queue) |
| 248 | { |
| 249 | del_timer_sync(&queue->timer_list.timer); |
| 250 | } |
| 251 | EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue); |
| 252 | |
| 253 | static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode) |
| 254 | { |
| 255 | freezable_schedule_unsafe(); |
| 256 | if (signal_pending_state(mode, current)) |
| 257 | return -ERESTARTSYS; |
| 258 | return 0; |
| 259 | } |
| 260 | |
| 261 | #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS) |
| 262 | static void rpc_task_set_debuginfo(struct rpc_task *task) |
| 263 | { |
| 264 | static atomic_t rpc_pid; |
| 265 | |
| 266 | task->tk_pid = atomic_inc_return(&rpc_pid); |
| 267 | } |
| 268 | #else |
| 269 | static inline void rpc_task_set_debuginfo(struct rpc_task *task) |
| 270 | { |
| 271 | } |
| 272 | #endif |
| 273 | |
| 274 | static void rpc_set_active(struct rpc_task *task) |
| 275 | { |
| 276 | trace_rpc_task_begin(task->tk_client, task, NULL); |
| 277 | |
| 278 | rpc_task_set_debuginfo(task); |
| 279 | set_bit(RPC_TASK_ACTIVE, &task->tk_runstate); |
| 280 | } |
| 281 | |
| 282 | /* |
| 283 | * Mark an RPC call as having completed by clearing the 'active' bit |
| 284 | * and then waking up all tasks that were sleeping. |
| 285 | */ |
| 286 | static int rpc_complete_task(struct rpc_task *task) |
| 287 | { |
| 288 | void *m = &task->tk_runstate; |
| 289 | wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE); |
| 290 | struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE); |
| 291 | unsigned long flags; |
| 292 | int ret; |
| 293 | |
| 294 | trace_rpc_task_complete(task->tk_client, task, NULL); |
| 295 | |
| 296 | spin_lock_irqsave(&wq->lock, flags); |
| 297 | clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate); |
| 298 | ret = atomic_dec_and_test(&task->tk_count); |
| 299 | if (waitqueue_active(wq)) |
| 300 | __wake_up_locked_key(wq, TASK_NORMAL, &k); |
| 301 | spin_unlock_irqrestore(&wq->lock, flags); |
| 302 | return ret; |
| 303 | } |
| 304 | |
| 305 | /* |
| 306 | * Allow callers to wait for completion of an RPC call |
| 307 | * |
| 308 | * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit() |
| 309 | * to enforce taking of the wq->lock and hence avoid races with |
| 310 | * rpc_complete_task(). |
| 311 | */ |
| 312 | int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action) |
| 313 | { |
| 314 | if (action == NULL) |
| 315 | action = rpc_wait_bit_killable; |
| 316 | return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE, |
| 317 | action, TASK_KILLABLE); |
| 318 | } |
| 319 | EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task); |
| 320 | |
| 321 | /* |
| 322 | * Make an RPC task runnable. |
| 323 | * |
| 324 | * Note: If the task is ASYNC, and is being made runnable after sitting on an |
| 325 | * rpc_wait_queue, this must be called with the queue spinlock held to protect |
| 326 | * the wait queue operation. |
| 327 | * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(), |
| 328 | * which is needed to ensure that __rpc_execute() doesn't loop (due to the |
| 329 | * lockless RPC_IS_QUEUED() test) before we've had a chance to test |
| 330 | * the RPC_TASK_RUNNING flag. |
| 331 | */ |
| 332 | static void rpc_make_runnable(struct rpc_task *task) |
| 333 | { |
| 334 | bool need_wakeup = !rpc_test_and_set_running(task); |
| 335 | |
| 336 | rpc_clear_queued(task); |
| 337 | if (!need_wakeup) |
| 338 | return; |
| 339 | if (RPC_IS_ASYNC(task)) { |
| 340 | INIT_WORK(&task->u.tk_work, rpc_async_schedule); |
| 341 | queue_work(rpciod_workqueue, &task->u.tk_work); |
| 342 | } else |
| 343 | wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED); |
| 344 | } |
| 345 | |
| 346 | /* |
| 347 | * Prepare for sleeping on a wait queue. |
| 348 | * By always appending tasks to the list we ensure FIFO behavior. |
