Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame] | 1 | /* Common capabilities, needed by capability.o. |
| 2 | * |
| 3 | * This program is free software; you can redistribute it and/or modify |
| 4 | * it under the terms of the GNU General Public License as published by |
| 5 | * the Free Software Foundation; either version 2 of the License, or |
| 6 | * (at your option) any later version. |
| 7 | * |
| 8 | */ |
| 9 | |
| 10 | #include <linux/capability.h> |
| 11 | #include <linux/audit.h> |
| 12 | #include <linux/module.h> |
| 13 | #include <linux/init.h> |
| 14 | #include <linux/kernel.h> |
| 15 | #include <linux/lsm_hooks.h> |
| 16 | #include <linux/file.h> |
| 17 | #include <linux/mm.h> |
| 18 | #include <linux/mman.h> |
| 19 | #include <linux/pagemap.h> |
| 20 | #include <linux/swap.h> |
| 21 | #include <linux/skbuff.h> |
| 22 | #include <linux/netlink.h> |
| 23 | #include <linux/ptrace.h> |
| 24 | #include <linux/xattr.h> |
| 25 | #include <linux/hugetlb.h> |
| 26 | #include <linux/mount.h> |
| 27 | #include <linux/sched.h> |
| 28 | #include <linux/prctl.h> |
| 29 | #include <linux/securebits.h> |
| 30 | #include <linux/user_namespace.h> |
| 31 | #include <linux/binfmts.h> |
| 32 | #include <linux/personality.h> |
| 33 | |
| 34 | /* |
| 35 | * If a non-root user executes a setuid-root binary in |
| 36 | * !secure(SECURE_NOROOT) mode, then we raise capabilities. |
| 37 | * However if fE is also set, then the intent is for only |
| 38 | * the file capabilities to be applied, and the setuid-root |
| 39 | * bit is left on either to change the uid (plausible) or |
| 40 | * to get full privilege on a kernel without file capabilities |
| 41 | * support. So in that case we do not raise capabilities. |
| 42 | * |
| 43 | * Warn if that happens, once per boot. |
| 44 | */ |
| 45 | static void warn_setuid_and_fcaps_mixed(const char *fname) |
| 46 | { |
| 47 | static int warned; |
| 48 | if (!warned) { |
| 49 | printk(KERN_INFO "warning: `%s' has both setuid-root and" |
| 50 | " effective capabilities. Therefore not raising all" |
| 51 | " capabilities.\n", fname); |
| 52 | warned = 1; |
| 53 | } |
| 54 | } |
| 55 | |
| 56 | /** |
| 57 | * cap_capable - Determine whether a task has a particular effective capability |
| 58 | * @cred: The credentials to use |
| 59 | * @ns: The user namespace in which we need the capability |
| 60 | * @cap: The capability to check for |
| 61 | * @audit: Whether to write an audit message or not |
| 62 | * |
| 63 | * Determine whether the nominated task has the specified capability amongst |
| 64 | * its effective set, returning 0 if it does, -ve if it does not. |
| 65 | * |
| 66 | * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable() |
| 67 | * and has_capability() functions. That is, it has the reverse semantics: |
| 68 | * cap_has_capability() returns 0 when a task has a capability, but the |
| 69 | * kernel's capable() and has_capability() returns 1 for this case. |
| 70 | */ |
| 71 | int cap_capable(const struct cred *cred, struct user_namespace *targ_ns, |
| 72 | int cap, int audit) |
| 73 | { |
| 74 | struct user_namespace *ns = targ_ns; |
| 75 | |
| 76 | /* See if cred has the capability in the target user namespace |
| 77 | * by examining the target user namespace and all of the target |
| 78 | * user namespace's parents. |
| 79 | */ |
| 80 | for (;;) { |
| 81 | /* Do we have the necessary capabilities? */ |
| 82 | if (ns == cred->user_ns) |
| 83 | return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM; |
| 84 | |
| 85 | /* Have we tried all of the parent namespaces? */ |
| 86 | if (ns == &init_user_ns) |
| 87 | return -EPERM; |
| 88 | |
| 89 | /* |
| 90 | * The owner of the user namespace in the parent of the |
| 91 | * user namespace has all caps. |
| 92 | */ |
| 93 | if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid)) |
| 94 | return 0; |
| 95 | |
| 96 | /* |
| 97 | * If you have a capability in a parent user ns, then you have |
| 98 | * it over all children user namespaces as well. |
| 99 | */ |
| 100 | ns = ns->parent; |
| 101 | } |
| 102 | |
| 103 | /* We never get here */ |
| 104 | } |
| 105 | |
| 106 | /** |
| 107 | * cap_settime - Determine whether the current process may set the system clock |
| 108 | * @ts: The time to set |
| 109 | * @tz: The timezone to set |
| 110 | * |
| 111 | * Determine whether the current process may set the system clock and timezone |
| 112 | * information, returning 0 if permission granted, -ve if denied. |
| 113 | */ |
| 114 | int cap_settime(const struct timespec *ts, const struct timezone *tz) |
| 115 | { |
| 116 | if (!capable(CAP_SYS_TIME)) |
| 117 | return -EPERM; |
| 118 | return 0; |
| 119 | } |
| 120 | |
| 121 | /** |
| 122 | * cap_ptrace_access_check - Determine whether the current process may access |
| 123 | * another |
| 124 | * @child: The process to be accessed |
| 125 | * @mode: The mode of attachment. |
| 126 | * |
| 127 | * If we are in the same or an ancestor user_ns and have all the target |
| 128 | * task's capabilities, then ptrace access is allowed. |
| 129 | * If we have the ptrace capability to the target user_ns, then ptrace |
