Kyle Swenson | 8d8f654 | 2021-03-15 11:02:55 -0600 | [diff] [blame] | 1 | /* |
| 2 | * linux/kernel/time/tick-common.c |
| 3 | * |
| 4 | * This file contains the base functions to manage periodic tick |
| 5 | * related events. |
| 6 | * |
| 7 | * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> |
| 8 | * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar |
| 9 | * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner |
| 10 | * |
| 11 | * This code is licenced under the GPL version 2. For details see |
| 12 | * kernel-base/COPYING. |
| 13 | */ |
| 14 | #include <linux/cpu.h> |
| 15 | #include <linux/err.h> |
| 16 | #include <linux/hrtimer.h> |
| 17 | #include <linux/interrupt.h> |
| 18 | #include <linux/percpu.h> |
| 19 | #include <linux/profile.h> |
| 20 | #include <linux/sched.h> |
| 21 | #include <linux/module.h> |
| 22 | #include <trace/events/power.h> |
| 23 | |
| 24 | #include <asm/irq_regs.h> |
| 25 | |
| 26 | #include "tick-internal.h" |
| 27 | |
| 28 | /* |
| 29 | * Tick devices |
| 30 | */ |
| 31 | DEFINE_PER_CPU(struct tick_device, tick_cpu_device); |
| 32 | /* |
| 33 | * Tick next event: keeps track of the tick time |
| 34 | */ |
| 35 | ktime_t tick_next_period; |
| 36 | ktime_t tick_period; |
| 37 | |
| 38 | /* |
| 39 | * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR |
| 40 | * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This |
| 41 | * variable has two functions: |
| 42 | * |
| 43 | * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the |
| 44 | * timekeeping lock all at once. Only the CPU which is assigned to do the |
| 45 | * update is handling it. |
| 46 | * |
| 47 | * 2) Hand off the duty in the NOHZ idle case by setting the value to |
| 48 | * TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks |
| 49 | * at it will take over and keep the time keeping alive. The handover |
| 50 | * procedure also covers cpu hotplug. |
| 51 | */ |
| 52 | int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT; |
| 53 | |
| 54 | /* |
| 55 | * Debugging: see timer_list.c |
| 56 | */ |
| 57 | struct tick_device *tick_get_device(int cpu) |
| 58 | { |
| 59 | return &per_cpu(tick_cpu_device, cpu); |
| 60 | } |
| 61 | |
| 62 | /** |
| 63 | * tick_is_oneshot_available - check for a oneshot capable event device |
| 64 | */ |
| 65 | int tick_is_oneshot_available(void) |
| 66 | { |
| 67 | struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); |
| 68 | |
| 69 | if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT)) |
| 70 | return 0; |
| 71 | if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) |
| 72 | return 1; |
| 73 | return tick_broadcast_oneshot_available(); |
| 74 | } |
| 75 | |
| 76 | /* |
| 77 | * Periodic tick |
| 78 | */ |
| 79 | static void tick_periodic(int cpu) |
| 80 | { |
| 81 | if (tick_do_timer_cpu == cpu) { |
| 82 | write_seqlock(&jiffies_lock); |
| 83 | |
| 84 | /* Keep track of the next tick event */ |
| 85 | tick_next_period = ktime_add(tick_next_period, tick_period); |
| 86 | |
| 87 | do_timer(1); |
| 88 | write_sequnlock(&jiffies_lock); |
| 89 | update_wall_time(); |
| 90 | } |
| 91 | |
| 92 | update_process_times(user_mode(get_irq_regs())); |
| 93 | profile_tick(CPU_PROFILING); |
| 94 | } |
| 95 | |
| 96 | /* |
| 97 | * Event handler for periodic ticks |
| 98 | */ |
| 99 | void tick_handle_periodic(struct clock_event_device *dev) |
| 100 | { |
| 101 | int cpu = smp_processor_id(); |
| 102 | ktime_t next = dev->next_event; |
| 103 | |
| 104 | tick_periodic(cpu); |
| 105 | |
| 106 | #if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON) |
