Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame] | 1 | /* audit.c -- Auditing support |
| 2 | * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. |
| 3 | * System-call specific features have moved to auditsc.c |
| 4 | * |
| 5 | * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. |
| 6 | * All Rights Reserved. |
| 7 | * |
| 8 | * This program is free software; you can redistribute it and/or modify |
| 9 | * it under the terms of the GNU General Public License as published by |
| 10 | * the Free Software Foundation; either version 2 of the License, or |
| 11 | * (at your option) any later version. |
| 12 | * |
| 13 | * This program is distributed in the hope that it will be useful, |
| 14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 16 | * GNU General Public License for more details. |
| 17 | * |
| 18 | * You should have received a copy of the GNU General Public License |
| 19 | * along with this program; if not, write to the Free Software |
| 20 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 21 | * |
| 22 | * Written by Rickard E. (Rik) Faith <faith@redhat.com> |
| 23 | * |
| 24 | * Goals: 1) Integrate fully with Security Modules. |
| 25 | * 2) Minimal run-time overhead: |
| 26 | * a) Minimal when syscall auditing is disabled (audit_enable=0). |
| 27 | * b) Small when syscall auditing is enabled and no audit record |
| 28 | * is generated (defer as much work as possible to record |
| 29 | * generation time): |
| 30 | * i) context is allocated, |
| 31 | * ii) names from getname are stored without a copy, and |
| 32 | * iii) inode information stored from path_lookup. |
| 33 | * 3) Ability to disable syscall auditing at boot time (audit=0). |
| 34 | * 4) Usable by other parts of the kernel (if audit_log* is called, |
| 35 | * then a syscall record will be generated automatically for the |
| 36 | * current syscall). |
| 37 | * 5) Netlink interface to user-space. |
| 38 | * 6) Support low-overhead kernel-based filtering to minimize the |
| 39 | * information that must be passed to user-space. |
| 40 | * |
| 41 | * Example user-space utilities: http://people.redhat.com/sgrubb/audit/ |
| 42 | */ |
| 43 | |
| 44 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 45 | |
| 46 | #include <linux/file.h> |
| 47 | #include <linux/init.h> |
| 48 | #include <linux/types.h> |
| 49 | #include <linux/atomic.h> |
| 50 | #include <linux/mm.h> |
| 51 | #include <linux/export.h> |
| 52 | #include <linux/slab.h> |
| 53 | #include <linux/err.h> |
| 54 | #include <linux/kthread.h> |
| 55 | #include <linux/kernel.h> |
| 56 | #include <linux/syscalls.h> |
| 57 | |
| 58 | #include <linux/audit.h> |
| 59 | |
| 60 | #include <net/sock.h> |
| 61 | #include <net/netlink.h> |
| 62 | #include <linux/skbuff.h> |
| 63 | #ifdef CONFIG_SECURITY |
| 64 | #include <linux/security.h> |
| 65 | #endif |
| 66 | #include <linux/freezer.h> |
| 67 | #include <linux/tty.h> |
| 68 | #include <linux/pid_namespace.h> |
| 69 | #include <net/netns/generic.h> |
| 70 | |
| 71 | #include "audit.h" |
| 72 | |
| 73 | /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. |
| 74 | * (Initialization happens after skb_init is called.) */ |
| 75 | #define AUDIT_DISABLED -1 |
| 76 | #define AUDIT_UNINITIALIZED 0 |
| 77 | #define AUDIT_INITIALIZED 1 |
| 78 | static int audit_initialized; |
| 79 | |
| 80 | #define AUDIT_OFF 0 |
| 81 | #define AUDIT_ON 1 |
| 82 | #define AUDIT_LOCKED 2 |
| 83 | u32 audit_enabled; |
| 84 | u32 audit_ever_enabled; |
| 85 | |
| 86 | EXPORT_SYMBOL_GPL(audit_enabled); |
| 87 | |
| 88 | /* Default state when kernel boots without any parameters. */ |
| 89 | static u32 audit_default; |
| 90 | |
| 91 | /* If auditing cannot proceed, audit_failure selects what happens. */ |
| 92 | static u32 audit_failure = AUDIT_FAIL_PRINTK; |
| 93 | |
| 94 | /* |
| 95 | * If audit records are to be written to the netlink socket, audit_pid |
| 96 | * contains the pid of the auditd process and audit_nlk_portid contains |
| 97 | * the portid to use to send netlink messages to that process. |
| 98 | */ |
| 99 | int audit_pid; |
| 100 | static __u32 audit_nlk_portid; |
| 101 | |
| 102 | /* If audit_rate_limit is non-zero, limit the rate of sending audit records |
| 103 | * to that number per second. This prevents DoS attacks, but results in |
| 104 | * audit records being dropped. */ |
| 105 | static u32 audit_rate_limit; |
| 106 | |
| 107 | /* Number of outstanding audit_buffers allowed. |
| 108 | * When set to zero, this means unlimited. */ |
| 109 | static u32 audit_backlog_limit = 64; |
| 110 | #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ) |
| 111 | static u32 audit_backlog_wait_time_master = AUDIT_BACKLOG_WAIT_TIME; |
| 112 | static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; |
| 113 | static u32 audit_backlog_wait_overflow = 0; |
| 114 | |
| 115 | /* The identity of the user shutting down the audit system. */ |
| 116 | kuid_t audit_sig_uid = INVALID_UID; |
| 117 | pid_t audit_sig_pid = -1; |
| 118 | u32 audit_sig_sid = 0; |
| 119 | |
| 120 | /* Records can be lost in several ways: |
| 121 | 0) [suppressed in audit_alloc] |
| 122 | 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] |
| 123 | 2) out of memory in audit_log_move [alloc_skb] |
| 124 | 3) suppressed due to audit_rate_limit |
| 125 | 4) suppressed due to audit_backlog_limit |
| 126 | */ |
| 127 | static atomic_t audit_lost = ATOMIC_INIT(0); |
| 128 | |
| 129 | /* The netlink socket. */ |
| 130 | static struct sock *audit_sock; |
| 131 | static int audit_net_id; |
| 132 | |
| 133 | /* Hash for inode-based rules */ |
| 134 | struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; |
| 135 | |
| 136 | /* The audit_freelist is a list of pre-allocated audit buffers (if more |
| 137 | * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of |
| 138 | * being placed on the freelist). */ |
| 139 | static DEFINE_SPINLOCK(audit_freelist_lock); |
| 140 | static int audit_freelist_count; |
| 141 | static LIST_HEAD(audit_freelist); |
| 142 | |
| 143 | static struct sk_buff_head audit_skb_queue; |
| 144 | /* queue of skbs to send to auditd when/if it comes back */ |
| 145 | static struct sk_buff_head audit_skb_hold_queue; |
| 146 | static struct task_struct *kauditd_task; |
| 147 | static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); |
| 148 | static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); |
| 149 | |
| 150 | static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION, |
| 151 | .mask = -1, |
| 152 | .features = 0, |
| 153 | .lock = 0,}; |
| 154 | |
| 155 | static char *audit_feature_names[2] = { |
| 156 | "only_unset_loginuid", |
| 157 | "loginuid_immutable", |
| 158 | }; |
| 159 | |
| 160 | |
| 161 | /* Serialize requests from userspace. */ |
| 162 | DEFINE_MUTEX(audit_cmd_mutex); |
| 163 | |
| 164 | /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting |
| 165 | * audit records. Since printk uses a 1024 byte buffer, this buffer |
| 166 | * should be at least that large. */ |
| 167 | #define AUDIT_BUFSIZ 1024 |
| 168 | |
| 169 | /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the |
| 170 | * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */ |
| 171 | #define AUDIT_MAXFREE (2*NR_CPUS) |
| 172 | |
| 173 | /* The audit_buffer is used when formatting an audit record. The caller |
| 174 | * locks briefly to get the record off the freelist or to allocate the |
| 175 | * buffer, and locks briefly to send the buffer to the netlink layer or |
| 176 | * to place it on a transmit queue. Multiple audit_buffers can be in |
| 177 | * use simultaneously. */ |
| 178 | struct audit_buffer { |
| 179 | struct list_head list; |
| 180 | struct sk_buff *skb; /* formatted skb ready to send */ |
| 181 | struct audit_context *ctx; /* NULL or associated context */ |
| 182 | gfp_t gfp_mask; |
| 183 | }; |
| 184 | |
| 185 | struct audit_reply { |
| 186 | __u32 portid; |
| 187 | struct net *net; |
| 188 | struct sk_buff *skb; |
| 189 | }; |
| 190 | |
| 191 | static void audit_set_portid(struct audit_buffer *ab, __u32 portid) |
| 192 | { |
| 193 | if (ab) { |
| 194 | struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); |
| 195 | nlh->nlmsg_pid = portid; |
| 196 | } |
| 197 | } |
| 198 | |
| 199 | void audit_panic(const char *message) |
| 200 | { |
| 201 | switch (audit_failure) { |
| 202 | case AUDIT_FAIL_SILENT: |
| 203 | break; |
| 204 | case AUDIT_FAIL_PRINTK: |
| 205 | if (printk_ratelimit()) |
| 206 | pr_err("%s\n", message); |
| 207 | break; |
| 208 | case AUDIT_FAIL_PANIC: |
| 209 | /* test audit_pid since printk is always losey, why bother? */ |
| 210 | if (audit_pid) |
| 211 | panic("audit: %s\n", message); |
| 212 | break; |
| 213 | } |
| 214 | } |
| 215 | |
| 216 | static inline int audit_rate_check(void) |
| 217 | { |
| 218 | static unsigned long last_check = 0; |
| 219 | static int messages = 0; |
| 220 | static DEFINE_SPINLOCK(lock); |
| 221 | unsigned long flags; |
| 222 | unsigned long now; |
| 223 | unsigned long elapsed; |
| 224 | int retval = 0; |
| 225 | |
| 226 | if (!audit_rate_limit) return 1; |
