blob: 80016b329d94427d83abfb28988b2d268846a0e4 [file] [log] [blame]
Kyle Swenson8d8f6542021-03-15 11:02:55 -06001/*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
4
5#include <linux/sched.h>
6#include <linux/posix-timers.h>
7#include <linux/errno.h>
8#include <linux/math64.h>
9#include <asm/uaccess.h>
10#include <linux/kernel_stat.h>
11#include <trace/events/timer.h>
12#include <linux/random.h>
13#include <linux/tick.h>
14#include <linux/workqueue.h>
15
16/*
17 * Called after updating RLIMIT_CPU to run cpu timer and update
18 * tsk->signal->cputime_expires expiration cache if necessary. Needs
19 * siglock protection since other code may update expiration cache as
20 * well.
21 */
22void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
23{
24 cputime_t cputime = secs_to_cputime(rlim_new);
25
26 spin_lock_irq(&task->sighand->siglock);
27 set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
28 spin_unlock_irq(&task->sighand->siglock);
29}
30
31static int check_clock(const clockid_t which_clock)
32{
33 int error = 0;
34 struct task_struct *p;
35 const pid_t pid = CPUCLOCK_PID(which_clock);
36
37 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
38 return -EINVAL;
39
40 if (pid == 0)
41 return 0;
42
43 rcu_read_lock();
44 p = find_task_by_vpid(pid);
45 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
46 same_thread_group(p, current) : has_group_leader_pid(p))) {
47 error = -EINVAL;
48 }
49 rcu_read_unlock();
50
51 return error;
52}
53
54static inline unsigned long long
55timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
56{
57 unsigned long long ret;
58
59 ret = 0; /* high half always zero when .cpu used */
60 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
61 ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
62 } else {
63 ret = cputime_to_expires(timespec_to_cputime(tp));
64 }
65 return ret;
66}
67
68static void sample_to_timespec(const clockid_t which_clock,
69 unsigned long long expires,
70 struct timespec *tp)
71{
72 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
73 *tp = ns_to_timespec(expires);
74 else
75 cputime_to_timespec((__force cputime_t)expires, tp);
76}
77
78/*
79 * Update expiry time from increment, and increase overrun count,
80 * given the current clock sample.
81 */
82static void bump_cpu_timer(struct k_itimer *timer,
83 unsigned long long now)
84{
85 int i;
86 unsigned long long delta, incr;
87
88 if (timer->it.cpu.incr == 0)
89 return;
90
91 if (now < timer->it.cpu.expires)
92 return;
93
94 incr = timer->it.cpu.incr;
95 delta = now + incr - timer->it.cpu.expires;
96
97 /* Don't use (incr*2 < delta), incr*2 might overflow. */
98 for (i = 0; incr < delta - incr; i++)
99 incr = incr << 1;
100
101 for (; i >= 0; incr >>= 1, i--) {
102 if (delta < incr)
103 continue;
104
105 timer->it.cpu.expires += incr;
106 timer->it_overrun += 1 << i;
107 delta -= incr;
108 }
109}
110
111/**
112 * task_cputime_zero - Check a task_cputime struct for all zero fields.
113 *
114 * @cputime: The struct to compare.
115 *
116 * Checks @cputime to see if all fields are zero. Returns true if all fields
117 * are zero, false if any field is nonzero.
118 */
119static inline int task_cputime_zero(const struct task_cputime *cputime)
120{
121 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
122 return 1;
123 return 0;
124}
125
126static inline unsigned long long prof_ticks(struct task_struct *p)
127{
128 cputime_t utime, stime;
129
130 task_cputime(p, &utime, &stime);
131
132 return cputime_to_expires(utime + stime);
133}
134static inline unsigned long long virt_ticks(struct task_struct *p)
135{
136 cputime_t utime;
137
138 task_cputime(p, &utime, NULL);
139
140 return cputime_to_expires(utime);
141}
142
143static int
144posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
145{
146 int error = check_clock(which_clock);
147 if (!error) {
148 tp->tv_sec = 0;
149 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
150 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
151 /*
152 * If sched_clock is using a cycle counter, we
153 * don't have any idea of its true resolution
154 * exported, but it is much more than 1s/HZ.
155 */
156 tp->tv_nsec = 1;
157 }
158 }
159 return error;
160}
161
162static int
163posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
164{
165 /*
166 * You can never reset a CPU clock, but we check for other errors
167 * in the call before failing with EPERM.
168 */
169 int error = check_clock(which_clock);
170 if (error == 0) {
171 error = -EPERM;
172 }
173 return error;
174}
175
176
177/*
178 * Sample a per-thread clock for the given task.
179 */
180static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
181 unsigned long long *sample)
182{
183 switch (CPUCLOCK_WHICH(which_clock)) {
184 default:
185 return -EINVAL;
186 case CPUCLOCK_PROF:
187 *sample = prof_ticks(p);
188 break;
189 case CPUCLOCK_VIRT:
190 *sample = virt_ticks(p);
191 break;
192 case CPUCLOCK_SCHED:
193 *sample = task_sched_runtime(p);
194 break;
195 }
196 return 0;
197}
198
199/*
200 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
201 * to avoid race conditions with concurrent updates to cputime.
