Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame] | 1 | /* |
| 2 | * Pid namespaces |
| 3 | * |
| 4 | * Authors: |
| 5 | * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. |
| 6 | * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM |
| 7 | * Many thanks to Oleg Nesterov for comments and help |
| 8 | * |
| 9 | */ |
| 10 | |
| 11 | #include <linux/pid.h> |
| 12 | #include <linux/pid_namespace.h> |
| 13 | #include <linux/user_namespace.h> |
| 14 | #include <linux/syscalls.h> |
| 15 | #include <linux/err.h> |
| 16 | #include <linux/acct.h> |
| 17 | #include <linux/slab.h> |
| 18 | #include <linux/proc_ns.h> |
| 19 | #include <linux/reboot.h> |
| 20 | #include <linux/export.h> |
| 21 | |
| 22 | struct pid_cache { |
| 23 | int nr_ids; |
| 24 | char name[16]; |
| 25 | struct kmem_cache *cachep; |
| 26 | struct list_head list; |
| 27 | }; |
| 28 | |
| 29 | static LIST_HEAD(pid_caches_lh); |
| 30 | static DEFINE_MUTEX(pid_caches_mutex); |
| 31 | static struct kmem_cache *pid_ns_cachep; |
| 32 | |
| 33 | /* |
| 34 | * creates the kmem cache to allocate pids from. |
| 35 | * @nr_ids: the number of numerical ids this pid will have to carry |
| 36 | */ |
| 37 | |
| 38 | static struct kmem_cache *create_pid_cachep(int nr_ids) |
| 39 | { |
| 40 | struct pid_cache *pcache; |
| 41 | struct kmem_cache *cachep; |
| 42 | |
| 43 | mutex_lock(&pid_caches_mutex); |
| 44 | list_for_each_entry(pcache, &pid_caches_lh, list) |
| 45 | if (pcache->nr_ids == nr_ids) |
| 46 | goto out; |
| 47 | |
| 48 | pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL); |
| 49 | if (pcache == NULL) |
| 50 | goto err_alloc; |
| 51 | |
| 52 | snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids); |
| 53 | cachep = kmem_cache_create(pcache->name, |
| 54 | sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid), |
| 55 | 0, SLAB_HWCACHE_ALIGN, NULL); |
| 56 | if (cachep == NULL) |
| 57 | goto err_cachep; |
| 58 | |
| 59 | pcache->nr_ids = nr_ids; |
| 60 | pcache->cachep = cachep; |
| 61 | list_add(&pcache->list, &pid_caches_lh); |
| 62 | out: |
| 63 | mutex_unlock(&pid_caches_mutex); |
| 64 | return pcache->cachep; |
| 65 | |
| 66 | err_cachep: |
| 67 | kfree(pcache); |
| 68 | err_alloc: |
| 69 | mutex_unlock(&pid_caches_mutex); |
| 70 | return NULL; |
| 71 | } |
| 72 | |
| 73 | static void proc_cleanup_work(struct work_struct *work) |
| 74 | { |
| 75 | struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work); |
| 76 | pid_ns_release_proc(ns); |
| 77 | } |
| 78 | |
| 79 | /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */ |
| 80 | #define MAX_PID_NS_LEVEL 32 |
| 81 | |
| 82 | static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns, |
| 83 | struct pid_namespace *parent_pid_ns) |
| 84 | { |
| 85 | struct pid_namespace *ns; |
| 86 | unsigned int level = parent_pid_ns->level + 1; |
| 87 | int i; |
| 88 | int err; |
| 89 | |
| 90 | if (level > MAX_PID_NS_LEVEL) { |
| 91 | err = -EINVAL; |
| 92 | goto out; |
| 93 | } |
| 94 | |
| 95 | err = -ENOMEM; |
| 96 | ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL); |
| 97 | if (ns == NULL) |
| 98 | goto out; |
| 99 | |
| 100 | ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL); |
| 101 | if (!ns->pidmap[0].page) |
| 102 | goto out_free; |
| 103 | |
| 104 | ns->pid_cachep = create_pid_cachep(level + 1); |
| 105 | if (ns->pid_cachep == NULL) |
| 106 | goto out_free_map; |
| 107 | |
| 108 | err = ns_alloc_inum(&ns->ns); |
| 109 | if (err) |