| 227 | |
| 228 | spin_lock_irqsave(&lock, flags); |
| 229 | if (++messages < audit_rate_limit) { |
| 230 | retval = 1; |
| 231 | } else { |
| 232 | now = jiffies; |
| 233 | elapsed = now - last_check; |
| 234 | if (elapsed > HZ) { |
| 235 | last_check = now; |
| 236 | messages = 0; |
| 237 | retval = 1; |
| 238 | } |
| 239 | } |
| 240 | spin_unlock_irqrestore(&lock, flags); |
| 241 | |
| 242 | return retval; |
| 243 | } |
| 244 | |
| 245 | /** |
| 246 | * audit_log_lost - conditionally log lost audit message event |
| 247 | * @message: the message stating reason for lost audit message |
| 248 | * |
| 249 | * Emit at least 1 message per second, even if audit_rate_check is |
| 250 | * throttling. |
| 251 | * Always increment the lost messages counter. |
| 252 | */ |
| 253 | void audit_log_lost(const char *message) |
| 254 | { |
| 255 | static unsigned long last_msg = 0; |
| 256 | static DEFINE_SPINLOCK(lock); |
| 257 | unsigned long flags; |
| 258 | unsigned long now; |
| 259 | int print; |
| 260 | |
| 261 | atomic_inc(&audit_lost); |
| 262 | |
| 263 | print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); |
| 264 | |
| 265 | if (!print) { |
| 266 | spin_lock_irqsave(&lock, flags); |
| 267 | now = jiffies; |
| 268 | if (now - last_msg > HZ) { |
| 269 | print = 1; |
| 270 | last_msg = now; |
| 271 | } |
| 272 | spin_unlock_irqrestore(&lock, flags); |
| 273 | } |
| 274 | |
| 275 | if (print) { |
| 276 | if (printk_ratelimit()) |
| 277 | pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n", |
| 278 | atomic_read(&audit_lost), |
| 279 | audit_rate_limit, |
| 280 | audit_backlog_limit); |
| 281 | audit_panic(message); |
| 282 | } |
| 283 | } |
| 284 | |
| 285 | static int audit_log_config_change(char *function_name, u32 new, u32 old, |
| 286 | int allow_changes) |
| 287 | { |
| 288 | struct audit_buffer *ab; |
| 289 | int rc = 0; |
| 290 | |
| 291 | ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); |
| 292 | if (unlikely(!ab)) |
| 293 | return rc; |
| 294 | audit_log_format(ab, "%s=%u old=%u", function_name, new, old); |
| 295 | audit_log_session_info(ab); |
| 296 | rc = audit_log_task_context(ab); |
| 297 | if (rc) |
| 298 | allow_changes = 0; /* Something weird, deny request */ |
| 299 | audit_log_format(ab, " res=%d", allow_changes); |
| 300 | audit_log_end(ab); |
| 301 | return rc; |
| 302 | } |
| 303 | |
| 304 | static int audit_do_config_change(char *function_name, u32 *to_change, u32 new) |
| 305 | { |
| 306 | int allow_changes, rc = 0; |
| 307 | u32 old = *to_change; |
| 308 | |
| 309 | /* check if we are locked */ |
| 310 | if (audit_enabled == AUDIT_LOCKED) |
| 311 | allow_changes = 0; |
| 312 | else |
| 313 | allow_changes = 1; |
| 314 | |
| 315 | if (audit_enabled != AUDIT_OFF) { |
| 316 | rc = audit_log_config_change(function_name, new, old, allow_changes); |
| 317 | if (rc) |
| 318 | allow_changes = 0; |
| 319 | } |
| 320 | |
| 321 | /* If we are allowed, make the change */ |
| 322 | if (allow_changes == 1) |
| 323 | *to_change = new; |
| 324 | /* Not allowed, update reason */ |
| 325 | else if (rc == 0) |
| 326 | rc = -EPERM; |
| 327 | return rc; |
| 328 | } |
| 329 | |
| 330 | static int audit_set_rate_limit(u32 limit) |
| 331 | { |
| 332 | return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit); |
| 333 | } |
| 334 | |
| 335 | static int audit_set_backlog_limit(u32 limit) |
| 336 | { |
| 337 | return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit); |
| 338 | } |
| 339 | |
| 340 | static int audit_set_backlog_wait_time(u32 timeout) |
| 341 | { |
| 342 | return audit_do_config_change("audit_backlog_wait_time", |
| 343 | &audit_backlog_wait_time_master, timeout); |
| 344 | } |
| 345 | |
| 346 | static int audit_set_enabled(u32 state) |
| 347 | { |
| 348 | int rc; |
| 349 | if (state > AUDIT_LOCKED) |
| 350 | return -EINVAL; |
| 351 | |
| 352 | rc = audit_do_config_change("audit_enabled", &audit_enabled, state); |
| 353 | if (!rc) |
| 354 | audit_ever_enabled |= !!state; |
| 355 | |
| 356 | return rc; |
| 357 | } |
| 358 | |
| 359 | static int audit_set_failure(u32 state) |
| 360 | { |
| 361 | if (state != AUDIT_FAIL_SILENT |
| 362 | && state != AUDIT_FAIL_PRINTK |
| 363 | && state != AUDIT_FAIL_PANIC) |
| 364 | return -EINVAL; |
| 365 | |
| 366 | return audit_do_config_change("audit_failure", &audit_failure, state); |
| 367 | } |
| 368 | |
| 369 | /* |
| 370 | * Queue skbs to be sent to auditd when/if it comes back. These skbs should |
| 371 | * already have been sent via prink/syslog and so if these messages are dropped |
| 372 | * it is not a huge concern since we already passed the audit_log_lost() |
| 373 | * notification and stuff. This is just nice to get audit messages during |
| 374 | * boot before auditd is running or messages generated while auditd is stopped. |
| 375 | * This only holds messages is audit_default is set, aka booting with audit=1 |
| 376 | * or building your kernel that way. |
| 377 | */ |
| 378 | static void audit_hold_skb(struct sk_buff *skb) |
| 379 | { |
| 380 | if (audit_default && |
| 381 | (!audit_backlog_limit || |
| 382 | skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit)) |
| 383 | skb_queue_tail(&audit_skb_hold_queue, skb); |
| 384 | else |
| 385 | kfree_skb(skb); |
| 386 | } |
| 387 | |
| 388 | /* |
| 389 | * For one reason or another this nlh isn't getting delivered to the userspace |
| 390 | * audit daemon, just send it to printk. |
| 391 | */ |
| 392 | static void audit_printk_skb(struct sk_buff *skb) |
| 393 | { |
| 394 | struct nlmsghdr *nlh = nlmsg_hdr(skb); |
| 395 | char *data = nlmsg_data(nlh); |
| 396 | |
| 397 | if (nlh->nlmsg_type != AUDIT_EOE) { |
| 398 | if (printk_ratelimit()) |
| 399 | pr_notice("type=%d %s\n", nlh->nlmsg_type, data); |
| 400 | else |
| 401 | audit_log_lost("printk limit exceeded"); |
| 402 | } |
| 403 | |
| 404 | audit_hold_skb(skb); |
| 405 | } |
| 406 | |
| 407 | static void kauditd_send_skb(struct sk_buff *skb) |
| 408 | { |
| 409 | int err; |
| 410 | int attempts = 0; |
| 411 | #define AUDITD_RETRIES 5 |
| 412 | |
| 413 | restart: |
| 414 | /* take a reference in case we can't send it and we want to hold it */ |
| 415 | skb_get(skb); |
| 416 | err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0); |
| 417 | if (err < 0) { |
| 418 | pr_err("netlink_unicast sending to audit_pid=%d returned error: %d\n", |
| 419 | audit_pid, err); |
| 420 | if (audit_pid) { |
| 421 | if (err == -ECONNREFUSED || err == -EPERM |
| 422 | || ++attempts >= AUDITD_RETRIES) { |
| 423 | char s[32]; |
| 424 | |
| 425 | snprintf(s, sizeof(s), "audit_pid=%d reset", audit_pid); |
| 426 | audit_log_lost(s); |
| 427 | audit_pid = 0; |
| 428 | audit_sock = NULL; |
| 429 | } else { |
| 430 | pr_warn("re-scheduling(#%d) write to audit_pid=%d\n", |
| 431 | attempts, audit_pid); |
| 432 | set_current_state(TASK_INTERRUPTIBLE); |
| 433 | schedule(); |
| 434 | __set_current_state(TASK_RUNNING); |
| 435 | goto restart; |
| 436 | } |
| 437 | } |
| 438 | /* we might get lucky and get this in the next auditd */ |
| 439 | audit_hold_skb(skb); |
| 440 | } else |
| 441 | /* drop the extra reference if sent ok */ |
| 442 | consume_skb(skb); |
| 443 | } |
| 444 | |
| 445 | /* |
| 446 | * kauditd_send_multicast_skb - send the skb to multicast userspace listeners |
| 447 | * |
| 448 | * This function doesn't consume an skb as might be expected since it has to |
| 449 | * copy it anyways. |
| 450 | */ |
| 451 | static void kauditd_send_multicast_skb(struct sk_buff *skb, gfp_t gfp_mask) |
| 452 | { |
| 453 | struct sk_buff *copy; |
| 454 | struct audit_net *aunet = net_generic(&init_net, audit_net_id); |
| 455 | struct sock *sock = aunet->nlsk; |
| 456 | |
| 457 | if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG)) |
| 458 | return; |
| 459 | |
| 460 | /* |
| 461 | * The seemingly wasteful skb_copy() rather than bumping the refcount |
| 462 | * using skb_get() is necessary because non-standard mods are made to |
| 463 | * the skb by the original kaudit unicast socket send routine. The |
| 464 | * existing auditd daemon assumes this breakage. Fixing this would |
| 465 | * require co-ordinating a change in the established protocol between |
| 466 | * the kaudit kernel subsystem and the auditd userspace code. There is |
| 467 | * no reason for new multicast clients to continue with this |
| 468 | * non-compliance. |
| 469 | */ |
| 470 | copy = skb_copy(skb, gfp_mask); |
| 471 | if (!copy) |
| 472 | return; |
| 473 | |
| 474 | nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, gfp_mask); |
| 475 | } |
| 476 | |
| 477 | /* |
| 478 | * flush_hold_queue - empty the hold queue if auditd appears |
| 479 | * |
| 480 | * If auditd just started, drain the queue of messages already |
| 481 | * sent to syslog/printk. Remember loss here is ok. We already |
| 482 | * called audit_log_lost() if it didn't go out normally. so the |
| 483 | * race between the skb_dequeue and the next check for audit_pid |
| 484 | * doesn't matter. |
| 485 | * |
| 486 | * If you ever find kauditd to be too slow we can get a perf win |