202 */
203static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
204{
205 u64 curr_cputime;
206retry:
207 curr_cputime = atomic64_read(cputime);
208 if (sum_cputime > curr_cputime) {
209 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
210 goto retry;
211 }
212}
213
214static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
215{
216 __update_gt_cputime(&cputime_atomic->utime, sum->utime);
217 __update_gt_cputime(&cputime_atomic->stime, sum->stime);
218 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
219}
220
221/* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
222static inline void sample_cputime_atomic(struct task_cputime *times,
223 struct task_cputime_atomic *atomic_times)
224{
225 times->utime = atomic64_read(&atomic_times->utime);
226 times->stime = atomic64_read(&atomic_times->stime);
227 times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
228}
229
230void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
231{
232 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
233 struct task_cputime sum;
234
235 /* Check if cputimer isn't running. This is accessed without locking. */
236 if (!READ_ONCE(cputimer->running)) {
237 /*
238 * The POSIX timer interface allows for absolute time expiry
239 * values through the TIMER_ABSTIME flag, therefore we have
240 * to synchronize the timer to the clock every time we start it.
241 */
242 thread_group_cputime(tsk, &sum);
243 update_gt_cputime(&cputimer->cputime_atomic, &sum);
244
245 /*
246 * We're setting cputimer->running without a lock. Ensure
247 * this only gets written to in one operation. We set
248 * running after update_gt_cputime() as a small optimization,
249 * but barriers are not required because update_gt_cputime()
250 * can handle concurrent updates.
251 */
252 WRITE_ONCE(cputimer->running, true);
253 }
254 sample_cputime_atomic(times, &cputimer->cputime_atomic);
255}
256
257/*
258 * Sample a process (thread group) clock for the given group_leader task.
259 * Must be called with task sighand lock held for safe while_each_thread()
260 * traversal.
261 */
262static int cpu_clock_sample_group(const clockid_t which_clock,
263 struct task_struct *p,
264 unsigned long long *sample)
265{
266 struct task_cputime cputime;
267
268 switch (CPUCLOCK_WHICH(which_clock)) {
269 default:
270 return -EINVAL;
271 case CPUCLOCK_PROF:
272 thread_group_cputime(p, &cputime);
273 *sample = cputime_to_expires(cputime.utime + cputime.stime);
274 break;
275 case CPUCLOCK_VIRT:
276 thread_group_cputime(p, &cputime);
277 *sample = cputime_to_expires(cputime.utime);
278 break;
279 case CPUCLOCK_SCHED:
280 thread_group_cputime(p, &cputime);
281 *sample = cputime.sum_exec_runtime;
282 break;
283 }
284 return 0;
285}
286
287static int posix_cpu_clock_get_task(struct task_struct *tsk,
288 const clockid_t which_clock,
289 struct timespec *tp)
290{
291 int err = -EINVAL;
292 unsigned long long rtn;
293
294 if (CPUCLOCK_PERTHREAD(which_clock)) {
295 if (same_thread_group(tsk, current))
296 err = cpu_clock_sample(which_clock, tsk, &rtn);
297 } else {
298 if (tsk == current || thread_group_leader(tsk))
299 err = cpu_clock_sample_group(which_clock, tsk, &rtn);
300 }
301
302 if (!err)
303 sample_to_timespec(which_clock, rtn, tp);
304
305 return err;
306}
307
308
309static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
310{
311 const pid_t pid = CPUCLOCK_PID(which_clock);
312 int err = -EINVAL;
313
314 if (pid == 0) {
315 /*
316 * Special case constant value for our own clocks.
317 * We don't have to do any lookup to find ourselves.
318 */
319 err = posix_cpu_clock_get_task(current, which_clock, tp);
320 } else {
321 /*
322 * Find the given PID, and validate that the caller
323 * should be able to see it.
324 */
325 struct task_struct *p;
326 rcu_read_lock();
327 p = find_task_by_vpid(pid);
328 if (p)
329 err = posix_cpu_clock_get_task(p, which_clock, tp);
330 rcu_read_unlock();
331 }
332
333 return err;
334}
335
336
337/*
338 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
339 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
340 * new timer already all-zeros initialized.
341 */
342static int posix_cpu_timer_create(struct k_itimer *new_timer)
343{
344 int ret = 0;
345 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
346 struct task_struct *p;
347
348 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
349 return -EINVAL;
350
351 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
352
353 rcu_read_lock();
354 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
355 if (pid == 0) {
356 p = current;
357 } else {
358 p = find_task_by_vpid(pid);
359 if (p && !same_thread_group(p, current))
360 p = NULL;
361 }
362 } else {
363 if (pid == 0) {
364 p = current->group_leader;
365 } else {
366 p = find_task_by_vpid(pid);
367 if (p && !has_group_leader_pid(p))
368 p = NULL;
369 }
370 }
371 new_timer->it.cpu.task = p;
372 if (p) {
373 get_task_struct(p);
374 } else {
375 ret = -EINVAL;
376 }
377 rcu_read_unlock();
378
379 return ret;
380}
381
382/*
383 * Clean up a CPU-clock timer that is about to be destroyed.
384 * This is called from timer deletion with the timer already locked.
385 * If we return TIMER_RETRY, it's necessary to release the timer's lock
386 * and try again. (This happens when the timer is in the middle of firing.)
387 */
388static int posix_cpu_timer_del(struct k_itimer *timer)
389{
390 int ret = 0;
391 unsigned long flags;
392 struct sighand_struct *sighand;
393 struct task_struct *p = timer->it.cpu.task;
394
395 WARN_ON_ONCE(p == NULL);
396
397 /*
398 * Protect against sighand release/switch in exit/exec and process/
399 * thread timer list entry concurrent read/writes.
400 */
401 sighand = lock_task_sighand(p, &flags);
402 if (unlikely(sighand == NULL)) {
403 /*
404 * We raced with the reaping of the task.
405 * The deletion should have cleared us off the list.