| 130 | * access is allowed. |
| 131 | * Else denied. |
| 132 | * |
| 133 | * Determine whether a process may access another, returning 0 if permission |
| 134 | * granted, -ve if denied. |
| 135 | */ |
| 136 | int cap_ptrace_access_check(struct task_struct *child, unsigned int mode) |
| 137 | { |
| 138 | int ret = 0; |
| 139 | const struct cred *cred, *child_cred; |
| 140 | const kernel_cap_t *caller_caps; |
| 141 | |
| 142 | rcu_read_lock(); |
| 143 | cred = current_cred(); |
| 144 | child_cred = __task_cred(child); |
| 145 | if (mode & PTRACE_MODE_FSCREDS) |
| 146 | caller_caps = &cred->cap_effective; |
| 147 | else |
| 148 | caller_caps = &cred->cap_permitted; |
| 149 | if (cred->user_ns == child_cred->user_ns && |
| 150 | cap_issubset(child_cred->cap_permitted, *caller_caps)) |
| 151 | goto out; |
| 152 | if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE)) |
| 153 | goto out; |
| 154 | ret = -EPERM; |
| 155 | out: |
| 156 | rcu_read_unlock(); |
| 157 | return ret; |
| 158 | } |
| 159 | |
| 160 | /** |
| 161 | * cap_ptrace_traceme - Determine whether another process may trace the current |
| 162 | * @parent: The task proposed to be the tracer |
| 163 | * |
| 164 | * If parent is in the same or an ancestor user_ns and has all current's |
| 165 | * capabilities, then ptrace access is allowed. |
| 166 | * If parent has the ptrace capability to current's user_ns, then ptrace |
| 167 | * access is allowed. |
| 168 | * Else denied. |
| 169 | * |
| 170 | * Determine whether the nominated task is permitted to trace the current |
| 171 | * process, returning 0 if permission is granted, -ve if denied. |
| 172 | */ |
| 173 | int cap_ptrace_traceme(struct task_struct *parent) |
| 174 | { |
| 175 | int ret = 0; |
| 176 | const struct cred *cred, *child_cred; |
| 177 | |
| 178 | rcu_read_lock(); |
| 179 | cred = __task_cred(parent); |
| 180 | child_cred = current_cred(); |
| 181 | if (cred->user_ns == child_cred->user_ns && |
| 182 | cap_issubset(child_cred->cap_permitted, cred->cap_permitted)) |
| 183 | goto out; |
| 184 | if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE)) |
| 185 | goto out; |
| 186 | ret = -EPERM; |
| 187 | out: |
| 188 | rcu_read_unlock(); |
| 189 | return ret; |
| 190 | } |
| 191 | |
| 192 | /** |
| 193 | * cap_capget - Retrieve a task's capability sets |
| 194 | * @target: The task from which to retrieve the capability sets |
| 195 | * @effective: The place to record the effective set |
| 196 | * @inheritable: The place to record the inheritable set |
| 197 | * @permitted: The place to record the permitted set |
| 198 | * |
| 199 | * This function retrieves the capabilities of the nominated task and returns |
| 200 | * them to the caller. |
| 201 | */ |
| 202 | int cap_capget(struct task_struct *target, kernel_cap_t *effective, |
| 203 | kernel_cap_t *inheritable, kernel_cap_t *permitted) |
| 204 | { |
| 205 | const struct cred *cred; |
| 206 | |
| 207 | /* Derived from kernel/capability.c:sys_capget. */ |
| 208 | rcu_read_lock(); |
| 209 | cred = __task_cred(target); |
| 210 | *effective = cred->cap_effective; |
| 211 | *inheritable = cred->cap_inheritable; |
| 212 | *permitted = cred->cap_permitted; |
| 213 | rcu_read_unlock(); |
| 214 | return 0; |
| 215 | } |
| 216 | |
| 217 | /* |
| 218 | * Determine whether the inheritable capabilities are limited to the old |
| 219 | * permitted set. Returns 1 if they are limited, 0 if they are not. |
| 220 | */ |
| 221 | static inline int cap_inh_is_capped(void) |
| 222 | { |
| 223 | |
| 224 | /* they are so limited unless the current task has the CAP_SETPCAP |
| 225 | * capability |
| 226 | */ |
| 227 | if (cap_capable(current_cred(), current_cred()->user_ns, |
| 228 | CAP_SETPCAP, SECURITY_CAP_AUDIT) == 0) |
| 229 | return 0; |
| 230 | return 1; |
| 231 | } |
| 232 | |
| 233 | /** |
| 234 | * cap_capset - Validate and apply proposed changes to current's capabilities |
| 235 | * @new: The proposed new credentials; alterations should be made here |
| 236 | * @old: The current task's current credentials |
| 237 | * @effective: A pointer to the proposed new effective capabilities set |
| 238 | * @inheritable: A pointer to the proposed new inheritable capabilities set |
| 239 | * @permitted: A pointer to the proposed new permitted capabilities set |
| 240 | * |
| 241 | * This function validates and applies a proposed mass change to the current |
| 242 | * process's capability sets. The changes are made to the proposed new |
| 243 | * credentials, and assuming no error, will be committed by the caller of LSM. |
| 244 | */ |
| 245 | int cap_capset(struct cred *new, |
| 246 | const struct cred *old, |
| 247 | const kernel_cap_t *effective, |
| 248 | const kernel_cap_t *inheritable, |
| 249 | const kernel_cap_t *permitted) |
| 250 | { |
| 251 | if (cap_inh_is_capped() && |
| 252 | !cap_issubset(*inheritable, |
| 253 | cap_combine(old->cap_inheritable, |
| 254 | old->cap_permitted))) |
| 255 | /* incapable of using this inheritable set */ |
| 256 | return -EPERM; |
| 257 | |
| 258 | if (!cap_issubset(*inheritable, |
| 259 | cap_combine(old->cap_inheritable, |