| 487 | * by doing our own locking and keeping better track if there |
| 488 | * are messages in this queue. I don't see the need now, but |
| 489 | * in 5 years when I want to play with this again I'll see this |
| 490 | * note and still have no friggin idea what i'm thinking today. |
| 491 | */ |
| 492 | static void flush_hold_queue(void) |
| 493 | { |
| 494 | struct sk_buff *skb; |
| 495 | |
| 496 | if (!audit_default || !audit_pid) |
| 497 | return; |
| 498 | |
| 499 | skb = skb_dequeue(&audit_skb_hold_queue); |
| 500 | if (likely(!skb)) |
| 501 | return; |
| 502 | |
| 503 | while (skb && audit_pid) { |
| 504 | kauditd_send_skb(skb); |
| 505 | skb = skb_dequeue(&audit_skb_hold_queue); |
| 506 | } |
| 507 | |
| 508 | /* |
| 509 | * if auditd just disappeared but we |
| 510 | * dequeued an skb we need to drop ref |
| 511 | */ |
| 512 | if (skb) |
| 513 | consume_skb(skb); |
| 514 | } |
| 515 | |
| 516 | static int kauditd_thread(void *dummy) |
| 517 | { |
| 518 | set_freezable(); |
| 519 | while (!kthread_should_stop()) { |
| 520 | struct sk_buff *skb; |
| 521 | |
| 522 | flush_hold_queue(); |
| 523 | |
| 524 | skb = skb_dequeue(&audit_skb_queue); |
| 525 | |
| 526 | if (skb) { |
| 527 | if (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit) |
| 528 | wake_up(&audit_backlog_wait); |
| 529 | if (audit_pid) |
| 530 | kauditd_send_skb(skb); |
| 531 | else |
| 532 | audit_printk_skb(skb); |
| 533 | continue; |
| 534 | } |
| 535 | |
| 536 | wait_event_freezable(kauditd_wait, skb_queue_len(&audit_skb_queue)); |
| 537 | } |
| 538 | return 0; |
| 539 | } |
| 540 | |
| 541 | int audit_send_list(void *_dest) |
| 542 | { |
| 543 | struct audit_netlink_list *dest = _dest; |
| 544 | struct sk_buff *skb; |
| 545 | struct net *net = dest->net; |
| 546 | struct audit_net *aunet = net_generic(net, audit_net_id); |
| 547 | |
| 548 | /* wait for parent to finish and send an ACK */ |
| 549 | mutex_lock(&audit_cmd_mutex); |
| 550 | mutex_unlock(&audit_cmd_mutex); |
| 551 | |
| 552 | while ((skb = __skb_dequeue(&dest->q)) != NULL) |
| 553 | netlink_unicast(aunet->nlsk, skb, dest->portid, 0); |
| 554 | |
| 555 | put_net(net); |
| 556 | kfree(dest); |
| 557 | |
| 558 | return 0; |
| 559 | } |
| 560 | |
| 561 | struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done, |
| 562 | int multi, const void *payload, int size) |
| 563 | { |
| 564 | struct sk_buff *skb; |
| 565 | struct nlmsghdr *nlh; |
| 566 | void *data; |
| 567 | int flags = multi ? NLM_F_MULTI : 0; |
| 568 | int t = done ? NLMSG_DONE : type; |
| 569 | |
| 570 | skb = nlmsg_new(size, GFP_KERNEL); |
| 571 | if (!skb) |
| 572 | return NULL; |
| 573 | |
| 574 | nlh = nlmsg_put(skb, portid, seq, t, size, flags); |
| 575 | if (!nlh) |
| 576 | goto out_kfree_skb; |
| 577 | data = nlmsg_data(nlh); |
| 578 | memcpy(data, payload, size); |
| 579 | return skb; |
| 580 | |
| 581 | out_kfree_skb: |
| 582 | kfree_skb(skb); |
| 583 | return NULL; |
| 584 | } |
| 585 | |
| 586 | static int audit_send_reply_thread(void *arg) |
| 587 | { |
| 588 | struct audit_reply *reply = (struct audit_reply *)arg; |
| 589 | struct net *net = reply->net; |
| 590 | struct audit_net *aunet = net_generic(net, audit_net_id); |
| 591 | |
| 592 | mutex_lock(&audit_cmd_mutex); |
| 593 | mutex_unlock(&audit_cmd_mutex); |
| 594 | |
| 595 | /* Ignore failure. It'll only happen if the sender goes away, |
| 596 | because our timeout is set to infinite. */ |
| 597 | netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0); |
| 598 | put_net(net); |
| 599 | kfree(reply); |
| 600 | return 0; |
| 601 | } |
| 602 | /** |
| 603 | * audit_send_reply - send an audit reply message via netlink |
| 604 | * @request_skb: skb of request we are replying to (used to target the reply) |
| 605 | * @seq: sequence number |
| 606 | * @type: audit message type |
| 607 | * @done: done (last) flag |
| 608 | * @multi: multi-part message flag |
| 609 | * @payload: payload data |
| 610 | * @size: payload size |
| 611 | * |
| 612 | * Allocates an skb, builds the netlink message, and sends it to the port id. |
| 613 | * No failure notifications. |
| 614 | */ |
| 615 | static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done, |
| 616 | int multi, const void *payload, int size) |
| 617 | { |
| 618 | u32 portid = NETLINK_CB(request_skb).portid; |
| 619 | struct net *net = sock_net(NETLINK_CB(request_skb).sk); |
| 620 | struct sk_buff *skb; |
| 621 | struct task_struct *tsk; |
| 622 | struct audit_reply *reply = kmalloc(sizeof(struct audit_reply), |
| 623 | GFP_KERNEL); |
| 624 | |
| 625 | if (!reply) |
| 626 | return; |
| 627 | |
| 628 | skb = audit_make_reply(portid, seq, type, done, multi, payload, size); |
| 629 | if (!skb) |
| 630 | goto out; |
| 631 | |
| 632 | reply->net = get_net(net); |
| 633 | reply->portid = portid; |
| 634 | reply->skb = skb; |
| 635 | |
| 636 | tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); |
| 637 | if (!IS_ERR(tsk)) |
| 638 | return; |
| 639 | kfree_skb(skb); |
| 640 | out: |
| 641 | kfree(reply); |
| 642 | } |
| 643 | |
| 644 | /* |
| 645 | * Check for appropriate CAP_AUDIT_ capabilities on incoming audit |
| 646 | * control messages. |
| 647 | */ |
| 648 | static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) |
| 649 | { |
| 650 | int err = 0; |
| 651 | |
| 652 | /* Only support initial user namespace for now. */ |
| 653 | /* |
| 654 | * We return ECONNREFUSED because it tricks userspace into thinking |
| 655 | * that audit was not configured into the kernel. Lots of users |
| 656 | * configure their PAM stack (because that's what the distro does) |
| 657 | * to reject login if unable to send messages to audit. If we return |
| 658 | * ECONNREFUSED the PAM stack thinks the kernel does not have audit |
| 659 | * configured in and will let login proceed. If we return EPERM |
| 660 | * userspace will reject all logins. This should be removed when we |
| 661 | * support non init namespaces!! |
| 662 | */ |
| 663 | if (current_user_ns() != &init_user_ns) |
| 664 | return -ECONNREFUSED; |
| 665 | |
| 666 | switch (msg_type) { |
| 667 | case AUDIT_LIST: |
| 668 | case AUDIT_ADD: |
| 669 | case AUDIT_DEL: |
| 670 | return -EOPNOTSUPP; |
| 671 | case AUDIT_GET: |
| 672 | case AUDIT_SET: |
| 673 | case AUDIT_GET_FEATURE: |
| 674 | case AUDIT_SET_FEATURE: |
| 675 | case AUDIT_LIST_RULES: |
| 676 | case AUDIT_ADD_RULE: |
| 677 | case AUDIT_DEL_RULE: |
| 678 | case AUDIT_SIGNAL_INFO: |
| 679 | case AUDIT_TTY_GET: |
| 680 | case AUDIT_TTY_SET: |
| 681 | case AUDIT_TRIM: |
| 682 | case AUDIT_MAKE_EQUIV: |
| 683 | /* Only support auditd and auditctl in initial pid namespace |
| 684 | * for now. */ |
| 685 | if (task_active_pid_ns(current) != &init_pid_ns) |
| 686 | return -EPERM; |
| 687 | |
| 688 | if (!netlink_capable(skb, CAP_AUDIT_CONTROL)) |
| 689 | err = -EPERM; |
| 690 | break; |
| 691 | case AUDIT_USER: |
| 692 | case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: |
| 693 | case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: |
| 694 | if (!netlink_capable(skb, CAP_AUDIT_WRITE)) |
| 695 | err = -EPERM; |
| 696 | break; |
| 697 | default: /* bad msg */ |
| 698 | err = -EINVAL; |
| 699 | } |
| 700 | |
| 701 | return err; |
| 702 | } |
| 703 | |
| 704 | static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type) |
| 705 | { |
| 706 | uid_t uid = from_kuid(&init_user_ns, current_uid()); |
| 707 | pid_t pid = task_tgid_nr(current); |
| 708 | |
| 709 | if (!audit_enabled && msg_type != AUDIT_USER_AVC) { |
| 710 | *ab = NULL; |
| 711 | return; |
| 712 | } |
| 713 | |
| 714 | *ab = audit_log_start(NULL, GFP_KERNEL, msg_type); |
| 715 | if (unlikely(!*ab)) |
| 716 | return; |
| 717 | audit_log_format(*ab, "pid=%d uid=%u", pid, uid); |
| 718 | audit_log_session_info(*ab); |
| 719 | audit_log_task_context(*ab); |
| 720 | } |
| 721 | |
| 722 | int is_audit_feature_set(int i) |
| 723 | { |
| 724 | return af.features & AUDIT_FEATURE_TO_MASK(i); |
| 725 | } |
| 726 | |
| 727 | |
| 728 | static int audit_get_feature(struct sk_buff *skb) |
| 729 | { |
| 730 | u32 seq; |
| 731 | |
| 732 | seq = nlmsg_hdr(skb)->nlmsg_seq; |
| 733 | |
| 734 | audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af)); |
| 735 | |
| 736 | return 0; |
| 737 | } |
| 738 | |
| 739 | static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature, |
| 740 | u32 old_lock, u32 new_lock, int res) |
| 741 | { |
| 742 | struct audit_buffer *ab; |
| 743 | |
| 744 | if (audit_enabled == AUDIT_OFF) |
| 745 | return; |
| 746 | |
| 747 | ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE); |
| 748 | audit_log_task_info(ab, current); |
| 749 | audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d", |
| 750 | audit_feature_names[which], !!old_feature, !!new_feature, |
| 751 | !!old_lock, !!new_lock, res); |
| 752 | audit_log_end(ab); |
| 753 | } |
| 754 | |
| 755 | static int audit_set_feature(struct sk_buff *skb) |
| 756 | { |
| 757 | struct audit_features *uaf; |
| 758 | int i; |
| 759 | |
| 760 | BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names)); |
| 761 | uaf = nlmsg_data(nlmsg_hdr(skb)); |