406 */
407 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
408 } else {
409 if (timer->it.cpu.firing)
410 ret = TIMER_RETRY;
411 else
412 list_del(&timer->it.cpu.entry);
413
414 unlock_task_sighand(p, &flags);
415 }
416
417 if (!ret)
418 put_task_struct(p);
419
420 return ret;
421}
422
423static void cleanup_timers_list(struct list_head *head)
424{
425 struct cpu_timer_list *timer, *next;
426
427 list_for_each_entry_safe(timer, next, head, entry)
428 list_del_init(&timer->entry);
429}
430
431/*
432 * Clean out CPU timers still ticking when a thread exited. The task
433 * pointer is cleared, and the expiry time is replaced with the residual
434 * time for later timer_gettime calls to return.
435 * This must be called with the siglock held.
436 */
437static void cleanup_timers(struct list_head *head)
438{
439 cleanup_timers_list(head);
440 cleanup_timers_list(++head);
441 cleanup_timers_list(++head);
442}
443
444/*
445 * These are both called with the siglock held, when the current thread
446 * is being reaped. When the final (leader) thread in the group is reaped,
447 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
448 */
449void posix_cpu_timers_exit(struct task_struct *tsk)
450{
451 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
452 sizeof(unsigned long long));
453 cleanup_timers(tsk->cpu_timers);
454
455}
456void posix_cpu_timers_exit_group(struct task_struct *tsk)
457{
458 cleanup_timers(tsk->signal->cpu_timers);
459}
460
461static inline int expires_gt(cputime_t expires, cputime_t new_exp)
462{
463 return expires == 0 || expires > new_exp;
464}
465
466/*
467 * Insert the timer on the appropriate list before any timers that
468 * expire later. This must be called with the sighand lock held.
469 */
470static void arm_timer(struct k_itimer *timer)
471{
472 struct task_struct *p = timer->it.cpu.task;
473 struct list_head *head, *listpos;
474 struct task_cputime *cputime_expires;
475 struct cpu_timer_list *const nt = &timer->it.cpu;
476 struct cpu_timer_list *next;
477
478 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
479 head = p->cpu_timers;
480 cputime_expires = &p->cputime_expires;
481 } else {
482 head = p->signal->cpu_timers;
483 cputime_expires = &p->signal->cputime_expires;
484 }
485 head += CPUCLOCK_WHICH(timer->it_clock);
486
487 listpos = head;
488 list_for_each_entry(next, head, entry) {
489 if (nt->expires < next->expires)
490 break;
491 listpos = &next->entry;
492 }
493 list_add(&nt->entry, listpos);
494
495 if (listpos == head) {
496 unsigned long long exp = nt->expires;
497
498 /*
499 * We are the new earliest-expiring POSIX 1.b timer, hence
500 * need to update expiration cache. Take into account that
501 * for process timers we share expiration cache with itimers
502 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
503 */
504
505 switch (CPUCLOCK_WHICH(timer->it_clock)) {
506 case CPUCLOCK_PROF:
507 if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp)))
508 cputime_expires->prof_exp = expires_to_cputime(exp);
509 break;
510 case CPUCLOCK_VIRT:
511 if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp)))
512 cputime_expires->virt_exp = expires_to_cputime(exp);
513 break;
514 case CPUCLOCK_SCHED:
515 if (cputime_expires->sched_exp == 0 ||
516 cputime_expires->sched_exp > exp)
517 cputime_expires->sched_exp = exp;
518 break;
519 }
520 }
521}
522
523/*
524 * The timer is locked, fire it and arrange for its reload.
525 */
526static void cpu_timer_fire(struct k_itimer *timer)
527{
528 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
529 /*
530 * User don't want any signal.
531 */
532 timer->it.cpu.expires = 0;
533 } else if (unlikely(timer->sigq == NULL)) {
534 /*
535 * This a special case for clock_nanosleep,
536 * not a normal timer from sys_timer_create.
537 */
538 wake_up_process(timer->it_process);
539 timer->it.cpu.expires = 0;
540 } else if (timer->it.cpu.incr == 0) {
541 /*
542 * One-shot timer. Clear it as soon as it's fired.
543 */
544 posix_timer_event(timer, 0);
545 timer->it.cpu.expires = 0;
546 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
547 /*
548 * The signal did not get queued because the signal
549 * was ignored, so we won't get any callback to
550 * reload the timer. But we need to keep it
551 * ticking in case the signal is deliverable next time.
552 */
553 posix_cpu_timer_schedule(timer);
554 }
555}
556
557/*
558 * Sample a process (thread group) timer for the given group_leader task.
559 * Must be called with task sighand lock held for safe while_each_thread()
560 * traversal.
561 */
562static int cpu_timer_sample_group(const clockid_t which_clock,
563 struct task_struct *p,
564 unsigned long long *sample)
565{
566 struct task_cputime cputime;
567
568 thread_group_cputimer(p, &cputime);
569 switch (CPUCLOCK_WHICH(which_clock)) {
570 default:
571 return -EINVAL;
572 case CPUCLOCK_PROF:
573 *sample = cputime_to_expires(cputime.utime + cputime.stime);
574 break;
575 case CPUCLOCK_VIRT:
576 *sample = cputime_to_expires(cputime.utime);
577 break;
578 case CPUCLOCK_SCHED:
579 *sample = cputime.sum_exec_runtime;
580 break;
581 }
582 return 0;
583}
584
585#ifdef CONFIG_NO_HZ_FULL
586static void nohz_kick_work_fn(struct work_struct *work)
587{
588 tick_nohz_full_kick_all();
589}
590
591static DECLARE_WORK(nohz_kick_work, nohz_kick_work_fn);
592
593/*
594 * We need the IPIs to be sent from sane process context.
595 * The posix cpu timers are always set with irqs disabled.
