Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame] | 1 | /* |
| 2 | * Modified to interface to the Linux kernel |
| 3 | * Copyright (c) 2009, Intel Corporation. |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or modify it |
| 6 | * under the terms and conditions of the GNU General Public License, |
| 7 | * version 2, as published by the Free Software Foundation. |
| 8 | * |
| 9 | * This program is distributed in the hope it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 12 | * more details. |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public License along with |
| 15 | * this program; if not, write to the Free Software Foundation, Inc., 59 Temple |
| 16 | * Place - Suite 330, Boston, MA 02111-1307 USA. |
| 17 | */ |
| 18 | |
| 19 | /* -------------------------------------------------------------------------- |
| 20 | * VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai. |
| 21 | * This implementation is herby placed in the public domain. |
| 22 | * The authors offers no warranty. Use at your own risk. |
| 23 | * Please send bug reports to the authors. |
| 24 | * Last modified: 17 APR 08, 1700 PDT |
| 25 | * ----------------------------------------------------------------------- */ |
| 26 | |
| 27 | #include <linux/init.h> |
| 28 | #include <linux/types.h> |
| 29 | #include <linux/crypto.h> |
| 30 | #include <linux/module.h> |
| 31 | #include <linux/scatterlist.h> |
| 32 | #include <asm/byteorder.h> |
| 33 | #include <crypto/scatterwalk.h> |
| 34 | #include <crypto/vmac.h> |
| 35 | #include <crypto/internal/hash.h> |
| 36 | |
| 37 | /* |
| 38 | * Constants and masks |
| 39 | */ |
| 40 | #define UINT64_C(x) x##ULL |
| 41 | static const u64 p64 = UINT64_C(0xfffffffffffffeff); /* 2^64 - 257 prime */ |
| 42 | static const u64 m62 = UINT64_C(0x3fffffffffffffff); /* 62-bit mask */ |
| 43 | static const u64 m63 = UINT64_C(0x7fffffffffffffff); /* 63-bit mask */ |
| 44 | static const u64 m64 = UINT64_C(0xffffffffffffffff); /* 64-bit mask */ |
| 45 | static const u64 mpoly = UINT64_C(0x1fffffff1fffffff); /* Poly key mask */ |
| 46 | |
| 47 | #define pe64_to_cpup le64_to_cpup /* Prefer little endian */ |
| 48 | |
| 49 | #ifdef __LITTLE_ENDIAN |
| 50 | #define INDEX_HIGH 1 |
| 51 | #define INDEX_LOW 0 |
| 52 | #else |
| 53 | #define INDEX_HIGH 0 |
| 54 | #define INDEX_LOW 1 |
| 55 | #endif |
| 56 | |
| 57 | /* |
| 58 | * The following routines are used in this implementation. They are |
| 59 | * written via macros to simulate zero-overhead call-by-reference. |
| 60 | * |
| 61 | * MUL64: 64x64->128-bit multiplication |
| 62 | * PMUL64: assumes top bits cleared on inputs |
| 63 | * ADD128: 128x128->128-bit addition |
| 64 | */ |
| 65 | |
| 66 | #define ADD128(rh, rl, ih, il) \ |
| 67 | do { \ |
| 68 | u64 _il = (il); \ |
| 69 | (rl) += (_il); \ |
| 70 | if ((rl) < (_il)) \ |
| 71 | (rh)++; \ |
| 72 | (rh) += (ih); \ |
| 73 | } while (0) |
| 74 | |
| 75 | #define MUL32(i1, i2) ((u64)(u32)(i1)*(u32)(i2)) |
| 76 | |
| 77 | #define PMUL64(rh, rl, i1, i2) /* Assumes m doesn't overflow */ \ |
| 78 | do { \ |
| 79 | u64 _i1 = (i1), _i2 = (i2); \ |
| 80 | u64 m = MUL32(_i1, _i2>>32) + MUL32(_i1>>32, _i2); \ |