| 762 | |
| 763 | /* if there is ever a version 2 we should handle that here */ |
| 764 | |
| 765 | for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { |
| 766 | u32 feature = AUDIT_FEATURE_TO_MASK(i); |
| 767 | u32 old_feature, new_feature, old_lock, new_lock; |
| 768 | |
| 769 | /* if we are not changing this feature, move along */ |
| 770 | if (!(feature & uaf->mask)) |
| 771 | continue; |
| 772 | |
| 773 | old_feature = af.features & feature; |
| 774 | new_feature = uaf->features & feature; |
| 775 | new_lock = (uaf->lock | af.lock) & feature; |
| 776 | old_lock = af.lock & feature; |
| 777 | |
| 778 | /* are we changing a locked feature? */ |
| 779 | if (old_lock && (new_feature != old_feature)) { |
| 780 | audit_log_feature_change(i, old_feature, new_feature, |
| 781 | old_lock, new_lock, 0); |
| 782 | return -EPERM; |
| 783 | } |
| 784 | } |
| 785 | /* nothing invalid, do the changes */ |
| 786 | for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { |
| 787 | u32 feature = AUDIT_FEATURE_TO_MASK(i); |
| 788 | u32 old_feature, new_feature, old_lock, new_lock; |
| 789 | |
| 790 | /* if we are not changing this feature, move along */ |
| 791 | if (!(feature & uaf->mask)) |
| 792 | continue; |
| 793 | |
| 794 | old_feature = af.features & feature; |
| 795 | new_feature = uaf->features & feature; |
| 796 | old_lock = af.lock & feature; |
| 797 | new_lock = (uaf->lock | af.lock) & feature; |
| 798 | |
| 799 | if (new_feature != old_feature) |
| 800 | audit_log_feature_change(i, old_feature, new_feature, |
| 801 | old_lock, new_lock, 1); |
| 802 | |
| 803 | if (new_feature) |
| 804 | af.features |= feature; |
| 805 | else |
| 806 | af.features &= ~feature; |
| 807 | af.lock |= new_lock; |
| 808 | } |
| 809 | |
| 810 | return 0; |
| 811 | } |
| 812 | |
| 813 | static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) |
| 814 | { |
| 815 | u32 seq; |
| 816 | void *data; |
| 817 | int err; |
| 818 | struct audit_buffer *ab; |
| 819 | u16 msg_type = nlh->nlmsg_type; |
| 820 | struct audit_sig_info *sig_data; |
| 821 | char *ctx = NULL; |
| 822 | u32 len; |
| 823 | |
| 824 | err = audit_netlink_ok(skb, msg_type); |
| 825 | if (err) |
| 826 | return err; |
| 827 | |
| 828 | /* As soon as there's any sign of userspace auditd, |
| 829 | * start kauditd to talk to it */ |
| 830 | if (!kauditd_task) { |
| 831 | kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); |
| 832 | if (IS_ERR(kauditd_task)) { |
| 833 | err = PTR_ERR(kauditd_task); |
| 834 | kauditd_task = NULL; |
| 835 | return err; |
| 836 | } |
| 837 | } |
| 838 | seq = nlh->nlmsg_seq; |
| 839 | data = nlmsg_data(nlh); |
| 840 | |
| 841 | switch (msg_type) { |
| 842 | case AUDIT_GET: { |
| 843 | struct audit_status s; |
| 844 | memset(&s, 0, sizeof(s)); |
| 845 | s.enabled = audit_enabled; |
| 846 | s.failure = audit_failure; |
| 847 | s.pid = audit_pid; |
| 848 | s.rate_limit = audit_rate_limit; |
| 849 | s.backlog_limit = audit_backlog_limit; |
| 850 | s.lost = atomic_read(&audit_lost); |
| 851 | s.backlog = skb_queue_len(&audit_skb_queue); |
| 852 | s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL; |
| 853 | s.backlog_wait_time = audit_backlog_wait_time_master; |
| 854 | audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s)); |
| 855 | break; |
| 856 | } |
| 857 | case AUDIT_SET: { |
| 858 | struct audit_status s; |
| 859 | memset(&s, 0, sizeof(s)); |
| 860 | /* guard against past and future API changes */ |
| 861 | memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); |
| 862 | if (s.mask & AUDIT_STATUS_ENABLED) { |
| 863 | err = audit_set_enabled(s.enabled); |
| 864 | if (err < 0) |
| 865 | return err; |
| 866 | } |
| 867 | if (s.mask & AUDIT_STATUS_FAILURE) { |
| 868 | err = audit_set_failure(s.failure); |
| 869 | if (err < 0) |
| 870 | return err; |
| 871 | } |
| 872 | if (s.mask & AUDIT_STATUS_PID) { |
| 873 | int new_pid = s.pid; |
| 874 | |
| 875 | if ((!new_pid) && (task_tgid_vnr(current) != audit_pid)) |
| 876 | return -EACCES; |
| 877 | if (audit_enabled != AUDIT_OFF) |
| 878 | audit_log_config_change("audit_pid", new_pid, audit_pid, 1); |
| 879 | audit_pid = new_pid; |
| 880 | audit_nlk_portid = NETLINK_CB(skb).portid; |
| 881 | audit_sock = skb->sk; |
| 882 | } |
| 883 | if (s.mask & AUDIT_STATUS_RATE_LIMIT) { |
| 884 | err = audit_set_rate_limit(s.rate_limit); |
| 885 | if (err < 0) |
| 886 | return err; |
| 887 | } |
| 888 | if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) { |
| 889 | err = audit_set_backlog_limit(s.backlog_limit); |
| 890 | if (err < 0) |
| 891 | return err; |
| 892 | } |
| 893 | if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) { |
| 894 | if (sizeof(s) > (size_t)nlh->nlmsg_len) |
| 895 | return -EINVAL; |
| 896 | if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME) |
| 897 | return -EINVAL; |
| 898 | err = audit_set_backlog_wait_time(s.backlog_wait_time); |
| 899 | if (err < 0) |
| 900 | return err; |
| 901 | } |
| 902 | break; |
| 903 | } |
| 904 | case AUDIT_GET_FEATURE: |
| 905 | err = audit_get_feature(skb); |
| 906 | if (err) |
| 907 | return err; |
| 908 | break; |
| 909 | case AUDIT_SET_FEATURE: |
| 910 | err = audit_set_feature(skb); |
| 911 | if (err) |
| 912 | return err; |
| 913 | break; |
| 914 | case AUDIT_USER: |
| 915 | case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: |
| 916 | case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: |
| 917 | if (!audit_enabled && msg_type != AUDIT_USER_AVC) |
| 918 | return 0; |
| 919 | |
| 920 | err = audit_filter_user(msg_type); |
| 921 | if (err == 1) { /* match or error */ |
| 922 | err = 0; |
| 923 | if (msg_type == AUDIT_USER_TTY) { |
| 924 | err = tty_audit_push_current(); |
| 925 | if (err) |
| 926 | break; |
| 927 | } |
| 928 | mutex_unlock(&audit_cmd_mutex); |
| 929 | audit_log_common_recv_msg(&ab, msg_type); |
| 930 | if (msg_type != AUDIT_USER_TTY) |
| 931 | audit_log_format(ab, " msg='%.*s'", |
| 932 | AUDIT_MESSAGE_TEXT_MAX, |
| 933 | (char *)data); |
| 934 | else { |
| 935 | int size; |
| 936 | |
| 937 | audit_log_format(ab, " data="); |
| 938 | size = nlmsg_len(nlh); |
| 939 | if (size > 0 && |
| 940 | ((unsigned char *)data)[size - 1] == '\0') |
| 941 | size--; |
| 942 | audit_log_n_untrustedstring(ab, data, size); |
| 943 | } |
| 944 | audit_set_portid(ab, NETLINK_CB(skb).portid); |
| 945 | audit_log_end(ab); |
| 946 | mutex_lock(&audit_cmd_mutex); |
| 947 | } |
| 948 | break; |
| 949 | case AUDIT_ADD_RULE: |
| 950 | case AUDIT_DEL_RULE: |
| 951 | if (nlmsg_len(nlh) < sizeof(struct audit_rule_data)) |
| 952 | return -EINVAL; |
| 953 | if (audit_enabled == AUDIT_LOCKED) { |
| 954 | audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); |
| 955 | audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled); |
| 956 | audit_log_end(ab); |
| 957 | return -EPERM; |
| 958 | } |
| 959 | err = audit_rule_change(msg_type, NETLINK_CB(skb).portid, |
| 960 | seq, data, nlmsg_len(nlh)); |
| 961 | break; |
| 962 | case AUDIT_LIST_RULES: |
| 963 | err = audit_list_rules_send(skb, seq); |
| 964 | break; |
| 965 | case AUDIT_TRIM: |
| 966 | audit_trim_trees(); |
| 967 | audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); |
| 968 | audit_log_format(ab, " op=trim res=1"); |
| 969 | audit_log_end(ab); |
| 970 | break; |
| 971 | case AUDIT_MAKE_EQUIV: { |
| 972 | void *bufp = data; |
| 973 | u32 sizes[2]; |
| 974 | size_t msglen = nlmsg_len(nlh); |
| 975 | char *old, *new; |
| 976 | |
| 977 | err = -EINVAL; |
| 978 | if (msglen < 2 * sizeof(u32)) |
| 979 | break; |
| 980 | memcpy(sizes, bufp, 2 * sizeof(u32)); |
| 981 | bufp += 2 * sizeof(u32); |
| 982 | msglen -= 2 * sizeof(u32); |
| 983 | old = audit_unpack_string(&bufp, &msglen, sizes[0]); |
| 984 | if (IS_ERR(old)) { |
| 985 | err = PTR_ERR(old); |
| 986 | break; |
| 987 | } |
| 988 | new = audit_unpack_string(&bufp, &msglen, sizes[1]); |
| 989 | if (IS_ERR(new)) { |
| 990 | err = PTR_ERR(new); |
| 991 | kfree(old); |
| 992 | break; |
| 993 | } |
| 994 | /* OK, here comes... */ |
| 995 | err = audit_tag_tree(old, new); |
| 996 | |
| 997 | audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); |
| 998 | |
| 999 | audit_log_format(ab, " op=make_equiv old="); |
| 1000 | audit_log_untrustedstring(ab, old); |
| 1001 | audit_log_format(ab, " new="); |
| 1002 | audit_log_untrustedstring(ab, new); |
| 1003 | audit_log_format(ab, " res=%d", !err); |
| 1004 | audit_log_end(ab); |
| 1005 | kfree(old); |
| 1006 | kfree(new); |
| 1007 | break; |
| 1008 | } |
| 1009 | case AUDIT_SIGNAL_INFO: |
| 1010 | len = 0; |
| 1011 | if (audit_sig_sid) { |
| 1012 | err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); |
| 1013 | if (err) |
| 1014 | return err; |
| 1015 | } |
| 1016 | sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); |
| 1017 | if (!sig_data) { |
| 1018 | if (audit_sig_sid) |
| 1019 | security_release_secctx(ctx, len); |
| 1020 | return -ENOMEM; |
| 1021 | } |
| 1022 | sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid); |
| 1023 | sig_data->pid = audit_sig_pid; |
| 1024 | if (audit_sig_sid) { |
