Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame] | 1 | /* |
| 2 | * Implement CPU time clocks for the POSIX clock interface. |
| 3 | */ |
| 4 | |
| 5 | #include <linux/sched.h> |
| 6 | #include <linux/posix-timers.h> |
| 7 | #include <linux/errno.h> |
| 8 | #include <linux/math64.h> |
| 9 | #include <asm/uaccess.h> |
| 10 | #include <linux/kernel_stat.h> |
| 11 | #include <trace/events/timer.h> |
| 12 | #include <linux/random.h> |
| 13 | #include <linux/tick.h> |
| 14 | #include <linux/workqueue.h> |
| 15 | |
| 16 | /* |
| 17 | * Called after updating RLIMIT_CPU to run cpu timer and update |
| 18 | * tsk->signal->cputime_expires expiration cache if necessary. Needs |
| 19 | * siglock protection since other code may update expiration cache as |
| 20 | * well. |
| 21 | */ |
| 22 | void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new) |
| 23 | { |
| 24 | cputime_t cputime = secs_to_cputime(rlim_new); |
| 25 | |
| 26 | spin_lock_irq(&task->sighand->siglock); |
| 27 | set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL); |
| 28 | spin_unlock_irq(&task->sighand->siglock); |
| 29 | } |
| 30 | |
| 31 | static int check_clock(const clockid_t which_clock) |
| 32 | { |
| 33 | int error = 0; |
| 34 | struct task_struct *p; |
| 35 | const pid_t pid = CPUCLOCK_PID(which_clock); |
| 36 | |
| 37 | if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX) |
| 38 | return -EINVAL; |
| 39 | |
| 40 | if (pid == 0) |
| 41 | return 0; |
| 42 | |
| 43 | rcu_read_lock(); |
| 44 | p = find_task_by_vpid(pid); |
| 45 | if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ? |
| 46 | same_thread_group(p, current) : has_group_leader_pid(p))) { |
| 47 | error = -EINVAL; |
| 48 | } |
| 49 | rcu_read_unlock(); |
| 50 | |
| 51 | return error; |
| 52 | } |
| 53 | |
| 54 | static inline unsigned long long |
| 55 | timespec_to_sample(const clockid_t which_clock, const struct timespec *tp) |
| 56 | { |
| 57 | unsigned long long ret; |
| 58 | |
| 59 | ret = 0; /* high half always zero when .cpu used */ |
| 60 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { |
| 61 | ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec; |
| 62 | } else { |
| 63 | ret = cputime_to_expires(timespec_to_cputime(tp)); |
| 64 | } |
| 65 | return ret; |
| 66 | } |
| 67 | |
| 68 | static void sample_to_timespec(const clockid_t which_clock, |
| 69 | unsigned long long expires, |
| 70 | struct timespec *tp) |
| 71 | { |
| 72 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) |
| 73 | *tp = ns_to_timespec(expires); |
| 74 | else |
| 75 | cputime_to_timespec((__force cputime_t)expires, tp); |
| 76 | } |
| 77 | |
| 78 | /* |
| 79 | * Update expiry time from increment, and increase overrun count, |
| 80 | * given the current clock sample. |
| 81 | */ |
| 82 | static void bump_cpu_timer(struct k_itimer *timer, |
| 83 | unsigned long long now) |
| 84 | { |
| 85 | int i; |
| 86 | unsigned long long delta, incr; |
| 87 | |
| 88 | if (timer->it.cpu.incr == 0) |
| 89 | return; |
| 90 | |
| 91 | if (now < timer->it.cpu.expires) |
| 92 | return; |
| 93 | |
| 94 | incr = timer->it.cpu.incr; |
| 95 | delta = now + incr - timer->it.cpu.expires; |
| 96 | |
| 97 | /* Don't use (incr*2 < delta), incr*2 might overflow. */ |
| 98 | for (i = 0; incr < delta - incr; i++) |
| 99 | incr = incr << 1; |
| 100 | |
| 101 | for (; i >= 0; incr >>= 1, i--) { |
| 102 | if (delta < incr) |
| 103 | continue; |
| 104 | |
| 105 | timer->it.cpu.expires += incr; |
| 106 | timer->it_overrun += 1 << i; |
| 107 | delta -= incr; |
| 108 | } |
| 109 | } |
| 110 | |
| 111 | /** |
| 112 | * task_cputime_zero - Check a task_cputime struct for all zero fields. |
| 113 | * |
| 114 | * @cputime: The struct to compare. |
| 115 | * |
| 116 | * Checks @cputime to see if all fields are zero. Returns true if all fields |
| 117 | * are zero, false if any field is nonzero. |
| 118 | */ |
| 119 | static inline int task_cputime_zero(const struct task_cputime *cputime) |
| 120 | { |
| 121 | if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime) |
| 122 | return 1; |
| 123 | return 0; |
| 124 | } |
| 125 | |
| 126 | static inline unsigned long long prof_ticks(struct task_struct *p) |
| 127 | { |
| 128 | cputime_t utime, stime; |
| 129 | |
| 130 | task_cputime(p, &utime, &stime); |
| 131 | |
| 132 | return cputime_to_expires(utime + stime); |
| 133 | } |
| 134 | static inline unsigned long long virt_ticks(struct task_struct *p) |
| 135 | { |
| 136 | cputime_t utime; |
| 137 | |
| 138 | task_cputime(p, &utime, NULL); |
| 139 | |
| 140 | return cputime_to_expires(utime); |
| 141 | } |
| 142 | |
| 143 | static int |
| 144 | posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp) |
| 145 | { |
| 146 | int error = check_clock(which_clock); |
| 147 | if (!error) { |
| 148 | tp->tv_sec = 0; |
| 149 | tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); |
| 150 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { |
| 151 | /* |
| 152 | * If sched_clock is using a cycle counter, we |
| 153 | * don't have any idea of its true resolution |
| 154 | * exported, but it is much more than 1s/HZ. |
| 155 | */ |
| 156 | tp->tv_nsec = 1; |
| 157 | } |
| 158 | } |
| 159 | return error; |
| 160 | } |
| 161 | |
| 162 | static int |
| 163 | posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp) |
| 164 | { |
| 165 | /* |
| 166 | * You can never reset a CPU clock, but we check for other errors |
| 167 | * in the call before failing with EPERM. |
| 168 | */ |
| 169 | int error = check_clock(which_clock); |
| 170 | if (error == 0) { |
| 171 | error = -EPERM; |
| 172 | } |
| 173 | return error; |
| 174 | } |
| 175 | |
| 176 | |
| 177 | /* |
| 178 | * Sample a per-thread clock for the given task. |
| 179 | */ |
| 180 | static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p, |
| 181 | unsigned long long *sample) |
| 182 | { |
| 183 | switch (CPUCLOCK_WHICH(which_clock)) { |
| 184 | default: |
| 185 | return -EINVAL; |
| 186 | case CPUCLOCK_PROF: |
| 187 | *sample = prof_ticks(p); |
| 188 | break; |
| 189 | case CPUCLOCK_VIRT: |
| 190 | *sample = virt_ticks(p); |
| 191 | break; |
| 192 | case CPUCLOCK_SCHED: |
| 193 | *sample = task_sched_runtime(p); |
| 194 | break; |
| 195 | } |
| 196 | return 0; |
| 197 | } |
| 198 | |
| 199 | /* |
| 200 | * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg |
| 201 | * to avoid race conditions with concurrent updates to cputime. |
| 202 | */ |
| 203 | static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime) |
| 204 | { |
| 205 | u64 curr_cputime; |
| 206 | retry: |
| 207 | curr_cputime = atomic64_read(cputime); |
| 208 | if (sum_cputime > curr_cputime) { |
| 209 | if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime) |
| 210 | goto retry; |
| 211 | } |
| 212 | } |