| 81 | rh = MUL32(_i1>>32, _i2>>32); \ |
| 82 | rl = MUL32(_i1, _i2); \ |
| 83 | ADD128(rh, rl, (m >> 32), (m << 32)); \ |
| 84 | } while (0) |
| 85 | |
| 86 | #define MUL64(rh, rl, i1, i2) \ |
| 87 | do { \ |
| 88 | u64 _i1 = (i1), _i2 = (i2); \ |
| 89 | u64 m1 = MUL32(_i1, _i2>>32); \ |
| 90 | u64 m2 = MUL32(_i1>>32, _i2); \ |
| 91 | rh = MUL32(_i1>>32, _i2>>32); \ |
| 92 | rl = MUL32(_i1, _i2); \ |
| 93 | ADD128(rh, rl, (m1 >> 32), (m1 << 32)); \ |
| 94 | ADD128(rh, rl, (m2 >> 32), (m2 << 32)); \ |
| 95 | } while (0) |
| 96 | |
| 97 | /* |
| 98 | * For highest performance the L1 NH and L2 polynomial hashes should be |
| 99 | * carefully implemented to take advantage of one's target architecture. |
| 100 | * Here these two hash functions are defined multiple time; once for |
| 101 | * 64-bit architectures, once for 32-bit SSE2 architectures, and once |
| 102 | * for the rest (32-bit) architectures. |
| 103 | * For each, nh_16 *must* be defined (works on multiples of 16 bytes). |
| 104 | * Optionally, nh_vmac_nhbytes can be defined (for multiples of |
| 105 | * VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two |
| 106 | * NH computations at once). |
| 107 | */ |
| 108 | |
| 109 | #ifdef CONFIG_64BIT |
| 110 | |
| 111 | #define nh_16(mp, kp, nw, rh, rl) \ |
| 112 | do { \ |
| 113 | int i; u64 th, tl; \ |
| 114 | rh = rl = 0; \ |
| 115 | for (i = 0; i < nw; i += 2) { \ |
| 116 | MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \ |
| 117 | pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \ |
| 118 | ADD128(rh, rl, th, tl); \ |
| 119 | } \ |
| 120 | } while (0) |
| 121 | |
| 122 | #define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1) \ |
| 123 | do { \ |
| 124 | int i; u64 th, tl; \ |
| 125 | rh1 = rl1 = rh = rl = 0; \ |
| 126 | for (i = 0; i < nw; i += 2) { \ |
| 127 | MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \ |
| 128 | pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \ |
| 129 | ADD128(rh, rl, th, tl); \ |
| 130 | MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2], \ |
| 131 | pe64_to_cpup((mp)+i+1)+(kp)[i+3]); \ |
| 132 | ADD128(rh1, rl1, th, tl); \ |
| 133 | } \ |
| 134 | } while (0) |
| 135 | |
| 136 | #if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */ |
| 137 | #define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \ |
| 138 | do { \ |
| 139 | int i; u64 th, tl; \ |
| 140 | rh = rl = 0; \ |
| 141 | for (i = 0; i < nw; i += 8) { \ |
| 142 | MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \ |
| 143 | pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \ |
| 144 | ADD128(rh, rl, th, tl); \ |
| 145 | MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \ |
| 146 | pe64_to_cpup((mp)+i+3)+(kp)[i+3]); \ |
| 147 | ADD128(rh, rl, th, tl); \ |
| 148 | MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \ |
| 149 | pe64_to_cpup((mp)+i+5)+(kp)[i+5]); \ |
| 150 | ADD128(rh, rl, th, tl); \ |
| 151 | MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \ |
| 152 | pe64_to_cpup((mp)+i+7)+(kp)[i+7]); \ |
| 153 | ADD128(rh, rl, th, tl); \ |
| 154 | } \ |
| 155 | } while (0) |
| 156 | |
| 157 | #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1) \ |