| 260 | old->cap_bset))) |
| 261 | /* no new pI capabilities outside bounding set */ |
| 262 | return -EPERM; |
| 263 | |
| 264 | /* verify restrictions on target's new Permitted set */ |
| 265 | if (!cap_issubset(*permitted, old->cap_permitted)) |
| 266 | return -EPERM; |
| 267 | |
| 268 | /* verify the _new_Effective_ is a subset of the _new_Permitted_ */ |
| 269 | if (!cap_issubset(*effective, *permitted)) |
| 270 | return -EPERM; |
| 271 | |
| 272 | new->cap_effective = *effective; |
| 273 | new->cap_inheritable = *inheritable; |
| 274 | new->cap_permitted = *permitted; |
| 275 | |
| 276 | /* |
| 277 | * Mask off ambient bits that are no longer both permitted and |
| 278 | * inheritable. |
| 279 | */ |
| 280 | new->cap_ambient = cap_intersect(new->cap_ambient, |
| 281 | cap_intersect(*permitted, |
| 282 | *inheritable)); |
| 283 | if (WARN_ON(!cap_ambient_invariant_ok(new))) |
| 284 | return -EINVAL; |
| 285 | return 0; |
| 286 | } |
| 287 | |
| 288 | /* |
| 289 | * Clear proposed capability sets for execve(). |
| 290 | */ |
| 291 | static inline void bprm_clear_caps(struct linux_binprm *bprm) |
| 292 | { |
| 293 | cap_clear(bprm->cred->cap_permitted); |
| 294 | bprm->cap_effective = false; |
| 295 | } |
| 296 | |
| 297 | /** |
| 298 | * cap_inode_need_killpriv - Determine if inode change affects privileges |
| 299 | * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV |
| 300 | * |
| 301 | * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV |
| 302 | * affects the security markings on that inode, and if it is, should |
| 303 | * inode_killpriv() be invoked or the change rejected? |
| 304 | * |
| 305 | * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and |
| 306 | * -ve to deny the change. |
| 307 | */ |
| 308 | int cap_inode_need_killpriv(struct dentry *dentry) |
| 309 | { |
| 310 | struct inode *inode = d_backing_inode(dentry); |
| 311 | int error; |
| 312 | |
| 313 | if (!inode->i_op->getxattr) |
| 314 | return 0; |
| 315 | |
| 316 | error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0); |
| 317 | if (error <= 0) |
| 318 | return 0; |
| 319 | return 1; |
| 320 | } |
| 321 | |
| 322 | /** |
| 323 | * cap_inode_killpriv - Erase the security markings on an inode |
| 324 | * @dentry: The inode/dentry to alter |
| 325 | * |
| 326 | * Erase the privilege-enhancing security markings on an inode. |
| 327 | * |
| 328 | * Returns 0 if successful, -ve on error. |
| 329 | */ |
| 330 | int cap_inode_killpriv(struct dentry *dentry) |
| 331 | { |
| 332 | struct inode *inode = d_backing_inode(dentry); |
| 333 | |
| 334 | if (!inode->i_op->removexattr) |
| 335 | return 0; |
| 336 | |
| 337 | return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS); |
| 338 | } |
| 339 | |
| 340 | /* |
| 341 | * Calculate the new process capability sets from the capability sets attached |
| 342 | * to a file. |
| 343 | */ |
| 344 | static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps, |
| 345 | struct linux_binprm *bprm, |
| 346 | bool *effective, |
| 347 | bool *has_cap) |
| 348 | { |
| 349 | struct cred *new = bprm->cred; |
| 350 | unsigned i; |
| 351 | int ret = 0; |
| 352 | |
| 353 | if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE) |
| 354 | *effective = true; |
| 355 | |
| 356 | if (caps->magic_etc & VFS_CAP_REVISION_MASK) |
| 357 | *has_cap = true; |
| 358 | |
| 359 | CAP_FOR_EACH_U32(i) { |
| 360 | __u32 permitted = caps->permitted.cap[i]; |
| 361 | __u32 inheritable = caps->inheritable.cap[i]; |
| 362 | |
| 363 | /* |
| 364 | * pP' = (X & fP) | (pI & fI) |
| 365 | * The addition of pA' is handled later. |
| 366 | */ |
| 367 | new->cap_permitted.cap[i] = |
| 368 | (new->cap_bset.cap[i] & permitted) | |
| 369 | (new->cap_inheritable.cap[i] & inheritable); |
| 370 | |
| 371 | if (permitted & ~new->cap_permitted.cap[i]) |
| 372 | /* insufficient to execute correctly */ |
| 373 | ret = -EPERM; |
| 374 | } |
| 375 | |
| 376 | /* |
| 377 | * For legacy apps, with no internal support for recognizing they |
| 378 | * do not have enough capabilities, we return an error if they are |
| 379 | * missing some "forced" (aka file-permitted) capabilities. |
| 380 | */ |
| 381 | return *effective ? ret : 0; |
| 382 | } |
| 383 | |
| 384 | /* |
| 385 | * Extract the on-exec-apply capability sets for an executable file. |
| 386 | */ |
| 387 | int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps) |
| 388 | { |
| 389 | struct inode *inode = d_backing_inode(dentry); |
| 390 | __u32 magic_etc; |
| 391 | unsigned tocopy, i; |
| 392 | int size; |
| 393 | struct vfs_cap_data caps; |
| 394 | |
| 395 | memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data)); |
| 396 | |
| 397 | if (!inode || !inode->i_op->getxattr) |
| 398 | return -ENODATA; |
| 399 | |
| 400 | size = inode->i_op->getxattr((struct dentry *)dentry, XATTR_NAME_CAPS, &caps, |
| 401 | XATTR_CAPS_SZ); |
| 402 | if (size == -ENODATA || size == -EOPNOTSUPP) |
| 403 | /* no data, that's ok */ |
| 404 | return -ENODATA; |
| 405 | if (size < 0) |
| 406 | return size; |
| 407 | |
| 408 | if (size < sizeof(magic_etc)) |
| 409 | return -EINVAL; |
| 410 | |