596 */
597static void posix_cpu_timer_kick_nohz(void)
598{
599 if (context_tracking_is_enabled())
600 schedule_work(&nohz_kick_work);
601}
602
603bool posix_cpu_timers_can_stop_tick(struct task_struct *tsk)
604{
605 if (!task_cputime_zero(&tsk->cputime_expires))
606 return false;
607
608 /* Check if cputimer is running. This is accessed without locking. */
609 if (READ_ONCE(tsk->signal->cputimer.running))
610 return false;
611
612 return true;
613}
614#else
615static inline void posix_cpu_timer_kick_nohz(void) { }
616#endif
617
618/*
619 * Guts of sys_timer_settime for CPU timers.
620 * This is called with the timer locked and interrupts disabled.
621 * If we return TIMER_RETRY, it's necessary to release the timer's lock
622 * and try again. (This happens when the timer is in the middle of firing.)
623 */
624static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
625 struct itimerspec *new, struct itimerspec *old)
626{
627 unsigned long flags;
628 struct sighand_struct *sighand;
629 struct task_struct *p = timer->it.cpu.task;
630 unsigned long long old_expires, new_expires, old_incr, val;
631 int ret;
632
633 WARN_ON_ONCE(p == NULL);
634
635 new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
636
637 /*
638 * Protect against sighand release/switch in exit/exec and p->cpu_timers
639 * and p->signal->cpu_timers read/write in arm_timer()
640 */
641 sighand = lock_task_sighand(p, &flags);
642 /*
643 * If p has just been reaped, we can no
644 * longer get any information about it at all.
645 */
646 if (unlikely(sighand == NULL)) {
647 return -ESRCH;
648 }
649
650 /*
651 * Disarm any old timer after extracting its expiry time.
652 */
653 WARN_ON_ONCE(!irqs_disabled());
654
655 ret = 0;
656 old_incr = timer->it.cpu.incr;
657 old_expires = timer->it.cpu.expires;
658 if (unlikely(timer->it.cpu.firing)) {
659 timer->it.cpu.firing = -1;
660 ret = TIMER_RETRY;
661 } else
662 list_del_init(&timer->it.cpu.entry);
663
664 /*
665 * We need to sample the current value to convert the new
666 * value from to relative and absolute, and to convert the
667 * old value from absolute to relative. To set a process
668 * timer, we need a sample to balance the thread expiry
669 * times (in arm_timer). With an absolute time, we must
670 * check if it's already passed. In short, we need a sample.
671 */
672 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
673 cpu_clock_sample(timer->it_clock, p, &val);
674 } else {
675 cpu_timer_sample_group(timer->it_clock, p, &val);
676 }
677
678 if (old) {
679 if (old_expires == 0) {
680 old->it_value.tv_sec = 0;
681 old->it_value.tv_nsec = 0;
682 } else {
683 /*
684 * Update the timer in case it has
685 * overrun already. If it has,
686 * we'll report it as having overrun
687 * and with the next reloaded timer
688 * already ticking, though we are
689 * swallowing that pending
690 * notification here to install the
691 * new setting.
692 */
693 bump_cpu_timer(timer, val);
694 if (val < timer->it.cpu.expires) {
695 old_expires = timer->it.cpu.expires - val;
696 sample_to_timespec(timer->it_clock,
697 old_expires,
698 &old->it_value);
699 } else {
700 old->it_value.tv_nsec = 1;
701 old->it_value.tv_sec = 0;
702 }
703 }
704 }
705
706 if (unlikely(ret)) {
707 /*
708 * We are colliding with the timer actually firing.
709 * Punt after filling in the timer's old value, and
710 * disable this firing since we are already reporting
711 * it as an overrun (thanks to bump_cpu_timer above).
712 */
713 unlock_task_sighand(p, &flags);
714 goto out;
715 }
716
717 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
718 new_expires += val;
719 }
720
721 /*
722 * Install the new expiry time (or zero).
723 * For a timer with no notification action, we don't actually
724 * arm the timer (we'll just fake it for timer_gettime).
725 */
726 timer->it.cpu.expires = new_expires;
727 if (new_expires != 0 && val < new_expires) {
728 arm_timer(timer);
729 }
730
731 unlock_task_sighand(p, &flags);
732 /*
733 * Install the new reload setting, and
734 * set up the signal and overrun bookkeeping.
735 */
736 timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
737 &new->it_interval);
738
739 /*
740 * This acts as a modification timestamp for the timer,
741 * so any automatic reload attempt will punt on seeing
742 * that we have reset the timer manually.
743 */
744 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
745 ~REQUEUE_PENDING;
746 timer->it_overrun_last = 0;
747 timer->it_overrun = -1;
748
749 if (new_expires != 0 && !(val < new_expires)) {
750 /*
751 * The designated time already passed, so we notify
752 * immediately, even if the thread never runs to
753 * accumulate more time on this clock.
754 */
755 cpu_timer_fire(timer);
756 }
757
758 ret = 0;
759 out:
760 if (old) {
761 sample_to_timespec(timer->it_clock,
762 old_incr, &old->it_interval);
763 }
764 if (!ret)
765 posix_cpu_timer_kick_nohz();
766 return ret;
767}
768
769static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
770{
771 unsigned long long now;
772 struct task_struct *p = timer->it.cpu.task;
773
774 WARN_ON_ONCE(p == NULL);
775
776 /*
777 * Easy part: convert the reload time.
778 */
779 sample_to_timespec(timer->it_clock,
780 timer->it.cpu.incr, &itp->it_interval);
781
782 if (timer->it.cpu.expires == 0) { /* Timer not armed at all. */
783 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
784 return;
785 }
786
787 /*
788 * Sample the clock to take the difference with the expiry time.