| 158 | do { \ |
| 159 | int i; u64 th, tl; \ |
| 160 | rh1 = rl1 = rh = rl = 0; \ |
| 161 | for (i = 0; i < nw; i += 8) { \ |
| 162 | MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \ |
| 163 | pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \ |
| 164 | ADD128(rh, rl, th, tl); \ |
| 165 | MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2], \ |
| 166 | pe64_to_cpup((mp)+i+1)+(kp)[i+3]); \ |
| 167 | ADD128(rh1, rl1, th, tl); \ |
| 168 | MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \ |
| 169 | pe64_to_cpup((mp)+i+3)+(kp)[i+3]); \ |
| 170 | ADD128(rh, rl, th, tl); \ |
| 171 | MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+4], \ |
| 172 | pe64_to_cpup((mp)+i+3)+(kp)[i+5]); \ |
| 173 | ADD128(rh1, rl1, th, tl); \ |
| 174 | MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \ |
| 175 | pe64_to_cpup((mp)+i+5)+(kp)[i+5]); \ |
| 176 | ADD128(rh, rl, th, tl); \ |
| 177 | MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+6], \ |
| 178 | pe64_to_cpup((mp)+i+5)+(kp)[i+7]); \ |
| 179 | ADD128(rh1, rl1, th, tl); \ |
| 180 | MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \ |
| 181 | pe64_to_cpup((mp)+i+7)+(kp)[i+7]); \ |
| 182 | ADD128(rh, rl, th, tl); \ |
| 183 | MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+8], \ |
| 184 | pe64_to_cpup((mp)+i+7)+(kp)[i+9]); \ |
| 185 | ADD128(rh1, rl1, th, tl); \ |
| 186 | } \ |
| 187 | } while (0) |
| 188 | #endif |
| 189 | |
| 190 | #define poly_step(ah, al, kh, kl, mh, ml) \ |
| 191 | do { \ |
| 192 | u64 t1h, t1l, t2h, t2l, t3h, t3l, z = 0; \ |
| 193 | /* compute ab*cd, put bd into result registers */ \ |
| 194 | PMUL64(t3h, t3l, al, kh); \ |
| 195 | PMUL64(t2h, t2l, ah, kl); \ |
| 196 | PMUL64(t1h, t1l, ah, 2*kh); \ |
| 197 | PMUL64(ah, al, al, kl); \ |
| 198 | /* add 2 * ac to result */ \ |
| 199 | ADD128(ah, al, t1h, t1l); \ |
| 200 | /* add together ad + bc */ \ |
| 201 | ADD128(t2h, t2l, t3h, t3l); \ |
| 202 | /* now (ah,al), (t2l,2*t2h) need summing */ \ |
| 203 | /* first add the high registers, carrying into t2h */ \ |
| 204 | ADD128(t2h, ah, z, t2l); \ |
| 205 | /* double t2h and add top bit of ah */ \ |
| 206 | t2h = 2 * t2h + (ah >> 63); \ |
| 207 | ah &= m63; \ |
| 208 | /* now add the low registers */ \ |
| 209 | ADD128(ah, al, mh, ml); \ |
| 210 | ADD128(ah, al, z, t2h); \ |
| 211 | } while (0) |
| 212 | |
| 213 | #else /* ! CONFIG_64BIT */ |
| 214 | |
| 215 | #ifndef nh_16 |
| 216 | #define nh_16(mp, kp, nw, rh, rl) \ |
| 217 | do { \ |
| 218 | u64 t1, t2, m1, m2, t; \ |
| 219 | int i; \ |
| 220 | rh = rl = t = 0; \ |
| 221 | for (i = 0; i < nw; i += 2) { \ |
| 222 | t1 = pe64_to_cpup(mp+i) + kp[i]; \ |
| 223 | t2 = pe64_to_cpup(mp+i+1) + kp[i+1]; \ |
| 224 | m2 = MUL32(t1 >> 32, t2); \ |
| 225 | m1 = MUL32(t1, t2 >> 32); \ |
| 226 | ADD128(rh, rl, MUL32(t1 >> 32, t2 >> 32), \ |
| 227 | MUL32(t1, t2)); \ |
| 228 | rh += (u64)(u32)(m1 >> 32) \ |
| 229 | + (u32)(m2 >> 32); \ |
| 230 | t += (u64)(u32)m1 + (u32)m2; \ |
| 231 | } \ |
| 232 | ADD128(rh, rl, (t >> 32), (t << 32)); \ |
| 233 | } while (0) |
| 234 | #endif |
| 235 | |
| 236 | static void poly_step_func(u64 *ahi, u64 *alo, |
