Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame] | 1 | /* |
| 2 | * Key Wrapping: RFC3394 / NIST SP800-38F |
| 3 | * |
| 4 | * Copyright (C) 2015, Stephan Mueller <smueller@chronox.de> |
| 5 | * |
| 6 | * Redistribution and use in source and binary forms, with or without |
| 7 | * modification, are permitted provided that the following conditions |
| 8 | * are met: |
| 9 | * 1. Redistributions of source code must retain the above copyright |
| 10 | * notice, and the entire permission notice in its entirety, |
| 11 | * including the disclaimer of warranties. |
| 12 | * 2. Redistributions in binary form must reproduce the above copyright |
| 13 | * notice, this list of conditions and the following disclaimer in the |
| 14 | * documentation and/or other materials provided with the distribution. |
| 15 | * 3. The name of the author may not be used to endorse or promote |
| 16 | * products derived from this software without specific prior |
| 17 | * written permission. |
| 18 | * |
| 19 | * ALTERNATIVELY, this product may be distributed under the terms of |
| 20 | * the GNU General Public License, in which case the provisions of the GPL2 |
| 21 | * are required INSTEAD OF the above restrictions. (This clause is |
| 22 | * necessary due to a potential bad interaction between the GPL and |
| 23 | * the restrictions contained in a BSD-style copyright.) |
| 24 | * |
| 25 | * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED |
| 26 | * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
| 27 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF |
| 28 | * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE |
| 29 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 30 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT |
| 31 | * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR |
| 32 | * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| 33 | * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 34 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE |
| 35 | * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH |
| 36 | * DAMAGE. |
| 37 | */ |
| 38 | |
| 39 | /* |
| 40 | * Note for using key wrapping: |
| 41 | * |
| 42 | * * The result of the encryption operation is the ciphertext starting |
| 43 | * with the 2nd semiblock. The first semiblock is provided as the IV. |
| 44 | * The IV used to start the encryption operation is the default IV. |
| 45 | * |
| 46 | * * The input for the decryption is the first semiblock handed in as an |
| 47 | * IV. The ciphertext is the data starting with the 2nd semiblock. The |
| 48 | * return code of the decryption operation will be EBADMSG in case an |
| 49 | * integrity error occurs. |
| 50 | * |
| 51 | * To obtain the full result of an encryption as expected by SP800-38F, the |
| 52 | * caller must allocate a buffer of plaintext + 8 bytes: |
| 53 | * |
| 54 | * unsigned int datalen = ptlen + crypto_skcipher_ivsize(tfm); |
| 55 | * u8 data[datalen]; |
| 56 | * u8 *iv = data; |
| 57 | * u8 *pt = data + crypto_skcipher_ivsize(tfm); |
| 58 | * <ensure that pt contains the plaintext of size ptlen> |
| 59 | * sg_init_one(&sg, ptdata, ptlen); |
| 60 | * skcipher_request_set_crypt(req, &sg, &sg, ptlen, iv); |
| 61 | * |