| 213 | |
| 214 | static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum) |
| 215 | { |
| 216 | __update_gt_cputime(&cputime_atomic->utime, sum->utime); |
| 217 | __update_gt_cputime(&cputime_atomic->stime, sum->stime); |
| 218 | __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime); |
| 219 | } |
| 220 | |
| 221 | /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */ |
| 222 | static inline void sample_cputime_atomic(struct task_cputime *times, |
| 223 | struct task_cputime_atomic *atomic_times) |
| 224 | { |
| 225 | times->utime = atomic64_read(&atomic_times->utime); |
| 226 | times->stime = atomic64_read(&atomic_times->stime); |
| 227 | times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime); |
| 228 | } |
| 229 | |
| 230 | void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times) |
| 231 | { |
| 232 | struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; |
| 233 | struct task_cputime sum; |
| 234 | |
| 235 | /* Check if cputimer isn't running. This is accessed without locking. */ |
| 236 | if (!READ_ONCE(cputimer->running)) { |
| 237 | /* |
| 238 | * The POSIX timer interface allows for absolute time expiry |
| 239 | * values through the TIMER_ABSTIME flag, therefore we have |
| 240 | * to synchronize the timer to the clock every time we start it. |
| 241 | */ |
| 242 | thread_group_cputime(tsk, &sum); |
| 243 | update_gt_cputime(&cputimer->cputime_atomic, &sum); |
| 244 | |
| 245 | /* |
| 246 | * We're setting cputimer->running without a lock. Ensure |
| 247 | * this only gets written to in one operation. We set |
| 248 | * running after update_gt_cputime() as a small optimization, |
| 249 | * but barriers are not required because update_gt_cputime() |
| 250 | * can handle concurrent updates. |
| 251 | */ |
| 252 | WRITE_ONCE(cputimer->running, true); |
| 253 | } |
| 254 | sample_cputime_atomic(times, &cputimer->cputime_atomic); |
| 255 | } |
| 256 | |
| 257 | /* |
| 258 | * Sample a process (thread group) clock for the given group_leader task. |
| 259 | * Must be called with task sighand lock held for safe while_each_thread() |
| 260 | * traversal. |
| 261 | */ |
| 262 | static int cpu_clock_sample_group(const clockid_t which_clock, |
| 263 | struct task_struct *p, |
| 264 | unsigned long long *sample) |
| 265 | { |
| 266 | struct task_cputime cputime; |
| 267 | |
| 268 | switch (CPUCLOCK_WHICH(which_clock)) { |
| 269 | default: |
| 270 | return -EINVAL; |
| 271 | case CPUCLOCK_PROF: |
| 272 | thread_group_cputime(p, &cputime); |
| 273 | *sample = cputime_to_expires(cputime.utime + cputime.stime); |
| 274 | break; |
| 275 | case CPUCLOCK_VIRT: |
| 276 | thread_group_cputime(p, &cputime); |
| 277 | *sample = cputime_to_expires(cputime.utime); |
| 278 | break; |
| 279 | case CPUCLOCK_SCHED: |
| 280 | thread_group_cputime(p, &cputime); |
| 281 | *sample = cputime.sum_exec_runtime; |
| 282 | break; |
| 283 | } |
| 284 | return 0; |
| 285 | } |
| 286 | |
| 287 | static int posix_cpu_clock_get_task(struct task_struct *tsk, |
| 288 | const clockid_t which_clock, |
| 289 | struct timespec *tp) |
| 290 | { |
| 291 | int err = -EINVAL; |
| 292 | unsigned long long rtn; |
| 293 | |
| 294 | if (CPUCLOCK_PERTHREAD(which_clock)) { |
| 295 | if (same_thread_group(tsk, current)) |
| 296 | err = cpu_clock_sample(which_clock, tsk, &rtn); |
| 297 | } else { |
| 298 | if (tsk == current || thread_group_leader(tsk)) |
| 299 | err = cpu_clock_sample_group(which_clock, tsk, &rtn); |
| 300 | } |
| 301 | |
| 302 | if (!err) |
| 303 | sample_to_timespec(which_clock, rtn, tp); |
| 304 | |
| 305 | return err; |
| 306 | } |
| 307 | |
| 308 | |
| 309 | static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp) |
| 310 | { |
| 311 | const pid_t pid = CPUCLOCK_PID(which_clock); |
| 312 | int err = -EINVAL; |
| 313 | |
| 314 | if (pid == 0) { |
| 315 | /* |
| 316 | * Special case constant value for our own clocks. |
| 317 | * We don't have to do any lookup to find ourselves. |
| 318 | */ |
| 319 | err = posix_cpu_clock_get_task(current, which_clock, tp); |
| 320 | } else { |
| 321 | /* |
| 322 | * Find the given PID, and validate that the caller |
| 323 | * should be able to see it. |
| 324 | */ |
| 325 | struct task_struct *p; |
| 326 | rcu_read_lock(); |
| 327 | p = find_task_by_vpid(pid); |
| 328 | if (p) |
| 329 | err = posix_cpu_clock_get_task(p, which_clock, tp); |
| 330 | rcu_read_unlock(); |
| 331 | } |
| 332 | |
| 333 | return err; |
| 334 | } |
| 335 | |
| 336 | |
| 337 | /* |
| 338 | * Validate the clockid_t for a new CPU-clock timer, and initialize the timer. |
| 339 | * This is called from sys_timer_create() and do_cpu_nanosleep() with the |
| 340 | * new timer already all-zeros initialized. |
| 341 | */ |
| 342 | static int posix_cpu_timer_create(struct k_itimer *new_timer) |
| 343 | { |
| 344 | int ret = 0; |
| 345 | const pid_t pid = CPUCLOCK_PID(new_timer->it_clock); |
| 346 | struct task_struct *p; |
| 347 | |
| 348 | if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX) |
| 349 | return -EINVAL; |
| 350 | |
| 351 | INIT_LIST_HEAD(&new_timer->it.cpu.entry); |
| 352 | |
| 353 | rcu_read_lock(); |
| 354 | if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) { |
| 355 | if (pid == 0) { |
| 356 | p = current; |
| 357 | } else { |
| 358 | p = find_task_by_vpid(pid); |
| 359 | if (p && !same_thread_group(p, current)) |
| 360 | p = NULL; |
| 361 | } |
| 362 | } else { |
| 363 | if (pid == 0) { |
| 364 | p = current->group_leader; |
| 365 | } else { |
| 366 | p = find_task_by_vpid(pid); |
| 367 | if (p && !has_group_leader_pid(p)) |
| 368 | p = NULL; |
| 369 | } |
| 370 | } |
| 371 | new_timer->it.cpu.task = p; |
| 372 | if (p) { |
| 373 | get_task_struct(p); |
| 374 | } else { |
| 375 | ret = -EINVAL; |
| 376 | } |
| 377 | rcu_read_unlock(); |
| 378 | |
| 379 | return ret; |
| 380 | } |
| 381 | |
| 382 | /* |
| 383 | * Clean up a CPU-clock timer that is about to be destroyed. |
| 384 | * This is called from timer deletion with the timer already locked. |
| 385 | * If we return TIMER_RETRY, it's necessary to release the timer's lock |
| 386 | * and try again. (This happens when the timer is in the middle of firing.) |
| 387 | */ |
| 388 | static int posix_cpu_timer_del(struct k_itimer *timer) |
| 389 | { |
| 390 | int ret = 0; |
| 391 | unsigned long flags; |
| 392 | struct sighand_struct *sighand; |
| 393 | struct task_struct *p = timer->it.cpu.task; |
| 394 | |
| 395 | WARN_ON_ONCE(p == NULL); |
| 396 | |
| 397 | /* |
| 398 | * Protect against sighand release/switch in exit/exec and process/ |
| 399 | * thread timer list entry concurrent read/writes. |
| 400 | */ |
| 401 | sighand = lock_task_sighand(p, &flags); |
| 402 | if (unlikely(sighand == NULL)) { |
| 403 | /* |