| 237 | const u64 *kh, const u64 *kl, |
| 238 | const u64 *mh, const u64 *ml) |
| 239 | { |
| 240 | #define a0 (*(((u32 *)alo)+INDEX_LOW)) |
| 241 | #define a1 (*(((u32 *)alo)+INDEX_HIGH)) |
| 242 | #define a2 (*(((u32 *)ahi)+INDEX_LOW)) |
| 243 | #define a3 (*(((u32 *)ahi)+INDEX_HIGH)) |
| 244 | #define k0 (*(((u32 *)kl)+INDEX_LOW)) |
| 245 | #define k1 (*(((u32 *)kl)+INDEX_HIGH)) |
| 246 | #define k2 (*(((u32 *)kh)+INDEX_LOW)) |
| 247 | #define k3 (*(((u32 *)kh)+INDEX_HIGH)) |
| 248 | |
| 249 | u64 p, q, t; |
| 250 | u32 t2; |
| 251 | |
| 252 | p = MUL32(a3, k3); |
| 253 | p += p; |
| 254 | p += *(u64 *)mh; |
| 255 | p += MUL32(a0, k2); |
| 256 | p += MUL32(a1, k1); |
| 257 | p += MUL32(a2, k0); |
| 258 | t = (u32)(p); |
| 259 | p >>= 32; |
| 260 | p += MUL32(a0, k3); |
| 261 | p += MUL32(a1, k2); |
| 262 | p += MUL32(a2, k1); |
| 263 | p += MUL32(a3, k0); |
| 264 | t |= ((u64)((u32)p & 0x7fffffff)) << 32; |
| 265 | p >>= 31; |
| 266 | p += (u64)(((u32 *)ml)[INDEX_LOW]); |
| 267 | p += MUL32(a0, k0); |
| 268 | q = MUL32(a1, k3); |
| 269 | q += MUL32(a2, k2); |
| 270 | q += MUL32(a3, k1); |
| 271 | q += q; |
| 272 | p += q; |
| 273 | t2 = (u32)(p); |
| 274 | p >>= 32; |
| 275 | p += (u64)(((u32 *)ml)[INDEX_HIGH]); |
| 276 | p += MUL32(a0, k1); |
| 277 | p += MUL32(a1, k0); |
| 278 | q = MUL32(a2, k3); |
| 279 | q += MUL32(a3, k2); |
| 280 | q += q; |
| 281 | p += q; |
| 282 | *(u64 *)(alo) = (p << 32) | t2; |
| 283 | p >>= 32; |
| 284 | *(u64 *)(ahi) = p + t; |
| 285 | |
| 286 | #undef a0 |
| 287 | #undef a1 |
| 288 | #undef a2 |
| 289 | #undef a3 |
| 290 | #undef k0 |
| 291 | #undef k1 |
| 292 | #undef k2 |
| 293 | #undef k3 |
| 294 | } |
| 295 | |
| 296 | #define poly_step(ah, al, kh, kl, mh, ml) \ |
| 297 | poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml)) |
| 298 | |
| 299 | #endif /* end of specialized NH and poly definitions */ |
| 300 | |
| 301 | /* At least nh_16 is defined. Defined others as needed here */ |
| 302 | #ifndef nh_16_2 |
| 303 | #define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2) \ |
| 304 | do { \ |
| 305 | nh_16(mp, kp, nw, rh, rl); \ |
| 306 | nh_16(mp, ((kp)+2), nw, rh2, rl2); \ |
| 307 | } while (0) |
| 308 | #endif |
| 309 | #ifndef nh_vmac_nhbytes |
| 310 | #define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \ |
| 311 | nh_16(mp, kp, nw, rh, rl) |
| 312 | #endif |
| 313 | #ifndef nh_vmac_nhbytes_2 |
| 314 | #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2) \ |
| 315 | do { \ |
| 316 | nh_vmac_nhbytes(mp, kp, nw, rh, rl); \ |
| 317 | nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2); \ |
| 318 | } while (0) |
| 319 | #endif |
| 320 | |
| 321 | static void vhash_abort(struct vmac_ctx *ctx) |
| 322 | { |
| 323 | ctx->polytmp[0] = ctx->polykey[0] ; |
| 324 | ctx->polytmp[1] = ctx->polykey[1] ; |
| 325 | ctx->first_block_processed = 0; |
| 326 | } |
| 327 | |
| 328 | static u64 l3hash(u64 p1, u64 p2, u64 k1, u64 k2, u64 len) |
| 329 | { |
| 330 | u64 rh, rl, t, z = 0; |
| 331 | |
| 332 | /* fully reduce (p1,p2)+(len,0) mod p127 */ |
| 333 | t = p1 >> 63; |
| 334 | p1 &= m63; |
| 335 | ADD128(p1, p2, len, t); |
| 336 | /* At this point, (p1,p2) is at most 2^127+(len<<64) */ |