| 411 | cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps.magic_etc); |
| 412 | |
| 413 | switch (magic_etc & VFS_CAP_REVISION_MASK) { |
| 414 | case VFS_CAP_REVISION_1: |
| 415 | if (size != XATTR_CAPS_SZ_1) |
| 416 | return -EINVAL; |
| 417 | tocopy = VFS_CAP_U32_1; |
| 418 | break; |
| 419 | case VFS_CAP_REVISION_2: |
| 420 | if (size != XATTR_CAPS_SZ_2) |
| 421 | return -EINVAL; |
| 422 | tocopy = VFS_CAP_U32_2; |
| 423 | break; |
| 424 | default: |
| 425 | return -EINVAL; |
| 426 | } |
| 427 | |
| 428 | CAP_FOR_EACH_U32(i) { |
| 429 | if (i >= tocopy) |
| 430 | break; |
| 431 | cpu_caps->permitted.cap[i] = le32_to_cpu(caps.data[i].permitted); |
| 432 | cpu_caps->inheritable.cap[i] = le32_to_cpu(caps.data[i].inheritable); |
| 433 | } |
| 434 | |
| 435 | cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK; |
| 436 | cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK; |
| 437 | |
| 438 | return 0; |
| 439 | } |
| 440 | |
| 441 | /* |
| 442 | * Attempt to get the on-exec apply capability sets for an executable file from |
| 443 | * its xattrs and, if present, apply them to the proposed credentials being |
| 444 | * constructed by execve(). |
| 445 | */ |
| 446 | static int get_file_caps(struct linux_binprm *bprm, bool *effective, bool *has_cap) |
| 447 | { |
| 448 | int rc = 0; |
| 449 | struct cpu_vfs_cap_data vcaps; |
| 450 | |
| 451 | bprm_clear_caps(bprm); |
| 452 | |
| 453 | if (!file_caps_enabled) |
| 454 | return 0; |
| 455 | |
| 456 | if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) |
| 457 | return 0; |
| 458 | |
| 459 | rc = get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps); |
| 460 | if (rc < 0) { |
| 461 | if (rc == -EINVAL) |
| 462 | printk(KERN_NOTICE "%s: get_vfs_caps_from_disk returned %d for %s\n", |
| 463 | __func__, rc, bprm->filename); |
| 464 | else if (rc == -ENODATA) |
| 465 | rc = 0; |
| 466 | goto out; |
| 467 | } |
| 468 | |
| 469 | rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_cap); |
| 470 | if (rc == -EINVAL) |
| 471 | printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n", |
| 472 | __func__, rc, bprm->filename); |
| 473 | |
| 474 | out: |
| 475 | if (rc) |
| 476 | bprm_clear_caps(bprm); |
| 477 | |
| 478 | return rc; |
| 479 | } |
| 480 | |
| 481 | /** |
| 482 | * cap_bprm_set_creds - Set up the proposed credentials for execve(). |
| 483 | * @bprm: The execution parameters, including the proposed creds |
| 484 | * |
| 485 | * Set up the proposed credentials for a new execution context being |
| 486 | * constructed by execve(). The proposed creds in @bprm->cred is altered, |
| 487 | * which won't take effect immediately. Returns 0 if successful, -ve on error. |
| 488 | */ |
| 489 | int cap_bprm_set_creds(struct linux_binprm *bprm) |
| 490 | { |
| 491 | const struct cred *old = current_cred(); |
| 492 | struct cred *new = bprm->cred; |
| 493 | bool effective, has_cap = false, is_setid; |
| 494 | int ret; |
| 495 | kuid_t root_uid; |
| 496 | |
| 497 | if (WARN_ON(!cap_ambient_invariant_ok(old))) |
| 498 | return -EPERM; |
| 499 | |
| 500 | effective = false; |
| 501 | ret = get_file_caps(bprm, &effective, &has_cap); |
| 502 | if (ret < 0) |
| 503 | return ret; |
| 504 | |
| 505 | root_uid = make_kuid(new->user_ns, 0); |
| 506 | |
| 507 | if (!issecure(SECURE_NOROOT)) { |
| 508 | /* |
| 509 | * If the legacy file capability is set, then don't set privs |
| 510 | * for a setuid root binary run by a non-root user. Do set it |
| 511 | * for a root user just to cause least surprise to an admin. |
| 512 | */ |
| 513 | if (has_cap && !uid_eq(new->uid, root_uid) && uid_eq(new->euid, root_uid)) { |
| 514 | warn_setuid_and_fcaps_mixed(bprm->filename); |
| 515 | goto skip; |
| 516 | } |
| 517 | /* |
| 518 | * To support inheritance of root-permissions and suid-root |
| 519 | * executables under compatibility mode, we override the |
| 520 | * capability sets for the file. |
| 521 | * |
| 522 | * If only the real uid is 0, we do not set the effective bit. |
| 523 | */ |
| 524 | if (uid_eq(new->euid, root_uid) || uid_eq(new->uid, root_uid)) { |
| 525 | /* pP' = (cap_bset & ~0) | (pI & ~0) */ |
| 526 | new->cap_permitted = cap_combine(old->cap_bset, |
| 527 | old->cap_inheritable); |
| 528 | } |
| 529 | if (uid_eq(new->euid, root_uid)) |
| 530 | effective = true; |
| 531 | } |
| 532 | skip: |
| 533 | |
| 534 | /* if we have fs caps, clear dangerous personality flags */ |
| 535 | if (!cap_issubset(new->cap_permitted, old->cap_permitted)) |
| 536 | bprm->per_clear |= PER_CLEAR_ON_SETID; |
| 537 | |
| 538 | |
| 539 | /* Don't let someone trace a set[ug]id/setpcap binary with the revised |
| 540 | * credentials unless they have the appropriate permit. |
| 541 | * |
| 542 | * In addition, if NO_NEW_PRIVS, then ensure we get no new privs. |
| 543 | */ |
| 544 | is_setid = !uid_eq(new->euid, old->uid) || !gid_eq(new->egid, old->gid); |
| 545 | |
| 546 | if ((is_setid || |
| 547 | !cap_issubset(new->cap_permitted, old->cap_permitted)) && |
| 548 | bprm->unsafe & ~LSM_UNSAFE_PTRACE_CAP) { |
| 549 | /* downgrade; they get no more than they had, and maybe less */ |
| 550 | if (!capable(CAP_SETUID) || |