| 404 | * We raced with the reaping of the task. |
| 405 | * The deletion should have cleared us off the list. |
| 406 | */ |
| 407 | WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry)); |
| 408 | } else { |
| 409 | if (timer->it.cpu.firing) |
| 410 | ret = TIMER_RETRY; |
| 411 | else |
| 412 | list_del(&timer->it.cpu.entry); |
| 413 | |
| 414 | unlock_task_sighand(p, &flags); |
| 415 | } |
| 416 | |
| 417 | if (!ret) |
| 418 | put_task_struct(p); |
| 419 | |
| 420 | return ret; |
| 421 | } |
| 422 | |
| 423 | static void cleanup_timers_list(struct list_head *head) |
| 424 | { |
| 425 | struct cpu_timer_list *timer, *next; |
| 426 | |
| 427 | list_for_each_entry_safe(timer, next, head, entry) |
| 428 | list_del_init(&timer->entry); |
| 429 | } |
| 430 | |
| 431 | /* |
| 432 | * Clean out CPU timers still ticking when a thread exited. The task |
| 433 | * pointer is cleared, and the expiry time is replaced with the residual |
| 434 | * time for later timer_gettime calls to return. |
| 435 | * This must be called with the siglock held. |
| 436 | */ |
| 437 | static void cleanup_timers(struct list_head *head) |
| 438 | { |
| 439 | cleanup_timers_list(head); |
| 440 | cleanup_timers_list(++head); |
| 441 | cleanup_timers_list(++head); |
| 442 | } |
| 443 | |
| 444 | /* |
| 445 | * These are both called with the siglock held, when the current thread |
| 446 | * is being reaped. When the final (leader) thread in the group is reaped, |
| 447 | * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit. |
| 448 | */ |
| 449 | void posix_cpu_timers_exit(struct task_struct *tsk) |
| 450 | { |
| 451 | add_device_randomness((const void*) &tsk->se.sum_exec_runtime, |
| 452 | sizeof(unsigned long long)); |
| 453 | cleanup_timers(tsk->cpu_timers); |
| 454 | |
| 455 | } |
| 456 | void posix_cpu_timers_exit_group(struct task_struct *tsk) |
| 457 | { |
| 458 | cleanup_timers(tsk->signal->cpu_timers); |
| 459 | } |
| 460 | |
| 461 | static inline int expires_gt(cputime_t expires, cputime_t new_exp) |
| 462 | { |
| 463 | return expires == 0 || expires > new_exp; |
| 464 | } |
| 465 | |
| 466 | /* |
| 467 | * Insert the timer on the appropriate list before any timers that |
| 468 | * expire later. This must be called with the sighand lock held. |
| 469 | */ |
| 470 | static void arm_timer(struct k_itimer *timer) |
| 471 | { |
| 472 | struct task_struct *p = timer->it.cpu.task; |
| 473 | struct list_head *head, *listpos; |
| 474 | struct task_cputime *cputime_expires; |
| 475 | struct cpu_timer_list *const nt = &timer->it.cpu; |
| 476 | struct cpu_timer_list *next; |
| 477 | |
| 478 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { |
| 479 | head = p->cpu_timers; |
| 480 | cputime_expires = &p->cputime_expires; |
| 481 | } else { |
| 482 | head = p->signal->cpu_timers; |
| 483 | cputime_expires = &p->signal->cputime_expires; |
| 484 | } |
| 485 | head += CPUCLOCK_WHICH(timer->it_clock); |
| 486 | |
| 487 | listpos = head; |
| 488 | list_for_each_entry(next, head, entry) { |
| 489 | if (nt->expires < next->expires) |
| 490 | break; |
| 491 | listpos = &next->entry; |
| 492 | } |
| 493 | list_add(&nt->entry, listpos); |
| 494 | |
| 495 | if (listpos == head) { |
| 496 | unsigned long long exp = nt->expires; |
| 497 | |
| 498 | /* |
| 499 | * We are the new earliest-expiring POSIX 1.b timer, hence |
| 500 | * need to update expiration cache. Take into account that |
| 501 | * for process timers we share expiration cache with itimers |
| 502 | * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME. |
| 503 | */ |
| 504 | |
| 505 | switch (CPUCLOCK_WHICH(timer->it_clock)) { |
| 506 | case CPUCLOCK_PROF: |
| 507 | if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp))) |
| 508 | cputime_expires->prof_exp = expires_to_cputime(exp); |
| 509 | break; |
| 510 | case CPUCLOCK_VIRT: |
| 511 | if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp))) |
| 512 | cputime_expires->virt_exp = expires_to_cputime(exp); |
| 513 | break; |
| 514 | case CPUCLOCK_SCHED: |
| 515 | if (cputime_expires->sched_exp == 0 || |
| 516 | cputime_expires->sched_exp > exp) |
| 517 | cputime_expires->sched_exp = exp; |
| 518 | break; |
| 519 | } |
| 520 | } |
| 521 | } |
| 522 | |
| 523 | /* |
| 524 | * The timer is locked, fire it and arrange for its reload. |
| 525 | */ |
| 526 | static void cpu_timer_fire(struct k_itimer *timer) |
| 527 | { |
| 528 | if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { |
| 529 | /* |
| 530 | * User don't want any signal. |
| 531 | */ |
| 532 | timer->it.cpu.expires = 0; |
| 533 | } else if (unlikely(timer->sigq == NULL)) { |
| 534 | /* |
| 535 | * This a special case for clock_nanosleep, |
| 536 | * not a normal timer from sys_timer_create. |
| 537 | */ |
| 538 | wake_up_process(timer->it_process); |
| 539 | timer->it.cpu.expires = 0; |
| 540 | } else if (timer->it.cpu.incr == 0) { |
| 541 | /* |
| 542 | * One-shot timer. Clear it as soon as it's fired. |
| 543 | */ |
| 544 | posix_timer_event(timer, 0); |
| 545 | timer->it.cpu.expires = 0; |
| 546 | } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) { |
| 547 | /* |
| 548 | * The signal did not get queued because the signal |
| 549 | * was ignored, so we won't get any callback to |
| 550 | * reload the timer. But we need to keep it |
| 551 | * ticking in case the signal is deliverable next time. |
| 552 | */ |
| 553 | posix_cpu_timer_schedule(timer); |
| 554 | } |
| 555 | } |
| 556 | |
| 557 | /* |
| 558 | * Sample a process (thread group) timer for the given group_leader task. |
| 559 | * Must be called with task sighand lock held for safe while_each_thread() |
| 560 | * traversal. |
| 561 | */ |
| 562 | static int cpu_timer_sample_group(const clockid_t which_clock, |
| 563 | struct task_struct *p, |
| 564 | unsigned long long *sample) |
| 565 | { |
| 566 | struct task_cputime cputime; |
| 567 | |
| 568 | thread_group_cputimer(p, &cputime); |
| 569 | switch (CPUCLOCK_WHICH(which_clock)) { |
| 570 | default: |
| 571 | return -EINVAL; |
| 572 | case CPUCLOCK_PROF: |
| 573 | *sample = cputime_to_expires(cputime.utime + cputime.stime); |
| 574 | break; |
| 575 | case CPUCLOCK_VIRT: |
| 576 | *sample = cputime_to_expires(cputime.utime); |
| 577 | break; |
| 578 | case CPUCLOCK_SCHED: |
| 579 | *sample = cputime.sum_exec_runtime; |
| 580 | break; |
| 581 | } |
| 582 | return 0; |
| 583 | } |
| 584 | |
| 585 | #ifdef CONFIG_NO_HZ_FULL |
| 586 | static void nohz_kick_work_fn(struct work_struct *work) |
| 587 | { |
| 588 | tick_nohz_full_kick_all(); |
| 589 | } |
| 590 | |
| 591 | static DECLARE_WORK(nohz_kick_work, nohz_kick_work_fn); |
| 592 | |
| 593 | /* |
| 594 | * We need the IPIs to be sent from sane process context. |
| 595 | * The posix cpu timers are always set with irqs disabled. |