| 62 | * ==> After encryption, data now contains full KW result as per SP800-38F. |
| 63 | * |
| 64 | * In case of decryption, ciphertext now already has the expected length |
| 65 | * and must be segmented appropriately: |
| 66 | * |
| 67 | * unsigned int datalen = CTLEN; |
| 68 | * u8 data[datalen]; |
| 69 | * <ensure that data contains full ciphertext> |
| 70 | * u8 *iv = data; |
| 71 | * u8 *ct = data + crypto_skcipher_ivsize(tfm); |
| 72 | * unsigned int ctlen = datalen - crypto_skcipher_ivsize(tfm); |
| 73 | * sg_init_one(&sg, ctdata, ctlen); |
| 74 | * skcipher_request_set_crypt(req, &sg, &sg, ptlen, iv); |
| 75 | * |
| 76 | * ==> After decryption (which hopefully does not return EBADMSG), the ct |
| 77 | * pointer now points to the plaintext of size ctlen. |
| 78 | * |
| 79 | * Note 2: KWP is not implemented as this would defy in-place operation. |
| 80 | * If somebody wants to wrap non-aligned data, he should simply pad |
| 81 | * the input with zeros to fill it up to the 8 byte boundary. |
| 82 | */ |
| 83 | |
| 84 | #include <linux/module.h> |
| 85 | #include <linux/crypto.h> |
| 86 | #include <linux/scatterlist.h> |
| 87 | #include <crypto/scatterwalk.h> |
| 88 | #include <crypto/internal/skcipher.h> |
| 89 | |
| 90 | struct crypto_kw_ctx { |
| 91 | struct crypto_cipher *child; |
| 92 | }; |
| 93 | |
| 94 | struct crypto_kw_block { |
| 95 | #define SEMIBSIZE 8 |
| 96 | u8 A[SEMIBSIZE]; |
| 97 | u8 R[SEMIBSIZE]; |
| 98 | }; |
| 99 | |
| 100 | /* convert 64 bit integer into its string representation */ |
| 101 | static inline void crypto_kw_cpu_to_be64(u64 val, u8 *buf) |
| 102 | { |
| 103 | __be64 *a = (__be64 *)buf; |
| 104 | |
| 105 | *a = cpu_to_be64(val); |
| 106 | } |
| 107 | |
| 108 | /* |
| 109 | * Fast forward the SGL to the "end" length minus SEMIBSIZE. |
| 110 | * The start in the SGL defined by the fast-forward is returned with |
| 111 | * the walk variable |
| 112 | */ |
| 113 | static void crypto_kw_scatterlist_ff(struct scatter_walk *walk, |
| 114 | struct scatterlist *sg, |
| 115 | unsigned int end) |
| 116 | { |
| 117 | unsigned int skip = 0; |
| 118 | |
| 119 | /* The caller should only operate on full SEMIBLOCKs. */ |
| 120 | BUG_ON(end < SEMIBSIZE); |
| 121 | |
| 122 | skip = end - SEMIBSIZE; |
| 123 | while (sg) { |
| 124 | if (sg->length > skip) { |
| 125 | scatterwalk_start(walk, sg); |
| 126 | scatterwalk_advance(walk, skip); |
| 127 | break; |
| 128 | } else |
| 129 | skip -= sg->length; |
| 130 | |
| 131 | sg = sg_next(sg); |
| 132 | } |
| 133 | } |
| 134 | |
| 135 | static int crypto_kw_decrypt(struct blkcipher_desc *desc, |
| 136 | struct scatterlist *dst, struct scatterlist *src, |
| 137 | unsigned int nbytes) |
| 138 | { |
| 139 | struct crypto_blkcipher *tfm = desc->tfm; |
| 140 | struct crypto_kw_ctx *ctx = crypto_blkcipher_ctx(tfm); |
| 141 | struct crypto_cipher *child = ctx->child; |
| 142 | |
| 143 | unsigned long alignmask = max_t(unsigned long, SEMIBSIZE, |
| 144 | crypto_cipher_alignmask(child)); |
| 145 | unsigned int i; |
| 146 | |
| 147 | u8 blockbuf[sizeof(struct crypto_kw_block) + alignmask]; |
| 148 | struct crypto_kw_block *block = (struct crypto_kw_block *) |
| 149 | PTR_ALIGN(blockbuf + 0, alignmask + 1); |
| 150 | |
| 151 | u64 t = 6 * ((nbytes) >> 3); |