| 107 | /* |
| 108 | * The cpu might have transitioned to HIGHRES or NOHZ mode via |
| 109 | * update_process_times() -> run_local_timers() -> |
| 110 | * hrtimer_run_queues(). |
| 111 | */ |
| 112 | if (dev->event_handler != tick_handle_periodic) |
| 113 | return; |
| 114 | #endif |
| 115 | |
| 116 | if (!clockevent_state_oneshot(dev)) |
| 117 | return; |
| 118 | for (;;) { |
| 119 | /* |
| 120 | * Setup the next period for devices, which do not have |
| 121 | * periodic mode: |
| 122 | */ |
| 123 | next = ktime_add(next, tick_period); |
| 124 | |
| 125 | if (!clockevents_program_event(dev, next, false)) |
| 126 | return; |
| 127 | /* |
| 128 | * Have to be careful here. If we're in oneshot mode, |
| 129 | * before we call tick_periodic() in a loop, we need |
| 130 | * to be sure we're using a real hardware clocksource. |
| 131 | * Otherwise we could get trapped in an infinite |
| 132 | * loop, as the tick_periodic() increments jiffies, |
| 133 | * which then will increment time, possibly causing |
| 134 | * the loop to trigger again and again. |
| 135 | */ |
| 136 | if (timekeeping_valid_for_hres()) |
| 137 | tick_periodic(cpu); |
| 138 | } |
| 139 | } |
| 140 | |
| 141 | /* |
| 142 | * Setup the device for a periodic tick |
| 143 | */ |
| 144 | void tick_setup_periodic(struct clock_event_device *dev, int broadcast) |
| 145 | { |
| 146 | tick_set_periodic_handler(dev, broadcast); |
| 147 | |
| 148 | /* Broadcast setup ? */ |
| 149 | if (!tick_device_is_functional(dev)) |
| 150 | return; |
| 151 | |
| 152 | if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) && |
| 153 | !tick_broadcast_oneshot_active()) { |
| 154 | clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC); |
| 155 | } else { |
| 156 | unsigned long seq; |
| 157 | ktime_t next; |
| 158 | |
| 159 | do { |
| 160 | seq = read_seqbegin(&jiffies_lock); |
| 161 | next = tick_next_period; |
| 162 | } while (read_seqretry(&jiffies_lock, seq)); |
| 163 | |
| 164 | clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT); |
| 165 | |
| 166 | for (;;) { |
| 167 | if (!clockevents_program_event(dev, next, false)) |
| 168 | return; |
| 169 | next = ktime_add(next, tick_period); |
| 170 | } |
| 171 | } |
| 172 | } |
| 173 | |
| 174 | /* |
| 175 | * Setup the tick device |
| 176 | */ |
| 177 | static void tick_setup_device(struct tick_device *td, |
| 178 | struct clock_event_device *newdev, int cpu, |
| 179 | const struct cpumask *cpumask) |
| 180 | { |
| 181 | ktime_t next_event; |
| 182 | void (*handler)(struct clock_event_device *) = NULL; |
| 183 | |
| 184 | /* |
| 185 | * First device setup ? |
| 186 | */ |
| 187 | if (!td->evtdev) { |
| 188 | /* |
| 189 | * If no cpu took the do_timer update, assign it to |
| 190 | * this cpu: |
| 191 | */ |
| 192 | if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) { |
| 193 | if (!tick_nohz_full_cpu(cpu)) |
| 194 | tick_do_timer_cpu = cpu; |
| 195 | else |
| 196 | tick_do_timer_cpu = TICK_DO_TIMER_NONE; |
| 197 | tick_next_period = ktime_get(); |
| 198 | tick_period = ktime_set(0, NSEC_PER_SEC / HZ); |
| 199 | } |
| 200 | |
| 201 | /* |
| 202 | * Startup in periodic mode first. |
| 203 | */ |
| 204 | td->mode = TICKDEV_MODE_PERIODIC; |
| 205 | } else { |
| 206 | handler = td->evtdev->event_handler; |
| 207 | next_event = td->evtdev->next_event; |
| 208 | td->evtdev->event_handler = clockevents_handle_noop; |
| 209 | } |
| 210 | |
| 211 | td->evtdev = newdev; |
| 212 | |
| 213 | /* |
| 214 | * When the device is not per cpu, pin the interrupt to the |