| 337 | t = (p1 > m63) + ((p1 == m63) && (p2 == m64)); |
| 338 | ADD128(p1, p2, z, t); |
| 339 | p1 &= m63; |
| 340 | |
| 341 | /* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */ |
| 342 | t = p1 + (p2 >> 32); |
| 343 | t += (t >> 32); |
| 344 | t += (u32)t > 0xfffffffeu; |
| 345 | p1 += (t >> 32); |
| 346 | p2 += (p1 << 32); |
| 347 | |
| 348 | /* compute (p1+k1)%p64 and (p2+k2)%p64 */ |
| 349 | p1 += k1; |
| 350 | p1 += (0 - (p1 < k1)) & 257; |
| 351 | p2 += k2; |
| 352 | p2 += (0 - (p2 < k2)) & 257; |
| 353 | |
| 354 | /* compute (p1+k1)*(p2+k2)%p64 */ |
| 355 | MUL64(rh, rl, p1, p2); |
| 356 | t = rh >> 56; |
| 357 | ADD128(t, rl, z, rh); |
| 358 | rh <<= 8; |
| 359 | ADD128(t, rl, z, rh); |
| 360 | t += t << 8; |
| 361 | rl += t; |
| 362 | rl += (0 - (rl < t)) & 257; |
| 363 | rl += (0 - (rl > p64-1)) & 257; |
| 364 | return rl; |
| 365 | } |
| 366 | |
| 367 | static void vhash_update(const unsigned char *m, |
| 368 | unsigned int mbytes, /* Pos multiple of VMAC_NHBYTES */ |
| 369 | struct vmac_ctx *ctx) |
| 370 | { |
| 371 | u64 rh, rl, *mptr; |
| 372 | const u64 *kptr = (u64 *)ctx->nhkey; |
| 373 | int i; |
| 374 | u64 ch, cl; |
| 375 | u64 pkh = ctx->polykey[0]; |
| 376 | u64 pkl = ctx->polykey[1]; |
| 377 | |
| 378 | if (!mbytes) |
| 379 | return; |
| 380 | |
| 381 | BUG_ON(mbytes % VMAC_NHBYTES); |
| 382 | |
| 383 | mptr = (u64 *)m; |
| 384 | i = mbytes / VMAC_NHBYTES; /* Must be non-zero */ |
| 385 | |
| 386 | ch = ctx->polytmp[0]; |
| 387 | cl = ctx->polytmp[1]; |
| 388 | |
| 389 | if (!ctx->first_block_processed) { |
| 390 | ctx->first_block_processed = 1; |
| 391 | nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); |
| 392 | rh &= m62; |
| 393 | ADD128(ch, cl, rh, rl); |
| 394 | mptr += (VMAC_NHBYTES/sizeof(u64)); |
| 395 | i--; |
| 396 | } |
| 397 | |
| 398 | while (i--) { |
| 399 | nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); |
| 400 | rh &= m62; |
| 401 | poly_step(ch, cl, pkh, pkl, rh, rl); |
| 402 | mptr += (VMAC_NHBYTES/sizeof(u64)); |
| 403 | } |
| 404 | |
| 405 | ctx->polytmp[0] = ch; |
| 406 | ctx->polytmp[1] = cl; |
| 407 | } |
| 408 | |
| 409 | static u64 vhash(unsigned char m[], unsigned int mbytes, |
| 410 | u64 *tagl, struct vmac_ctx *ctx) |
| 411 | { |
| 412 | u64 rh, rl, *mptr; |
| 413 | const u64 *kptr = (u64 *)ctx->nhkey; |
| 414 | int i, remaining; |
| 415 | u64 ch, cl; |
| 416 | u64 pkh = ctx->polykey[0]; |
| 417 | u64 pkl = ctx->polykey[1]; |
| 418 | |
| 419 | mptr = (u64 *)m; |
| 420 | i = mbytes / VMAC_NHBYTES; |
| 421 | remaining = mbytes % VMAC_NHBYTES; |
| 422 | |
| 423 | if (ctx->first_block_processed) { |
| 424 | ch = ctx->polytmp[0]; |
| 425 | cl = ctx->polytmp[1]; |
| 426 | } else if (i) { |
| 427 | nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, ch, cl); |
| 428 | ch &= m62; |
| 429 | ADD128(ch, cl, pkh, pkl); |
| 430 | mptr += (VMAC_NHBYTES/sizeof(u64)); |
| 431 | i--; |
| 432 | } else if (remaining) { |
| 433 | nh_16(mptr, kptr, 2*((remaining+15)/16), ch, cl); |
| 434 | ch &= m62; |
| 435 | ADD128(ch, cl, pkh, pkl); |
| 436 | mptr += (VMAC_NHBYTES/sizeof(u64)); |
| 437 | goto do_l3; |
| 438 | } else {/* Empty String */ |