| 551 | (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) { |
| 552 | new->euid = new->uid; |
| 553 | new->egid = new->gid; |
| 554 | } |
| 555 | new->cap_permitted = cap_intersect(new->cap_permitted, |
| 556 | old->cap_permitted); |
| 557 | } |
| 558 | |
| 559 | new->suid = new->fsuid = new->euid; |
| 560 | new->sgid = new->fsgid = new->egid; |
| 561 | |
| 562 | /* File caps or setid cancels ambient. */ |
| 563 | if (has_cap || is_setid) |
| 564 | cap_clear(new->cap_ambient); |
| 565 | |
| 566 | /* |
| 567 | * Now that we've computed pA', update pP' to give: |
| 568 | * pP' = (X & fP) | (pI & fI) | pA' |
| 569 | */ |
| 570 | new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient); |
| 571 | |
| 572 | /* |
| 573 | * Set pE' = (fE ? pP' : pA'). Because pA' is zero if fE is set, |
| 574 | * this is the same as pE' = (fE ? pP' : 0) | pA'. |
| 575 | */ |
| 576 | if (effective) |
| 577 | new->cap_effective = new->cap_permitted; |
| 578 | else |
| 579 | new->cap_effective = new->cap_ambient; |
| 580 | |
| 581 | if (WARN_ON(!cap_ambient_invariant_ok(new))) |
| 582 | return -EPERM; |
| 583 | |
| 584 | bprm->cap_effective = effective; |
| 585 | |
| 586 | /* |
| 587 | * Audit candidate if current->cap_effective is set |
| 588 | * |
| 589 | * We do not bother to audit if 3 things are true: |
| 590 | * 1) cap_effective has all caps |
| 591 | * 2) we are root |
| 592 | * 3) root is supposed to have all caps (SECURE_NOROOT) |
| 593 | * Since this is just a normal root execing a process. |
| 594 | * |
| 595 | * Number 1 above might fail if you don't have a full bset, but I think |
| 596 | * that is interesting information to audit. |
| 597 | */ |
| 598 | if (!cap_issubset(new->cap_effective, new->cap_ambient)) { |
| 599 | if (!cap_issubset(CAP_FULL_SET, new->cap_effective) || |
| 600 | !uid_eq(new->euid, root_uid) || !uid_eq(new->uid, root_uid) || |
| 601 | issecure(SECURE_NOROOT)) { |
| 602 | ret = audit_log_bprm_fcaps(bprm, new, old); |
| 603 | if (ret < 0) |
| 604 | return ret; |
| 605 | } |
| 606 | } |
| 607 | |
| 608 | new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS); |
| 609 | |
| 610 | if (WARN_ON(!cap_ambient_invariant_ok(new))) |
| 611 | return -EPERM; |
| 612 | |
| 613 | return 0; |
| 614 | } |
| 615 | |
| 616 | /** |
| 617 | * cap_bprm_secureexec - Determine whether a secure execution is required |
| 618 | * @bprm: The execution parameters |
| 619 | * |
| 620 | * Determine whether a secure execution is required, return 1 if it is, and 0 |
| 621 | * if it is not. |
| 622 | * |
| 623 | * The credentials have been committed by this point, and so are no longer |
| 624 | * available through @bprm->cred. |
| 625 | */ |
| 626 | int cap_bprm_secureexec(struct linux_binprm *bprm) |
| 627 | { |
| 628 | const struct cred *cred = current_cred(); |
| 629 | kuid_t root_uid = make_kuid(cred->user_ns, 0); |
| 630 | |
| 631 | if (!uid_eq(cred->uid, root_uid)) { |
| 632 | if (bprm->cap_effective) |
| 633 | return 1; |
| 634 | if (!cap_issubset(cred->cap_permitted, cred->cap_ambient)) |
| 635 | return 1; |
| 636 | } |
| 637 | |
| 638 | return (!uid_eq(cred->euid, cred->uid) || |
| 639 | !gid_eq(cred->egid, cred->gid)); |
| 640 | } |
| 641 | |
| 642 | /** |
| 643 | * cap_inode_setxattr - Determine whether an xattr may be altered |
| 644 | * @dentry: The inode/dentry being altered |
| 645 | * @name: The name of the xattr to be changed |
| 646 | * @value: The value that the xattr will be changed to |
| 647 | * @size: The size of value |
| 648 | * @flags: The replacement flag |
| 649 | * |
| 650 | * Determine whether an xattr may be altered or set on an inode, returning 0 if |
| 651 | * permission is granted, -ve if denied. |
| 652 | * |
| 653 | * This is used to make sure security xattrs don't get updated or set by those |
| 654 | * who aren't privileged to do so. |
| 655 | */ |
| 656 | int cap_inode_setxattr(struct dentry *dentry, const char *name, |
| 657 | const void *value, size_t size, int flags) |
| 658 | { |
| 659 | if (!strcmp(name, XATTR_NAME_CAPS)) { |
| 660 | if (!capable(CAP_SETFCAP)) |
| 661 | return -EPERM; |
| 662 | return 0; |
| 663 | } |
| 664 | |
| 665 | if (!strncmp(name, XATTR_SECURITY_PREFIX, |
| 666 | sizeof(XATTR_SECURITY_PREFIX) - 1) && |
| 667 | !capable(CAP_SYS_ADMIN)) |
| 668 | return -EPERM; |
| 669 | return 0; |
| 670 | } |
| 671 | |
| 672 | /** |
| 673 | * cap_inode_removexattr - Determine whether an xattr may be removed |
| 674 | * @dentry: The inode/dentry being altered |
| 675 | * @name: The name of the xattr to be changed |
| 676 | * |
| 677 | * Determine whether an xattr may be removed from an inode, returning 0 if |
| 678 | * permission is granted, -ve if denied. |
| 679 | * |
| 680 | * This is used to make sure security xattrs don't get removed by those who |
| 681 | * aren't privileged to remove them. |
| 682 | */ |
| 683 | int cap_inode_removexattr(struct dentry *dentry, const char *name) |
| 684 | { |
| 685 | if (!strcmp(name, XATTR_NAME_CAPS)) { |
| 686 | if (!capable(CAP_SETFCAP)) |
| 687 | return -EPERM; |
| 688 | return 0; |
| 689 | } |
| 690 | |
| 691 | if (!strncmp(name, XATTR_SECURITY_PREFIX, |
| 692 | sizeof(XATTR_SECURITY_PREFIX) - 1) && |