| 152 | struct scatterlist *lsrc, *ldst; |
| 153 | int ret = 0; |
| 154 | |
| 155 | /* |
| 156 | * Require at least 2 semiblocks (note, the 3rd semiblock that is |
| 157 | * required by SP800-38F is the IV. |
| 158 | */ |
| 159 | if (nbytes < (2 * SEMIBSIZE) || nbytes % SEMIBSIZE) |
| 160 | return -EINVAL; |
| 161 | |
| 162 | /* Place the IV into block A */ |
| 163 | memcpy(block->A, desc->info, SEMIBSIZE); |
| 164 | |
| 165 | /* |
| 166 | * src scatterlist is read-only. dst scatterlist is r/w. During the |
| 167 | * first loop, lsrc points to src and ldst to dst. For any |
| 168 | * subsequent round, the code operates on dst only. |
| 169 | */ |
| 170 | lsrc = src; |
| 171 | ldst = dst; |
| 172 | |
| 173 | for (i = 0; i < 6; i++) { |
| 174 | u8 tbe_buffer[SEMIBSIZE + alignmask]; |
| 175 | /* alignment for the crypto_xor and the _to_be64 operation */ |
| 176 | u8 *tbe = PTR_ALIGN(tbe_buffer + 0, alignmask + 1); |
| 177 | unsigned int tmp_nbytes = nbytes; |
| 178 | struct scatter_walk src_walk, dst_walk; |
| 179 | |
| 180 | while (tmp_nbytes) { |
| 181 | /* move pointer by tmp_nbytes in the SGL */ |
| 182 | crypto_kw_scatterlist_ff(&src_walk, lsrc, tmp_nbytes); |
| 183 | /* get the source block */ |
| 184 | scatterwalk_copychunks(block->R, &src_walk, SEMIBSIZE, |
| 185 | false); |
| 186 | |
| 187 | /* perform KW operation: get counter as byte string */ |
| 188 | crypto_kw_cpu_to_be64(t, tbe); |
| 189 | /* perform KW operation: modify IV with counter */ |
| 190 | crypto_xor(block->A, tbe, SEMIBSIZE); |
| 191 | t--; |
| 192 | /* perform KW operation: decrypt block */ |
| 193 | crypto_cipher_decrypt_one(child, (u8*)block, |
| 194 | (u8*)block); |
| 195 | |
| 196 | /* move pointer by tmp_nbytes in the SGL */ |
| 197 | crypto_kw_scatterlist_ff(&dst_walk, ldst, tmp_nbytes); |
| 198 | /* Copy block->R into place */ |
| 199 | scatterwalk_copychunks(block->R, &dst_walk, SEMIBSIZE, |
| 200 | true); |
| 201 | |
| 202 | tmp_nbytes -= SEMIBSIZE; |
| 203 | } |
| 204 | |
| 205 | /* we now start to operate on the dst SGL only */ |
| 206 | lsrc = dst; |
| 207 | ldst = dst; |
| 208 | } |
| 209 | |
| 210 | /* Perform authentication check */ |
| 211 | if (crypto_memneq("\xA6\xA6\xA6\xA6\xA6\xA6\xA6\xA6", block->A, |
| 212 | SEMIBSIZE)) |
| 213 | ret = -EBADMSG; |
| 214 | |
| 215 | memzero_explicit(block, sizeof(struct crypto_kw_block)); |
| 216 | |
| 217 | return ret; |
| 218 | } |
| 219 | |
| 220 | static int crypto_kw_encrypt(struct blkcipher_desc *desc, |
| 221 | struct scatterlist *dst, struct scatterlist *src, |
| 222 | unsigned int nbytes) |
| 223 | { |
| 224 | struct crypto_blkcipher *tfm = desc->tfm; |
| 225 | struct crypto_kw_ctx *ctx = crypto_blkcipher_ctx(tfm); |
| 226 | struct crypto_cipher *child = ctx->child; |
| 227 | |
| 228 | unsigned long alignmask = max_t(unsigned long, SEMIBSIZE, |
| 229 | crypto_cipher_alignmask(child)); |
| 230 | unsigned int i; |
| 231 | |
| 232 | u8 blockbuf[sizeof(struct crypto_kw_block) + alignmask]; |
| 233 | struct crypto_kw_block *block = (struct crypto_kw_block *) |
| 234 | PTR_ALIGN(blockbuf + 0, alignmask + 1); |
| 235 | |
| 236 | u64 t = 1; |
| 237 | struct scatterlist *lsrc, *ldst; |
| 238 | |
| 239 | /* |
| 240 | * Require at least 2 semiblocks (note, the 3rd semiblock that is |