| 439 | ch = pkh; cl = pkl; |
| 440 | goto do_l3; |
| 441 | } |
| 442 | |
| 443 | while (i--) { |
| 444 | nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl); |
| 445 | rh &= m62; |
| 446 | poly_step(ch, cl, pkh, pkl, rh, rl); |
| 447 | mptr += (VMAC_NHBYTES/sizeof(u64)); |
| 448 | } |
| 449 | if (remaining) { |
| 450 | nh_16(mptr, kptr, 2*((remaining+15)/16), rh, rl); |
| 451 | rh &= m62; |
| 452 | poly_step(ch, cl, pkh, pkl, rh, rl); |
| 453 | } |
| 454 | |
| 455 | do_l3: |
| 456 | vhash_abort(ctx); |
| 457 | remaining *= 8; |
| 458 | return l3hash(ch, cl, ctx->l3key[0], ctx->l3key[1], remaining); |
| 459 | } |
| 460 | |
| 461 | static u64 vmac(unsigned char m[], unsigned int mbytes, |
| 462 | const unsigned char n[16], u64 *tagl, |
| 463 | struct vmac_ctx_t *ctx) |
| 464 | { |
| 465 | u64 *in_n, *out_p; |
| 466 | u64 p, h; |
| 467 | int i; |
| 468 | |
| 469 | in_n = ctx->__vmac_ctx.cached_nonce; |
| 470 | out_p = ctx->__vmac_ctx.cached_aes; |
| 471 | |
| 472 | i = n[15] & 1; |
| 473 | if ((*(u64 *)(n+8) != in_n[1]) || (*(u64 *)(n) != in_n[0])) { |
| 474 | in_n[0] = *(u64 *)(n); |
| 475 | in_n[1] = *(u64 *)(n+8); |
| 476 | ((unsigned char *)in_n)[15] &= 0xFE; |
| 477 | crypto_cipher_encrypt_one(ctx->child, |
| 478 | (unsigned char *)out_p, (unsigned char *)in_n); |
| 479 | |
| 480 | ((unsigned char *)in_n)[15] |= (unsigned char)(1-i); |
| 481 | } |
| 482 | p = be64_to_cpup(out_p + i); |
| 483 | h = vhash(m, mbytes, (u64 *)0, &ctx->__vmac_ctx); |
| 484 | return le64_to_cpu(p + h); |
| 485 | } |
| 486 | |
| 487 | static int vmac_set_key(unsigned char user_key[], struct vmac_ctx_t *ctx) |
| 488 | { |
| 489 | u64 in[2] = {0}, out[2]; |
| 490 | unsigned i; |
| 491 | int err = 0; |
| 492 | |
| 493 | err = crypto_cipher_setkey(ctx->child, user_key, VMAC_KEY_LEN); |
| 494 | if (err) |
| 495 | return err; |
| 496 | |
| 497 | /* Fill nh key */ |
| 498 | ((unsigned char *)in)[0] = 0x80; |
| 499 | for (i = 0; i < sizeof(ctx->__vmac_ctx.nhkey)/8; i += 2) { |
| 500 | crypto_cipher_encrypt_one(ctx->child, |
| 501 | (unsigned char *)out, (unsigned char *)in); |
| 502 | ctx->__vmac_ctx.nhkey[i] = be64_to_cpup(out); |
| 503 | ctx->__vmac_ctx.nhkey[i+1] = be64_to_cpup(out+1); |
| 504 | ((unsigned char *)in)[15] += 1; |
| 505 | } |
| 506 | |
| 507 | /* Fill poly key */ |
| 508 | ((unsigned char *)in)[0] = 0xC0; |
| 509 | in[1] = 0; |
| 510 | for (i = 0; i < sizeof(ctx->__vmac_ctx.polykey)/8; i += 2) { |
| 511 | crypto_cipher_encrypt_one(ctx->child, |
| 512 | (unsigned char *)out, (unsigned char *)in); |
| 513 | ctx->__vmac_ctx.polytmp[i] = |
| 514 | ctx->__vmac_ctx.polykey[i] = |
| 515 | be64_to_cpup(out) & mpoly; |
| 516 | ctx->__vmac_ctx.polytmp[i+1] = |
| 517 | ctx->__vmac_ctx.polykey[i+1] = |
| 518 | be64_to_cpup(out+1) & mpoly; |
| 519 | ((unsigned char *)in)[15] += 1; |
| 520 | } |
| 521 | |
| 522 | /* Fill ip key */ |
| 523 | ((unsigned char *)in)[0] = 0xE0; |
| 524 | in[1] = 0; |
| 525 | for (i = 0; i < sizeof(ctx->__vmac_ctx.l3key)/8; i += 2) { |
| 526 | do { |
| 527 | crypto_cipher_encrypt_one(ctx->child, |
| 528 | (unsigned char *)out, (unsigned char *)in); |
| 529 | ctx->__vmac_ctx.l3key[i] = be64_to_cpup(out); |