| 596 | */ |
| 597 | static void posix_cpu_timer_kick_nohz(void) |
| 598 | { |
| 599 | if (context_tracking_is_enabled()) |
| 600 | schedule_work(&nohz_kick_work); |
| 601 | } |
| 602 | |
| 603 | bool posix_cpu_timers_can_stop_tick(struct task_struct *tsk) |
| 604 | { |
| 605 | if (!task_cputime_zero(&tsk->cputime_expires)) |
| 606 | return false; |
| 607 | |
| 608 | /* Check if cputimer is running. This is accessed without locking. */ |
| 609 | if (READ_ONCE(tsk->signal->cputimer.running)) |
| 610 | return false; |
| 611 | |
| 612 | return true; |
| 613 | } |
| 614 | #else |
| 615 | static inline void posix_cpu_timer_kick_nohz(void) { } |
| 616 | #endif |
| 617 | |
| 618 | /* |
| 619 | * Guts of sys_timer_settime for CPU timers. |
| 620 | * This is called with the timer locked and interrupts disabled. |
| 621 | * If we return TIMER_RETRY, it's necessary to release the timer's lock |
| 622 | * and try again. (This happens when the timer is in the middle of firing.) |
| 623 | */ |
| 624 | static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags, |
| 625 | struct itimerspec *new, struct itimerspec *old) |
| 626 | { |
| 627 | unsigned long flags; |
| 628 | struct sighand_struct *sighand; |
| 629 | struct task_struct *p = timer->it.cpu.task; |
| 630 | unsigned long long old_expires, new_expires, old_incr, val; |
| 631 | int ret; |
| 632 | |
| 633 | WARN_ON_ONCE(p == NULL); |
| 634 | |
| 635 | new_expires = timespec_to_sample(timer->it_clock, &new->it_value); |
| 636 | |
| 637 | /* |
| 638 | * Protect against sighand release/switch in exit/exec and p->cpu_timers |
| 639 | * and p->signal->cpu_timers read/write in arm_timer() |
| 640 | */ |
| 641 | sighand = lock_task_sighand(p, &flags); |
| 642 | /* |
| 643 | * If p has just been reaped, we can no |
| 644 | * longer get any information about it at all. |
| 645 | */ |
| 646 | if (unlikely(sighand == NULL)) { |
| 647 | return -ESRCH; |
| 648 | } |
| 649 | |
| 650 | /* |
| 651 | * Disarm any old timer after extracting its expiry time. |
| 652 | */ |
| 653 | WARN_ON_ONCE(!irqs_disabled()); |
| 654 | |
| 655 | ret = 0; |
| 656 | old_incr = timer->it.cpu.incr; |
| 657 | old_expires = timer->it.cpu.expires; |
| 658 | if (unlikely(timer->it.cpu.firing)) { |
| 659 | timer->it.cpu.firing = -1; |
| 660 | ret = TIMER_RETRY; |
| 661 | } else |
| 662 | list_del_init(&timer->it.cpu.entry); |
| 663 | |
| 664 | /* |
| 665 | * We need to sample the current value to convert the new |
| 666 | * value from to relative and absolute, and to convert the |
| 667 | * old value from absolute to relative. To set a process |
| 668 | * timer, we need a sample to balance the thread expiry |
| 669 | * times (in arm_timer). With an absolute time, we must |
| 670 | * check if it's already passed. In short, we need a sample. |
| 671 | */ |
| 672 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { |
| 673 | cpu_clock_sample(timer->it_clock, p, &val); |
| 674 | } else { |
| 675 | cpu_timer_sample_group(timer->it_clock, p, &val); |
| 676 | } |
| 677 | |
| 678 | if (old) { |
| 679 | if (old_expires == 0) { |
| 680 | old->it_value.tv_sec = 0; |
| 681 | old->it_value.tv_nsec = 0; |
| 682 | } else { |
| 683 | /* |
| 684 | * Update the timer in case it has |
| 685 | * overrun already. If it has, |
| 686 | * we'll report it as having overrun |
| 687 | * and with the next reloaded timer |
| 688 | * already ticking, though we are |
| 689 | * swallowing that pending |
| 690 | * notification here to install the |
| 691 | * new setting. |
| 692 | */ |
| 693 | bump_cpu_timer(timer, val); |
| 694 | if (val < timer->it.cpu.expires) { |
| 695 | old_expires = timer->it.cpu.expires - val; |
| 696 | sample_to_timespec(timer->it_clock, |
| 697 | old_expires, |
| 698 | &old->it_value); |
| 699 | } else { |
| 700 | old->it_value.tv_nsec = 1; |
| 701 | old->it_value.tv_sec = 0; |
| 702 | } |
| 703 | } |
| 704 | } |
| 705 | |
| 706 | if (unlikely(ret)) { |
| 707 | /* |
| 708 | * We are colliding with the timer actually firing. |
| 709 | * Punt after filling in the timer's old value, and |
| 710 | * disable this firing since we are already reporting |
| 711 | * it as an overrun (thanks to bump_cpu_timer above). |
| 712 | */ |
| 713 | unlock_task_sighand(p, &flags); |
| 714 | goto out; |
| 715 | } |
| 716 | |
| 717 | if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) { |
| 718 | new_expires += val; |
| 719 | } |
| 720 | |
| 721 | /* |
| 722 | * Install the new expiry time (or zero). |
| 723 | * For a timer with no notification action, we don't actually |
| 724 | * arm the timer (we'll just fake it for timer_gettime). |
| 725 | */ |
| 726 | timer->it.cpu.expires = new_expires; |
| 727 | if (new_expires != 0 && val < new_expires) { |
| 728 | arm_timer(timer); |
| 729 | } |
| 730 | |
| 731 | unlock_task_sighand(p, &flags); |
| 732 | /* |
| 733 | * Install the new reload setting, and |
| 734 | * set up the signal and overrun bookkeeping. |
| 735 | */ |
| 736 | timer->it.cpu.incr = timespec_to_sample(timer->it_clock, |
| 737 | &new->it_interval); |
| 738 | |
| 739 | /* |
| 740 | * This acts as a modification timestamp for the timer, |
| 741 | * so any automatic reload attempt will punt on seeing |
| 742 | * that we have reset the timer manually. |
| 743 | */ |
| 744 | timer->it_requeue_pending = (timer->it_requeue_pending + 2) & |
| 745 | ~REQUEUE_PENDING; |
| 746 | timer->it_overrun_last = 0; |
| 747 | timer->it_overrun = -1; |
| 748 | |
| 749 | if (new_expires != 0 && !(val < new_expires)) { |
| 750 | /* |
| 751 | * The designated time already passed, so we notify |
| 752 | * immediately, even if the thread never runs to |
| 753 | * accumulate more time on this clock. |
| 754 | */ |
| 755 | cpu_timer_fire(timer); |
| 756 | } |
| 757 | |
| 758 | ret = 0; |
| 759 | out: |
| 760 | if (old) { |
| 761 | sample_to_timespec(timer->it_clock, |
| 762 | old_incr, &old->it_interval); |
| 763 | } |
| 764 | if (!ret) |
| 765 | posix_cpu_timer_kick_nohz(); |
| 766 | return ret; |
| 767 | } |
| 768 | |
| 769 | static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp) |
| 770 | { |
| 771 | unsigned long long now; |
| 772 | struct task_struct *p = timer->it.cpu.task; |
| 773 | |
| 774 | WARN_ON_ONCE(p == NULL); |
| 775 | |
| 776 | /* |
| 777 | * Easy part: convert the reload time. |
| 778 | */ |
| 779 | sample_to_timespec(timer->it_clock, |
| 780 | timer->it.cpu.incr, &itp->it_interval); |
| 781 | |
| 782 | if (timer->it.cpu.expires == 0) { /* Timer not armed at all. */ |
| 783 | itp->it_value.tv_sec = itp->it_value.tv_nsec = 0; |
| 784 | return; |
| 785 | } |
| 786 | |
| 787 | /* |
| 788 | * Sample the clock to take the difference with the expiry time. |
| 789 | */ |
| 790 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { |
| 791 | cpu_clock_sample(timer->it_clock, p, &now); |
| 792 | } else { |
| 793 | struct sighand_struct *sighand; |
| 794 | unsigned long flags; |
| 795 | |
| 796 | /* |
| 797 | * Protect against sighand release/switch in exit/exec and |
| 798 | * also make timer sampling safe if it ends up calling |
| 799 | * thread_group_cputime(). |
| 800 | */ |
| 801 | sighand = lock_task_sighand(p, &flags); |
| 802 | if (unlikely(sighand == NULL)) { |
| 803 | /* |
| 804 | * The process has been reaped. |
| 805 | * We can't even collect a sample any more. |
| 806 | * Call the timer disarmed, nothing else to do. |
| 807 | */ |
| 808 | timer->it.cpu.expires = 0; |
| 809 | sample_to_timespec(timer->it_clock, timer->it.cpu.expires, |
| 810 | &itp->it_value); |
| 811 | return; |
| 812 | } else { |
| 813 | cpu_timer_sample_group(timer->it_clock, p, &now); |
| 814 | unlock_task_sighand(p, &flags); |
| 815 | } |
| 816 | } |
| 817 | |
| 818 | if (now < timer->it.cpu.expires) { |
| 819 | sample_to_timespec(timer->it_clock, |
| 820 | timer->it.cpu.expires - now, |
| 821 | &itp->it_value); |
| 822 | } else { |
| 823 | /* |
| 824 | * The timer should have expired already, but the firing |
| 825 | * hasn't taken place yet. Say it's just about to expire. |
| 826 | */ |
| 827 | itp->it_value.tv_nsec = 1; |
| 828 | itp->it_value.tv_sec = 0; |
| 829 | } |
| 830 | } |
| 831 | |
| 832 | static unsigned long long |
| 833 | check_timers_list(struct list_head *timers, |
| 834 | struct list_head *firing, |
| 835 | unsigned long long curr) |
| 836 | { |
| 837 | int maxfire = 20; |
| 838 | |
| 839 | while (!list_empty(timers)) { |
| 840 | struct cpu_timer_list *t; |
| 841 | |
| 842 | t = list_first_entry(timers, struct cpu_timer_list, entry); |
| 843 | |
| 844 | if (!--maxfire || curr < t->expires) |
| 845 | return t->expires; |
| 846 | |
| 847 | t->firing = 1; |
| 848 | list_move_tail(&t->entry, firing); |
| 849 | } |
| 850 | |
| 851 | return 0; |
| 852 | } |
| 853 | |
| 854 | /* |
| 855 | * Check for any per-thread CPU timers that have fired and move them off |
| 856 | * the tsk->cpu_timers[N] list onto the firing list. Here we update the |
| 857 | * tsk->it_*_expires values to reflect the remaining thread CPU timers. |
| 858 | */ |
| 859 | static void check_thread_timers(struct task_struct *tsk, |
| 860 | struct list_head *firing) |
| 861 | { |
| 862 | struct list_head *timers = tsk->cpu_timers; |
| 863 | struct signal_struct *const sig = tsk->signal; |
| 864 | struct task_cputime *tsk_expires = &tsk->cputime_expires; |
| 865 | unsigned long long expires; |
| 866 | unsigned long soft; |
| 867 | |
| 868 | /* |
| 869 | * If cputime_expires is zero, then there are no active |
| 870 | * per thread CPU timers. |
| 871 | */ |
| 872 | if (task_cputime_zero(&tsk->cputime_expires)) |
| 873 | return; |
| 874 | |
| 875 | expires = check_timers_list(timers, firing, prof_ticks(tsk)); |
| 876 | tsk_expires->prof_exp = expires_to_cputime(expires); |
| 877 | |
| 878 | expires = check_timers_list(++timers, firing, virt_ticks(tsk)); |
| 879 | tsk_expires->virt_exp = expires_to_cputime(expires); |
| 880 | |
| 881 | tsk_expires->sched_exp = check_timers_list(++timers, firing, |
| 882 | tsk->se.sum_exec_runtime); |
| 883 | |
| 884 | /* |
| 885 | * Check for the special case thread timers. |
| 886 | */ |
| 887 | soft = READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur); |
| 888 | if (soft != RLIM_INFINITY) { |
| 889 | unsigned long hard = |
| 890 | READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max); |
| 891 | |
| 892 | if (hard != RLIM_INFINITY && |
| 893 | tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) { |
| 894 | /* |
| 895 | * At the hard limit, we just die. |
| 896 | * No need to calculate anything else now. |
| 897 | */ |
| 898 | __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); |
| 899 | return; |
| 900 | } |
| 901 | if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) { |
| 902 | /* |
| 903 | * At the soft limit, send a SIGXCPU every second. |
| 904 | */ |
| 905 | if (soft < hard) { |
| 906 | soft += USEC_PER_SEC; |
| 907 | sig->rlim[RLIMIT_RTTIME].rlim_cur = soft; |
| 908 | } |
| 909 | printk(KERN_INFO |
| 910 | "RT Watchdog Timeout: %s[%d]\n", |
| 911 | tsk->comm, task_pid_nr(tsk)); |
| 912 | __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); |
| 913 | } |
| 914 | } |
| 915 | } |
| 916 | |
| 917 | static inline void stop_process_timers(struct signal_struct *sig) |
| 918 | { |
| 919 | struct thread_group_cputimer *cputimer = &sig->cputimer; |
| 920 | |
| 921 | /* Turn off cputimer->running. This is done without locking. */ |
| 922 | WRITE_ONCE(cputimer->running, false); |
| 923 | } |
| 924 | |
| 925 | static u32 onecputick; |
| 926 | |
| 927 | static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, |
| 928 | unsigned long long *expires, |
| 929 | unsigned long long cur_time, int signo) |
| 930 | { |
| 931 | if (!it->expires) |
| 932 | return; |
| 933 | |
| 934 | if (cur_time >= it->expires) { |
| 935 | if (it->incr) { |
| 936 | it->expires += it->incr; |
| 937 | it->error += it->incr_error; |
| 938 | if (it->error >= onecputick) { |
| 939 | it->expires -= cputime_one_jiffy; |
| 940 | it->error -= onecputick; |
| 941 | } |
| 942 | } else { |
| 943 | it->expires = 0; |
| 944 | } |
| 945 | |
| 946 | trace_itimer_expire(signo == SIGPROF ? |
| 947 | ITIMER_PROF : ITIMER_VIRTUAL, |
| 948 | tsk->signal->leader_pid, cur_time); |
| 949 | __group_send_sig_info(signo, SEND_SIG_PRIV, tsk); |
| 950 | } |
| 951 | |
| 952 | if (it->expires && (!*expires || it->expires < *expires)) { |
| 953 | *expires = it->expires; |
| 954 | } |
| 955 | } |
| 956 | |
| 957 | /* |
| 958 | * Check for any per-thread CPU timers that have fired and move them |
| 959 | * off the tsk->*_timers list onto the firing list. Per-thread timers |
| 960 | * have already been taken off. |
| 961 | */ |
| 962 | static void check_process_timers(struct task_struct *tsk, |
| 963 | struct list_head *firing) |
| 964 | { |
| 965 | struct signal_struct *const sig = tsk->signal; |
| 966 | unsigned long long utime, ptime, virt_expires, prof_expires; |
| 967 | unsigned long long sum_sched_runtime, sched_expires; |
| 968 | struct list_head *timers = sig->cpu_timers; |
| 969 | struct task_cputime cputime; |
| 970 | unsigned long soft; |
| 971 | |
| 972 | /* |
| 973 | * If cputimer is not running, then there are no active |
| 974 | * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU). |
| 975 | */ |
| 976 | if (!READ_ONCE(tsk->signal->cputimer.running)) |
| 977 | return; |
| 978 | |
| 979 | /* |
| 980 | * Signify that a thread is checking for process timers. |
| 981 | * Write access to this field is protected by the sighand lock. |
| 982 | */ |
| 983 | sig->cputimer.checking_timer = true; |