| 241 | * required by SP800-38F is the IV that occupies the first semiblock. |
| 242 | * This means that the dst memory must be one semiblock larger than src. |
| 243 | * Also ensure that the given data is aligned to semiblock. |
| 244 | */ |
| 245 | if (nbytes < (2 * SEMIBSIZE) || nbytes % SEMIBSIZE) |
| 246 | return -EINVAL; |
| 247 | |
| 248 | /* |
| 249 | * Place the predefined IV into block A -- for encrypt, the caller |
| 250 | * does not need to provide an IV, but he needs to fetch the final IV. |
| 251 | */ |
| 252 | memcpy(block->A, "\xA6\xA6\xA6\xA6\xA6\xA6\xA6\xA6", SEMIBSIZE); |
| 253 | |
| 254 | /* |
| 255 | * src scatterlist is read-only. dst scatterlist is r/w. During the |
| 256 | * first loop, lsrc points to src and ldst to dst. For any |
| 257 | * subsequent round, the code operates on dst only. |
| 258 | */ |
| 259 | lsrc = src; |
| 260 | ldst = dst; |
| 261 | |
| 262 | for (i = 0; i < 6; i++) { |
| 263 | u8 tbe_buffer[SEMIBSIZE + alignmask]; |
| 264 | u8 *tbe = PTR_ALIGN(tbe_buffer + 0, alignmask + 1); |
| 265 | unsigned int tmp_nbytes = nbytes; |
| 266 | struct scatter_walk src_walk, dst_walk; |
| 267 | |
| 268 | scatterwalk_start(&src_walk, lsrc); |
| 269 | scatterwalk_start(&dst_walk, ldst); |
| 270 | |
| 271 | while (tmp_nbytes) { |
| 272 | /* get the source block */ |
| 273 | scatterwalk_copychunks(block->R, &src_walk, SEMIBSIZE, |
| 274 | false); |
| 275 | |
| 276 | /* perform KW operation: encrypt block */ |
| 277 | crypto_cipher_encrypt_one(child, (u8 *)block, |
| 278 | (u8 *)block); |
| 279 | /* perform KW operation: get counter as byte string */ |
| 280 | crypto_kw_cpu_to_be64(t, tbe); |
| 281 | /* perform KW operation: modify IV with counter */ |
| 282 | crypto_xor(block->A, tbe, SEMIBSIZE); |
| 283 | t++; |
| 284 | |
| 285 | /* Copy block->R into place */ |
| 286 | scatterwalk_copychunks(block->R, &dst_walk, SEMIBSIZE, |
| 287 | true); |
| 288 | |
| 289 | tmp_nbytes -= SEMIBSIZE; |
| 290 | } |
| 291 | |
| 292 | /* we now start to operate on the dst SGL only */ |
| 293 | lsrc = dst; |
| 294 | ldst = dst; |
| 295 | } |
| 296 | |
| 297 | /* establish the IV for the caller to pick up */ |
| 298 | memcpy(desc->info, block->A, SEMIBSIZE); |
| 299 | |
| 300 | memzero_explicit(block, sizeof(struct crypto_kw_block)); |
| 301 | |
| 302 | return 0; |
| 303 | } |
| 304 | |
| 305 | static int crypto_kw_setkey(struct crypto_tfm *parent, const u8 *key, |
| 306 | unsigned int keylen) |
| 307 | { |
| 308 | struct crypto_kw_ctx *ctx = crypto_tfm_ctx(parent); |
| 309 | struct crypto_cipher *child = ctx->child; |
| 310 | int err; |
| 311 | |
| 312 | crypto_cipher_clear_flags(child, CRYPTO_TFM_REQ_MASK); |
| 313 | crypto_cipher_set_flags(child, crypto_tfm_get_flags(parent) & |
| 314 | CRYPTO_TFM_REQ_MASK); |
| 315 | err = crypto_cipher_setkey(child, key, keylen); |
| 316 | crypto_tfm_set_flags(parent, crypto_cipher_get_flags(child) & |
| 317 | CRYPTO_TFM_RES_MASK); |
| 318 | return err; |
| 319 | } |
| 320 | |
| 321 | static int crypto_kw_init_tfm(struct crypto_tfm *tfm) |
| 322 | { |
| 323 | struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); |
| 324 | struct crypto_spawn *spawn = crypto_instance_ctx(inst); |