| 110 | goto out_free_map; |
| 111 | ns->ns.ops = &pidns_operations; |
| 112 | |
| 113 | kref_init(&ns->kref); |
| 114 | ns->level = level; |
| 115 | ns->parent = get_pid_ns(parent_pid_ns); |
| 116 | ns->user_ns = get_user_ns(user_ns); |
| 117 | ns->nr_hashed = PIDNS_HASH_ADDING; |
| 118 | INIT_WORK(&ns->proc_work, proc_cleanup_work); |
| 119 | |
| 120 | set_bit(0, ns->pidmap[0].page); |
| 121 | atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1); |
| 122 | |
| 123 | for (i = 1; i < PIDMAP_ENTRIES; i++) |
| 124 | atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE); |
| 125 | |
| 126 | return ns; |
| 127 | |
| 128 | out_free_map: |
| 129 | kfree(ns->pidmap[0].page); |
| 130 | out_free: |
| 131 | kmem_cache_free(pid_ns_cachep, ns); |
| 132 | out: |
| 133 | return ERR_PTR(err); |
| 134 | } |
| 135 | |
| 136 | static void delayed_free_pidns(struct rcu_head *p) |
| 137 | { |
| 138 | kmem_cache_free(pid_ns_cachep, |
| 139 | container_of(p, struct pid_namespace, rcu)); |
| 140 | } |
| 141 | |
| 142 | static void destroy_pid_namespace(struct pid_namespace *ns) |
| 143 | { |
| 144 | int i; |
| 145 | |
| 146 | ns_free_inum(&ns->ns); |
| 147 | for (i = 0; i < PIDMAP_ENTRIES; i++) |
| 148 | kfree(ns->pidmap[i].page); |
| 149 | put_user_ns(ns->user_ns); |
| 150 | call_rcu(&ns->rcu, delayed_free_pidns); |
| 151 | } |
| 152 | |
| 153 | struct pid_namespace *copy_pid_ns(unsigned long flags, |
| 154 | struct user_namespace *user_ns, struct pid_namespace *old_ns) |
| 155 | { |
| 156 | if (!(flags & CLONE_NEWPID)) |
| 157 | return get_pid_ns(old_ns); |
| 158 | if (task_active_pid_ns(current) != old_ns) |
| 159 | return ERR_PTR(-EINVAL); |
| 160 | return create_pid_namespace(user_ns, old_ns); |
| 161 | } |
| 162 | |
| 163 | static void free_pid_ns(struct kref *kref) |
| 164 | { |
| 165 | struct pid_namespace *ns; |
| 166 | |
| 167 | ns = container_of(kref, struct pid_namespace, kref); |
| 168 | destroy_pid_namespace(ns); |
| 169 | } |
| 170 | |
| 171 | void put_pid_ns(struct pid_namespace *ns) |
| 172 | { |
| 173 | struct pid_namespace *parent; |
| 174 | |
| 175 | while (ns != &init_pid_ns) { |
| 176 | parent = ns->parent; |
| 177 | if (!kref_put(&ns->kref, free_pid_ns)) |
| 178 | break; |
| 179 | ns = parent; |
| 180 | } |
| 181 | } |
| 182 | EXPORT_SYMBOL_GPL(put_pid_ns); |
| 183 | |
| 184 | void zap_pid_ns_processes(struct pid_namespace *pid_ns) |
| 185 | { |
| 186 | int nr; |
| 187 | int rc; |
| 188 | struct task_struct *task, *me = current; |
| 189 | int init_pids = thread_group_leader(me) ? 1 : 2; |
| 190 | |
| 191 | /* Don't allow any more processes into the pid namespace */ |
| 192 | disable_pid_allocation(pid_ns); |
| 193 | |
| 194 | /* |
| 195 | * Ignore SIGCHLD causing any terminated children to autoreap. |
| 196 | * This speeds up the namespace shutdown, plus see the comment |
| 197 | * below. |
| 198 | */ |
| 199 | spin_lock_irq(&me->sighand->siglock); |
| 200 | me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN; |
| 201 | spin_unlock_irq(&me->sighand->siglock); |
| 202 | |
| 203 | /* |
| 204 | * The last thread in the cgroup-init thread group is terminating. |
| 205 | * Find remaining pid_ts in the namespace, signal and wait for them |
| 206 | * to exit. |
| 207 | * |
| 208 | * Note: This signals each threads in the namespace - even those that |
| 209 | * belong to the same thread group, To avoid this, we would have |
| 210 | * to walk the entire tasklist looking a processes in this |
