blob: 6fcc367ad5314c47fde82d56b59b255bee53b45e [file] [log] [blame]
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001/*
2 * Alarmtimer interface
3 *
4 * This interface provides a timer which is similarto hrtimers,
5 * but triggers a RTC alarm if the box is suspend.
6 *
7 * This interface is influenced by the Android RTC Alarm timer
8 * interface.
9 *
10 * Copyright (C) 2010 IBM Corperation
11 *
12 * Author: John Stultz <john.stultz@linaro.org>
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18#include <linux/time.h>
19#include <linux/hrtimer.h>
20#include <linux/timerqueue.h>
21#include <linux/rtc.h>
22#include <linux/alarmtimer.h>
23#include <linux/mutex.h>
24#include <linux/platform_device.h>
25#include <linux/posix-timers.h>
26#include <linux/workqueue.h>
27#include <linux/freezer.h>
28
29/**
30 * struct alarm_base - Alarm timer bases
31 * @lock: Lock for syncrhonized access to the base
32 * @timerqueue: Timerqueue head managing the list of events
33 * @timer: hrtimer used to schedule events while running
34 * @gettime: Function to read the time correlating to the base
35 * @base_clockid: clockid for the base
36 */
37static struct alarm_base {
38 spinlock_t lock;
39 struct timerqueue_head timerqueue;
40 ktime_t (*gettime)(void);
41 clockid_t base_clockid;
42} alarm_bases[ALARM_NUMTYPE];
43
44/* freezer delta & lock used to handle clock_nanosleep triggered wakeups */
45static ktime_t freezer_delta;
46static DEFINE_SPINLOCK(freezer_delta_lock);
47
48static struct wakeup_source *ws;
49
50#ifdef CONFIG_RTC_CLASS
51/* rtc timer and device for setting alarm wakeups at suspend */
52static struct rtc_timer rtctimer;
53static struct rtc_device *rtcdev;
54static DEFINE_SPINLOCK(rtcdev_lock);
55
56/**
57 * alarmtimer_get_rtcdev - Return selected rtcdevice
58 *
59 * This function returns the rtc device to use for wakealarms.
60 * If one has not already been chosen, it checks to see if a
61 * functional rtc device is available.
62 */
63struct rtc_device *alarmtimer_get_rtcdev(void)
64{
65 unsigned long flags;
66 struct rtc_device *ret;
67
68 spin_lock_irqsave(&rtcdev_lock, flags);
69 ret = rtcdev;
70 spin_unlock_irqrestore(&rtcdev_lock, flags);
71
72 return ret;
73}
74EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
75
76static int alarmtimer_rtc_add_device(struct device *dev,
77 struct class_interface *class_intf)
78{
79 unsigned long flags;
80 struct rtc_device *rtc = to_rtc_device(dev);
81
82 if (rtcdev)
83 return -EBUSY;
84
85 if (!rtc->ops->set_alarm)
86 return -1;
87 if (!device_may_wakeup(rtc->dev.parent))
88 return -1;
89
90 spin_lock_irqsave(&rtcdev_lock, flags);
91 if (!rtcdev) {
92 rtcdev = rtc;
93 /* hold a reference so it doesn't go away */
94 get_device(dev);
95 }
96 spin_unlock_irqrestore(&rtcdev_lock, flags);
97 return 0;
98}
99
100static inline void alarmtimer_rtc_timer_init(void)
101{
102 rtc_timer_init(&rtctimer, NULL, NULL);
103}
104
105static struct class_interface alarmtimer_rtc_interface = {
106 .add_dev = &alarmtimer_rtc_add_device,
107};
108
109static int alarmtimer_rtc_interface_setup(void)
110{
111 alarmtimer_rtc_interface.class = rtc_class;
112 return class_interface_register(&alarmtimer_rtc_interface);
113}
114static void alarmtimer_rtc_interface_remove(void)
115{
116 class_interface_unregister(&alarmtimer_rtc_interface);
117}
118#else
119struct rtc_device *alarmtimer_get_rtcdev(void)
120{
121 return NULL;
122}
123#define rtcdev (NULL)
124static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
125static inline void alarmtimer_rtc_interface_remove(void) { }
126static inline void alarmtimer_rtc_timer_init(void) { }
127#endif
128
129/**
130 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
131 * @base: pointer to the base where the timer is being run
132 * @alarm: pointer to alarm being enqueued.
133 *
134 * Adds alarm to a alarm_base timerqueue
135 *
136 * Must hold base->lock when calling.