789 */
790 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
791 cpu_clock_sample(timer->it_clock, p, &now);
792 } else {
793 struct sighand_struct *sighand;
794 unsigned long flags;
795
796 /*
797 * Protect against sighand release/switch in exit/exec and
798 * also make timer sampling safe if it ends up calling
799 * thread_group_cputime().
800 */
801 sighand = lock_task_sighand(p, &flags);
802 if (unlikely(sighand == NULL)) {
803 /*
804 * The process has been reaped.
805 * We can't even collect a sample any more.
806 * Call the timer disarmed, nothing else to do.
807 */
808 timer->it.cpu.expires = 0;
809 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
810 &itp->it_value);
811 return;
812 } else {
813 cpu_timer_sample_group(timer->it_clock, p, &now);
814 unlock_task_sighand(p, &flags);
815 }
816 }
817
818 if (now < timer->it.cpu.expires) {
819 sample_to_timespec(timer->it_clock,
820 timer->it.cpu.expires - now,
821 &itp->it_value);
822 } else {
823 /*
824 * The timer should have expired already, but the firing
825 * hasn't taken place yet. Say it's just about to expire.
826 */
827 itp->it_value.tv_nsec = 1;
828 itp->it_value.tv_sec = 0;
829 }
830}
831
832static unsigned long long
833check_timers_list(struct list_head *timers,
834 struct list_head *firing,
835 unsigned long long curr)
836{
837 int maxfire = 20;
838
839 while (!list_empty(timers)) {
840 struct cpu_timer_list *t;
841
842 t = list_first_entry(timers, struct cpu_timer_list, entry);
843
844 if (!--maxfire || curr < t->expires)
845 return t->expires;
846
847 t->firing = 1;
848 list_move_tail(&t->entry, firing);
849 }
850
851 return 0;
852}
853
854/*
855 * Check for any per-thread CPU timers that have fired and move them off
856 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
857 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
858 */
859static void check_thread_timers(struct task_struct *tsk,
860 struct list_head *firing)
861{
862 struct list_head *timers = tsk->cpu_timers;
863 struct signal_struct *const sig = tsk->signal;
864 struct task_cputime *tsk_expires = &tsk->cputime_expires;
865 unsigned long long expires;
866 unsigned long soft;
867
868 /*
869 * If cputime_expires is zero, then there are no active
870 * per thread CPU timers.
871 */
872 if (task_cputime_zero(&tsk->cputime_expires))
873 return;
874
875 expires = check_timers_list(timers, firing, prof_ticks(tsk));
876 tsk_expires->prof_exp = expires_to_cputime(expires);
877
878 expires = check_timers_list(++timers, firing, virt_ticks(tsk));
879 tsk_expires->virt_exp = expires_to_cputime(expires);
880
881 tsk_expires->sched_exp = check_timers_list(++timers, firing,
882 tsk->se.sum_exec_runtime);
883
884 /*
885 * Check for the special case thread timers.
886 */
887 soft = READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
888 if (soft != RLIM_INFINITY) {
889 unsigned long hard =
890 READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
891
892 if (hard != RLIM_INFINITY &&
893 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
894 /*
895 * At the hard limit, we just die.
896 * No need to calculate anything else now.
897 */
898 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
899 return;
900 }
901 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
902 /*
903 * At the soft limit, send a SIGXCPU every second.
904 */
905 if (soft < hard) {
906 soft += USEC_PER_SEC;
907 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
908 }
909 printk(KERN_INFO
910 "RT Watchdog Timeout: %s[%d]\n",
911 tsk->comm, task_pid_nr(tsk));
912 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
913 }
914 }
915}
916
917static inline void stop_process_timers(struct signal_struct *sig)
918{
919 struct thread_group_cputimer *cputimer = &sig->cputimer;
920
921 /* Turn off cputimer->running. This is done without locking. */
922 WRITE_ONCE(cputimer->running, false);
923}
924
925static u32 onecputick;
926
927static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
928 unsigned long long *expires,
929 unsigned long long cur_time, int signo)
930{
931 if (!it->expires)
932 return;
933
934 if (cur_time >= it->expires) {
935 if (it->incr) {
936 it->expires += it->incr;
937 it->error += it->incr_error;
938 if (it->error >= onecputick) {
939 it->expires -= cputime_one_jiffy;
940 it->error -= onecputick;
941 }
942 } else {
943 it->expires = 0;
944 }
945
946 trace_itimer_expire(signo == SIGPROF ?
947 ITIMER_PROF : ITIMER_VIRTUAL,
948 tsk->signal->leader_pid, cur_time);
949 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
950 }
951
952 if (it->expires && (!*expires || it->expires < *expires)) {
953 *expires = it->expires;
954 }
955}
956
957/*
958 * Check for any per-thread CPU timers that have fired and move them
959 * off the tsk->*_timers list onto the firing list. Per-thread timers
960 * have already been taken off.
961 */
962static void check_process_timers(struct task_struct *tsk,
963 struct list_head *firing)
964{
965 struct signal_struct *const sig = tsk->signal;
966 unsigned long long utime, ptime, virt_expires, prof_expires;
967 unsigned long long sum_sched_runtime, sched_expires;
968 struct list_head *timers = sig->cpu_timers;
969 struct task_cputime cputime;
970 unsigned long soft;
971
972 /*
973 * If cputimer is not running, then there are no active
974 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
975 */
976 if (!READ_ONCE(tsk->signal->cputimer.running))
977 return;
978
979 /*
980 * Signify that a thread is checking for process timers.
981 * Write access to this field is protected by the sighand lock.
982 */
983 sig->cputimer.checking_timer = true;
984
985 /*
986 * Collect the current process totals.