| 211 | * namespace, but that could be unnecessarily expensive if the |
| 212 | * pid namespace has just a few processes. Or we need to |
| 213 | * maintain a tasklist for each pid namespace. |
| 214 | * |
| 215 | */ |
| 216 | read_lock(&tasklist_lock); |
| 217 | nr = next_pidmap(pid_ns, 1); |
| 218 | while (nr > 0) { |
| 219 | rcu_read_lock(); |
| 220 | |
| 221 | task = pid_task(find_vpid(nr), PIDTYPE_PID); |
| 222 | if (task && !__fatal_signal_pending(task)) |
| 223 | send_sig_info(SIGKILL, SEND_SIG_FORCED, task); |
| 224 | |
| 225 | rcu_read_unlock(); |
| 226 | |
| 227 | nr = next_pidmap(pid_ns, nr); |
| 228 | } |
| 229 | read_unlock(&tasklist_lock); |
| 230 | |
| 231 | /* |
| 232 | * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD. |
| 233 | * sys_wait4() will also block until our children traced from the |
| 234 | * parent namespace are detached and become EXIT_DEAD. |
| 235 | */ |
| 236 | do { |
| 237 | clear_thread_flag(TIF_SIGPENDING); |
| 238 | rc = sys_wait4(-1, NULL, __WALL, NULL); |
| 239 | } while (rc != -ECHILD); |
| 240 | |
| 241 | /* |
| 242 | * sys_wait4() above can't reap the EXIT_DEAD children but we do not |
| 243 | * really care, we could reparent them to the global init. We could |
| 244 | * exit and reap ->child_reaper even if it is not the last thread in |
| 245 | * this pid_ns, free_pid(nr_hashed == 0) calls proc_cleanup_work(), |
| 246 | * pid_ns can not go away until proc_kill_sb() drops the reference. |
| 247 | * |
| 248 | * But this ns can also have other tasks injected by setns()+fork(). |
| 249 | * Again, ignoring the user visible semantics we do not really need |
| 250 | * to wait until they are all reaped, but they can be reparented to |
| 251 | * us and thus we need to ensure that pid->child_reaper stays valid |
| 252 | * until they all go away. See free_pid()->wake_up_process(). |
| 253 | * |
| 254 | * We rely on ignored SIGCHLD, an injected zombie must be autoreaped |
| 255 | * if reparented. |
| 256 | */ |
| 257 | for (;;) { |
| 258 | set_current_state(TASK_INTERRUPTIBLE); |
| 259 | if (pid_ns->nr_hashed == init_pids) |
| 260 | break; |
| 261 | schedule(); |
| 262 | } |
| 263 | __set_current_state(TASK_RUNNING); |
| 264 | |
| 265 | if (pid_ns->reboot) |
| 266 | current->signal->group_exit_code = pid_ns->reboot; |
| 267 | |
| 268 | acct_exit_ns(pid_ns); |
| 269 | return; |
| 270 | } |
| 271 | |
| 272 | #ifdef CONFIG_CHECKPOINT_RESTORE |
| 273 | static int pid_ns_ctl_handler(struct ctl_table *table, int write, |
| 274 | void __user *buffer, size_t *lenp, loff_t *ppos) |
| 275 | { |
| 276 | struct pid_namespace *pid_ns = task_active_pid_ns(current); |
| 277 | struct ctl_table tmp = *table; |
| 278 | |
| 279 | if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN)) |
| 280 | return -EPERM; |
| 281 | |
| 282 | /* |
| 283 | * Writing directly to ns' last_pid field is OK, since this field |
| 284 | * is volatile in a living namespace anyway and a code writing to |
| 285 | * it should synchronize its usage with external means. |
| 286 | */ |
| 287 | |
| 288 | tmp.data = &pid_ns->last_pid; |
| 289 | return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); |
| 290 | } |
| 291 | |
| 292 | extern int pid_max; |
| 293 | static int zero = 0; |
| 294 | static struct ctl_table pid_ns_ctl_table[] = { |
| 295 | { |
| 296 | .procname = "ns_last_pid", |
| 297 | .maxlen = sizeof(int), |
| 298 | .mode = 0666, /* permissions are checked in the handler */ |