| 349 | * NB: An RPC task will only receive interrupt-driven events as long |
| 350 | * as it's on a wait queue. |
| 351 | */ |
| 352 | static void __rpc_sleep_on_priority(struct rpc_wait_queue *q, |
| 353 | struct rpc_task *task, |
| 354 | rpc_action action, |
| 355 | unsigned char queue_priority) |
| 356 | { |
| 357 | dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n", |
| 358 | task->tk_pid, rpc_qname(q), jiffies); |
| 359 | |
| 360 | trace_rpc_task_sleep(task->tk_client, task, q); |
| 361 | |
| 362 | __rpc_add_wait_queue(q, task, queue_priority); |
| 363 | |
| 364 | WARN_ON_ONCE(task->tk_callback != NULL); |
| 365 | task->tk_callback = action; |
| 366 | __rpc_add_timer(q, task); |
| 367 | } |
| 368 | |
| 369 | void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task, |
| 370 | rpc_action action) |
| 371 | { |
| 372 | /* We shouldn't ever put an inactive task to sleep */ |
| 373 | WARN_ON_ONCE(!RPC_IS_ACTIVATED(task)); |
| 374 | if (!RPC_IS_ACTIVATED(task)) { |
| 375 | task->tk_status = -EIO; |
| 376 | rpc_put_task_async(task); |
| 377 | return; |
| 378 | } |
| 379 | |
| 380 | /* |
| 381 | * Protect the queue operations. |
| 382 | */ |
| 383 | spin_lock_bh(&q->lock); |
| 384 | __rpc_sleep_on_priority(q, task, action, task->tk_priority); |
| 385 | spin_unlock_bh(&q->lock); |
| 386 | } |
| 387 | EXPORT_SYMBOL_GPL(rpc_sleep_on); |
| 388 | |
| 389 | void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task, |
| 390 | rpc_action action, int priority) |
| 391 | { |
| 392 | /* We shouldn't ever put an inactive task to sleep */ |
| 393 | WARN_ON_ONCE(!RPC_IS_ACTIVATED(task)); |
| 394 | if (!RPC_IS_ACTIVATED(task)) { |
| 395 | task->tk_status = -EIO; |
| 396 | rpc_put_task_async(task); |
| 397 | return; |
| 398 | } |
| 399 | |
| 400 | /* |
| 401 | * Protect the queue operations. |
| 402 | */ |
| 403 | spin_lock_bh(&q->lock); |
| 404 | __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW); |
| 405 | spin_unlock_bh(&q->lock); |
| 406 | } |
| 407 | EXPORT_SYMBOL_GPL(rpc_sleep_on_priority); |
| 408 | |
| 409 | /** |
| 410 | * __rpc_do_wake_up_task - wake up a single rpc_task |
| 411 | * @queue: wait queue |
| 412 | * @task: task to be woken up |
| 413 | * |
| 414 | * Caller must hold queue->lock, and have cleared the task queued flag. |
| 415 | */ |
| 416 | static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task) |
| 417 | { |
| 418 | dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n", |
| 419 | task->tk_pid, jiffies); |
| 420 | |
| 421 | /* Has the task been executed yet? If not, we cannot wake it up! */ |
| 422 | if (!RPC_IS_ACTIVATED(task)) { |
| 423 | printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task); |
| 424 | return; |
| 425 | } |
| 426 | |
| 427 | trace_rpc_task_wakeup(task->tk_client, task, queue); |
| 428 | |
| 429 | __rpc_remove_wait_queue(queue, task); |
| 430 | |
| 431 | rpc_make_runnable(task); |
| 432 | |
| 433 | dprintk("RPC: __rpc_wake_up_task done\n"); |
| 434 | } |
| 435 | |
| 436 | /* |
| 437 | * Wake up a queued task while the queue lock is being held |
| 438 | */ |
| 439 | static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task) |
| 440 | { |
| 441 | if (RPC_IS_QUEUED(task)) { |
| 442 | smp_rmb(); |
| 443 | if (task->tk_waitqueue == queue) |
| 444 | __rpc_do_wake_up_task(queue, task); |
| 445 | } |
| 446 | } |
| 447 | |
| 448 | /* |
| 449 | * Wake up a task on a specific queue |
| 450 | */ |
| 451 | void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task) |
| 452 | { |
| 453 | spin_lock_bh(&queue->lock); |
| 454 | rpc_wake_up_task_queue_locked(queue, task); |
| 455 | spin_unlock_bh(&queue->lock); |
| 456 | } |
| 457 | EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task); |
| 458 | |
| 459 | /* |