987 */
988 thread_group_cputimer(tsk, &cputime);
989 utime = cputime_to_expires(cputime.utime);
990 ptime = utime + cputime_to_expires(cputime.stime);
991 sum_sched_runtime = cputime.sum_exec_runtime;
992
993 prof_expires = check_timers_list(timers, firing, ptime);
994 virt_expires = check_timers_list(++timers, firing, utime);
995 sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
996
997 /*
998 * Check for the special case process timers.
999 */
1000 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
1001 SIGPROF);
1002 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
1003 SIGVTALRM);
1004 soft = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1005 if (soft != RLIM_INFINITY) {
1006 unsigned long psecs = cputime_to_secs(ptime);
1007 unsigned long hard =
1008 READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
1009 cputime_t x;
1010 if (psecs >= hard) {
1011 /*
1012 * At the hard limit, we just die.
1013 * No need to calculate anything else now.
1014 */
1015 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1016 return;
1017 }
1018 if (psecs >= soft) {
1019 /*
1020 * At the soft limit, send a SIGXCPU every second.
1021 */
1022 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1023 if (soft < hard) {
1024 soft++;
1025 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
1026 }
1027 }
1028 x = secs_to_cputime(soft);
1029 if (!prof_expires || x < prof_expires) {
1030 prof_expires = x;
1031 }
1032 }
1033
1034 sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires);
1035 sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires);
1036 sig->cputime_expires.sched_exp = sched_expires;
1037 if (task_cputime_zero(&sig->cputime_expires))
1038 stop_process_timers(sig);
1039
1040 sig->cputimer.checking_timer = false;
1041}
1042
1043/*
1044 * This is called from the signal code (via do_schedule_next_timer)
1045 * when the last timer signal was delivered and we have to reload the timer.
1046 */
1047void posix_cpu_timer_schedule(struct k_itimer *timer)
1048{
1049 struct sighand_struct *sighand;
1050 unsigned long flags;
1051 struct task_struct *p = timer->it.cpu.task;
1052 unsigned long long now;
1053
1054 WARN_ON_ONCE(p == NULL);
1055
1056 /*
1057 * Fetch the current sample and update the timer's expiry time.
1058 */
1059 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1060 cpu_clock_sample(timer->it_clock, p, &now);
1061 bump_cpu_timer(timer, now);
1062 if (unlikely(p->exit_state))
1063 goto out;
1064
1065 /* Protect timer list r/w in arm_timer() */
1066 sighand = lock_task_sighand(p, &flags);
1067 if (!sighand)
1068 goto out;
1069 } else {
1070 /*
1071 * Protect arm_timer() and timer sampling in case of call to
1072 * thread_group_cputime().
1073 */
1074 sighand = lock_task_sighand(p, &flags);
1075 if (unlikely(sighand == NULL)) {
1076 /*
1077 * The process has been reaped.
1078 * We can't even collect a sample any more.
1079 */
1080 timer->it.cpu.expires = 0;
1081 goto out;
1082 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1083 unlock_task_sighand(p, &flags);
1084 /* Optimizations: if the process is dying, no need to rearm */
1085 goto out;
1086 }
1087 cpu_timer_sample_group(timer->it_clock, p, &now);
1088 bump_cpu_timer(timer, now);
1089 /* Leave the sighand locked for the call below. */
1090 }
1091
1092 /*
1093 * Now re-arm for the new expiry time.
1094 */
1095 WARN_ON_ONCE(!irqs_disabled());
1096 arm_timer(timer);
1097 unlock_task_sighand(p, &flags);
1098
1099 /* Kick full dynticks CPUs in case they need to tick on the new timer */
1100 posix_cpu_timer_kick_nohz();
1101out:
1102 timer->it_overrun_last = timer->it_overrun;
1103 timer->it_overrun = -1;
1104 ++timer->it_requeue_pending;
1105}
1106
1107/**
1108 * task_cputime_expired - Compare two task_cputime entities.
1109 *
1110 * @sample: The task_cputime structure to be checked for expiration.
1111 * @expires: Expiration times, against which @sample will be checked.
1112 *
1113 * Checks @sample against @expires to see if any field of @sample has expired.
1114 * Returns true if any field of the former is greater than the corresponding
1115 * field of the latter if the latter field is set. Otherwise returns false.
1116 */
1117static inline int task_cputime_expired(const struct task_cputime *sample,
1118 const struct task_cputime *expires)
1119{
1120 if (expires->utime && sample->utime >= expires->utime)
1121 return 1;
1122 if (expires->stime && sample->utime + sample->stime >= expires->stime)
1123 return 1;
1124 if (expires->sum_exec_runtime != 0 &&
1125 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1126 return 1;
1127 return 0;
1128}
1129
1130/**
1131 * fastpath_timer_check - POSIX CPU timers fast path.
1132 *
1133 * @tsk: The task (thread) being checked.
1134 *
1135 * Check the task and thread group timers. If both are zero (there are no
1136 * timers set) return false. Otherwise snapshot the task and thread group
1137 * timers and compare them with the corresponding expiration times. Return
1138 * true if a timer has expired, else return false.
1139 */
1140static inline int fastpath_timer_check(struct task_struct *tsk)
1141{
1142 struct signal_struct *sig;
1143
1144 if (!task_cputime_zero(&tsk->cputime_expires)) {
1145 struct task_cputime task_sample;
1146
1147 task_cputime(tsk, &task_sample.utime, &task_sample.stime);
1148 task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
1149 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1150 return 1;
1151 }
1152
1153 sig = tsk->signal;
1154 /*
1155 * Check if thread group timers expired when the cputimer is
1156 * running and no other thread in the group is already checking
1157 * for thread group cputimers. These fields are read without the
1158 * sighand lock. However, this is fine because this is meant to
1159 * be a fastpath heuristic to determine whether we should try to
1160 * acquire the sighand lock to check/handle timers.