| 984 | |
| 985 | /* |
| 986 | * Collect the current process totals. |
| 987 | */ |
| 988 | thread_group_cputimer(tsk, &cputime); |
| 989 | utime = cputime_to_expires(cputime.utime); |
| 990 | ptime = utime + cputime_to_expires(cputime.stime); |
| 991 | sum_sched_runtime = cputime.sum_exec_runtime; |
| 992 | |
| 993 | prof_expires = check_timers_list(timers, firing, ptime); |
| 994 | virt_expires = check_timers_list(++timers, firing, utime); |
| 995 | sched_expires = check_timers_list(++timers, firing, sum_sched_runtime); |
| 996 | |
| 997 | /* |
| 998 | * Check for the special case process timers. |
| 999 | */ |
| 1000 | check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime, |
| 1001 | SIGPROF); |
| 1002 | check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime, |
| 1003 | SIGVTALRM); |
| 1004 | soft = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); |
| 1005 | if (soft != RLIM_INFINITY) { |
| 1006 | unsigned long psecs = cputime_to_secs(ptime); |
| 1007 | unsigned long hard = |
| 1008 | READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_max); |
| 1009 | cputime_t x; |
| 1010 | if (psecs >= hard) { |
| 1011 | /* |
| 1012 | * At the hard limit, we just die. |
| 1013 | * No need to calculate anything else now. |
| 1014 | */ |
| 1015 | __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); |
| 1016 | return; |
| 1017 | } |
| 1018 | if (psecs >= soft) { |
| 1019 | /* |
| 1020 | * At the soft limit, send a SIGXCPU every second. |
| 1021 | */ |
| 1022 | __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); |
| 1023 | if (soft < hard) { |
| 1024 | soft++; |
| 1025 | sig->rlim[RLIMIT_CPU].rlim_cur = soft; |
| 1026 | } |
| 1027 | } |
| 1028 | x = secs_to_cputime(soft); |
| 1029 | if (!prof_expires || x < prof_expires) { |
| 1030 | prof_expires = x; |
| 1031 | } |
| 1032 | } |
| 1033 | |
| 1034 | sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires); |
| 1035 | sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires); |
| 1036 | sig->cputime_expires.sched_exp = sched_expires; |
| 1037 | if (task_cputime_zero(&sig->cputime_expires)) |
| 1038 | stop_process_timers(sig); |
| 1039 | |
| 1040 | sig->cputimer.checking_timer = false; |
| 1041 | } |
| 1042 | |
| 1043 | /* |
| 1044 | * This is called from the signal code (via do_schedule_next_timer) |
| 1045 | * when the last timer signal was delivered and we have to reload the timer. |
| 1046 | */ |
| 1047 | void posix_cpu_timer_schedule(struct k_itimer *timer) |
| 1048 | { |
| 1049 | struct sighand_struct *sighand; |
| 1050 | unsigned long flags; |
| 1051 | struct task_struct *p = timer->it.cpu.task; |
| 1052 | unsigned long long now; |
| 1053 | |
| 1054 | WARN_ON_ONCE(p == NULL); |
| 1055 | |
| 1056 | /* |
| 1057 | * Fetch the current sample and update the timer's expiry time. |
| 1058 | */ |
| 1059 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { |
| 1060 | cpu_clock_sample(timer->it_clock, p, &now); |
| 1061 | bump_cpu_timer(timer, now); |
| 1062 | if (unlikely(p->exit_state)) |
| 1063 | goto out; |
| 1064 | |
| 1065 | /* Protect timer list r/w in arm_timer() */ |
| 1066 | sighand = lock_task_sighand(p, &flags); |
| 1067 | if (!sighand) |
| 1068 | goto out; |
| 1069 | } else { |
| 1070 | /* |
| 1071 | * Protect arm_timer() and timer sampling in case of call to |
| 1072 | * thread_group_cputime(). |
| 1073 | */ |
| 1074 | sighand = lock_task_sighand(p, &flags); |
| 1075 | if (unlikely(sighand == NULL)) { |
| 1076 | /* |
| 1077 | * The process has been reaped. |
| 1078 | * We can't even collect a sample any more. |
| 1079 | */ |
| 1080 | timer->it.cpu.expires = 0; |
| 1081 | goto out; |
| 1082 | } else if (unlikely(p->exit_state) && thread_group_empty(p)) { |
| 1083 | unlock_task_sighand(p, &flags); |
| 1084 | /* Optimizations: if the process is dying, no need to rearm */ |
| 1085 | goto out; |
| 1086 | } |
| 1087 | cpu_timer_sample_group(timer->it_clock, p, &now); |
| 1088 | bump_cpu_timer(timer, now); |
| 1089 | /* Leave the sighand locked for the call below. */ |
| 1090 | } |
| 1091 | |
| 1092 | /* |
| 1093 | * Now re-arm for the new expiry time. |
| 1094 | */ |
| 1095 | WARN_ON_ONCE(!irqs_disabled()); |
| 1096 | arm_timer(timer); |
| 1097 | unlock_task_sighand(p, &flags); |
| 1098 | |
| 1099 | /* Kick full dynticks CPUs in case they need to tick on the new timer */ |
| 1100 | posix_cpu_timer_kick_nohz(); |
| 1101 | out: |
| 1102 | timer->it_overrun_last = timer->it_overrun; |
| 1103 | timer->it_overrun = -1; |
| 1104 | ++timer->it_requeue_pending; |
| 1105 | } |
| 1106 | |
| 1107 | /** |
| 1108 | * task_cputime_expired - Compare two task_cputime entities. |
| 1109 | * |
| 1110 | * @sample: The task_cputime structure to be checked for expiration. |
| 1111 | * @expires: Expiration times, against which @sample will be checked. |
| 1112 | * |
| 1113 | * Checks @sample against @expires to see if any field of @sample has expired. |
| 1114 | * Returns true if any field of the former is greater than the corresponding |
| 1115 | * field of the latter if the latter field is set. Otherwise returns false. |
| 1116 | */ |
| 1117 | static inline int task_cputime_expired(const struct task_cputime *sample, |
| 1118 | const struct task_cputime *expires) |
| 1119 | { |
| 1120 | if (expires->utime && sample->utime >= expires->utime) |
| 1121 | return 1; |
| 1122 | if (expires->stime && sample->utime + sample->stime >= expires->stime) |
| 1123 | return 1; |
| 1124 | if (expires->sum_exec_runtime != 0 && |
| 1125 | sample->sum_exec_runtime >= expires->sum_exec_runtime) |
| 1126 | return 1; |
| 1127 | return 0; |
| 1128 | } |
| 1129 | |
| 1130 | /** |
| 1131 | * fastpath_timer_check - POSIX CPU timers fast path. |
| 1132 | * |
| 1133 | * @tsk: The task (thread) being checked. |
| 1134 | * |
| 1135 | * Check the task and thread group timers. If both are zero (there are no |
| 1136 | * timers set) return false. Otherwise snapshot the task and thread group |
| 1137 | * timers and compare them with the corresponding expiration times. Return |
| 1138 | * true if a timer has expired, else return false. |
| 1139 | */ |
| 1140 | static inline int fastpath_timer_check(struct task_struct *tsk) |
| 1141 | { |
| 1142 | struct signal_struct *sig; |
| 1143 | |
| 1144 | if (!task_cputime_zero(&tsk->cputime_expires)) { |
| 1145 | struct task_cputime task_sample; |
| 1146 | |
| 1147 | task_cputime(tsk, &task_sample.utime, &task_sample.stime); |
| 1148 | task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime; |
| 1149 | if (task_cputime_expired(&task_sample, &tsk->cputime_expires)) |
| 1150 | return 1; |
| 1151 | } |
| 1152 | |
| 1153 | sig = tsk->signal; |
| 1154 | /* |
| 1155 | * Check if thread group timers expired when the cputimer is |