| 460 | * Wake up the next task on a priority queue. |
| 461 | */ |
| 462 | static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue) |
| 463 | { |
| 464 | struct list_head *q; |
| 465 | struct rpc_task *task; |
| 466 | |
| 467 | /* |
| 468 | * Service a batch of tasks from a single owner. |
| 469 | */ |
| 470 | q = &queue->tasks[queue->priority]; |
| 471 | if (!list_empty(q)) { |
| 472 | task = list_entry(q->next, struct rpc_task, u.tk_wait.list); |
| 473 | if (queue->owner == task->tk_owner) { |
| 474 | if (--queue->nr) |
| 475 | goto out; |
| 476 | list_move_tail(&task->u.tk_wait.list, q); |
| 477 | } |
| 478 | /* |
| 479 | * Check if we need to switch queues. |
| 480 | */ |
| 481 | goto new_owner; |
| 482 | } |
| 483 | |
| 484 | /* |
| 485 | * Service the next queue. |
| 486 | */ |
| 487 | do { |
| 488 | if (q == &queue->tasks[0]) |
| 489 | q = &queue->tasks[queue->maxpriority]; |
| 490 | else |
| 491 | q = q - 1; |
| 492 | if (!list_empty(q)) { |
| 493 | task = list_entry(q->next, struct rpc_task, u.tk_wait.list); |
| 494 | goto new_queue; |
| 495 | } |
| 496 | } while (q != &queue->tasks[queue->priority]); |
| 497 | |
| 498 | rpc_reset_waitqueue_priority(queue); |
| 499 | return NULL; |
| 500 | |
| 501 | new_queue: |
| 502 | rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0])); |
| 503 | new_owner: |
| 504 | rpc_set_waitqueue_owner(queue, task->tk_owner); |
| 505 | out: |
| 506 | return task; |
| 507 | } |
| 508 | |
| 509 | static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue) |
| 510 | { |
| 511 | if (RPC_IS_PRIORITY(queue)) |
| 512 | return __rpc_find_next_queued_priority(queue); |
| 513 | if (!list_empty(&queue->tasks[0])) |
| 514 | return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list); |
| 515 | return NULL; |
| 516 | } |
| 517 | |
| 518 | /* |
| 519 | * Wake up the first task on the wait queue. |
| 520 | */ |
| 521 | struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue, |
| 522 | bool (*func)(struct rpc_task *, void *), void *data) |
| 523 | { |
| 524 | struct rpc_task *task = NULL; |
| 525 | |
| 526 | dprintk("RPC: wake_up_first(%p \"%s\")\n", |
| 527 | queue, rpc_qname(queue)); |
| 528 | spin_lock_bh(&queue->lock); |
| 529 | task = __rpc_find_next_queued(queue); |
| 530 | if (task != NULL) { |
| 531 | if (func(task, data)) |
| 532 | rpc_wake_up_task_queue_locked(queue, task); |
| 533 | else |
| 534 | task = NULL; |
| 535 | } |
| 536 | spin_unlock_bh(&queue->lock); |
| 537 | |
| 538 | return task; |
| 539 | } |
| 540 | EXPORT_SYMBOL_GPL(rpc_wake_up_first); |
| 541 | |
| 542 | static bool rpc_wake_up_next_func(struct rpc_task *task, void *data) |
| 543 | { |
| 544 | return true; |
| 545 | } |
| 546 | |
| 547 | /* |
| 548 | * Wake up the next task on the wait queue. |
| 549 | */ |
| 550 | struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue) |
| 551 | { |
| 552 | return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL); |
| 553 | } |
| 554 | EXPORT_SYMBOL_GPL(rpc_wake_up_next); |
| 555 | |
| 556 | /** |
| 557 | * rpc_wake_up - wake up all rpc_tasks |
| 558 | * @queue: rpc_wait_queue on which the tasks are sleeping |
| 559 | * |
| 560 | * Grabs queue->lock |
| 561 | */ |
| 562 | void rpc_wake_up(struct rpc_wait_queue *queue) |
| 563 | { |
| 564 | struct list_head *head; |
| 565 | |
| 566 | spin_lock_bh(&queue->lock); |
| 567 | head = &queue->tasks[queue->maxpriority]; |
| 568 | for (;;) { |
| 569 | while (!list_empty(head)) { |
| 570 | struct rpc_task *task; |
| 571 | task = list_first_entry(head, |
| 572 | struct rpc_task, |
| 573 | u.tk_wait.list); |
| 574 | rpc_wake_up_task_queue_locked(queue, task); |
| 575 | } |
| 576 | if (head == &queue->tasks[0]) |
| 577 | break; |
| 578 | head--; |
| 579 | } |
| 580 | spin_unlock_bh(&queue->lock); |
| 581 | } |