| 325 | struct crypto_kw_ctx *ctx = crypto_tfm_ctx(tfm); |
| 326 | struct crypto_cipher *cipher; |
| 327 | |
| 328 | cipher = crypto_spawn_cipher(spawn); |
| 329 | if (IS_ERR(cipher)) |
| 330 | return PTR_ERR(cipher); |
| 331 | |
| 332 | ctx->child = cipher; |
| 333 | return 0; |
| 334 | } |
| 335 | |
| 336 | static void crypto_kw_exit_tfm(struct crypto_tfm *tfm) |
| 337 | { |
| 338 | struct crypto_kw_ctx *ctx = crypto_tfm_ctx(tfm); |
| 339 | |
| 340 | crypto_free_cipher(ctx->child); |
| 341 | } |
| 342 | |
| 343 | static struct crypto_instance *crypto_kw_alloc(struct rtattr **tb) |
| 344 | { |
| 345 | struct crypto_instance *inst = NULL; |
| 346 | struct crypto_alg *alg = NULL; |
| 347 | int err; |
| 348 | |
| 349 | err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_BLKCIPHER); |
| 350 | if (err) |
| 351 | return ERR_PTR(err); |
| 352 | |
| 353 | alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER, |
| 354 | CRYPTO_ALG_TYPE_MASK); |
| 355 | if (IS_ERR(alg)) |
| 356 | return ERR_CAST(alg); |
| 357 | |
| 358 | inst = ERR_PTR(-EINVAL); |
| 359 | /* Section 5.1 requirement for KW */ |
| 360 | if (alg->cra_blocksize != sizeof(struct crypto_kw_block)) |
| 361 | goto err; |
| 362 | |
| 363 | inst = crypto_alloc_instance("kw", alg); |
| 364 | if (IS_ERR(inst)) |
| 365 | goto err; |
| 366 | |
| 367 | inst->alg.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER; |
| 368 | inst->alg.cra_priority = alg->cra_priority; |
| 369 | inst->alg.cra_blocksize = SEMIBSIZE; |
| 370 | inst->alg.cra_alignmask = 0; |
| 371 | inst->alg.cra_type = &crypto_blkcipher_type; |
| 372 | inst->alg.cra_blkcipher.ivsize = SEMIBSIZE; |
| 373 | inst->alg.cra_blkcipher.min_keysize = alg->cra_cipher.cia_min_keysize; |
| 374 | inst->alg.cra_blkcipher.max_keysize = alg->cra_cipher.cia_max_keysize; |
| 375 | |
| 376 | inst->alg.cra_ctxsize = sizeof(struct crypto_kw_ctx); |
| 377 | |
| 378 | inst->alg.cra_init = crypto_kw_init_tfm; |
| 379 | inst->alg.cra_exit = crypto_kw_exit_tfm; |
| 380 | |
| 381 | inst->alg.cra_blkcipher.setkey = crypto_kw_setkey; |
| 382 | inst->alg.cra_blkcipher.encrypt = crypto_kw_encrypt; |
| 383 | inst->alg.cra_blkcipher.decrypt = crypto_kw_decrypt; |
| 384 | |
| 385 | err: |
| 386 | crypto_mod_put(alg); |
| 387 | return inst; |
| 388 | } |
| 389 | |
| 390 | static void crypto_kw_free(struct crypto_instance *inst) |
| 391 | { |
| 392 | crypto_drop_spawn(crypto_instance_ctx(inst)); |
| 393 | kfree(inst); |
| 394 | } |
| 395 | |
| 396 | static struct crypto_template crypto_kw_tmpl = { |
| 397 | .name = "kw", |
| 398 | .alloc = crypto_kw_alloc, |
| 399 | .free = crypto_kw_free, |
| 400 | .module = THIS_MODULE, |
| 401 | }; |
| 402 | |
| 403 | static int __init crypto_kw_init(void) |
| 404 | { |
| 405 | return crypto_register_template(&crypto_kw_tmpl); |
| 406 | } |
| 407 | |
| 408 | static void __exit crypto_kw_exit(void) |
| 409 | { |
| 410 | crypto_unregister_template(&crypto_kw_tmpl); |
| 411 | } |
| 412 | |
| 413 | module_init(crypto_kw_init); |
| 414 | module_exit(crypto_kw_exit); |
| 415 | |
| 416 | MODULE_LICENSE("Dual BSD/GPL"); |
| 417 | MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>"); |
| 418 | MODULE_DESCRIPTION("Key Wrapping (RFC3394 / NIST SP800-38F)"); |
| 419 | MODULE_ALIAS_CRYPTO("kw"); |