| 1156 | * running and no other thread in the group is already checking |
| 1157 | * for thread group cputimers. These fields are read without the |
| 1158 | * sighand lock. However, this is fine because this is meant to |
| 1159 | * be a fastpath heuristic to determine whether we should try to |
| 1160 | * acquire the sighand lock to check/handle timers. |
| 1161 | * |
| 1162 | * In the worst case scenario, if 'running' or 'checking_timer' gets |
| 1163 | * set but the current thread doesn't see the change yet, we'll wait |
| 1164 | * until the next thread in the group gets a scheduler interrupt to |
| 1165 | * handle the timer. This isn't an issue in practice because these |
| 1166 | * types of delays with signals actually getting sent are expected. |
| 1167 | */ |
| 1168 | if (READ_ONCE(sig->cputimer.running) && |
| 1169 | !READ_ONCE(sig->cputimer.checking_timer)) { |
| 1170 | struct task_cputime group_sample; |
| 1171 | |
| 1172 | sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic); |
| 1173 | |
| 1174 | if (task_cputime_expired(&group_sample, &sig->cputime_expires)) |
| 1175 | return 1; |
| 1176 | } |
| 1177 | |
| 1178 | return 0; |
| 1179 | } |
| 1180 | |
| 1181 | /* |
| 1182 | * This is called from the timer interrupt handler. The irq handler has |
| 1183 | * already updated our counts. We need to check if any timers fire now. |
| 1184 | * Interrupts are disabled. |
| 1185 | */ |
| 1186 | void run_posix_cpu_timers(struct task_struct *tsk) |
| 1187 | { |
| 1188 | LIST_HEAD(firing); |
| 1189 | struct k_itimer *timer, *next; |
| 1190 | unsigned long flags; |
| 1191 | |
| 1192 | WARN_ON_ONCE(!irqs_disabled()); |
| 1193 | |
| 1194 | /* |
| 1195 | * The fast path checks that there are no expired thread or thread |
| 1196 | * group timers. If that's so, just return. |
| 1197 | */ |
| 1198 | if (!fastpath_timer_check(tsk)) |
| 1199 | return; |
| 1200 | |
| 1201 | if (!lock_task_sighand(tsk, &flags)) |
| 1202 | return; |
| 1203 | /* |
| 1204 | * Here we take off tsk->signal->cpu_timers[N] and |
| 1205 | * tsk->cpu_timers[N] all the timers that are firing, and |
| 1206 | * put them on the firing list. |
| 1207 | */ |
| 1208 | check_thread_timers(tsk, &firing); |
| 1209 | |
| 1210 | check_process_timers(tsk, &firing); |
| 1211 | |
| 1212 | /* |
| 1213 | * We must release these locks before taking any timer's lock. |
| 1214 | * There is a potential race with timer deletion here, as the |
| 1215 | * siglock now protects our private firing list. We have set |
| 1216 | * the firing flag in each timer, so that a deletion attempt |
| 1217 | * that gets the timer lock before we do will give it up and |
| 1218 | * spin until we've taken care of that timer below. |
| 1219 | */ |
| 1220 | unlock_task_sighand(tsk, &flags); |
| 1221 | |
| 1222 | /* |
| 1223 | * Now that all the timers on our list have the firing flag, |
| 1224 | * no one will touch their list entries but us. We'll take |
| 1225 | * each timer's lock before clearing its firing flag, so no |
| 1226 | * timer call will interfere. |
| 1227 | */ |
| 1228 | list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) { |
| 1229 | int cpu_firing; |
| 1230 | |
| 1231 | spin_lock(&timer->it_lock); |
| 1232 | list_del_init(&timer->it.cpu.entry); |
| 1233 | cpu_firing = timer->it.cpu.firing; |
| 1234 | timer->it.cpu.firing = 0; |
| 1235 | /* |
| 1236 | * The firing flag is -1 if we collided with a reset |
| 1237 | * of the timer, which already reported this |
| 1238 | * almost-firing as an overrun. So don't generate an event. |
| 1239 | */ |
| 1240 | if (likely(cpu_firing >= 0)) |
| 1241 | cpu_timer_fire(timer); |
| 1242 | spin_unlock(&timer->it_lock); |
| 1243 | } |
| 1244 | } |
| 1245 | |
| 1246 | /* |
| 1247 | * Set one of the process-wide special case CPU timers or RLIMIT_CPU. |
| 1248 | * The tsk->sighand->siglock must be held by the caller. |
| 1249 | */ |
| 1250 | void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, |
| 1251 | cputime_t *newval, cputime_t *oldval) |
| 1252 | { |
| 1253 | unsigned long long now; |
| 1254 | |
| 1255 | WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED); |
| 1256 | cpu_timer_sample_group(clock_idx, tsk, &now); |
| 1257 | |
| 1258 | if (oldval) { |
| 1259 | /* |
| 1260 | * We are setting itimer. The *oldval is absolute and we update |
| 1261 | * it to be relative, *newval argument is relative and we update |
| 1262 | * it to be absolute. |
| 1263 | */ |
| 1264 | if (*oldval) { |
| 1265 | if (*oldval <= now) { |
| 1266 | /* Just about to fire. */ |
| 1267 | *oldval = cputime_one_jiffy; |
| 1268 | } else { |
| 1269 | *oldval -= now; |
| 1270 | } |
| 1271 | } |
| 1272 | |
| 1273 | if (!*newval) |
| 1274 | goto out; |
| 1275 | *newval += now; |
| 1276 | } |
| 1277 | |
| 1278 | /* |
| 1279 | * Update expiration cache if we are the earliest timer, or eventually |
| 1280 | * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire. |
| 1281 | */ |
| 1282 | switch (clock_idx) { |
| 1283 | case CPUCLOCK_PROF: |
| 1284 | if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval)) |
| 1285 | tsk->signal->cputime_expires.prof_exp = *newval; |
| 1286 | break; |
| 1287 | case CPUCLOCK_VIRT: |
| 1288 | if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval)) |
| 1289 | tsk->signal->cputime_expires.virt_exp = *newval; |
| 1290 | break; |
| 1291 | } |
| 1292 | out: |
| 1293 | posix_cpu_timer_kick_nohz(); |
| 1294 | } |
| 1295 | |
| 1296 | static int do_cpu_nanosleep(const clockid_t which_clock, int flags, |
| 1297 | struct timespec *rqtp, struct itimerspec *it) |
| 1298 | { |
| 1299 | struct k_itimer timer; |
| 1300 | int error; |
| 1301 | |
| 1302 | /* |
| 1303 | * Set up a temporary timer and then wait for it to go off. |
| 1304 | */ |
| 1305 | memset(&timer, 0, sizeof timer); |
| 1306 | spin_lock_init(&timer.it_lock); |
| 1307 | timer.it_clock = which_clock; |
| 1308 | timer.it_overrun = -1; |
| 1309 | error = posix_cpu_timer_create(&timer); |
| 1310 | timer.it_process = current; |
| 1311 | if (!error) { |
| 1312 | static struct itimerspec zero_it; |
| 1313 | |
| 1314 | memset(it, 0, sizeof *it); |
| 1315 | it->it_value = *rqtp; |
| 1316 | |
| 1317 | spin_lock_irq(&timer.it_lock); |
| 1318 | error = posix_cpu_timer_set(&timer, flags, it, NULL); |
| 1319 | if (error) { |
| 1320 | spin_unlock_irq(&timer.it_lock); |
| 1321 | return error; |
| 1322 | } |
| 1323 | |
| 1324 | while (!signal_pending(current)) { |
| 1325 | if (timer.it.cpu.expires == 0) { |
| 1326 | /* |
| 1327 | * Our timer fired and was reset, below |
| 1328 | * deletion can not fail. |
| 1329 | */ |
| 1330 | posix_cpu_timer_del(&timer); |
| 1331 | spin_unlock_irq(&timer.it_lock); |
| 1332 | return 0; |
| 1333 | } |
| 1334 | |
| 1335 | /* |
| 1336 | * Block until cpu_timer_fire (or a signal) wakes us. |