| 582 | EXPORT_SYMBOL_GPL(rpc_wake_up); |
| 583 | |
| 584 | /** |
| 585 | * rpc_wake_up_status - wake up all rpc_tasks and set their status value. |
| 586 | * @queue: rpc_wait_queue on which the tasks are sleeping |
| 587 | * @status: status value to set |
| 588 | * |
| 589 | * Grabs queue->lock |
| 590 | */ |
| 591 | void rpc_wake_up_status(struct rpc_wait_queue *queue, int status) |
| 592 | { |
| 593 | struct list_head *head; |
| 594 | |
| 595 | spin_lock_bh(&queue->lock); |
| 596 | head = &queue->tasks[queue->maxpriority]; |
| 597 | for (;;) { |
| 598 | while (!list_empty(head)) { |
| 599 | struct rpc_task *task; |
| 600 | task = list_first_entry(head, |
| 601 | struct rpc_task, |
| 602 | u.tk_wait.list); |
| 603 | task->tk_status = status; |
| 604 | rpc_wake_up_task_queue_locked(queue, task); |
| 605 | } |
| 606 | if (head == &queue->tasks[0]) |
| 607 | break; |
| 608 | head--; |
| 609 | } |
| 610 | spin_unlock_bh(&queue->lock); |
| 611 | } |
| 612 | EXPORT_SYMBOL_GPL(rpc_wake_up_status); |
| 613 | |
| 614 | static void __rpc_queue_timer_fn(unsigned long ptr) |
| 615 | { |
| 616 | struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr; |
| 617 | struct rpc_task *task, *n; |
| 618 | unsigned long expires, now, timeo; |
| 619 | |
| 620 | spin_lock(&queue->lock); |
| 621 | expires = now = jiffies; |
| 622 | list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) { |
| 623 | timeo = task->u.tk_wait.expires; |
| 624 | if (time_after_eq(now, timeo)) { |
| 625 | dprintk("RPC: %5u timeout\n", task->tk_pid); |
| 626 | task->tk_status = -ETIMEDOUT; |
| 627 | rpc_wake_up_task_queue_locked(queue, task); |
| 628 | continue; |
| 629 | } |
| 630 | if (expires == now || time_after(expires, timeo)) |
| 631 | expires = timeo; |
| 632 | } |
| 633 | if (!list_empty(&queue->timer_list.list)) |
| 634 | rpc_set_queue_timer(queue, expires); |
| 635 | spin_unlock(&queue->lock); |
| 636 | } |
| 637 | |
| 638 | static void __rpc_atrun(struct rpc_task *task) |
| 639 | { |
| 640 | if (task->tk_status == -ETIMEDOUT) |
| 641 | task->tk_status = 0; |
| 642 | } |
| 643 | |
| 644 | /* |
| 645 | * Run a task at a later time |
| 646 | */ |
| 647 | void rpc_delay(struct rpc_task *task, unsigned long delay) |
| 648 | { |
| 649 | task->tk_timeout = delay; |
| 650 | rpc_sleep_on(&delay_queue, task, __rpc_atrun); |
| 651 | } |
| 652 | EXPORT_SYMBOL_GPL(rpc_delay); |
| 653 | |
| 654 | /* |
| 655 | * Helper to call task->tk_ops->rpc_call_prepare |
| 656 | */ |
| 657 | void rpc_prepare_task(struct rpc_task *task) |
| 658 | { |
| 659 | task->tk_ops->rpc_call_prepare(task, task->tk_calldata); |
| 660 | } |
| 661 | |
| 662 | static void |
| 663 | rpc_init_task_statistics(struct rpc_task *task) |
| 664 | { |
| 665 | /* Initialize retry counters */ |
| 666 | task->tk_garb_retry = 2; |
| 667 | task->tk_cred_retry = 2; |
| 668 | task->tk_rebind_retry = 2; |
| 669 | |
| 670 | /* starting timestamp */ |
| 671 | task->tk_start = ktime_get(); |
| 672 | } |
| 673 | |
| 674 | static void |
| 675 | rpc_reset_task_statistics(struct rpc_task *task) |
| 676 | { |
| 677 | task->tk_timeouts = 0; |
| 678 | task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT); |
| 679 | |
| 680 | rpc_init_task_statistics(task); |
| 681 | } |
| 682 | |
| 683 | /* |
| 684 | * Helper that calls task->tk_ops->rpc_call_done if it exists |
| 685 | */ |
| 686 | void rpc_exit_task(struct rpc_task *task) |
| 687 | { |
| 688 | task->tk_action = NULL; |
| 689 | if (task->tk_ops->rpc_call_done != NULL) { |
| 690 | task->tk_ops->rpc_call_done(task, task->tk_calldata); |
| 691 | if (task->tk_action != NULL) { |
| 692 | WARN_ON(RPC_ASSASSINATED(task)); |
| 693 | /* Always release the RPC slot and buffer memory */ |
| 694 | xprt_release(task); |
| 695 | rpc_reset_task_statistics(task); |
| 696 | } |