| 215 | * current cpu: |
| 216 | */ |
| 217 | if (!cpumask_equal(newdev->cpumask, cpumask)) |
| 218 | irq_set_affinity(newdev->irq, cpumask); |
| 219 | |
| 220 | /* |
| 221 | * When global broadcasting is active, check if the current |
| 222 | * device is registered as a placeholder for broadcast mode. |
| 223 | * This allows us to handle this x86 misfeature in a generic |
| 224 | * way. This function also returns !=0 when we keep the |
| 225 | * current active broadcast state for this CPU. |
| 226 | */ |
| 227 | if (tick_device_uses_broadcast(newdev, cpu)) |
| 228 | return; |
| 229 | |
| 230 | if (td->mode == TICKDEV_MODE_PERIODIC) |
| 231 | tick_setup_periodic(newdev, 0); |
| 232 | else |
| 233 | tick_setup_oneshot(newdev, handler, next_event); |
| 234 | } |
| 235 | |
| 236 | void tick_install_replacement(struct clock_event_device *newdev) |
| 237 | { |
| 238 | struct tick_device *td = this_cpu_ptr(&tick_cpu_device); |
| 239 | int cpu = smp_processor_id(); |
| 240 | |
| 241 | clockevents_exchange_device(td->evtdev, newdev); |
| 242 | tick_setup_device(td, newdev, cpu, cpumask_of(cpu)); |
| 243 | if (newdev->features & CLOCK_EVT_FEAT_ONESHOT) |
| 244 | tick_oneshot_notify(); |
| 245 | } |
| 246 | |
| 247 | static bool tick_check_percpu(struct clock_event_device *curdev, |
| 248 | struct clock_event_device *newdev, int cpu) |
| 249 | { |
| 250 | if (!cpumask_test_cpu(cpu, newdev->cpumask)) |
| 251 | return false; |
| 252 | if (cpumask_equal(newdev->cpumask, cpumask_of(cpu))) |
| 253 | return true; |
| 254 | /* Check if irq affinity can be set */ |
| 255 | if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq)) |
| 256 | return false; |
| 257 | /* Prefer an existing cpu local device */ |
| 258 | if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu))) |
| 259 | return false; |
| 260 | return true; |
| 261 | } |
| 262 | |
| 263 | static bool tick_check_preferred(struct clock_event_device *curdev, |
| 264 | struct clock_event_device *newdev) |
| 265 | { |
| 266 | /* Prefer oneshot capable device */ |
| 267 | if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) { |
| 268 | if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT)) |
| 269 | return false; |
| 270 | if (tick_oneshot_mode_active()) |
| 271 | return false; |
| 272 | } |
| 273 | |
| 274 | /* |
| 275 | * Use the higher rated one, but prefer a CPU local device with a lower |
| 276 | * rating than a non-CPU local device |
| 277 | */ |
| 278 | return !curdev || |
| 279 | newdev->rating > curdev->rating || |
| 280 | !cpumask_equal(curdev->cpumask, newdev->cpumask); |
| 281 | } |
| 282 | |
| 283 | /* |
| 284 | * Check whether the new device is a better fit than curdev. curdev |
| 285 | * can be NULL ! |
| 286 | */ |
| 287 | bool tick_check_replacement(struct clock_event_device *curdev, |
| 288 | struct clock_event_device *newdev) |
| 289 | { |
| 290 | if (!tick_check_percpu(curdev, newdev, smp_processor_id())) |
| 291 | return false; |
| 292 | |
| 293 | return tick_check_preferred(curdev, newdev); |
| 294 | } |
| 295 | |
| 296 | /* |
| 297 | * Check, if the new registered device should be used. Called with |
| 298 | * clockevents_lock held and interrupts disabled. |
| 299 | */ |
| 300 | void tick_check_new_device(struct clock_event_device *newdev) |
| 301 | { |
| 302 | struct clock_event_device *curdev; |
| 303 | struct tick_device *td; |
| 304 | int cpu; |
| 305 | |
| 306 | cpu = smp_processor_id(); |
| 307 | td = &per_cpu(tick_cpu_device, cpu); |
| 308 | curdev = td->evtdev; |
| 309 | |
| 310 | /* cpu local device ? */ |