| 1025 | memcpy(sig_data->ctx, ctx, len); |
| 1026 | security_release_secctx(ctx, len); |
| 1027 | } |
| 1028 | audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0, |
| 1029 | sig_data, sizeof(*sig_data) + len); |
| 1030 | kfree(sig_data); |
| 1031 | break; |
| 1032 | case AUDIT_TTY_GET: { |
| 1033 | struct audit_tty_status s; |
| 1034 | struct task_struct *tsk = current; |
| 1035 | |
| 1036 | spin_lock(&tsk->sighand->siglock); |
| 1037 | s.enabled = tsk->signal->audit_tty; |
| 1038 | s.log_passwd = tsk->signal->audit_tty_log_passwd; |
| 1039 | spin_unlock(&tsk->sighand->siglock); |
| 1040 | |
| 1041 | audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s)); |
| 1042 | break; |
| 1043 | } |
| 1044 | case AUDIT_TTY_SET: { |
| 1045 | struct audit_tty_status s, old; |
| 1046 | struct task_struct *tsk = current; |
| 1047 | struct audit_buffer *ab; |
| 1048 | |
| 1049 | memset(&s, 0, sizeof(s)); |
| 1050 | /* guard against past and future API changes */ |
| 1051 | memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh))); |
| 1052 | /* check if new data is valid */ |
| 1053 | if ((s.enabled != 0 && s.enabled != 1) || |
| 1054 | (s.log_passwd != 0 && s.log_passwd != 1)) |
| 1055 | err = -EINVAL; |
| 1056 | |
| 1057 | spin_lock(&tsk->sighand->siglock); |
| 1058 | old.enabled = tsk->signal->audit_tty; |
| 1059 | old.log_passwd = tsk->signal->audit_tty_log_passwd; |
| 1060 | if (!err) { |
| 1061 | tsk->signal->audit_tty = s.enabled; |
| 1062 | tsk->signal->audit_tty_log_passwd = s.log_passwd; |
| 1063 | } |
| 1064 | spin_unlock(&tsk->sighand->siglock); |
| 1065 | |
| 1066 | audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE); |
| 1067 | audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d" |
| 1068 | " old-log_passwd=%d new-log_passwd=%d res=%d", |
| 1069 | old.enabled, s.enabled, old.log_passwd, |
| 1070 | s.log_passwd, !err); |
| 1071 | audit_log_end(ab); |
| 1072 | break; |
| 1073 | } |
| 1074 | default: |
| 1075 | err = -EINVAL; |
| 1076 | break; |
| 1077 | } |
| 1078 | |
| 1079 | return err < 0 ? err : 0; |
| 1080 | } |
| 1081 | |
| 1082 | /* |
| 1083 | * Get message from skb. Each message is processed by audit_receive_msg. |
| 1084 | * Malformed skbs with wrong length are discarded silently. |
| 1085 | */ |
| 1086 | static void audit_receive_skb(struct sk_buff *skb) |
| 1087 | { |
| 1088 | struct nlmsghdr *nlh; |
| 1089 | /* |
| 1090 | * len MUST be signed for nlmsg_next to be able to dec it below 0 |
| 1091 | * if the nlmsg_len was not aligned |
| 1092 | */ |
| 1093 | int len; |
| 1094 | int err; |
| 1095 | |
| 1096 | nlh = nlmsg_hdr(skb); |
| 1097 | len = skb->len; |
| 1098 | |
| 1099 | while (nlmsg_ok(nlh, len)) { |
| 1100 | err = audit_receive_msg(skb, nlh); |
| 1101 | /* if err or if this message says it wants a response */ |
| 1102 | if (err || (nlh->nlmsg_flags & NLM_F_ACK)) |
| 1103 | netlink_ack(skb, nlh, err); |
| 1104 | |
| 1105 | nlh = nlmsg_next(nlh, &len); |
| 1106 | } |
| 1107 | } |
| 1108 | |
| 1109 | /* Receive messages from netlink socket. */ |
| 1110 | static void audit_receive(struct sk_buff *skb) |
| 1111 | { |
| 1112 | mutex_lock(&audit_cmd_mutex); |
| 1113 | audit_receive_skb(skb); |
| 1114 | mutex_unlock(&audit_cmd_mutex); |
| 1115 | } |
| 1116 | |
| 1117 | /* Run custom bind function on netlink socket group connect or bind requests. */ |
| 1118 | static int audit_bind(struct net *net, int group) |
| 1119 | { |
| 1120 | if (!capable(CAP_AUDIT_READ)) |
| 1121 | return -EPERM; |
| 1122 | |
| 1123 | return 0; |
| 1124 | } |
| 1125 | |
| 1126 | static int __net_init audit_net_init(struct net *net) |
| 1127 | { |
| 1128 | struct netlink_kernel_cfg cfg = { |
| 1129 | .input = audit_receive, |
| 1130 | .bind = audit_bind, |
| 1131 | .flags = NL_CFG_F_NONROOT_RECV, |
| 1132 | .groups = AUDIT_NLGRP_MAX, |
| 1133 | }; |
| 1134 | |
| 1135 | struct audit_net *aunet = net_generic(net, audit_net_id); |
| 1136 | |
| 1137 | aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg); |
| 1138 | if (aunet->nlsk == NULL) { |
| 1139 | audit_panic("cannot initialize netlink socket in namespace"); |
| 1140 | return -ENOMEM; |
| 1141 | } |
| 1142 | aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT; |
| 1143 | return 0; |
| 1144 | } |
| 1145 | |
| 1146 | static void __net_exit audit_net_exit(struct net *net) |
| 1147 | { |
| 1148 | struct audit_net *aunet = net_generic(net, audit_net_id); |
| 1149 | struct sock *sock = aunet->nlsk; |
| 1150 | if (sock == audit_sock) { |
| 1151 | audit_pid = 0; |
| 1152 | audit_sock = NULL; |
| 1153 | } |
| 1154 | |
| 1155 | RCU_INIT_POINTER(aunet->nlsk, NULL); |
| 1156 | synchronize_net(); |
| 1157 | netlink_kernel_release(sock); |
| 1158 | } |
| 1159 | |
| 1160 | static struct pernet_operations audit_net_ops __net_initdata = { |
| 1161 | .init = audit_net_init, |
| 1162 | .exit = audit_net_exit, |
| 1163 | .id = &audit_net_id, |
| 1164 | .size = sizeof(struct audit_net), |
| 1165 | }; |
| 1166 | |
| 1167 | /* Initialize audit support at boot time. */ |
| 1168 | static int __init audit_init(void) |
| 1169 | { |
| 1170 | int i; |
| 1171 | |
| 1172 | if (audit_initialized == AUDIT_DISABLED) |
| 1173 | return 0; |
| 1174 | |
| 1175 | pr_info("initializing netlink subsys (%s)\n", |
| 1176 | audit_default ? "enabled" : "disabled"); |
| 1177 | register_pernet_subsys(&audit_net_ops); |
| 1178 | |
| 1179 | skb_queue_head_init(&audit_skb_queue); |
| 1180 | skb_queue_head_init(&audit_skb_hold_queue); |
| 1181 | audit_initialized = AUDIT_INITIALIZED; |
| 1182 | audit_enabled = audit_default; |
| 1183 | audit_ever_enabled |= !!audit_default; |
| 1184 | |
| 1185 | audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized"); |
| 1186 | |
| 1187 | for (i = 0; i < AUDIT_INODE_BUCKETS; i++) |
| 1188 | INIT_LIST_HEAD(&audit_inode_hash[i]); |
| 1189 | |
| 1190 | return 0; |
| 1191 | } |
| 1192 | __initcall(audit_init); |
| 1193 | |
| 1194 | /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */ |
| 1195 | static int __init audit_enable(char *str) |
| 1196 | { |
| 1197 | audit_default = !!simple_strtol(str, NULL, 0); |
| 1198 | if (!audit_default) |
| 1199 | audit_initialized = AUDIT_DISABLED; |
| 1200 | |
| 1201 | pr_info("%s\n", audit_default ? |
| 1202 | "enabled (after initialization)" : "disabled (until reboot)"); |
| 1203 | |
| 1204 | return 1; |
| 1205 | } |
| 1206 | __setup("audit=", audit_enable); |
| 1207 | |
| 1208 | /* Process kernel command-line parameter at boot time. |
| 1209 | * audit_backlog_limit=<n> */ |
| 1210 | static int __init audit_backlog_limit_set(char *str) |
| 1211 | { |
| 1212 | u32 audit_backlog_limit_arg; |
| 1213 | |
| 1214 | pr_info("audit_backlog_limit: "); |
| 1215 | if (kstrtouint(str, 0, &audit_backlog_limit_arg)) { |
| 1216 | pr_cont("using default of %u, unable to parse %s\n", |
| 1217 | audit_backlog_limit, str); |
| 1218 | return 1; |
| 1219 | } |
| 1220 | |
| 1221 | audit_backlog_limit = audit_backlog_limit_arg; |
| 1222 | pr_cont("%d\n", audit_backlog_limit); |
| 1223 | |
| 1224 | return 1; |
| 1225 | } |
| 1226 | __setup("audit_backlog_limit=", audit_backlog_limit_set); |
| 1227 | |
| 1228 | static void audit_buffer_free(struct audit_buffer *ab) |
| 1229 | { |
| 1230 | unsigned long flags; |
| 1231 | |
| 1232 | if (!ab) |
| 1233 | return; |
| 1234 | |
| 1235 | if (ab->skb) |
| 1236 | kfree_skb(ab->skb); |
| 1237 | |
| 1238 | spin_lock_irqsave(&audit_freelist_lock, flags); |
| 1239 | if (audit_freelist_count > AUDIT_MAXFREE) |
| 1240 | kfree(ab); |
| 1241 | else { |
| 1242 | audit_freelist_count++; |
| 1243 | list_add(&ab->list, &audit_freelist); |
| 1244 | } |
| 1245 | spin_unlock_irqrestore(&audit_freelist_lock, flags); |
| 1246 | } |
| 1247 | |
| 1248 | static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx, |
| 1249 | gfp_t gfp_mask, int type) |
| 1250 | { |
| 1251 | unsigned long flags; |
| 1252 | struct audit_buffer *ab = NULL; |
| 1253 | struct nlmsghdr *nlh; |
| 1254 | |
| 1255 | spin_lock_irqsave(&audit_freelist_lock, flags); |
| 1256 | if (!list_empty(&audit_freelist)) { |
| 1257 | ab = list_entry(audit_freelist.next, |
| 1258 | struct audit_buffer, list); |
| 1259 | list_del(&ab->list); |
| 1260 | --audit_freelist_count; |
| 1261 | } |
| 1262 | spin_unlock_irqrestore(&audit_freelist_lock, flags); |
| 1263 | |
| 1264 | if (!ab) { |
| 1265 | ab = kmalloc(sizeof(*ab), gfp_mask); |
| 1266 | if (!ab) |
| 1267 | goto err; |
| 1268 | } |
| 1269 | |
| 1270 | ab->ctx = ctx; |
| 1271 | ab->gfp_mask = gfp_mask; |
| 1272 | |
| 1273 | ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); |
| 1274 | if (!ab->skb) |
| 1275 | goto err; |
| 1276 | |
| 1277 | nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0); |
| 1278 | if (!nlh) |
| 1279 | goto out_kfree_skb; |
| 1280 | |
| 1281 | return ab; |
| 1282 | |
| 1283 | out_kfree_skb: |
| 1284 | kfree_skb(ab->skb); |
| 1285 | ab->skb = NULL; |
| 1286 | err: |
| 1287 | audit_buffer_free(ab); |
| 1288 | return NULL; |
| 1289 | } |
| 1290 | |
| 1291 | /** |
| 1292 | * audit_serial - compute a serial number for the audit record |
| 1293 | * |