| 697 | } |
| 698 | } |
| 699 | |
| 700 | void rpc_exit(struct rpc_task *task, int status) |
| 701 | { |
| 702 | task->tk_status = status; |
| 703 | task->tk_action = rpc_exit_task; |
| 704 | if (RPC_IS_QUEUED(task)) |
| 705 | rpc_wake_up_queued_task(task->tk_waitqueue, task); |
| 706 | } |
| 707 | EXPORT_SYMBOL_GPL(rpc_exit); |
| 708 | |
| 709 | void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata) |
| 710 | { |
| 711 | if (ops->rpc_release != NULL) |
| 712 | ops->rpc_release(calldata); |
| 713 | } |
| 714 | |
| 715 | /* |
| 716 | * This is the RPC `scheduler' (or rather, the finite state machine). |
| 717 | */ |
| 718 | static void __rpc_execute(struct rpc_task *task) |
| 719 | { |
| 720 | struct rpc_wait_queue *queue; |
| 721 | int task_is_async = RPC_IS_ASYNC(task); |
| 722 | int status = 0; |
| 723 | |
| 724 | dprintk("RPC: %5u __rpc_execute flags=0x%x\n", |
| 725 | task->tk_pid, task->tk_flags); |
| 726 | |
| 727 | WARN_ON_ONCE(RPC_IS_QUEUED(task)); |
| 728 | if (RPC_IS_QUEUED(task)) |
| 729 | return; |
| 730 | |
| 731 | for (;;) { |
| 732 | void (*do_action)(struct rpc_task *); |
| 733 | |
| 734 | /* |
| 735 | * Execute any pending callback first. |
| 736 | */ |
| 737 | do_action = task->tk_callback; |
| 738 | task->tk_callback = NULL; |
| 739 | if (do_action == NULL) { |
| 740 | /* |
| 741 | * Perform the next FSM step. |
| 742 | * tk_action may be NULL if the task has been killed. |
| 743 | * In particular, note that rpc_killall_tasks may |
| 744 | * do this at any time, so beware when dereferencing. |
| 745 | */ |
| 746 | do_action = task->tk_action; |
| 747 | if (do_action == NULL) |
| 748 | break; |
| 749 | } |
| 750 | trace_rpc_task_run_action(task->tk_client, task, task->tk_action); |
| 751 | do_action(task); |
| 752 | |
| 753 | /* |
| 754 | * Lockless check for whether task is sleeping or not. |
| 755 | */ |
| 756 | if (!RPC_IS_QUEUED(task)) |
| 757 | continue; |
| 758 | /* |
| 759 | * The queue->lock protects against races with |
| 760 | * rpc_make_runnable(). |
| 761 | * |
| 762 | * Note that once we clear RPC_TASK_RUNNING on an asynchronous |
| 763 | * rpc_task, rpc_make_runnable() can assign it to a |
| 764 | * different workqueue. We therefore cannot assume that the |
| 765 | * rpc_task pointer may still be dereferenced. |
| 766 | */ |
| 767 | queue = task->tk_waitqueue; |
| 768 | spin_lock_bh(&queue->lock); |
| 769 | if (!RPC_IS_QUEUED(task)) { |
| 770 | spin_unlock_bh(&queue->lock); |
| 771 | continue; |
| 772 | } |
| 773 | rpc_clear_running(task); |
| 774 | spin_unlock_bh(&queue->lock); |
| 775 | if (task_is_async) |
| 776 | return; |
| 777 | |
| 778 | /* sync task: sleep here */ |
| 779 | dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid); |
| 780 | status = out_of_line_wait_on_bit(&task->tk_runstate, |
| 781 | RPC_TASK_QUEUED, rpc_wait_bit_killable, |
| 782 | TASK_KILLABLE); |
| 783 | if (status == -ERESTARTSYS) { |
| 784 | /* |
| 785 | * When a sync task receives a signal, it exits with |
| 786 | * -ERESTARTSYS. In order to catch any callbacks that |
| 787 | * clean up after sleeping on some queue, we don't |
| 788 | * break the loop here, but go around once more. |
| 789 | */ |
| 790 | dprintk("RPC: %5u got signal\n", task->tk_pid); |
| 791 | task->tk_flags |= RPC_TASK_KILLED; |
| 792 | rpc_exit(task, -ERESTARTSYS); |
| 793 | } |
| 794 | dprintk("RPC: %5u sync task resuming\n", task->tk_pid); |
| 795 | } |
| 796 | |
| 797 | dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status, |
| 798 | task->tk_status); |
| 799 | /* Release all resources associated with the task */ |
| 800 | rpc_release_task(task); |
| 801 | } |
| 802 | |
| 803 | /* |
| 804 | * User-visible entry point to the scheduler. |
| 805 | * |
| 806 | * This may be called recursively if e.g. an async NFS task updates |