| 311 | if (!tick_check_percpu(curdev, newdev, cpu)) |
| 312 | goto out_bc; |
| 313 | |
| 314 | /* Preference decision */ |
| 315 | if (!tick_check_preferred(curdev, newdev)) |
| 316 | goto out_bc; |
| 317 | |
| 318 | if (!try_module_get(newdev->owner)) |
| 319 | return; |
| 320 | |
| 321 | /* |
| 322 | * Replace the eventually existing device by the new |
| 323 | * device. If the current device is the broadcast device, do |
| 324 | * not give it back to the clockevents layer ! |
| 325 | */ |
| 326 | if (tick_is_broadcast_device(curdev)) { |
| 327 | clockevents_shutdown(curdev); |
| 328 | curdev = NULL; |
| 329 | } |
| 330 | clockevents_exchange_device(curdev, newdev); |
| 331 | tick_setup_device(td, newdev, cpu, cpumask_of(cpu)); |
| 332 | if (newdev->features & CLOCK_EVT_FEAT_ONESHOT) |
| 333 | tick_oneshot_notify(); |
| 334 | return; |
| 335 | |
| 336 | out_bc: |
| 337 | /* |
| 338 | * Can the new device be used as a broadcast device ? |
| 339 | */ |
| 340 | tick_install_broadcast_device(newdev); |
| 341 | } |
| 342 | |
| 343 | /** |
| 344 | * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode |
| 345 | * @state: The target state (enter/exit) |
| 346 | * |
| 347 | * The system enters/leaves a state, where affected devices might stop |
| 348 | * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups. |
| 349 | * |
| 350 | * Called with interrupts disabled, so clockevents_lock is not |
| 351 | * required here because the local clock event device cannot go away |
| 352 | * under us. |
| 353 | */ |
| 354 | int tick_broadcast_oneshot_control(enum tick_broadcast_state state) |
| 355 | { |
| 356 | struct tick_device *td = this_cpu_ptr(&tick_cpu_device); |
| 357 | |
| 358 | if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP)) |
| 359 | return 0; |
| 360 | |
| 361 | return __tick_broadcast_oneshot_control(state); |
| 362 | } |
| 363 | EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control); |
| 364 | |
| 365 | #ifdef CONFIG_HOTPLUG_CPU |
| 366 | /* |
| 367 | * Transfer the do_timer job away from a dying cpu. |
| 368 | * |
| 369 | * Called with interrupts disabled. Not locking required. If |
| 370 | * tick_do_timer_cpu is owned by this cpu, nothing can change it. |
| 371 | */ |
| 372 | void tick_handover_do_timer(void) |
| 373 | { |
| 374 | if (tick_do_timer_cpu == smp_processor_id()) { |
| 375 | int cpu = cpumask_first(cpu_online_mask); |
| 376 | |
| 377 | tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu : |
| 378 | TICK_DO_TIMER_NONE; |
| 379 | } |
| 380 | } |
| 381 | |
| 382 | /* |
| 383 | * Shutdown an event device on a given cpu: |
| 384 | * |
| 385 | * This is called on a life CPU, when a CPU is dead. So we cannot |
| 386 | * access the hardware device itself. |
| 387 | * We just set the mode and remove it from the lists. |
| 388 | */ |
| 389 | void tick_shutdown(unsigned int cpu) |
| 390 | { |
| 391 | struct tick_device *td = &per_cpu(tick_cpu_device, cpu); |
| 392 | struct clock_event_device *dev = td->evtdev; |
| 393 | |
| 394 | td->mode = TICKDEV_MODE_PERIODIC; |
| 395 | if (dev) { |
| 396 | /* |
| 397 | * Prevent that the clock events layer tries to call |
| 398 | * the set mode function! |
| 399 | */ |
| 400 | clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED); |
| 401 | clockevents_exchange_device(dev, NULL); |
| 402 | dev->event_handler = clockevents_handle_noop; |
| 403 | td->evtdev = NULL; |
| 404 | } |
| 405 | } |
| 406 | #endif |
| 407 | |
| 408 | /** |
| 409 | * tick_suspend_local - Suspend the local tick device |
| 410 | * |