137 */
138static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
139{
140 if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
141 timerqueue_del(&base->timerqueue, &alarm->node);
142
143 timerqueue_add(&base->timerqueue, &alarm->node);
144 alarm->state |= ALARMTIMER_STATE_ENQUEUED;
145}
146
147/**
148 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
149 * @base: pointer to the base where the timer is running
150 * @alarm: pointer to alarm being removed
151 *
152 * Removes alarm to a alarm_base timerqueue
153 *
154 * Must hold base->lock when calling.
155 */
156static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
157{
158 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
159 return;
160
161 timerqueue_del(&base->timerqueue, &alarm->node);
162 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
163}
164
165
166/**
167 * alarmtimer_fired - Handles alarm hrtimer being fired.
168 * @timer: pointer to hrtimer being run
169 *
170 * When a alarm timer fires, this runs through the timerqueue to
171 * see which alarms expired, and runs those. If there are more alarm
172 * timers queued for the future, we set the hrtimer to fire when
173 * when the next future alarm timer expires.
174 */
175static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
176{
177 struct alarm *alarm = container_of(timer, struct alarm, timer);
178 struct alarm_base *base = &alarm_bases[alarm->type];
179 unsigned long flags;
180 int ret = HRTIMER_NORESTART;
181 int restart = ALARMTIMER_NORESTART;
182
183 spin_lock_irqsave(&base->lock, flags);
184 alarmtimer_dequeue(base, alarm);
185 spin_unlock_irqrestore(&base->lock, flags);
186
187 if (alarm->function)
188 restart = alarm->function(alarm, base->gettime());
189
190 spin_lock_irqsave(&base->lock, flags);
191 if (restart != ALARMTIMER_NORESTART) {
192 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
193 alarmtimer_enqueue(base, alarm);
194 ret = HRTIMER_RESTART;
195 }
196 spin_unlock_irqrestore(&base->lock, flags);
197
198 return ret;
199
200}
201
202ktime_t alarm_expires_remaining(const struct alarm *alarm)
203{
204 struct alarm_base *base = &alarm_bases[alarm->type];
205 return ktime_sub(alarm->node.expires, base->gettime());
206}
207EXPORT_SYMBOL_GPL(alarm_expires_remaining);
208
209#ifdef CONFIG_RTC_CLASS
210/**
211 * alarmtimer_suspend - Suspend time callback
212 * @dev: unused
213 * @state: unused
214 *
215 * When we are going into suspend, we look through the bases
216 * to see which is the soonest timer to expire. We then
217 * set an rtc timer to fire that far into the future, which
218 * will wake us from suspend.
219 */
220static int alarmtimer_suspend(struct device *dev)
221{
222 struct rtc_time tm;
223 ktime_t min, now;
224 unsigned long flags;
225 struct rtc_device *rtc;
226 int i;
227 int ret;
228
229 spin_lock_irqsave(&freezer_delta_lock, flags);
230 min = freezer_delta;
231 freezer_delta = ktime_set(0, 0);
232 spin_unlock_irqrestore(&freezer_delta_lock, flags);
233
234 rtc = alarmtimer_get_rtcdev();
235 /* If we have no rtcdev, just return */
236 if (!rtc)
237 return 0;
238
239 /* Find the soonest timer to expire*/
240 for (i = 0; i < ALARM_NUMTYPE; i++) {
241 struct alarm_base *base = &alarm_bases[i];
242 struct timerqueue_node *next;
243 ktime_t delta;
244
245 spin_lock_irqsave(&base->lock, flags);
246 next = timerqueue_getnext(&base->timerqueue);
247 spin_unlock_irqrestore(&base->lock, flags);
248 if (!next)
249 continue;
250 delta = ktime_sub(next->expires, base->gettime());
251 if (!min.tv64 || (delta.tv64 < min.tv64))
252 min = delta;
253 }
254 if (min.tv64 == 0)
255 return 0;
256
257 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
258 __pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
259 return -EBUSY;
260 }
261