1161 *
1162 * In the worst case scenario, if 'running' or 'checking_timer' gets
1163 * set but the current thread doesn't see the change yet, we'll wait
1164 * until the next thread in the group gets a scheduler interrupt to
1165 * handle the timer. This isn't an issue in practice because these
1166 * types of delays with signals actually getting sent are expected.
1167 */
1168 if (READ_ONCE(sig->cputimer.running) &&
1169 !READ_ONCE(sig->cputimer.checking_timer)) {
1170 struct task_cputime group_sample;
1171
1172 sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
1173
1174 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1175 return 1;
1176 }
1177
1178 return 0;
1179}
1180
1181/*
1182 * This is called from the timer interrupt handler. The irq handler has
1183 * already updated our counts. We need to check if any timers fire now.
1184 * Interrupts are disabled.
1185 */
1186void run_posix_cpu_timers(struct task_struct *tsk)
1187{
1188 LIST_HEAD(firing);
1189 struct k_itimer *timer, *next;
1190 unsigned long flags;
1191
1192 WARN_ON_ONCE(!irqs_disabled());
1193
1194 /*
1195 * The fast path checks that there are no expired thread or thread
1196 * group timers. If that's so, just return.
1197 */
1198 if (!fastpath_timer_check(tsk))
1199 return;
1200
1201 if (!lock_task_sighand(tsk, &flags))
1202 return;
1203 /*
1204 * Here we take off tsk->signal->cpu_timers[N] and
1205 * tsk->cpu_timers[N] all the timers that are firing, and
1206 * put them on the firing list.
1207 */
1208 check_thread_timers(tsk, &firing);
1209
1210 check_process_timers(tsk, &firing);
1211
1212 /*
1213 * We must release these locks before taking any timer's lock.
1214 * There is a potential race with timer deletion here, as the
1215 * siglock now protects our private firing list. We have set
1216 * the firing flag in each timer, so that a deletion attempt
1217 * that gets the timer lock before we do will give it up and
1218 * spin until we've taken care of that timer below.
1219 */
1220 unlock_task_sighand(tsk, &flags);
1221
1222 /*
1223 * Now that all the timers on our list have the firing flag,
1224 * no one will touch their list entries but us. We'll take
1225 * each timer's lock before clearing its firing flag, so no
1226 * timer call will interfere.
1227 */
1228 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1229 int cpu_firing;
1230
1231 spin_lock(&timer->it_lock);
1232 list_del_init(&timer->it.cpu.entry);
1233 cpu_firing = timer->it.cpu.firing;
1234 timer->it.cpu.firing = 0;
1235 /*
1236 * The firing flag is -1 if we collided with a reset
1237 * of the timer, which already reported this
1238 * almost-firing as an overrun. So don't generate an event.
1239 */
1240 if (likely(cpu_firing >= 0))
1241 cpu_timer_fire(timer);
1242 spin_unlock(&timer->it_lock);
1243 }
1244}
1245
1246/*
1247 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1248 * The tsk->sighand->siglock must be held by the caller.
1249 */
1250void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1251 cputime_t *newval, cputime_t *oldval)
1252{
1253 unsigned long long now;
1254
1255 WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
1256 cpu_timer_sample_group(clock_idx, tsk, &now);
1257
1258 if (oldval) {
1259 /*
1260 * We are setting itimer. The *oldval is absolute and we update
1261 * it to be relative, *newval argument is relative and we update
1262 * it to be absolute.
1263 */
1264 if (*oldval) {
1265 if (*oldval <= now) {
1266 /* Just about to fire. */
1267 *oldval = cputime_one_jiffy;
1268 } else {
1269 *oldval -= now;
1270 }
1271 }
1272
1273 if (!*newval)
1274 goto out;
1275 *newval += now;
1276 }
1277
1278 /*
1279 * Update expiration cache if we are the earliest timer, or eventually
1280 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1281 */
1282 switch (clock_idx) {
1283 case CPUCLOCK_PROF:
1284 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1285 tsk->signal->cputime_expires.prof_exp = *newval;
1286 break;
1287 case CPUCLOCK_VIRT:
1288 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1289 tsk->signal->cputime_expires.virt_exp = *newval;
1290 break;
1291 }
1292out:
1293 posix_cpu_timer_kick_nohz();
1294}
1295
1296static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1297 struct timespec *rqtp, struct itimerspec *it)
1298{
1299 struct k_itimer timer;
1300 int error;
1301
1302 /*
1303 * Set up a temporary timer and then wait for it to go off.
1304 */
1305 memset(&timer, 0, sizeof timer);
1306 spin_lock_init(&timer.it_lock);
1307 timer.it_clock = which_clock;
1308 timer.it_overrun = -1;
1309 error = posix_cpu_timer_create(&timer);
1310 timer.it_process = current;
1311 if (!error) {
1312 static struct itimerspec zero_it;
1313
1314 memset(it, 0, sizeof *it);
1315 it->it_value = *rqtp;
1316
1317 spin_lock_irq(&timer.it_lock);
1318 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1319 if (error) {
1320 spin_unlock_irq(&timer.it_lock);
1321 return error;
1322 }
1323
1324 while (!signal_pending(current)) {
1325 if (timer.it.cpu.expires == 0) {
1326 /*
1327 * Our timer fired and was reset, below
1328 * deletion can not fail.
1329 */
1330 posix_cpu_timer_del(&timer);
1331 spin_unlock_irq(&timer.it_lock);
1332 return 0;
1333 }
1334
1335 /*
1336 * Block until cpu_timer_fire (or a signal) wakes us.