| 1294 | * Compute a serial number for the audit record. Audit records are |
| 1295 | * written to user-space as soon as they are generated, so a complete |
| 1296 | * audit record may be written in several pieces. The timestamp of the |
| 1297 | * record and this serial number are used by the user-space tools to |
| 1298 | * determine which pieces belong to the same audit record. The |
| 1299 | * (timestamp,serial) tuple is unique for each syscall and is live from |
| 1300 | * syscall entry to syscall exit. |
| 1301 | * |
| 1302 | * NOTE: Another possibility is to store the formatted records off the |
| 1303 | * audit context (for those records that have a context), and emit them |
| 1304 | * all at syscall exit. However, this could delay the reporting of |
| 1305 | * significant errors until syscall exit (or never, if the system |
| 1306 | * halts). |
| 1307 | */ |
| 1308 | unsigned int audit_serial(void) |
| 1309 | { |
| 1310 | static atomic_t serial = ATOMIC_INIT(0); |
| 1311 | |
| 1312 | return atomic_add_return(1, &serial); |
| 1313 | } |
| 1314 | |
| 1315 | static inline void audit_get_stamp(struct audit_context *ctx, |
| 1316 | struct timespec *t, unsigned int *serial) |
| 1317 | { |
| 1318 | if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { |
| 1319 | *t = CURRENT_TIME; |
| 1320 | *serial = audit_serial(); |
| 1321 | } |
| 1322 | } |
| 1323 | |
| 1324 | /* |
| 1325 | * Wait for auditd to drain the queue a little |
| 1326 | */ |
| 1327 | static long wait_for_auditd(long sleep_time) |
| 1328 | { |
| 1329 | DECLARE_WAITQUEUE(wait, current); |
| 1330 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 1331 | add_wait_queue_exclusive(&audit_backlog_wait, &wait); |
| 1332 | |
| 1333 | if (audit_backlog_limit && |
| 1334 | skb_queue_len(&audit_skb_queue) > audit_backlog_limit) |
| 1335 | sleep_time = schedule_timeout(sleep_time); |
| 1336 | |
| 1337 | __set_current_state(TASK_RUNNING); |
| 1338 | remove_wait_queue(&audit_backlog_wait, &wait); |
| 1339 | |
| 1340 | return sleep_time; |
| 1341 | } |
| 1342 | |
| 1343 | /** |
| 1344 | * audit_log_start - obtain an audit buffer |
| 1345 | * @ctx: audit_context (may be NULL) |
| 1346 | * @gfp_mask: type of allocation |
| 1347 | * @type: audit message type |
| 1348 | * |
| 1349 | * Returns audit_buffer pointer on success or NULL on error. |
| 1350 | * |
| 1351 | * Obtain an audit buffer. This routine does locking to obtain the |
| 1352 | * audit buffer, but then no locking is required for calls to |
| 1353 | * audit_log_*format. If the task (ctx) is a task that is currently in a |
| 1354 | * syscall, then the syscall is marked as auditable and an audit record |
| 1355 | * will be written at syscall exit. If there is no associated task, then |
| 1356 | * task context (ctx) should be NULL. |
| 1357 | */ |
| 1358 | struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, |
| 1359 | int type) |
| 1360 | { |
| 1361 | struct audit_buffer *ab = NULL; |
| 1362 | struct timespec t; |
| 1363 | unsigned int uninitialized_var(serial); |
| 1364 | int reserve = 5; /* Allow atomic callers to go up to five |
| 1365 | entries over the normal backlog limit */ |
| 1366 | unsigned long timeout_start = jiffies; |
| 1367 | |
| 1368 | if (audit_initialized != AUDIT_INITIALIZED) |
| 1369 | return NULL; |
| 1370 | |
| 1371 | if (unlikely(audit_filter_type(type))) |
| 1372 | return NULL; |
| 1373 | |
| 1374 | if (gfp_mask & __GFP_DIRECT_RECLAIM) { |
| 1375 | if (audit_pid && audit_pid == current->pid) |
| 1376 | gfp_mask &= ~__GFP_DIRECT_RECLAIM; |
| 1377 | else |
| 1378 | reserve = 0; |
| 1379 | } |
| 1380 | |
| 1381 | while (audit_backlog_limit |
| 1382 | && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) { |
| 1383 | if (gfp_mask & __GFP_DIRECT_RECLAIM && audit_backlog_wait_time) { |
| 1384 | long sleep_time; |
| 1385 | |
| 1386 | sleep_time = timeout_start + audit_backlog_wait_time - jiffies; |
| 1387 | if (sleep_time > 0) { |
| 1388 | sleep_time = wait_for_auditd(sleep_time); |
| 1389 | if (sleep_time > 0) |
| 1390 | continue; |
| 1391 | } |
| 1392 | } |
| 1393 | if (audit_rate_check() && printk_ratelimit()) |
| 1394 | pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n", |
| 1395 | skb_queue_len(&audit_skb_queue), |
| 1396 | audit_backlog_limit); |
| 1397 | audit_log_lost("backlog limit exceeded"); |
| 1398 | audit_backlog_wait_time = audit_backlog_wait_overflow; |
| 1399 | wake_up(&audit_backlog_wait); |
| 1400 | return NULL; |
| 1401 | } |
| 1402 | |
| 1403 | if (!reserve) |
| 1404 | audit_backlog_wait_time = audit_backlog_wait_time_master; |
| 1405 | |
| 1406 | ab = audit_buffer_alloc(ctx, gfp_mask, type); |
| 1407 | if (!ab) { |
| 1408 | audit_log_lost("out of memory in audit_log_start"); |
| 1409 | return NULL; |
| 1410 | } |
| 1411 | |
| 1412 | audit_get_stamp(ab->ctx, &t, &serial); |
| 1413 | |
| 1414 | audit_log_format(ab, "audit(%lu.%03lu:%u): ", |
| 1415 | t.tv_sec, t.tv_nsec/1000000, serial); |
| 1416 | return ab; |
| 1417 | } |
| 1418 | |
| 1419 | /** |
| 1420 | * audit_expand - expand skb in the audit buffer |
| 1421 | * @ab: audit_buffer |
| 1422 | * @extra: space to add at tail of the skb |
| 1423 | * |
| 1424 | * Returns 0 (no space) on failed expansion, or available space if |
| 1425 | * successful. |
| 1426 | */ |
| 1427 | static inline int audit_expand(struct audit_buffer *ab, int extra) |
| 1428 | { |
| 1429 | struct sk_buff *skb = ab->skb; |
| 1430 | int oldtail = skb_tailroom(skb); |
| 1431 | int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); |
| 1432 | int newtail = skb_tailroom(skb); |
| 1433 | |
| 1434 | if (ret < 0) { |
| 1435 | audit_log_lost("out of memory in audit_expand"); |
| 1436 | return 0; |
| 1437 | } |
| 1438 | |
| 1439 | skb->truesize += newtail - oldtail; |
| 1440 | return newtail; |
| 1441 | } |
| 1442 | |
| 1443 | /* |
| 1444 | * Format an audit message into the audit buffer. If there isn't enough |
| 1445 | * room in the audit buffer, more room will be allocated and vsnprint |
| 1446 | * will be called a second time. Currently, we assume that a printk |
| 1447 | * can't format message larger than 1024 bytes, so we don't either. |
| 1448 | */ |
| 1449 | static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, |
| 1450 | va_list args) |
| 1451 | { |
| 1452 | int len, avail; |
| 1453 | struct sk_buff *skb; |
| 1454 | va_list args2; |
| 1455 | |
| 1456 | if (!ab) |
| 1457 | return; |
| 1458 | |
| 1459 | BUG_ON(!ab->skb); |
| 1460 | skb = ab->skb; |
| 1461 | avail = skb_tailroom(skb); |
| 1462 | if (avail == 0) { |
| 1463 | avail = audit_expand(ab, AUDIT_BUFSIZ); |
| 1464 | if (!avail) |
| 1465 | goto out; |
| 1466 | } |
| 1467 | va_copy(args2, args); |
| 1468 | len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); |
| 1469 | if (len >= avail) { |
| 1470 | /* The printk buffer is 1024 bytes long, so if we get |
| 1471 | * here and AUDIT_BUFSIZ is at least 1024, then we can |
| 1472 | * log everything that printk could have logged. */ |
| 1473 | avail = audit_expand(ab, |
| 1474 | max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); |
| 1475 | if (!avail) |
| 1476 | goto out_va_end; |
| 1477 | len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); |
| 1478 | } |
| 1479 | if (len > 0) |
| 1480 | skb_put(skb, len); |
| 1481 | out_va_end: |
| 1482 | va_end(args2); |
| 1483 | out: |
| 1484 | return; |
| 1485 | } |
| 1486 | |
| 1487 | /** |
| 1488 | * audit_log_format - format a message into the audit buffer. |
| 1489 | * @ab: audit_buffer |
| 1490 | * @fmt: format string |
| 1491 | * @...: optional parameters matching @fmt string |
| 1492 | * |
| 1493 | * All the work is done in audit_log_vformat. |
| 1494 | */ |
| 1495 | void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) |
| 1496 | { |
| 1497 | va_list args; |
| 1498 | |
| 1499 | if (!ab) |
| 1500 | return; |
| 1501 | va_start(args, fmt); |
| 1502 | audit_log_vformat(ab, fmt, args); |
| 1503 | va_end(args); |
| 1504 | } |
| 1505 | |
| 1506 | /** |
| 1507 | * audit_log_hex - convert a buffer to hex and append it to the audit skb |
| 1508 | * @ab: the audit_buffer |
| 1509 | * @buf: buffer to convert to hex |
| 1510 | * @len: length of @buf to be converted |
| 1511 | * |
| 1512 | * No return value; failure to expand is silently ignored. |
| 1513 | * |
| 1514 | * This function will take the passed buf and convert it into a string of |
| 1515 | * ascii hex digits. The new string is placed onto the skb. |
| 1516 | */ |
| 1517 | void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, |
| 1518 | size_t len) |
| 1519 | { |
| 1520 | int i, avail, new_len; |
| 1521 | unsigned char *ptr; |
| 1522 | struct sk_buff *skb; |
| 1523 | |
| 1524 | if (!ab) |
| 1525 | return; |
| 1526 | |
| 1527 | BUG_ON(!ab->skb); |
| 1528 | skb = ab->skb; |
| 1529 | avail = skb_tailroom(skb); |
| 1530 | new_len = len<<1; |
| 1531 | if (new_len >= avail) { |
| 1532 | /* Round the buffer request up to the next multiple */ |
| 1533 | new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); |
| 1534 | avail = audit_expand(ab, new_len); |
| 1535 | if (!avail) |
| 1536 | return; |