262 /* Setup an rtc timer to fire that far in the future */
263 rtc_timer_cancel(rtc, &rtctimer);
264 rtc_read_time(rtc, &tm);
265 now = rtc_tm_to_ktime(tm);
266 now = ktime_add(now, min);
267
268 /* Set alarm, if in the past reject suspend briefly to handle */
269 ret = rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0));
270 if (ret < 0)
271 __pm_wakeup_event(ws, MSEC_PER_SEC);
272 return ret;
273}
274#else
275static int alarmtimer_suspend(struct device *dev)
276{
277 return 0;
278}
279#endif
280
281static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
282{
283 ktime_t delta;
284 unsigned long flags;
285 struct alarm_base *base = &alarm_bases[type];
286
287 delta = ktime_sub(absexp, base->gettime());
288
289 spin_lock_irqsave(&freezer_delta_lock, flags);
290 if (!freezer_delta.tv64 || (delta.tv64 < freezer_delta.tv64))
291 freezer_delta = delta;
292 spin_unlock_irqrestore(&freezer_delta_lock, flags);
293}
294
295
296/**
297 * alarm_init - Initialize an alarm structure
298 * @alarm: ptr to alarm to be initialized
299 * @type: the type of the alarm
300 * @function: callback that is run when the alarm fires
301 */
302void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
303 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
304{
305 timerqueue_init(&alarm->node);
306 hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
307 HRTIMER_MODE_ABS);
308 alarm->timer.function = alarmtimer_fired;
309 alarm->function = function;
310 alarm->type = type;
311 alarm->state = ALARMTIMER_STATE_INACTIVE;
312}
313EXPORT_SYMBOL_GPL(alarm_init);
314
315/**
316 * alarm_start - Sets an absolute alarm to fire
317 * @alarm: ptr to alarm to set
318 * @start: time to run the alarm
319 */
320void alarm_start(struct alarm *alarm, ktime_t start)
321{
322 struct alarm_base *base = &alarm_bases[alarm->type];
323 unsigned long flags;
324
325 spin_lock_irqsave(&base->lock, flags);
326 alarm->node.expires = start;
327 alarmtimer_enqueue(base, alarm);
328 hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
329 spin_unlock_irqrestore(&base->lock, flags);
330}
331EXPORT_SYMBOL_GPL(alarm_start);
332
333/**
334 * alarm_start_relative - Sets a relative alarm to fire
335 * @alarm: ptr to alarm to set
336 * @start: time relative to now to run the alarm
337 */
338void alarm_start_relative(struct alarm *alarm, ktime_t start)
339{
340 struct alarm_base *base = &alarm_bases[alarm->type];
341
342 start = ktime_add_safe(start, base->gettime());
343 alarm_start(alarm, start);
344}
345EXPORT_SYMBOL_GPL(alarm_start_relative);
346
347void alarm_restart(struct alarm *alarm)
348{
349 struct alarm_base *base = &alarm_bases[alarm->type];
350 unsigned long flags;
351
352 spin_lock_irqsave(&base->lock, flags);
353 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
354 hrtimer_restart(&alarm->timer);
355 alarmtimer_enqueue(base, alarm);
356 spin_unlock_irqrestore(&base->lock, flags);
357}
358EXPORT_SYMBOL_GPL(alarm_restart);
359
360/**
361 * alarm_try_to_cancel - Tries to cancel an alarm timer
362 * @alarm: ptr to alarm to be canceled
363 *
364 * Returns 1 if the timer was canceled, 0 if it was not running,
365 * and -1 if the callback was running
366 */
367int alarm_try_to_cancel(struct alarm *alarm)
368{
369 struct alarm_base *base = &alarm_bases[alarm->type];
370 unsigned long flags;
371 int ret;
372
373 spin_lock_irqsave(&base->lock, flags);
374 ret = hrtimer_try_to_cancel(&alarm->timer);
375 if (ret >= 0)
376 alarmtimer_dequeue(base, alarm);
377 spin_unlock_irqrestore(&base->lock, flags);
378 return ret;
379}
380EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
381
382
383/**
384 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
385 * @alarm: ptr to alarm to be canceled
386 *
387 * Returns 1 if the timer was canceled, 0 if it was not active.