| 299 | .proc_handler = pid_ns_ctl_handler, |
| 300 | .extra1 = &zero, |
| 301 | .extra2 = &pid_max, |
| 302 | }, |
| 303 | { } |
| 304 | }; |
| 305 | static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } }; |
| 306 | #endif /* CONFIG_CHECKPOINT_RESTORE */ |
| 307 | |
| 308 | int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd) |
| 309 | { |
| 310 | if (pid_ns == &init_pid_ns) |
| 311 | return 0; |
| 312 | |
| 313 | switch (cmd) { |
| 314 | case LINUX_REBOOT_CMD_RESTART2: |
| 315 | case LINUX_REBOOT_CMD_RESTART: |
| 316 | pid_ns->reboot = SIGHUP; |
| 317 | break; |
| 318 | |
| 319 | case LINUX_REBOOT_CMD_POWER_OFF: |
| 320 | case LINUX_REBOOT_CMD_HALT: |
| 321 | pid_ns->reboot = SIGINT; |
| 322 | break; |
| 323 | default: |
| 324 | return -EINVAL; |
| 325 | } |
| 326 | |
| 327 | read_lock(&tasklist_lock); |
| 328 | force_sig(SIGKILL, pid_ns->child_reaper); |
| 329 | read_unlock(&tasklist_lock); |
| 330 | |
| 331 | do_exit(0); |
| 332 | |
| 333 | /* Not reached */ |
| 334 | return 0; |
| 335 | } |
| 336 | |
| 337 | static inline struct pid_namespace *to_pid_ns(struct ns_common *ns) |
| 338 | { |
| 339 | return container_of(ns, struct pid_namespace, ns); |
| 340 | } |
| 341 | |
| 342 | static struct ns_common *pidns_get(struct task_struct *task) |
| 343 | { |
| 344 | struct pid_namespace *ns; |
| 345 | |
| 346 | rcu_read_lock(); |
| 347 | ns = task_active_pid_ns(task); |
| 348 | if (ns) |
| 349 | get_pid_ns(ns); |
| 350 | rcu_read_unlock(); |
| 351 | |
| 352 | return ns ? &ns->ns : NULL; |
| 353 | } |
| 354 | |
| 355 | static void pidns_put(struct ns_common *ns) |
| 356 | { |
| 357 | put_pid_ns(to_pid_ns(ns)); |
| 358 | } |
| 359 | |
| 360 | static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns) |
| 361 | { |
| 362 | struct pid_namespace *active = task_active_pid_ns(current); |
| 363 | struct pid_namespace *ancestor, *new = to_pid_ns(ns); |
| 364 | |
| 365 | if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) || |
| 366 | !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) |
| 367 | return -EPERM; |
| 368 | |
| 369 | /* |
| 370 | * Only allow entering the current active pid namespace |
| 371 | * or a child of the current active pid namespace. |
| 372 | * |
| 373 | * This is required for fork to return a usable pid value and |
| 374 | * this maintains the property that processes and their |
| 375 | * children can not escape their current pid namespace. |
| 376 | */ |
| 377 | if (new->level < active->level) |
| 378 | return -EINVAL; |
| 379 | |
| 380 | ancestor = new; |
| 381 | while (ancestor->level > active->level) |
| 382 | ancestor = ancestor->parent; |
| 383 | if (ancestor != active) |
| 384 | return -EINVAL; |
| 385 | |
| 386 | put_pid_ns(nsproxy->pid_ns_for_children); |
| 387 | nsproxy->pid_ns_for_children = get_pid_ns(new); |
| 388 | return 0; |
| 389 | } |
| 390 | |
| 391 | const struct proc_ns_operations pidns_operations = { |
| 392 | .name = "pid", |
| 393 | .type = CLONE_NEWPID, |
| 394 | .get = pidns_get, |
| 395 | .put = pidns_put, |
| 396 | .install = pidns_install, |
| 397 | }; |
| 398 | |
| 399 | static __init int pid_namespaces_init(void) |
| 400 | { |
| 401 | pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC); |
| 402 | |
| 403 | #ifdef CONFIG_CHECKPOINT_RESTORE |
| 404 | register_sysctl_paths(kern_path, pid_ns_ctl_table); |
| 405 | #endif |
| 406 | return 0; |
| 407 | } |
| 408 | |
| 409 | __initcall(pid_namespaces_init); |