| 807 | * the attributes and finds that dirty pages must be flushed. |
| 808 | * NOTE: Upon exit of this function the task is guaranteed to be |
| 809 | * released. In particular note that tk_release() will have |
| 810 | * been called, so your task memory may have been freed. |
| 811 | */ |
| 812 | void rpc_execute(struct rpc_task *task) |
| 813 | { |
| 814 | bool is_async = RPC_IS_ASYNC(task); |
| 815 | |
| 816 | rpc_set_active(task); |
| 817 | rpc_make_runnable(task); |
| 818 | if (!is_async) |
| 819 | __rpc_execute(task); |
| 820 | } |
| 821 | |
| 822 | static void rpc_async_schedule(struct work_struct *work) |
| 823 | { |
| 824 | __rpc_execute(container_of(work, struct rpc_task, u.tk_work)); |
| 825 | } |
| 826 | |
| 827 | /** |
| 828 | * rpc_malloc - allocate an RPC buffer |
| 829 | * @task: RPC task that will use this buffer |
| 830 | * @size: requested byte size |
| 831 | * |
| 832 | * To prevent rpciod from hanging, this allocator never sleeps, |
| 833 | * returning NULL and suppressing warning if the request cannot be serviced |
| 834 | * immediately. |
| 835 | * The caller can arrange to sleep in a way that is safe for rpciod. |
| 836 | * |
| 837 | * Most requests are 'small' (under 2KiB) and can be serviced from a |
| 838 | * mempool, ensuring that NFS reads and writes can always proceed, |
| 839 | * and that there is good locality of reference for these buffers. |
| 840 | * |
| 841 | * In order to avoid memory starvation triggering more writebacks of |
| 842 | * NFS requests, we avoid using GFP_KERNEL. |
| 843 | */ |
| 844 | void *rpc_malloc(struct rpc_task *task, size_t size) |
| 845 | { |
| 846 | struct rpc_buffer *buf; |
| 847 | gfp_t gfp = GFP_NOIO | __GFP_NOWARN; |
| 848 | |
| 849 | if (RPC_IS_SWAPPER(task)) |
| 850 | gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN; |
| 851 | |
| 852 | size += sizeof(struct rpc_buffer); |
| 853 | if (size <= RPC_BUFFER_MAXSIZE) |
| 854 | buf = mempool_alloc(rpc_buffer_mempool, gfp); |
| 855 | else |
| 856 | buf = kmalloc(size, gfp); |
| 857 | |
| 858 | if (!buf) |
| 859 | return NULL; |
| 860 | |
| 861 | buf->len = size; |
| 862 | dprintk("RPC: %5u allocated buffer of size %zu at %p\n", |
| 863 | task->tk_pid, size, buf); |
| 864 | return &buf->data; |
| 865 | } |
| 866 | EXPORT_SYMBOL_GPL(rpc_malloc); |
| 867 | |
| 868 | /** |
| 869 | * rpc_free - free buffer allocated via rpc_malloc |
| 870 | * @buffer: buffer to free |
| 871 | * |
| 872 | */ |
| 873 | void rpc_free(void *buffer) |
| 874 | { |
| 875 | size_t size; |
| 876 | struct rpc_buffer *buf; |
| 877 | |
| 878 | if (!buffer) |
| 879 | return; |
| 880 | |
| 881 | buf = container_of(buffer, struct rpc_buffer, data); |
| 882 | size = buf->len; |
| 883 | |
| 884 | dprintk("RPC: freeing buffer of size %zu at %p\n", |
| 885 | size, buf); |
| 886 | |
| 887 | if (size <= RPC_BUFFER_MAXSIZE) |
| 888 | mempool_free(buf, rpc_buffer_mempool); |
| 889 | else |
| 890 | kfree(buf); |
| 891 | } |
| 892 | EXPORT_SYMBOL_GPL(rpc_free); |
| 893 | |
| 894 | /* |
| 895 | * Creation and deletion of RPC task structures |
| 896 | */ |
| 897 | static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data) |
| 898 | { |
| 899 | memset(task, 0, sizeof(*task)); |
| 900 | atomic_set(&task->tk_count, 1); |
| 901 | task->tk_flags = task_setup_data->flags; |
| 902 | task->tk_ops = task_setup_data->callback_ops; |
| 903 | task->tk_calldata = task_setup_data->callback_data; |
| 904 | INIT_LIST_HEAD(&task->tk_task); |
| 905 | |
| 906 | task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW; |
| 907 | task->tk_owner = current->tgid; |
| 908 | |
| 909 | /* Initialize workqueue for async tasks */ |
| 910 | task->tk_workqueue = task_setup_data->workqueue; |
| 911 | |
| 912 | if (task->tk_ops->rpc_call_prepare != NULL) |