| 1537 | } |
| 1538 | |
| 1539 | ptr = skb_tail_pointer(skb); |
| 1540 | for (i = 0; i < len; i++) |
| 1541 | ptr = hex_byte_pack_upper(ptr, buf[i]); |
| 1542 | *ptr = 0; |
| 1543 | skb_put(skb, len << 1); /* new string is twice the old string */ |
| 1544 | } |
| 1545 | |
| 1546 | /* |
| 1547 | * Format a string of no more than slen characters into the audit buffer, |
| 1548 | * enclosed in quote marks. |
| 1549 | */ |
| 1550 | void audit_log_n_string(struct audit_buffer *ab, const char *string, |
| 1551 | size_t slen) |
| 1552 | { |
| 1553 | int avail, new_len; |
| 1554 | unsigned char *ptr; |
| 1555 | struct sk_buff *skb; |
| 1556 | |
| 1557 | if (!ab) |
| 1558 | return; |
| 1559 | |
| 1560 | BUG_ON(!ab->skb); |
| 1561 | skb = ab->skb; |
| 1562 | avail = skb_tailroom(skb); |
| 1563 | new_len = slen + 3; /* enclosing quotes + null terminator */ |
| 1564 | if (new_len > avail) { |
| 1565 | avail = audit_expand(ab, new_len); |
| 1566 | if (!avail) |
| 1567 | return; |
| 1568 | } |
| 1569 | ptr = skb_tail_pointer(skb); |
| 1570 | *ptr++ = '"'; |
| 1571 | memcpy(ptr, string, slen); |
| 1572 | ptr += slen; |
| 1573 | *ptr++ = '"'; |
| 1574 | *ptr = 0; |
| 1575 | skb_put(skb, slen + 2); /* don't include null terminator */ |
| 1576 | } |
| 1577 | |
| 1578 | /** |
| 1579 | * audit_string_contains_control - does a string need to be logged in hex |
| 1580 | * @string: string to be checked |
| 1581 | * @len: max length of the string to check |
| 1582 | */ |
| 1583 | bool audit_string_contains_control(const char *string, size_t len) |
| 1584 | { |
| 1585 | const unsigned char *p; |
| 1586 | for (p = string; p < (const unsigned char *)string + len; p++) { |
| 1587 | if (*p == '"' || *p < 0x21 || *p > 0x7e) |
| 1588 | return true; |
| 1589 | } |
| 1590 | return false; |
| 1591 | } |
| 1592 | |
| 1593 | /** |
| 1594 | * audit_log_n_untrustedstring - log a string that may contain random characters |
| 1595 | * @ab: audit_buffer |
| 1596 | * @len: length of string (not including trailing null) |
| 1597 | * @string: string to be logged |
| 1598 | * |
| 1599 | * This code will escape a string that is passed to it if the string |
| 1600 | * contains a control character, unprintable character, double quote mark, |
| 1601 | * or a space. Unescaped strings will start and end with a double quote mark. |
| 1602 | * Strings that are escaped are printed in hex (2 digits per char). |
| 1603 | * |
| 1604 | * The caller specifies the number of characters in the string to log, which may |
| 1605 | * or may not be the entire string. |
| 1606 | */ |
| 1607 | void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, |
| 1608 | size_t len) |
| 1609 | { |
| 1610 | if (audit_string_contains_control(string, len)) |
| 1611 | audit_log_n_hex(ab, string, len); |
| 1612 | else |
| 1613 | audit_log_n_string(ab, string, len); |
| 1614 | } |
| 1615 | |
| 1616 | /** |
| 1617 | * audit_log_untrustedstring - log a string that may contain random characters |
| 1618 | * @ab: audit_buffer |
| 1619 | * @string: string to be logged |
| 1620 | * |
| 1621 | * Same as audit_log_n_untrustedstring(), except that strlen is used to |
| 1622 | * determine string length. |
| 1623 | */ |
| 1624 | void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) |
| 1625 | { |
| 1626 | audit_log_n_untrustedstring(ab, string, strlen(string)); |
| 1627 | } |
| 1628 | |
| 1629 | /* This is a helper-function to print the escaped d_path */ |
| 1630 | void audit_log_d_path(struct audit_buffer *ab, const char *prefix, |
| 1631 | const struct path *path) |
| 1632 | { |
| 1633 | char *p, *pathname; |
| 1634 | |
| 1635 | if (prefix) |
| 1636 | audit_log_format(ab, "%s", prefix); |
| 1637 | |
| 1638 | /* We will allow 11 spaces for ' (deleted)' to be appended */ |
| 1639 | pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); |
| 1640 | if (!pathname) { |
| 1641 | audit_log_string(ab, "<no_memory>"); |
| 1642 | return; |
| 1643 | } |
| 1644 | p = d_path(path, pathname, PATH_MAX+11); |
| 1645 | if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ |
| 1646 | /* FIXME: can we save some information here? */ |
| 1647 | audit_log_string(ab, "<too_long>"); |
| 1648 | } else |
| 1649 | audit_log_untrustedstring(ab, p); |
| 1650 | kfree(pathname); |
| 1651 | } |
| 1652 | |
| 1653 | void audit_log_session_info(struct audit_buffer *ab) |
| 1654 | { |
| 1655 | unsigned int sessionid = audit_get_sessionid(current); |
| 1656 | uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current)); |
| 1657 | |
| 1658 | audit_log_format(ab, " auid=%u ses=%u", auid, sessionid); |
| 1659 | } |
| 1660 | |
| 1661 | void audit_log_key(struct audit_buffer *ab, char *key) |
| 1662 | { |
| 1663 | audit_log_format(ab, " key="); |
| 1664 | if (key) |
| 1665 | audit_log_untrustedstring(ab, key); |
| 1666 | else |
| 1667 | audit_log_format(ab, "(null)"); |
| 1668 | } |
| 1669 | |
| 1670 | void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap) |
| 1671 | { |
| 1672 | int i; |
| 1673 | |
| 1674 | audit_log_format(ab, " %s=", prefix); |
| 1675 | CAP_FOR_EACH_U32(i) { |
| 1676 | audit_log_format(ab, "%08x", |
| 1677 | cap->cap[CAP_LAST_U32 - i]); |
| 1678 | } |
| 1679 | } |
| 1680 | |
| 1681 | static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) |
| 1682 | { |
| 1683 | kernel_cap_t *perm = &name->fcap.permitted; |
| 1684 | kernel_cap_t *inh = &name->fcap.inheritable; |
| 1685 | int log = 0; |
| 1686 | |
| 1687 | if (!cap_isclear(*perm)) { |
| 1688 | audit_log_cap(ab, "cap_fp", perm); |
| 1689 | log = 1; |
| 1690 | } |
| 1691 | if (!cap_isclear(*inh)) { |
| 1692 | audit_log_cap(ab, "cap_fi", inh); |
| 1693 | log = 1; |
| 1694 | } |
| 1695 | |
| 1696 | if (log) |
| 1697 | audit_log_format(ab, " cap_fe=%d cap_fver=%x", |
| 1698 | name->fcap.fE, name->fcap_ver); |
| 1699 | } |
| 1700 | |
| 1701 | static inline int audit_copy_fcaps(struct audit_names *name, |
| 1702 | const struct dentry *dentry) |
| 1703 | { |
| 1704 | struct cpu_vfs_cap_data caps; |
| 1705 | int rc; |
| 1706 | |
| 1707 | if (!dentry) |
| 1708 | return 0; |
| 1709 | |
| 1710 | rc = get_vfs_caps_from_disk(dentry, &caps); |
| 1711 | if (rc) |
| 1712 | return rc; |
| 1713 | |
| 1714 | name->fcap.permitted = caps.permitted; |
| 1715 | name->fcap.inheritable = caps.inheritable; |
| 1716 | name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); |
| 1717 | name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> |
| 1718 | VFS_CAP_REVISION_SHIFT; |
| 1719 | |
| 1720 | return 0; |
| 1721 | } |
| 1722 | |
| 1723 | /* Copy inode data into an audit_names. */ |
| 1724 | void audit_copy_inode(struct audit_names *name, const struct dentry *dentry, |
| 1725 | const struct inode *inode) |
| 1726 | { |
| 1727 | name->ino = inode->i_ino; |
| 1728 | name->dev = inode->i_sb->s_dev; |
| 1729 | name->mode = inode->i_mode; |
| 1730 | name->uid = inode->i_uid; |
| 1731 | name->gid = inode->i_gid; |
| 1732 | name->rdev = inode->i_rdev; |
| 1733 | security_inode_getsecid(inode, &name->osid); |
| 1734 | audit_copy_fcaps(name, dentry); |
| 1735 | } |
| 1736 | |
| 1737 | /** |
| 1738 | * audit_log_name - produce AUDIT_PATH record from struct audit_names |
| 1739 | * @context: audit_context for the task |
| 1740 | * @n: audit_names structure with reportable details |
| 1741 | * @path: optional path to report instead of audit_names->name |
| 1742 | * @record_num: record number to report when handling a list of names |
| 1743 | * @call_panic: optional pointer to int that will be updated if secid fails |
| 1744 | */ |
| 1745 | void audit_log_name(struct audit_context *context, struct audit_names *n, |
| 1746 | struct path *path, int record_num, int *call_panic) |
| 1747 | { |
| 1748 | struct audit_buffer *ab; |
| 1749 | ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); |
| 1750 | if (!ab) |
| 1751 | return; |
| 1752 | |
| 1753 | audit_log_format(ab, "item=%d", record_num); |
| 1754 | |
| 1755 | if (path) |
| 1756 | audit_log_d_path(ab, " name=", path); |
| 1757 | else if (n->name) { |
| 1758 | switch (n->name_len) { |
| 1759 | case AUDIT_NAME_FULL: |
| 1760 | /* log the full path */ |
| 1761 | audit_log_format(ab, " name="); |
| 1762 | audit_log_untrustedstring(ab, n->name->name); |
| 1763 | break; |
| 1764 | case 0: |
| 1765 | /* name was specified as a relative path and the |
| 1766 | * directory component is the cwd */ |
| 1767 | audit_log_d_path(ab, " name=", &context->pwd); |
| 1768 | break; |
| 1769 | default: |
| 1770 | /* log the name's directory component */ |
| 1771 | audit_log_format(ab, " name="); |
| 1772 | audit_log_n_untrustedstring(ab, n->name->name, |
| 1773 | n->name_len); |
| 1774 | } |
| 1775 | } else |
| 1776 | audit_log_format(ab, " name=(null)"); |
| 1777 | |
| 1778 | if (n->ino != AUDIT_INO_UNSET) |
| 1779 | audit_log_format(ab, " inode=%lu" |
| 1780 | " dev=%02x:%02x mode=%#ho" |
| 1781 | " ouid=%u ogid=%u rdev=%02x:%02x", |
| 1782 | n->ino, |
| 1783 | MAJOR(n->dev), |
| 1784 | MINOR(n->dev), |
| 1785 | n->mode, |
| 1786 | from_kuid(&init_user_ns, n->uid), |
| 1787 | from_kgid(&init_user_ns, n->gid), |
| 1788 | MAJOR(n->rdev), |