388 */
389int alarm_cancel(struct alarm *alarm)
390{
391 for (;;) {
392 int ret = alarm_try_to_cancel(alarm);
393 if (ret >= 0)
394 return ret;
395 cpu_relax();
396 }
397}
398EXPORT_SYMBOL_GPL(alarm_cancel);
399
400
401u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
402{
403 u64 overrun = 1;
404 ktime_t delta;
405
406 delta = ktime_sub(now, alarm->node.expires);
407
408 if (delta.tv64 < 0)
409 return 0;
410
411 if (unlikely(delta.tv64 >= interval.tv64)) {
412 s64 incr = ktime_to_ns(interval);
413
414 overrun = ktime_divns(delta, incr);
415
416 alarm->node.expires = ktime_add_ns(alarm->node.expires,
417 incr*overrun);
418
419 if (alarm->node.expires.tv64 > now.tv64)
420 return overrun;
421 /*
422 * This (and the ktime_add() below) is the
423 * correction for exact:
424 */
425 overrun++;
426 }
427
428 alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
429 return overrun;
430}
431EXPORT_SYMBOL_GPL(alarm_forward);
432
433u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
434{
435 struct alarm_base *base = &alarm_bases[alarm->type];
436
437 return alarm_forward(alarm, base->gettime(), interval);
438}
439EXPORT_SYMBOL_GPL(alarm_forward_now);
440
441
442/**
443 * clock2alarm - helper that converts from clockid to alarmtypes
444 * @clockid: clockid.
445 */
446static enum alarmtimer_type clock2alarm(clockid_t clockid)
447{
448 if (clockid == CLOCK_REALTIME_ALARM)
449 return ALARM_REALTIME;
450 if (clockid == CLOCK_BOOTTIME_ALARM)
451 return ALARM_BOOTTIME;
452 return -1;
453}
454
455/**
456 * alarm_handle_timer - Callback for posix timers
457 * @alarm: alarm that fired
458 *
459 * Posix timer callback for expired alarm timers.
460 */
461static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
462 ktime_t now)
463{
464 unsigned long flags;
465 struct k_itimer *ptr = container_of(alarm, struct k_itimer,
466 it.alarm.alarmtimer);
467 enum alarmtimer_restart result = ALARMTIMER_NORESTART;
468
469 spin_lock_irqsave(&ptr->it_lock, flags);
470 if ((ptr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) {
471 if (posix_timer_event(ptr, 0) != 0)
472 ptr->it_overrun++;
473 }
474
475 /* Re-add periodic timers */
476 if (ptr->it.alarm.interval.tv64) {
477 ptr->it_overrun += alarm_forward(alarm, now,
478 ptr->it.alarm.interval);
479 result = ALARMTIMER_RESTART;
480 }
481 spin_unlock_irqrestore(&ptr->it_lock, flags);
482
483 return result;
484}
485
486/**
487 * alarm_clock_getres - posix getres interface
488 * @which_clock: clockid
489 * @tp: timespec to fill
490 *
491 * Returns the granularity of underlying alarm base clock
492 */
493static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
494{
495 if (!alarmtimer_get_rtcdev())
496 return -EINVAL;
497
498 tp->tv_sec = 0;
499 tp->tv_nsec = hrtimer_resolution;
500 return 0;
501}
502
503/**
504 * alarm_clock_get - posix clock_get interface
505 * @which_clock: clockid
506 * @tp: timespec to fill.
507 *
508 * Provides the underlying alarm base time.
509 */
510static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
511{
512 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
513
514 if (!alarmtimer_get_rtcdev())
515 return -EINVAL;
516
517 *tp = ktime_to_timespec(base->gettime());
518 return 0;
519}
520
521/**
522 * alarm_timer_create - posix timer_create interface
523 * @new_timer: k_itimer pointer to manage
524 *
525 * Initializes the k_itimer structure.
526 */
527static int alarm_timer_create(struct k_itimer *new_timer)
528{
529 enum alarmtimer_type type;
530 struct alarm_base *base;
531
532 if (!alarmtimer_get_rtcdev())
533 return -ENOTSUPP;
534
535 if (!capable(CAP_WAKE_ALARM))
536 return -EPERM;
537
538 type = clock2alarm(new_timer->it_clock);
539 base = &alarm_bases[type];
540 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
541 return 0;
542}
543
544/**
545 * alarm_timer_get - posix timer_get interface
546 * @new_timer: k_itimer pointer
547 * @cur_setting: itimerspec data to fill
548 *
549 * Copies out the current itimerspec data
550 */
551static void alarm_timer_get(struct k_itimer *timr,
552 struct itimerspec *cur_setting)
553{
554 ktime_t relative_expiry_time =
555 alarm_expires_remaining(&(timr->it.alarm.alarmtimer));
556
557 if (ktime_to_ns(relative_expiry_time) > 0) {
558 cur_setting->it_value = ktime_to_timespec(relative_expiry_time);
559 } else {
560 cur_setting->it_value.tv_sec = 0;
561 cur_setting->it_value.tv_nsec = 0;
562 }
563
564 cur_setting->it_interval = ktime_to_timespec(timr->it.alarm.interval);
565}
566
567/**
568 * alarm_timer_del - posix timer_del interface
569 * @timr: k_itimer pointer to be deleted
570 *
571 * Cancels any programmed alarms for the given timer.