| 913 | task->tk_action = rpc_prepare_task; |
| 914 | |
| 915 | rpc_init_task_statistics(task); |
| 916 | |
| 917 | dprintk("RPC: new task initialized, procpid %u\n", |
| 918 | task_pid_nr(current)); |
| 919 | } |
| 920 | |
| 921 | static struct rpc_task * |
| 922 | rpc_alloc_task(void) |
| 923 | { |
| 924 | return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO); |
| 925 | } |
| 926 | |
| 927 | /* |
| 928 | * Create a new task for the specified client. |
| 929 | */ |
| 930 | struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data) |
| 931 | { |
| 932 | struct rpc_task *task = setup_data->task; |
| 933 | unsigned short flags = 0; |
| 934 | |
| 935 | if (task == NULL) { |
| 936 | task = rpc_alloc_task(); |
| 937 | if (task == NULL) { |
| 938 | rpc_release_calldata(setup_data->callback_ops, |
| 939 | setup_data->callback_data); |
| 940 | return ERR_PTR(-ENOMEM); |
| 941 | } |
| 942 | flags = RPC_TASK_DYNAMIC; |
| 943 | } |
| 944 | |
| 945 | rpc_init_task(task, setup_data); |
| 946 | task->tk_flags |= flags; |
| 947 | dprintk("RPC: allocated task %p\n", task); |
| 948 | return task; |
| 949 | } |
| 950 | |
| 951 | /* |
| 952 | * rpc_free_task - release rpc task and perform cleanups |
| 953 | * |
| 954 | * Note that we free up the rpc_task _after_ rpc_release_calldata() |
| 955 | * in order to work around a workqueue dependency issue. |
| 956 | * |
| 957 | * Tejun Heo states: |
| 958 | * "Workqueue currently considers two work items to be the same if they're |
| 959 | * on the same address and won't execute them concurrently - ie. it |
| 960 | * makes a work item which is queued again while being executed wait |
| 961 | * for the previous execution to complete. |
| 962 | * |
| 963 | * If a work function frees the work item, and then waits for an event |
| 964 | * which should be performed by another work item and *that* work item |
| 965 | * recycles the freed work item, it can create a false dependency loop. |
| 966 | * There really is no reliable way to detect this short of verifying |
| 967 | * every memory free." |
| 968 | * |
| 969 | */ |
| 970 | static void rpc_free_task(struct rpc_task *task) |
| 971 | { |
| 972 | unsigned short tk_flags = task->tk_flags; |
| 973 | |
| 974 | rpc_release_calldata(task->tk_ops, task->tk_calldata); |
| 975 | |
| 976 | if (tk_flags & RPC_TASK_DYNAMIC) { |
| 977 | dprintk("RPC: %5u freeing task\n", task->tk_pid); |
| 978 | mempool_free(task, rpc_task_mempool); |
| 979 | } |
| 980 | } |
| 981 | |
| 982 | static void rpc_async_release(struct work_struct *work) |
| 983 | { |
| 984 | rpc_free_task(container_of(work, struct rpc_task, u.tk_work)); |
| 985 | } |
| 986 | |
| 987 | static void rpc_release_resources_task(struct rpc_task *task) |
| 988 | { |
| 989 | xprt_release(task); |
| 990 | if (task->tk_msg.rpc_cred) { |
| 991 | put_rpccred(task->tk_msg.rpc_cred); |
| 992 | task->tk_msg.rpc_cred = NULL; |
| 993 | } |
| 994 | rpc_task_release_client(task); |
| 995 | } |
| 996 | |
| 997 | static void rpc_final_put_task(struct rpc_task *task, |
| 998 | struct workqueue_struct *q) |
| 999 | { |
| 1000 | if (q != NULL) { |
| 1001 | INIT_WORK(&task->u.tk_work, rpc_async_release); |
| 1002 | queue_work(q, &task->u.tk_work); |
| 1003 | } else |
| 1004 | rpc_free_task(task); |
| 1005 | } |
| 1006 | |
| 1007 | static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q) |
| 1008 | { |
| 1009 | if (atomic_dec_and_test(&task->tk_count)) { |
| 1010 | rpc_release_resources_task(task); |
| 1011 | rpc_final_put_task(task, q); |
| 1012 | } |
| 1013 | } |
| 1014 | |
| 1015 | void rpc_put_task(struct rpc_task *task) |
| 1016 | { |
| 1017 | rpc_do_put_task(task, NULL); |
| 1018 | } |
| 1019 | EXPORT_SYMBOL_GPL(rpc_put_task); |
| 1020 | |
| 1021 | void rpc_put_task_async(struct rpc_task *task) |