| 530 | ctx->__vmac_ctx.l3key[i+1] = be64_to_cpup(out+1); |
| 531 | ((unsigned char *)in)[15] += 1; |
| 532 | } while (ctx->__vmac_ctx.l3key[i] >= p64 |
| 533 | || ctx->__vmac_ctx.l3key[i+1] >= p64); |
| 534 | } |
| 535 | |
| 536 | /* Invalidate nonce/aes cache and reset other elements */ |
| 537 | ctx->__vmac_ctx.cached_nonce[0] = (u64)-1; /* Ensure illegal nonce */ |
| 538 | ctx->__vmac_ctx.cached_nonce[1] = (u64)0; /* Ensure illegal nonce */ |
| 539 | ctx->__vmac_ctx.first_block_processed = 0; |
| 540 | |
| 541 | return err; |
| 542 | } |
| 543 | |
| 544 | static int vmac_setkey(struct crypto_shash *parent, |
| 545 | const u8 *key, unsigned int keylen) |
| 546 | { |
| 547 | struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); |
| 548 | |
| 549 | if (keylen != VMAC_KEY_LEN) { |
| 550 | crypto_shash_set_flags(parent, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| 551 | return -EINVAL; |
| 552 | } |
| 553 | |
| 554 | return vmac_set_key((u8 *)key, ctx); |
| 555 | } |
| 556 | |
| 557 | static int vmac_init(struct shash_desc *pdesc) |
| 558 | { |
| 559 | return 0; |
| 560 | } |
| 561 | |
| 562 | static int vmac_update(struct shash_desc *pdesc, const u8 *p, |
| 563 | unsigned int len) |
| 564 | { |
| 565 | struct crypto_shash *parent = pdesc->tfm; |
| 566 | struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); |
| 567 | int expand; |
| 568 | int min; |
| 569 | |
| 570 | expand = VMAC_NHBYTES - ctx->partial_size > 0 ? |
| 571 | VMAC_NHBYTES - ctx->partial_size : 0; |
| 572 | |
| 573 | min = len < expand ? len : expand; |
| 574 | |
| 575 | memcpy(ctx->partial + ctx->partial_size, p, min); |
| 576 | ctx->partial_size += min; |
| 577 | |
| 578 | if (len < expand) |
| 579 | return 0; |
| 580 | |
| 581 | vhash_update(ctx->partial, VMAC_NHBYTES, &ctx->__vmac_ctx); |
| 582 | ctx->partial_size = 0; |
| 583 | |
| 584 | len -= expand; |
| 585 | p += expand; |
| 586 | |
| 587 | if (len % VMAC_NHBYTES) { |
| 588 | memcpy(ctx->partial, p + len - (len % VMAC_NHBYTES), |
| 589 | len % VMAC_NHBYTES); |
| 590 | ctx->partial_size = len % VMAC_NHBYTES; |
| 591 | } |
| 592 | |
| 593 | vhash_update(p, len - len % VMAC_NHBYTES, &ctx->__vmac_ctx); |
| 594 | |
| 595 | return 0; |
| 596 | } |
| 597 | |
| 598 | static int vmac_final(struct shash_desc *pdesc, u8 *out) |
| 599 | { |
| 600 | struct crypto_shash *parent = pdesc->tfm; |
| 601 | struct vmac_ctx_t *ctx = crypto_shash_ctx(parent); |
| 602 | vmac_t mac; |
| 603 | u8 nonce[16] = {}; |
| 604 | |
| 605 | /* vmac() ends up accessing outside the array bounds that |
| 606 | * we specify. In appears to access up to the next 2-word |
| 607 | * boundary. We'll just be uber cautious and zero the |
| 608 | * unwritten bytes in the buffer. |
| 609 | */ |
| 610 | if (ctx->partial_size) { |
| 611 | memset(ctx->partial + ctx->partial_size, 0, |
| 612 | VMAC_NHBYTES - ctx->partial_size); |
| 613 | } |
| 614 | mac = vmac(ctx->partial, ctx->partial_size, nonce, NULL, ctx); |
| 615 | memcpy(out, &mac, sizeof(vmac_t)); |
| 616 | memzero_explicit(&mac, sizeof(vmac_t)); |
| 617 | memset(&ctx->__vmac_ctx, 0, sizeof(struct vmac_ctx)); |
| 618 | ctx->partial_size = 0; |