| 1789 | MINOR(n->rdev)); |
| 1790 | if (n->osid != 0) { |
| 1791 | char *ctx = NULL; |
| 1792 | u32 len; |
| 1793 | if (security_secid_to_secctx( |
| 1794 | n->osid, &ctx, &len)) { |
| 1795 | audit_log_format(ab, " osid=%u", n->osid); |
| 1796 | if (call_panic) |
| 1797 | *call_panic = 2; |
| 1798 | } else { |
| 1799 | audit_log_format(ab, " obj=%s", ctx); |
| 1800 | security_release_secctx(ctx, len); |
| 1801 | } |
| 1802 | } |
| 1803 | |
| 1804 | /* log the audit_names record type */ |
| 1805 | audit_log_format(ab, " nametype="); |
| 1806 | switch(n->type) { |
| 1807 | case AUDIT_TYPE_NORMAL: |
| 1808 | audit_log_format(ab, "NORMAL"); |
| 1809 | break; |
| 1810 | case AUDIT_TYPE_PARENT: |
| 1811 | audit_log_format(ab, "PARENT"); |
| 1812 | break; |
| 1813 | case AUDIT_TYPE_CHILD_DELETE: |
| 1814 | audit_log_format(ab, "DELETE"); |
| 1815 | break; |
| 1816 | case AUDIT_TYPE_CHILD_CREATE: |
| 1817 | audit_log_format(ab, "CREATE"); |
| 1818 | break; |
| 1819 | default: |
| 1820 | audit_log_format(ab, "UNKNOWN"); |
| 1821 | break; |
| 1822 | } |
| 1823 | |
| 1824 | audit_log_fcaps(ab, n); |
| 1825 | audit_log_end(ab); |
| 1826 | } |
| 1827 | |
| 1828 | int audit_log_task_context(struct audit_buffer *ab) |
| 1829 | { |
| 1830 | char *ctx = NULL; |
| 1831 | unsigned len; |
| 1832 | int error; |
| 1833 | u32 sid; |
| 1834 | |
| 1835 | security_task_getsecid(current, &sid); |
| 1836 | if (!sid) |
| 1837 | return 0; |
| 1838 | |
| 1839 | error = security_secid_to_secctx(sid, &ctx, &len); |
| 1840 | if (error) { |
| 1841 | if (error != -EINVAL) |
| 1842 | goto error_path; |
| 1843 | return 0; |
| 1844 | } |
| 1845 | |
| 1846 | audit_log_format(ab, " subj=%s", ctx); |
| 1847 | security_release_secctx(ctx, len); |
| 1848 | return 0; |
| 1849 | |
| 1850 | error_path: |
| 1851 | audit_panic("error in audit_log_task_context"); |
| 1852 | return error; |
| 1853 | } |
| 1854 | EXPORT_SYMBOL(audit_log_task_context); |
| 1855 | |
| 1856 | void audit_log_d_path_exe(struct audit_buffer *ab, |
| 1857 | struct mm_struct *mm) |
| 1858 | { |
| 1859 | struct file *exe_file; |
| 1860 | |
| 1861 | if (!mm) |
| 1862 | goto out_null; |
| 1863 | |
| 1864 | exe_file = get_mm_exe_file(mm); |
| 1865 | if (!exe_file) |
| 1866 | goto out_null; |
| 1867 | |
| 1868 | audit_log_d_path(ab, " exe=", &exe_file->f_path); |
| 1869 | fput(exe_file); |
| 1870 | return; |
| 1871 | out_null: |
| 1872 | audit_log_format(ab, " exe=(null)"); |
| 1873 | } |
| 1874 | |
| 1875 | void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk) |
| 1876 | { |
| 1877 | const struct cred *cred; |
| 1878 | char comm[sizeof(tsk->comm)]; |
| 1879 | char *tty; |
| 1880 | |
| 1881 | if (!ab) |
| 1882 | return; |
| 1883 | |
| 1884 | /* tsk == current */ |
| 1885 | cred = current_cred(); |
| 1886 | |
| 1887 | spin_lock_irq(&tsk->sighand->siglock); |
| 1888 | if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name) |
| 1889 | tty = tsk->signal->tty->name; |
| 1890 | else |
| 1891 | tty = "(none)"; |
| 1892 | spin_unlock_irq(&tsk->sighand->siglock); |
| 1893 | |
| 1894 | audit_log_format(ab, |
| 1895 | " ppid=%d pid=%d auid=%u uid=%u gid=%u" |
| 1896 | " euid=%u suid=%u fsuid=%u" |
| 1897 | " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", |
| 1898 | task_ppid_nr(tsk), |
| 1899 | task_pid_nr(tsk), |
| 1900 | from_kuid(&init_user_ns, audit_get_loginuid(tsk)), |
| 1901 | from_kuid(&init_user_ns, cred->uid), |
| 1902 | from_kgid(&init_user_ns, cred->gid), |
| 1903 | from_kuid(&init_user_ns, cred->euid), |
| 1904 | from_kuid(&init_user_ns, cred->suid), |
| 1905 | from_kuid(&init_user_ns, cred->fsuid), |
| 1906 | from_kgid(&init_user_ns, cred->egid), |
| 1907 | from_kgid(&init_user_ns, cred->sgid), |
| 1908 | from_kgid(&init_user_ns, cred->fsgid), |
| 1909 | tty, audit_get_sessionid(tsk)); |
| 1910 | |
| 1911 | audit_log_format(ab, " comm="); |
| 1912 | audit_log_untrustedstring(ab, get_task_comm(comm, tsk)); |
| 1913 | |
| 1914 | audit_log_d_path_exe(ab, tsk->mm); |
| 1915 | audit_log_task_context(ab); |
| 1916 | } |
| 1917 | EXPORT_SYMBOL(audit_log_task_info); |
| 1918 | |
| 1919 | /** |
| 1920 | * audit_log_link_denied - report a link restriction denial |
| 1921 | * @operation: specific link operation |
| 1922 | * @link: the path that triggered the restriction |
| 1923 | */ |
| 1924 | void audit_log_link_denied(const char *operation, struct path *link) |
| 1925 | { |
| 1926 | struct audit_buffer *ab; |
| 1927 | struct audit_names *name; |
| 1928 | |
| 1929 | name = kzalloc(sizeof(*name), GFP_NOFS); |
| 1930 | if (!name) |
| 1931 | return; |
| 1932 | |
| 1933 | /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */ |
| 1934 | ab = audit_log_start(current->audit_context, GFP_KERNEL, |
| 1935 | AUDIT_ANOM_LINK); |
| 1936 | if (!ab) |
| 1937 | goto out; |
| 1938 | audit_log_format(ab, "op=%s", operation); |
| 1939 | audit_log_task_info(ab, current); |
| 1940 | audit_log_format(ab, " res=0"); |
| 1941 | audit_log_end(ab); |
| 1942 | |
| 1943 | /* Generate AUDIT_PATH record with object. */ |
| 1944 | name->type = AUDIT_TYPE_NORMAL; |
| 1945 | audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry)); |
| 1946 | audit_log_name(current->audit_context, name, link, 0, NULL); |
| 1947 | out: |
| 1948 | kfree(name); |
| 1949 | } |
| 1950 | |
| 1951 | /** |
| 1952 | * audit_log_end - end one audit record |
| 1953 | * @ab: the audit_buffer |
| 1954 | * |
| 1955 | * netlink_unicast() cannot be called inside an irq context because it blocks |
| 1956 | * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed |
| 1957 | * on a queue and a tasklet is scheduled to remove them from the queue outside |
| 1958 | * the irq context. May be called in any context. |
| 1959 | */ |
| 1960 | void audit_log_end(struct audit_buffer *ab) |
| 1961 | { |
| 1962 | if (!ab) |
| 1963 | return; |
| 1964 | if (!audit_rate_check()) { |
| 1965 | audit_log_lost("rate limit exceeded"); |
| 1966 | } else { |
| 1967 | struct nlmsghdr *nlh = nlmsg_hdr(ab->skb); |
| 1968 | |
| 1969 | nlh->nlmsg_len = ab->skb->len; |
| 1970 | kauditd_send_multicast_skb(ab->skb, ab->gfp_mask); |
| 1971 | |
| 1972 | /* |
| 1973 | * The original kaudit unicast socket sends up messages with |
| 1974 | * nlmsg_len set to the payload length rather than the entire |
| 1975 | * message length. This breaks the standard set by netlink. |
| 1976 | * The existing auditd daemon assumes this breakage. Fixing |
| 1977 | * this would require co-ordinating a change in the established |
| 1978 | * protocol between the kaudit kernel subsystem and the auditd |
| 1979 | * userspace code. |
| 1980 | */ |
| 1981 | nlh->nlmsg_len -= NLMSG_HDRLEN; |
| 1982 | |
| 1983 | if (audit_pid) { |
| 1984 | skb_queue_tail(&audit_skb_queue, ab->skb); |
| 1985 | wake_up_interruptible(&kauditd_wait); |
| 1986 | } else { |
| 1987 | audit_printk_skb(ab->skb); |
| 1988 | } |
| 1989 | ab->skb = NULL; |
| 1990 | } |
| 1991 | audit_buffer_free(ab); |
| 1992 | } |
| 1993 | |
| 1994 | /** |
| 1995 | * audit_log - Log an audit record |
| 1996 | * @ctx: audit context |
| 1997 | * @gfp_mask: type of allocation |
| 1998 | * @type: audit message type |
| 1999 | * @fmt: format string to use |
| 2000 | * @...: variable parameters matching the format string |
| 2001 | * |
| 2002 | * This is a convenience function that calls audit_log_start, |
| 2003 | * audit_log_vformat, and audit_log_end. It may be called |
| 2004 | * in any context. |
| 2005 | */ |
| 2006 | void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, |
| 2007 | const char *fmt, ...) |
| 2008 | { |
| 2009 | struct audit_buffer *ab; |
| 2010 | va_list args; |
| 2011 | |
| 2012 | ab = audit_log_start(ctx, gfp_mask, type); |
| 2013 | if (ab) { |
| 2014 | va_start(args, fmt); |
| 2015 | audit_log_vformat(ab, fmt, args); |
| 2016 | va_end(args); |
| 2017 | audit_log_end(ab); |
| 2018 | } |
| 2019 | } |
| 2020 | |
| 2021 | #ifdef CONFIG_SECURITY |
| 2022 | /** |
| 2023 | * audit_log_secctx - Converts and logs SELinux context |
| 2024 | * @ab: audit_buffer |
| 2025 | * @secid: security number |
| 2026 | * |
| 2027 | * This is a helper function that calls security_secid_to_secctx to convert |
| 2028 | * secid to secctx and then adds the (converted) SELinux context to the audit |
| 2029 | * log by calling audit_log_format, thus also preventing leak of internal secid |
| 2030 | * to userspace. If secid cannot be converted audit_panic is called. |
| 2031 | */ |
| 2032 | void audit_log_secctx(struct audit_buffer *ab, u32 secid) |
| 2033 | { |
| 2034 | u32 len; |
| 2035 | char *secctx; |
| 2036 | |
| 2037 | if (security_secid_to_secctx(secid, &secctx, &len)) { |
| 2038 | audit_panic("Cannot convert secid to context"); |
| 2039 | } else { |
| 2040 | audit_log_format(ab, " obj=%s", secctx); |
| 2041 | security_release_secctx(secctx, len); |
| 2042 | } |
| 2043 | } |
| 2044 | EXPORT_SYMBOL(audit_log_secctx); |
| 2045 | #endif |
| 2046 | |
| 2047 | EXPORT_SYMBOL(audit_log_start); |
| 2048 | EXPORT_SYMBOL(audit_log_end); |
| 2049 | EXPORT_SYMBOL(audit_log_format); |
| 2050 | EXPORT_SYMBOL(audit_log); |