| 1022 | { |
| 1023 | rpc_do_put_task(task, task->tk_workqueue); |
| 1024 | } |
| 1025 | EXPORT_SYMBOL_GPL(rpc_put_task_async); |
| 1026 | |
| 1027 | static void rpc_release_task(struct rpc_task *task) |
| 1028 | { |
| 1029 | dprintk("RPC: %5u release task\n", task->tk_pid); |
| 1030 | |
| 1031 | WARN_ON_ONCE(RPC_IS_QUEUED(task)); |
| 1032 | |
| 1033 | rpc_release_resources_task(task); |
| 1034 | |
| 1035 | /* |
| 1036 | * Note: at this point we have been removed from rpc_clnt->cl_tasks, |
| 1037 | * so it should be safe to use task->tk_count as a test for whether |
| 1038 | * or not any other processes still hold references to our rpc_task. |
| 1039 | */ |
| 1040 | if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) { |
| 1041 | /* Wake up anyone who may be waiting for task completion */ |
| 1042 | if (!rpc_complete_task(task)) |
| 1043 | return; |
| 1044 | } else { |
| 1045 | if (!atomic_dec_and_test(&task->tk_count)) |
| 1046 | return; |
| 1047 | } |
| 1048 | rpc_final_put_task(task, task->tk_workqueue); |
| 1049 | } |
| 1050 | |
| 1051 | int rpciod_up(void) |
| 1052 | { |
| 1053 | return try_module_get(THIS_MODULE) ? 0 : -EINVAL; |
| 1054 | } |
| 1055 | |
| 1056 | void rpciod_down(void) |
| 1057 | { |
| 1058 | module_put(THIS_MODULE); |
| 1059 | } |
| 1060 | |
| 1061 | /* |
| 1062 | * Start up the rpciod workqueue. |
| 1063 | */ |
| 1064 | static int rpciod_start(void) |
| 1065 | { |
| 1066 | struct workqueue_struct *wq; |
| 1067 | |
| 1068 | /* |
| 1069 | * Create the rpciod thread and wait for it to start. |
| 1070 | */ |
| 1071 | dprintk("RPC: creating workqueue rpciod\n"); |
| 1072 | /* Note: highpri because network receive is latency sensitive */ |
| 1073 | wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); |
| 1074 | rpciod_workqueue = wq; |
| 1075 | return rpciod_workqueue != NULL; |
| 1076 | } |
| 1077 | |
| 1078 | static void rpciod_stop(void) |
| 1079 | { |
| 1080 | struct workqueue_struct *wq = NULL; |
| 1081 | |
| 1082 | if (rpciod_workqueue == NULL) |
| 1083 | return; |
| 1084 | dprintk("RPC: destroying workqueue rpciod\n"); |
| 1085 | |
| 1086 | wq = rpciod_workqueue; |
| 1087 | rpciod_workqueue = NULL; |
| 1088 | destroy_workqueue(wq); |
| 1089 | } |
| 1090 | |
| 1091 | void |
| 1092 | rpc_destroy_mempool(void) |
| 1093 | { |
| 1094 | rpciod_stop(); |
| 1095 | mempool_destroy(rpc_buffer_mempool); |
| 1096 | mempool_destroy(rpc_task_mempool); |
| 1097 | kmem_cache_destroy(rpc_task_slabp); |
| 1098 | kmem_cache_destroy(rpc_buffer_slabp); |
| 1099 | rpc_destroy_wait_queue(&delay_queue); |
| 1100 | } |
| 1101 | |
| 1102 | int |
| 1103 | rpc_init_mempool(void) |
| 1104 | { |
| 1105 | /* |
| 1106 | * The following is not strictly a mempool initialisation, |
| 1107 | * but there is no harm in doing it here |
| 1108 | */ |
| 1109 | rpc_init_wait_queue(&delay_queue, "delayq"); |
| 1110 | if (!rpciod_start()) |
| 1111 | goto err_nomem; |
| 1112 | |
| 1113 | rpc_task_slabp = kmem_cache_create("rpc_tasks", |
| 1114 | sizeof(struct rpc_task), |
| 1115 | 0, SLAB_HWCACHE_ALIGN, |
| 1116 | NULL); |
| 1117 | if (!rpc_task_slabp) |
| 1118 | goto err_nomem; |
| 1119 | rpc_buffer_slabp = kmem_cache_create("rpc_buffers", |
| 1120 | RPC_BUFFER_MAXSIZE, |
| 1121 | 0, SLAB_HWCACHE_ALIGN, |
| 1122 | NULL); |
| 1123 | if (!rpc_buffer_slabp) |
| 1124 | goto err_nomem; |
| 1125 | rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE, |
| 1126 | rpc_task_slabp); |
| 1127 | if (!rpc_task_mempool) |
| 1128 | goto err_nomem; |
| 1129 | rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE, |
| 1130 | rpc_buffer_slabp); |
| 1131 | if (!rpc_buffer_mempool) |
| 1132 | goto err_nomem; |
| 1133 | return 0; |
| 1134 | err_nomem: |
| 1135 | rpc_destroy_mempool(); |
| 1136 | return -ENOMEM; |
| 1137 | } |