| 619 | return 0; |
| 620 | } |
| 621 | |
| 622 | static int vmac_init_tfm(struct crypto_tfm *tfm) |
| 623 | { |
| 624 | struct crypto_cipher *cipher; |
| 625 | struct crypto_instance *inst = (void *)tfm->__crt_alg; |
| 626 | struct crypto_spawn *spawn = crypto_instance_ctx(inst); |
| 627 | struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm); |
| 628 | |
| 629 | cipher = crypto_spawn_cipher(spawn); |
| 630 | if (IS_ERR(cipher)) |
| 631 | return PTR_ERR(cipher); |
| 632 | |
| 633 | ctx->child = cipher; |
| 634 | return 0; |
| 635 | } |
| 636 | |
| 637 | static void vmac_exit_tfm(struct crypto_tfm *tfm) |
| 638 | { |
| 639 | struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm); |
| 640 | crypto_free_cipher(ctx->child); |
| 641 | } |
| 642 | |
| 643 | static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb) |
| 644 | { |
| 645 | struct shash_instance *inst; |
| 646 | struct crypto_alg *alg; |
| 647 | int err; |
| 648 | |
| 649 | err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH); |
| 650 | if (err) |
| 651 | return err; |
| 652 | |
| 653 | alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER, |
| 654 | CRYPTO_ALG_TYPE_MASK); |
| 655 | if (IS_ERR(alg)) |
| 656 | return PTR_ERR(alg); |
| 657 | |
| 658 | inst = shash_alloc_instance("vmac", alg); |
| 659 | err = PTR_ERR(inst); |
| 660 | if (IS_ERR(inst)) |
| 661 | goto out_put_alg; |
| 662 | |
| 663 | err = crypto_init_spawn(shash_instance_ctx(inst), alg, |
| 664 | shash_crypto_instance(inst), |
| 665 | CRYPTO_ALG_TYPE_MASK); |
| 666 | if (err) |
| 667 | goto out_free_inst; |
| 668 | |
| 669 | inst->alg.base.cra_priority = alg->cra_priority; |
| 670 | inst->alg.base.cra_blocksize = alg->cra_blocksize; |
| 671 | inst->alg.base.cra_alignmask = alg->cra_alignmask; |
| 672 | |
| 673 | inst->alg.digestsize = sizeof(vmac_t); |
| 674 | inst->alg.base.cra_ctxsize = sizeof(struct vmac_ctx_t); |
| 675 | inst->alg.base.cra_init = vmac_init_tfm; |
| 676 | inst->alg.base.cra_exit = vmac_exit_tfm; |
| 677 | |
| 678 | inst->alg.init = vmac_init; |
| 679 | inst->alg.update = vmac_update; |
| 680 | inst->alg.final = vmac_final; |
| 681 | inst->alg.setkey = vmac_setkey; |
| 682 | |
| 683 | err = shash_register_instance(tmpl, inst); |
| 684 | if (err) { |
| 685 | out_free_inst: |
| 686 | shash_free_instance(shash_crypto_instance(inst)); |
| 687 | } |
| 688 | |
| 689 | out_put_alg: |
| 690 | crypto_mod_put(alg); |
| 691 | return err; |
| 692 | } |
| 693 | |
| 694 | static struct crypto_template vmac_tmpl = { |
| 695 | .name = "vmac", |
| 696 | .create = vmac_create, |
| 697 | .free = shash_free_instance, |
| 698 | .module = THIS_MODULE, |
| 699 | }; |
| 700 | |
| 701 | static int __init vmac_module_init(void) |
| 702 | { |
| 703 | return crypto_register_template(&vmac_tmpl); |
| 704 | } |
| 705 | |
| 706 | static void __exit vmac_module_exit(void) |
| 707 | { |
| 708 | crypto_unregister_template(&vmac_tmpl); |
| 709 | } |
| 710 | |
| 711 | module_init(vmac_module_init); |
| 712 | module_exit(vmac_module_exit); |
| 713 | |
| 714 | MODULE_LICENSE("GPL"); |
| 715 | MODULE_DESCRIPTION("VMAC hash algorithm"); |
| 716 | MODULE_ALIAS_CRYPTO("vmac"); |