| 693 | !capable(CAP_SYS_ADMIN)) |
| 694 | return -EPERM; |
| 695 | return 0; |
| 696 | } |
| 697 | |
| 698 | /* |
| 699 | * cap_emulate_setxuid() fixes the effective / permitted capabilities of |
| 700 | * a process after a call to setuid, setreuid, or setresuid. |
| 701 | * |
| 702 | * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of |
| 703 | * {r,e,s}uid != 0, the permitted and effective capabilities are |
| 704 | * cleared. |
| 705 | * |
| 706 | * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective |
| 707 | * capabilities of the process are cleared. |
| 708 | * |
| 709 | * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective |
| 710 | * capabilities are set to the permitted capabilities. |
| 711 | * |
| 712 | * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should |
| 713 | * never happen. |
| 714 | * |
| 715 | * -astor |
| 716 | * |
| 717 | * cevans - New behaviour, Oct '99 |
| 718 | * A process may, via prctl(), elect to keep its capabilities when it |
| 719 | * calls setuid() and switches away from uid==0. Both permitted and |
| 720 | * effective sets will be retained. |
| 721 | * Without this change, it was impossible for a daemon to drop only some |
| 722 | * of its privilege. The call to setuid(!=0) would drop all privileges! |
| 723 | * Keeping uid 0 is not an option because uid 0 owns too many vital |
| 724 | * files.. |
| 725 | * Thanks to Olaf Kirch and Peter Benie for spotting this. |
| 726 | */ |
| 727 | static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old) |
| 728 | { |
| 729 | kuid_t root_uid = make_kuid(old->user_ns, 0); |
| 730 | |
| 731 | if ((uid_eq(old->uid, root_uid) || |
| 732 | uid_eq(old->euid, root_uid) || |
| 733 | uid_eq(old->suid, root_uid)) && |
| 734 | (!uid_eq(new->uid, root_uid) && |
| 735 | !uid_eq(new->euid, root_uid) && |
| 736 | !uid_eq(new->suid, root_uid))) { |
| 737 | if (!issecure(SECURE_KEEP_CAPS)) { |
| 738 | cap_clear(new->cap_permitted); |
| 739 | cap_clear(new->cap_effective); |
| 740 | } |
| 741 | |
| 742 | /* |
| 743 | * Pre-ambient programs expect setresuid to nonroot followed |
| 744 | * by exec to drop capabilities. We should make sure that |
| 745 | * this remains the case. |
| 746 | */ |
| 747 | cap_clear(new->cap_ambient); |
| 748 | } |
| 749 | if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid)) |
| 750 | cap_clear(new->cap_effective); |
| 751 | if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid)) |
| 752 | new->cap_effective = new->cap_permitted; |
| 753 | } |
| 754 | |
| 755 | /** |
| 756 | * cap_task_fix_setuid - Fix up the results of setuid() call |
| 757 | * @new: The proposed credentials |
| 758 | * @old: The current task's current credentials |
| 759 | * @flags: Indications of what has changed |
| 760 | * |
| 761 | * Fix up the results of setuid() call before the credential changes are |
| 762 | * actually applied, returning 0 to grant the changes, -ve to deny them. |
| 763 | */ |
| 764 | int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags) |
| 765 | { |
| 766 | switch (flags) { |
| 767 | case LSM_SETID_RE: |
| 768 | case LSM_SETID_ID: |
| 769 | case LSM_SETID_RES: |
| 770 | /* juggle the capabilities to follow [RES]UID changes unless |
| 771 | * otherwise suppressed */ |
| 772 | if (!issecure(SECURE_NO_SETUID_FIXUP)) |
| 773 | cap_emulate_setxuid(new, old); |
| 774 | break; |
| 775 | |
| 776 | case LSM_SETID_FS: |
| 777 | /* juggle the capabilties to follow FSUID changes, unless |
| 778 | * otherwise suppressed |
| 779 | * |
| 780 | * FIXME - is fsuser used for all CAP_FS_MASK capabilities? |
| 781 | * if not, we might be a bit too harsh here. |
| 782 | */ |
| 783 | if (!issecure(SECURE_NO_SETUID_FIXUP)) { |
| 784 | kuid_t root_uid = make_kuid(old->user_ns, 0); |
| 785 | if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid)) |
| 786 | new->cap_effective = |
| 787 | cap_drop_fs_set(new->cap_effective); |
| 788 | |
| 789 | if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid)) |
| 790 | new->cap_effective = |
| 791 | cap_raise_fs_set(new->cap_effective, |
| 792 | new->cap_permitted); |
| 793 | } |
| 794 | break; |
| 795 | |
| 796 | default: |
| 797 | return -EINVAL; |
| 798 | } |
| 799 | |
| 800 | return 0; |
| 801 | } |
| 802 | |
| 803 | /* |
| 804 | * Rationale: code calling task_setscheduler, task_setioprio, and |
| 805 | * task_setnice, assumes that |
| 806 | * . if capable(cap_sys_nice), then those actions should be allowed |
| 807 | * . if not capable(cap_sys_nice), but acting on your own processes, |
| 808 | * then those actions should be allowed |
| 809 | * This is insufficient now since you can call code without suid, but |
| 810 | * yet with increased caps. |
| 811 | * So we check for increased caps on the target process. |
| 812 | */ |
| 813 | static int cap_safe_nice(struct task_struct *p) |
| 814 | { |
| 815 | int is_subset, ret = 0; |
| 816 | |
| 817 | rcu_read_lock(); |
| 818 | is_subset = cap_issubset(__task_cred(p)->cap_permitted, |
| 819 | current_cred()->cap_permitted); |
| 820 | if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) |
| 821 | ret = -EPERM; |