572 */
573static int alarm_timer_del(struct k_itimer *timr)
574{
575 if (!rtcdev)
576 return -ENOTSUPP;
577
578 if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
579 return TIMER_RETRY;
580
581 return 0;
582}
583
584/**
585 * alarm_timer_set - posix timer_set interface
586 * @timr: k_itimer pointer to be deleted
587 * @flags: timer flags
588 * @new_setting: itimerspec to be used
589 * @old_setting: itimerspec being replaced
590 *
591 * Sets the timer to new_setting, and starts the timer.
592 */
593static int alarm_timer_set(struct k_itimer *timr, int flags,
594 struct itimerspec *new_setting,
595 struct itimerspec *old_setting)
596{
597 ktime_t exp;
598
599 if (!rtcdev)
600 return -ENOTSUPP;
601
602 if (flags & ~TIMER_ABSTIME)
603 return -EINVAL;
604
605 if (old_setting)
606 alarm_timer_get(timr, old_setting);
607
608 /* If the timer was already set, cancel it */
609 if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
610 return TIMER_RETRY;
611
612 /* start the timer */
613 timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval);
614
615 /*
616 * Rate limit to the tick as a hot fix to prevent DOS. Will be
617 * mopped up later.
618 */
619 if (timr->it.alarm.interval.tv64 &&
620 ktime_to_ns(timr->it.alarm.interval) < TICK_NSEC)
621 timr->it.alarm.interval = ktime_set(0, TICK_NSEC);
622
623 exp = timespec_to_ktime(new_setting->it_value);
624 /* Convert (if necessary) to absolute time */
625 if (flags != TIMER_ABSTIME) {
626 ktime_t now;
627
628 now = alarm_bases[timr->it.alarm.alarmtimer.type].gettime();
629 exp = ktime_add_safe(now, exp);
630 }
631
632 alarm_start(&timr->it.alarm.alarmtimer, exp);
633 return 0;
634}
635
636/**
637 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
638 * @alarm: ptr to alarm that fired
639 *
640 * Wakes up the task that set the alarmtimer
641 */
642static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
643 ktime_t now)
644{
645 struct task_struct *task = (struct task_struct *)alarm->data;
646
647 alarm->data = NULL;
648 if (task)
649 wake_up_process(task);
650 return ALARMTIMER_NORESTART;
651}
652
653/**
654 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
655 * @alarm: ptr to alarmtimer
656 * @absexp: absolute expiration time
657 *
658 * Sets the alarm timer and sleeps until it is fired or interrupted.
659 */
660static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
661{
662 alarm->data = (void *)current;
663 do {
664 set_current_state(TASK_INTERRUPTIBLE);
665 alarm_start(alarm, absexp);
666 if (likely(alarm->data))
667 schedule();
668
669 alarm_cancel(alarm);
670 } while (alarm->data && !signal_pending(current));
671
672 __set_current_state(TASK_RUNNING);
673
674 return (alarm->data == NULL);
675}
676
677
678/**
679 * update_rmtp - Update remaining timespec value
680 * @exp: expiration time
681 * @type: timer type
682 * @rmtp: user pointer to remaining timepsec value
683 *
684 * Helper function that fills in rmtp value with time between
685 * now and the exp value
686 */
687static int update_rmtp(ktime_t exp, enum alarmtimer_type type,
688 struct timespec __user *rmtp)
689{
690 struct timespec rmt;
691 ktime_t rem;
692
693 rem = ktime_sub(exp, alarm_bases[type].gettime());
694
695 if (rem.tv64 <= 0)
696 return 0;
697 rmt = ktime_to_timespec(rem);
698
699 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
700 return -EFAULT;
701
702 return 1;
703
704}
705
706/**
707 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
708 * @restart: ptr to restart block
709 *
710 * Handles restarted clock_nanosleep calls
711 */
712static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
713{
714 enum alarmtimer_type type = restart->nanosleep.clockid;
715 ktime_t exp;
716 struct timespec __user *rmtp;
717 struct alarm alarm;
718 int ret = 0;
719
720 exp.tv64 = restart->nanosleep.expires;
721 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
722
723 if (alarmtimer_do_nsleep(&alarm, exp))
724 goto out;
725
726 if (freezing(current))