1337 */
1338 __set_current_state(TASK_INTERRUPTIBLE);
1339 spin_unlock_irq(&timer.it_lock);
1340 schedule();
1341 spin_lock_irq(&timer.it_lock);
1342 }
1343
1344 /*
1345 * We were interrupted by a signal.
1346 */
1347 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1348 error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
1349 if (!error) {
1350 /*
1351 * Timer is now unarmed, deletion can not fail.
1352 */
1353 posix_cpu_timer_del(&timer);
1354 }
1355 spin_unlock_irq(&timer.it_lock);
1356
1357 while (error == TIMER_RETRY) {
1358 /*
1359 * We need to handle case when timer was or is in the
1360 * middle of firing. In other cases we already freed
1361 * resources.
1362 */
1363 spin_lock_irq(&timer.it_lock);
1364 error = posix_cpu_timer_del(&timer);
1365 spin_unlock_irq(&timer.it_lock);
1366 }
1367
1368 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1369 /*
1370 * It actually did fire already.
1371 */
1372 return 0;
1373 }
1374
1375 error = -ERESTART_RESTARTBLOCK;
1376 }
1377
1378 return error;
1379}
1380
1381static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1382
1383static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1384 struct timespec *rqtp, struct timespec __user *rmtp)
1385{
1386 struct restart_block *restart_block = &current->restart_block;
1387 struct itimerspec it;
1388 int error;
1389
1390 /*
1391 * Diagnose required errors first.
1392 */
1393 if (CPUCLOCK_PERTHREAD(which_clock) &&
1394 (CPUCLOCK_PID(which_clock) == 0 ||
1395 CPUCLOCK_PID(which_clock) == current->pid))
1396 return -EINVAL;
1397
1398 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1399
1400 if (error == -ERESTART_RESTARTBLOCK) {
1401
1402 if (flags & TIMER_ABSTIME)
1403 return -ERESTARTNOHAND;
1404 /*
1405 * Report back to the user the time still remaining.
1406 */
1407 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1408 return -EFAULT;
1409
1410 restart_block->fn = posix_cpu_nsleep_restart;
1411 restart_block->nanosleep.clockid = which_clock;
1412 restart_block->nanosleep.rmtp = rmtp;
1413 restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1414 }
1415 return error;
1416}
1417
1418static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1419{
1420 clockid_t which_clock = restart_block->nanosleep.clockid;
1421 struct timespec t;
1422 struct itimerspec it;
1423 int error;
1424
1425 t = ns_to_timespec(restart_block->nanosleep.expires);
1426
1427 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1428
1429 if (error == -ERESTART_RESTARTBLOCK) {
1430 struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1431 /*
1432 * Report back to the user the time still remaining.
1433 */
1434 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1435 return -EFAULT;
1436
1437 restart_block->nanosleep.expires = timespec_to_ns(&t);
1438 }
1439 return error;
1440
1441}
1442
1443#define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1444#define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1445
1446static int process_cpu_clock_getres(const clockid_t which_clock,
1447 struct timespec *tp)
1448{
1449 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1450}
1451static int process_cpu_clock_get(const clockid_t which_clock,
1452 struct timespec *tp)
1453{
1454 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1455}
1456static int process_cpu_timer_create(struct k_itimer *timer)
1457{
1458 timer->it_clock = PROCESS_CLOCK;
1459 return posix_cpu_timer_create(timer);
1460}
1461static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1462 struct timespec *rqtp,
1463 struct timespec __user *rmtp)
1464{
1465 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1466}
1467static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1468{
1469 return -EINVAL;
1470}
1471static int thread_cpu_clock_getres(const clockid_t which_clock,
1472 struct timespec *tp)
1473{
1474 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1475}
1476static int thread_cpu_clock_get(const clockid_t which_clock,
1477 struct timespec *tp)
1478{
1479 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1480}
1481static int thread_cpu_timer_create(struct k_itimer *timer)
1482{
1483 timer->it_clock = THREAD_CLOCK;
1484 return posix_cpu_timer_create(timer);
1485}
1486
1487struct k_clock clock_posix_cpu = {
1488 .clock_getres = posix_cpu_clock_getres,
1489 .clock_set = posix_cpu_clock_set,
1490 .clock_get = posix_cpu_clock_get,
1491 .timer_create = posix_cpu_timer_create,
1492 .nsleep = posix_cpu_nsleep,
1493 .nsleep_restart = posix_cpu_nsleep_restart,
1494 .timer_set = posix_cpu_timer_set,
1495 .timer_del = posix_cpu_timer_del,
1496 .timer_get = posix_cpu_timer_get,
1497};
1498
1499static __init int init_posix_cpu_timers(void)
1500{
1501 struct k_clock process = {
1502 .clock_getres = process_cpu_clock_getres,
1503 .clock_get = process_cpu_clock_get,
1504 .timer_create = process_cpu_timer_create,
1505 .nsleep = process_cpu_nsleep,
1506 .nsleep_restart = process_cpu_nsleep_restart,
1507 };
1508 struct k_clock thread = {
1509 .clock_getres = thread_cpu_clock_getres,
1510 .clock_get = thread_cpu_clock_get,
1511 .timer_create = thread_cpu_timer_create,
1512 };
1513 struct timespec ts;
1514
1515 posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1516 posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1517
1518 cputime_to_timespec(cputime_one_jiffy, &ts);
1519 onecputick = ts.tv_nsec;
1520 WARN_ON(ts.tv_sec != 0);
1521
1522 return 0;
1523}
1524__initcall(init_posix_cpu_timers);