| 1337 | */ |
| 1338 | __set_current_state(TASK_INTERRUPTIBLE); |
| 1339 | spin_unlock_irq(&timer.it_lock); |
| 1340 | schedule(); |
| 1341 | spin_lock_irq(&timer.it_lock); |
| 1342 | } |
| 1343 | |
| 1344 | /* |
| 1345 | * We were interrupted by a signal. |
| 1346 | */ |
| 1347 | sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp); |
| 1348 | error = posix_cpu_timer_set(&timer, 0, &zero_it, it); |
| 1349 | if (!error) { |
| 1350 | /* |
| 1351 | * Timer is now unarmed, deletion can not fail. |
| 1352 | */ |
| 1353 | posix_cpu_timer_del(&timer); |
| 1354 | } |
| 1355 | spin_unlock_irq(&timer.it_lock); |
| 1356 | |
| 1357 | while (error == TIMER_RETRY) { |
| 1358 | /* |
| 1359 | * We need to handle case when timer was or is in the |
| 1360 | * middle of firing. In other cases we already freed |
| 1361 | * resources. |
| 1362 | */ |
| 1363 | spin_lock_irq(&timer.it_lock); |
| 1364 | error = posix_cpu_timer_del(&timer); |
| 1365 | spin_unlock_irq(&timer.it_lock); |
| 1366 | } |
| 1367 | |
| 1368 | if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) { |
| 1369 | /* |
| 1370 | * It actually did fire already. |
| 1371 | */ |
| 1372 | return 0; |
| 1373 | } |
| 1374 | |
| 1375 | error = -ERESTART_RESTARTBLOCK; |
| 1376 | } |
| 1377 | |
| 1378 | return error; |
| 1379 | } |
| 1380 | |
| 1381 | static long posix_cpu_nsleep_restart(struct restart_block *restart_block); |
| 1382 | |
| 1383 | static int posix_cpu_nsleep(const clockid_t which_clock, int flags, |
| 1384 | struct timespec *rqtp, struct timespec __user *rmtp) |
| 1385 | { |
| 1386 | struct restart_block *restart_block = ¤t->restart_block; |
| 1387 | struct itimerspec it; |
| 1388 | int error; |
| 1389 | |
| 1390 | /* |
| 1391 | * Diagnose required errors first. |
| 1392 | */ |
| 1393 | if (CPUCLOCK_PERTHREAD(which_clock) && |
| 1394 | (CPUCLOCK_PID(which_clock) == 0 || |
| 1395 | CPUCLOCK_PID(which_clock) == current->pid)) |
| 1396 | return -EINVAL; |
| 1397 | |
| 1398 | error = do_cpu_nanosleep(which_clock, flags, rqtp, &it); |
| 1399 | |
| 1400 | if (error == -ERESTART_RESTARTBLOCK) { |
| 1401 | |
| 1402 | if (flags & TIMER_ABSTIME) |
| 1403 | return -ERESTARTNOHAND; |
| 1404 | /* |
| 1405 | * Report back to the user the time still remaining. |
| 1406 | */ |
| 1407 | if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) |
| 1408 | return -EFAULT; |
| 1409 | |
| 1410 | restart_block->fn = posix_cpu_nsleep_restart; |
| 1411 | restart_block->nanosleep.clockid = which_clock; |
| 1412 | restart_block->nanosleep.rmtp = rmtp; |
| 1413 | restart_block->nanosleep.expires = timespec_to_ns(rqtp); |
| 1414 | } |
| 1415 | return error; |
| 1416 | } |
| 1417 | |
| 1418 | static long posix_cpu_nsleep_restart(struct restart_block *restart_block) |
| 1419 | { |
| 1420 | clockid_t which_clock = restart_block->nanosleep.clockid; |
| 1421 | struct timespec t; |
| 1422 | struct itimerspec it; |
| 1423 | int error; |
| 1424 | |
| 1425 | t = ns_to_timespec(restart_block->nanosleep.expires); |
| 1426 | |
| 1427 | error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it); |
| 1428 | |
| 1429 | if (error == -ERESTART_RESTARTBLOCK) { |
| 1430 | struct timespec __user *rmtp = restart_block->nanosleep.rmtp; |
| 1431 | /* |
| 1432 | * Report back to the user the time still remaining. |
| 1433 | */ |
| 1434 | if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) |
| 1435 | return -EFAULT; |
| 1436 | |
| 1437 | restart_block->nanosleep.expires = timespec_to_ns(&t); |
| 1438 | } |
| 1439 | return error; |
| 1440 | |
| 1441 | } |
| 1442 | |
| 1443 | #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED) |
| 1444 | #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED) |
| 1445 | |
| 1446 | static int process_cpu_clock_getres(const clockid_t which_clock, |
| 1447 | struct timespec *tp) |
| 1448 | { |
| 1449 | return posix_cpu_clock_getres(PROCESS_CLOCK, tp); |
| 1450 | } |
| 1451 | static int process_cpu_clock_get(const clockid_t which_clock, |
| 1452 | struct timespec *tp) |
| 1453 | { |
| 1454 | return posix_cpu_clock_get(PROCESS_CLOCK, tp); |
| 1455 | } |
| 1456 | static int process_cpu_timer_create(struct k_itimer *timer) |
| 1457 | { |
| 1458 | timer->it_clock = PROCESS_CLOCK; |
| 1459 | return posix_cpu_timer_create(timer); |
| 1460 | } |
| 1461 | static int process_cpu_nsleep(const clockid_t which_clock, int flags, |
| 1462 | struct timespec *rqtp, |
| 1463 | struct timespec __user *rmtp) |
| 1464 | { |
| 1465 | return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp); |
| 1466 | } |
| 1467 | static long process_cpu_nsleep_restart(struct restart_block *restart_block) |
| 1468 | { |
| 1469 | return -EINVAL; |
| 1470 | } |
| 1471 | static int thread_cpu_clock_getres(const clockid_t which_clock, |
| 1472 | struct timespec *tp) |
| 1473 | { |
| 1474 | return posix_cpu_clock_getres(THREAD_CLOCK, tp); |
| 1475 | } |
| 1476 | static int thread_cpu_clock_get(const clockid_t which_clock, |
| 1477 | struct timespec *tp) |
| 1478 | { |
| 1479 | return posix_cpu_clock_get(THREAD_CLOCK, tp); |
| 1480 | } |
| 1481 | static int thread_cpu_timer_create(struct k_itimer *timer) |
| 1482 | { |
| 1483 | timer->it_clock = THREAD_CLOCK; |
| 1484 | return posix_cpu_timer_create(timer); |
| 1485 | } |
| 1486 | |
| 1487 | struct k_clock clock_posix_cpu = { |
| 1488 | .clock_getres = posix_cpu_clock_getres, |
| 1489 | .clock_set = posix_cpu_clock_set, |
| 1490 | .clock_get = posix_cpu_clock_get, |
| 1491 | .timer_create = posix_cpu_timer_create, |
| 1492 | .nsleep = posix_cpu_nsleep, |
| 1493 | .nsleep_restart = posix_cpu_nsleep_restart, |
| 1494 | .timer_set = posix_cpu_timer_set, |
| 1495 | .timer_del = posix_cpu_timer_del, |
| 1496 | .timer_get = posix_cpu_timer_get, |
| 1497 | }; |
| 1498 | |
| 1499 | static __init int init_posix_cpu_timers(void) |
| 1500 | { |
| 1501 | struct k_clock process = { |
| 1502 | .clock_getres = process_cpu_clock_getres, |
| 1503 | .clock_get = process_cpu_clock_get, |
| 1504 | .timer_create = process_cpu_timer_create, |
| 1505 | .nsleep = process_cpu_nsleep, |
| 1506 | .nsleep_restart = process_cpu_nsleep_restart, |
| 1507 | }; |
| 1508 | struct k_clock thread = { |
| 1509 | .clock_getres = thread_cpu_clock_getres, |
| 1510 | .clock_get = thread_cpu_clock_get, |
| 1511 | .timer_create = thread_cpu_timer_create, |
| 1512 | }; |
| 1513 | struct timespec ts; |
| 1514 | |
| 1515 | posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process); |
| 1516 | posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread); |
| 1517 | |
| 1518 | cputime_to_timespec(cputime_one_jiffy, &ts); |
| 1519 | onecputick = ts.tv_nsec; |
| 1520 | WARN_ON(ts.tv_sec != 0); |
| 1521 | |
| 1522 | return 0; |
| 1523 | } |
| 1524 | __initcall(init_posix_cpu_timers); |