727 alarmtimer_freezerset(exp, type);
728
729 rmtp = restart->nanosleep.rmtp;
730 if (rmtp) {
731 ret = update_rmtp(exp, type, rmtp);
732 if (ret <= 0)
733 goto out;
734 }
735
736
737 /* The other values in restart are already filled in */
738 ret = -ERESTART_RESTARTBLOCK;
739out:
740 return ret;
741}
742
743/**
744 * alarm_timer_nsleep - alarmtimer nanosleep
745 * @which_clock: clockid
746 * @flags: determins abstime or relative
747 * @tsreq: requested sleep time (abs or rel)
748 * @rmtp: remaining sleep time saved
749 *
750 * Handles clock_nanosleep calls against _ALARM clockids
751 */
752static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
753 struct timespec *tsreq, struct timespec __user *rmtp)
754{
755 enum alarmtimer_type type = clock2alarm(which_clock);
756 struct alarm alarm;
757 ktime_t exp;
758 int ret = 0;
759 struct restart_block *restart;
760
761 if (!alarmtimer_get_rtcdev())
762 return -ENOTSUPP;
763
764 if (flags & ~TIMER_ABSTIME)
765 return -EINVAL;
766
767 if (!capable(CAP_WAKE_ALARM))
768 return -EPERM;
769
770 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
771
772 exp = timespec_to_ktime(*tsreq);
773 /* Convert (if necessary) to absolute time */
774 if (flags != TIMER_ABSTIME) {
775 ktime_t now = alarm_bases[type].gettime();
776 exp = ktime_add(now, exp);
777 }
778
779 if (alarmtimer_do_nsleep(&alarm, exp))
780 goto out;
781
782 if (freezing(current))
783 alarmtimer_freezerset(exp, type);
784
785 /* abs timers don't set remaining time or restart */
786 if (flags == TIMER_ABSTIME) {
787 ret = -ERESTARTNOHAND;
788 goto out;
789 }
790
791 if (rmtp) {
792 ret = update_rmtp(exp, type, rmtp);
793 if (ret <= 0)
794 goto out;
795 }
796
797 restart = &current->restart_block;
798 restart->fn = alarm_timer_nsleep_restart;
799 restart->nanosleep.clockid = type;
800 restart->nanosleep.expires = exp.tv64;
801 restart->nanosleep.rmtp = rmtp;
802 ret = -ERESTART_RESTARTBLOCK;
803
804out:
805 return ret;
806}
807
808
809/* Suspend hook structures */
810static const struct dev_pm_ops alarmtimer_pm_ops = {
811 .suspend = alarmtimer_suspend,
812};
813
814static struct platform_driver alarmtimer_driver = {
815 .driver = {
816 .name = "alarmtimer",
817 .pm = &alarmtimer_pm_ops,
818 }
819};
820
821/**
822 * alarmtimer_init - Initialize alarm timer code
823 *
824 * This function initializes the alarm bases and registers
825 * the posix clock ids.
826 */
827static int __init alarmtimer_init(void)
828{
829 struct platform_device *pdev;
830 int error = 0;
831 int i;
832 struct k_clock alarm_clock = {
833 .clock_getres = alarm_clock_getres,
834 .clock_get = alarm_clock_get,
835 .timer_create = alarm_timer_create,
836 .timer_set = alarm_timer_set,
837 .timer_del = alarm_timer_del,
838 .timer_get = alarm_timer_get,
839 .nsleep = alarm_timer_nsleep,
840 };
841
842 alarmtimer_rtc_timer_init();
843
844 posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
845 posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
846
847 /* Initialize alarm bases */
848 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
849 alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
850 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
851 alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
852 for (i = 0; i < ALARM_NUMTYPE; i++) {
853 timerqueue_init_head(&alarm_bases[i].timerqueue);
854 spin_lock_init(&alarm_bases[i].lock);
855 }
856
857 error = alarmtimer_rtc_interface_setup();
858 if (error)
859 return error;
860
861 error = platform_driver_register(&alarmtimer_driver);
862 if (error)
863 goto out_if;
864
865 pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
866 if (IS_ERR(pdev)) {
867 error = PTR_ERR(pdev);
868 goto out_drv;
869 }
870 ws = wakeup_source_register("alarmtimer");
871 return 0;
872
873out_drv:
874 platform_driver_unregister(&alarmtimer_driver);
875out_if:
876 alarmtimer_rtc_interface_remove();
877 return error;
878}
879device_initcall(alarmtimer_init);