| 822 | rcu_read_unlock(); |
| 823 | |
| 824 | return ret; |
| 825 | } |
| 826 | |
| 827 | /** |
| 828 | * cap_task_setscheduler - Detemine if scheduler policy change is permitted |
| 829 | * @p: The task to affect |
| 830 | * |
| 831 | * Detemine if the requested scheduler policy change is permitted for the |
| 832 | * specified task, returning 0 if permission is granted, -ve if denied. |
| 833 | */ |
| 834 | int cap_task_setscheduler(struct task_struct *p) |
| 835 | { |
| 836 | return cap_safe_nice(p); |
| 837 | } |
| 838 | |
| 839 | /** |
| 840 | * cap_task_ioprio - Detemine if I/O priority change is permitted |
| 841 | * @p: The task to affect |
| 842 | * @ioprio: The I/O priority to set |
| 843 | * |
| 844 | * Detemine if the requested I/O priority change is permitted for the specified |
| 845 | * task, returning 0 if permission is granted, -ve if denied. |
| 846 | */ |
| 847 | int cap_task_setioprio(struct task_struct *p, int ioprio) |
| 848 | { |
| 849 | return cap_safe_nice(p); |
| 850 | } |
| 851 | |
| 852 | /** |
| 853 | * cap_task_ioprio - Detemine if task priority change is permitted |
| 854 | * @p: The task to affect |
| 855 | * @nice: The nice value to set |
| 856 | * |
| 857 | * Detemine if the requested task priority change is permitted for the |
| 858 | * specified task, returning 0 if permission is granted, -ve if denied. |
| 859 | */ |
| 860 | int cap_task_setnice(struct task_struct *p, int nice) |
| 861 | { |
| 862 | return cap_safe_nice(p); |
| 863 | } |
| 864 | |
| 865 | /* |
| 866 | * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from |
| 867 | * the current task's bounding set. Returns 0 on success, -ve on error. |
| 868 | */ |
| 869 | static int cap_prctl_drop(unsigned long cap) |
| 870 | { |
| 871 | struct cred *new; |
| 872 | |
| 873 | if (!ns_capable(current_user_ns(), CAP_SETPCAP)) |
| 874 | return -EPERM; |
| 875 | if (!cap_valid(cap)) |
| 876 | return -EINVAL; |
| 877 | |
| 878 | new = prepare_creds(); |
| 879 | if (!new) |
| 880 | return -ENOMEM; |
| 881 | cap_lower(new->cap_bset, cap); |
| 882 | return commit_creds(new); |
| 883 | } |
| 884 | |
| 885 | /** |
| 886 | * cap_task_prctl - Implement process control functions for this security module |
| 887 | * @option: The process control function requested |
| 888 | * @arg2, @arg3, @arg4, @arg5: The argument data for this function |
| 889 | * |
| 890 | * Allow process control functions (sys_prctl()) to alter capabilities; may |
| 891 | * also deny access to other functions not otherwise implemented here. |
| 892 | * |
| 893 | * Returns 0 or +ve on success, -ENOSYS if this function is not implemented |
| 894 | * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM |
| 895 | * modules will consider performing the function. |
| 896 | */ |
| 897 | int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3, |
| 898 | unsigned long arg4, unsigned long arg5) |
| 899 | { |
| 900 | const struct cred *old = current_cred(); |
| 901 | struct cred *new; |
| 902 | |
| 903 | switch (option) { |
| 904 | case PR_CAPBSET_READ: |
| 905 | if (!cap_valid(arg2)) |
| 906 | return -EINVAL; |
| 907 | return !!cap_raised(old->cap_bset, arg2); |
| 908 | |
| 909 | case PR_CAPBSET_DROP: |
| 910 | return cap_prctl_drop(arg2); |
| 911 | |
| 912 | /* |
| 913 | * The next four prctl's remain to assist with transitioning a |
| 914 | * system from legacy UID=0 based privilege (when filesystem |
| 915 | * capabilities are not in use) to a system using filesystem |
| 916 | * capabilities only - as the POSIX.1e draft intended. |
| 917 | * |
| 918 | * Note: |
| 919 | * |
| 920 | * PR_SET_SECUREBITS = |
| 921 | * issecure_mask(SECURE_KEEP_CAPS_LOCKED) |
| 922 | * | issecure_mask(SECURE_NOROOT) |
| 923 | * | issecure_mask(SECURE_NOROOT_LOCKED) |
| 924 | * | issecure_mask(SECURE_NO_SETUID_FIXUP) |
| 925 | * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED) |
| 926 | * |
| 927 | * will ensure that the current process and all of its |
| 928 | * children will be locked into a pure |
| 929 | * capability-based-privilege environment. |
| 930 | */ |
| 931 | case PR_SET_SECUREBITS: |
| 932 | if ((((old->securebits & SECURE_ALL_LOCKS) >> 1) |
| 933 | & (old->securebits ^ arg2)) /*[1]*/ |
| 934 | || ((old->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/ |
| 935 | || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/ |
| 936 | || (cap_capable(current_cred(), |
| 937 | current_cred()->user_ns, CAP_SETPCAP, |
| 938 | SECURITY_CAP_AUDIT) != 0) /*[4]*/ |
| 939 | /* |
| 940 | * [1] no changing of bits that are locked |
| 941 | * [2] no unlocking of locks |
| 942 | * [3] no setting of unsupported bits |
| 943 | * [4] doing anything requires privilege (go read about |
| 944 | * the "sendmail capabilities bug") |
| 945 | */ |
| 946 | ) |
| 947 | /* cannot change a locked bit */ |
| 948 | return -EPERM; |
| 949 | |
| 950 | new = prepare_creds(); |
| 951 | if (!new) |
| 952 | return -ENOMEM; |
| 953 | new->securebits = arg2; |
| 954 | return commit_creds(new); |
| 955 | |
| 956 | case PR_GET_SECUREBITS: |
| 957 | return old->securebits; |
| 958 | |
| 959 | case PR_GET_KEEPCAPS: |
| 960 | return !!issecure(SECURE_KEEP_CAPS); |
| 961 | |
| 962 | case PR_SET_KEEPCAPS: |
| 963 | if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */ |
| 964 | return -EINVAL; |
| 965 | if (issecure(SECURE_KEEP_CAPS_LOCKED)) |
| 966 | return -EPERM; |
| 967 | |
| 968 | new = prepare_creds(); |
| 969 | if (!new) |
| 970 | return -ENOMEM; |
| 971 | if (arg2) |
| 972 | new->securebits |= issecure_mask(SECURE_KEEP_CAPS); |
| 973 | else |
| 974 | new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS); |
| 975 | return commit_creds(new); |
| 976 | |
| 977 | case PR_CAP_AMBIENT: |
| 978 | if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) { |
| 979 | if (arg3 | arg4 | arg5) |
| 980 | return -EINVAL; |
| 981 | |
| 982 | new = prepare_creds(); |
| 983 | if (!new) |
| 984 | return -ENOMEM; |
| 985 | cap_clear(new->cap_ambient); |
| 986 | return commit_creds(new); |
| 987 | } |
| 988 | |
| 989 | if (((!cap_valid(arg3)) | arg4 | arg5)) |
| 990 | return -EINVAL; |
| 991 | |
| 992 | if (arg2 == PR_CAP_AMBIENT_IS_SET) { |
| 993 | return !!cap_raised(current_cred()->cap_ambient, arg3); |
| 994 | } else if (arg2 != PR_CAP_AMBIENT_RAISE && |
| 995 | arg2 != PR_CAP_AMBIENT_LOWER) { |
| 996 | return -EINVAL; |
| 997 | } else { |
| 998 | if (arg2 == PR_CAP_AMBIENT_RAISE && |
| 999 | (!cap_raised(current_cred()->cap_permitted, arg3) || |
| 1000 | !cap_raised(current_cred()->cap_inheritable, |
| 1001 | arg3) || |
| 1002 | issecure(SECURE_NO_CAP_AMBIENT_RAISE))) |
| 1003 | return -EPERM; |
| 1004 | |
| 1005 | new = prepare_creds(); |
| 1006 | if (!new) |
| 1007 | return -ENOMEM; |
| 1008 | if (arg2 == PR_CAP_AMBIENT_RAISE) |
| 1009 | cap_raise(new->cap_ambient, arg3); |
| 1010 | else |
| 1011 | cap_lower(new->cap_ambient, arg3); |
| 1012 | return commit_creds(new); |
| 1013 | } |
| 1014 | |
| 1015 | default: |
| 1016 | /* No functionality available - continue with default */ |
| 1017 | return -ENOSYS; |
| 1018 | } |
| 1019 | } |
| 1020 | |
| 1021 | /** |
| 1022 | * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted |
| 1023 | * @mm: The VM space in which the new mapping is to be made |
| 1024 | * @pages: The size of the mapping |
| 1025 | * |
| 1026 | * Determine whether the allocation of a new virtual mapping by the current |
| 1027 | * task is permitted, returning 1 if permission is granted, 0 if not. |
| 1028 | */ |
| 1029 | int cap_vm_enough_memory(struct mm_struct *mm, long pages) |
| 1030 | { |
| 1031 | int cap_sys_admin = 0; |
| 1032 | |
| 1033 | if (cap_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN, |
| 1034 | SECURITY_CAP_NOAUDIT) == 0) |
| 1035 | cap_sys_admin = 1; |
| 1036 | return cap_sys_admin; |
| 1037 | } |
| 1038 | |
| 1039 | /* |
| 1040 | * cap_mmap_addr - check if able to map given addr |
| 1041 | * @addr: address attempting to be mapped |
| 1042 | * |
| 1043 | * If the process is attempting to map memory below dac_mmap_min_addr they need |
| 1044 | * CAP_SYS_RAWIO. The other parameters to this function are unused by the |
| 1045 | * capability security module. Returns 0 if this mapping should be allowed |
| 1046 | * -EPERM if not. |
| 1047 | */ |
| 1048 | int cap_mmap_addr(unsigned long addr) |
| 1049 | { |
| 1050 | int ret = 0; |
| 1051 | |
| 1052 | if (addr < dac_mmap_min_addr) { |
| 1053 | ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO, |
| 1054 | SECURITY_CAP_AUDIT); |
| 1055 | /* set PF_SUPERPRIV if it turns out we allow the low mmap */ |
| 1056 | if (ret == 0) |
| 1057 | current->flags |= PF_SUPERPRIV; |
| 1058 | } |
| 1059 | return ret; |
| 1060 | } |
| 1061 | |
| 1062 | int cap_mmap_file(struct file *file, unsigned long reqprot, |
| 1063 | unsigned long prot, unsigned long flags) |
| 1064 | { |
| 1065 | return 0; |
| 1066 | } |
| 1067 | |
| 1068 | #ifdef CONFIG_SECURITY |
| 1069 | |
| 1070 | struct security_hook_list capability_hooks[] = { |
| 1071 | LSM_HOOK_INIT(capable, cap_capable), |
| 1072 | LSM_HOOK_INIT(settime, cap_settime), |
| 1073 | LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check), |
| 1074 | LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme), |
| 1075 | LSM_HOOK_INIT(capget, cap_capget), |
| 1076 | LSM_HOOK_INIT(capset, cap_capset), |
| 1077 | LSM_HOOK_INIT(bprm_set_creds, cap_bprm_set_creds), |
| 1078 | LSM_HOOK_INIT(bprm_secureexec, cap_bprm_secureexec), |
| 1079 | LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv), |
| 1080 | LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv), |
| 1081 | LSM_HOOK_INIT(mmap_addr, cap_mmap_addr), |
| 1082 | LSM_HOOK_INIT(mmap_file, cap_mmap_file), |
| 1083 | LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid), |
| 1084 | LSM_HOOK_INIT(task_prctl, cap_task_prctl), |
| 1085 | LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler), |
| 1086 | LSM_HOOK_INIT(task_setioprio, cap_task_setioprio), |
| 1087 | LSM_HOOK_INIT(task_setnice, cap_task_setnice), |
| 1088 | LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory), |
| 1089 | }; |
| 1090 | |
| 1091 | void __init capability_add_hooks(void) |
| 1092 | { |
| 1093 | security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks)); |
| 1094 | } |
| 1095 | |
| 1096 | #endif /* CONFIG_SECURITY */ |