| 411 | * Called from the local cpu for freeze with interrupts disabled. |
| 412 | * |
| 413 | * No locks required. Nothing can change the per cpu device. |
| 414 | */ |
| 415 | void tick_suspend_local(void) |
| 416 | { |
| 417 | struct tick_device *td = this_cpu_ptr(&tick_cpu_device); |
| 418 | |
| 419 | clockevents_shutdown(td->evtdev); |
| 420 | } |
| 421 | |
| 422 | /** |
| 423 | * tick_resume_local - Resume the local tick device |
| 424 | * |
| 425 | * Called from the local CPU for unfreeze or XEN resume magic. |
| 426 | * |
| 427 | * No locks required. Nothing can change the per cpu device. |
| 428 | */ |
| 429 | void tick_resume_local(void) |
| 430 | { |
| 431 | struct tick_device *td = this_cpu_ptr(&tick_cpu_device); |
| 432 | bool broadcast = tick_resume_check_broadcast(); |
| 433 | |
| 434 | clockevents_tick_resume(td->evtdev); |
| 435 | if (!broadcast) { |
| 436 | if (td->mode == TICKDEV_MODE_PERIODIC) |
| 437 | tick_setup_periodic(td->evtdev, 0); |
| 438 | else |
| 439 | tick_resume_oneshot(); |
| 440 | } |
| 441 | } |
| 442 | |
| 443 | /** |
| 444 | * tick_suspend - Suspend the tick and the broadcast device |
| 445 | * |
| 446 | * Called from syscore_suspend() via timekeeping_suspend with only one |
| 447 | * CPU online and interrupts disabled or from tick_unfreeze() under |
| 448 | * tick_freeze_lock. |
| 449 | * |
| 450 | * No locks required. Nothing can change the per cpu device. |
| 451 | */ |
| 452 | void tick_suspend(void) |
| 453 | { |
| 454 | tick_suspend_local(); |
| 455 | tick_suspend_broadcast(); |
| 456 | } |
| 457 | |
| 458 | /** |
| 459 | * tick_resume - Resume the tick and the broadcast device |
| 460 | * |
| 461 | * Called from syscore_resume() via timekeeping_resume with only one |
| 462 | * CPU online and interrupts disabled. |
| 463 | * |
| 464 | * No locks required. Nothing can change the per cpu device. |
| 465 | */ |
| 466 | void tick_resume(void) |
| 467 | { |
| 468 | tick_resume_broadcast(); |
| 469 | tick_resume_local(); |
| 470 | } |
| 471 | |
| 472 | #ifdef CONFIG_SUSPEND |
| 473 | static DEFINE_RAW_SPINLOCK(tick_freeze_lock); |
| 474 | static unsigned int tick_freeze_depth; |
| 475 | |
| 476 | /** |
| 477 | * tick_freeze - Suspend the local tick and (possibly) timekeeping. |
| 478 | * |
| 479 | * Check if this is the last online CPU executing the function and if so, |
| 480 | * suspend timekeeping. Otherwise suspend the local tick. |
| 481 | * |
| 482 | * Call with interrupts disabled. Must be balanced with %tick_unfreeze(). |
| 483 | * Interrupts must not be enabled before the subsequent %tick_unfreeze(). |
| 484 | */ |
| 485 | void tick_freeze(void) |
| 486 | { |
| 487 | raw_spin_lock(&tick_freeze_lock); |
| 488 | |
| 489 | tick_freeze_depth++; |
| 490 | if (tick_freeze_depth == num_online_cpus()) { |
| 491 | trace_suspend_resume(TPS("timekeeping_freeze"), |
| 492 | smp_processor_id(), true); |
| 493 | timekeeping_suspend(); |
| 494 | } else { |
| 495 | tick_suspend_local(); |
| 496 | } |
| 497 | |
| 498 | raw_spin_unlock(&tick_freeze_lock); |
| 499 | } |
| 500 | |
| 501 | /** |
| 502 | * tick_unfreeze - Resume the local tick and (possibly) timekeeping. |
| 503 | * |
| 504 | * Check if this is the first CPU executing the function and if so, resume |
| 505 | * timekeeping. Otherwise resume the local tick. |
| 506 | * |
| 507 | * Call with interrupts disabled. Must be balanced with %tick_freeze(). |
| 508 | * Interrupts must not be enabled after the preceding %tick_freeze(). |
| 509 | */ |
| 510 | void tick_unfreeze(void) |
| 511 | { |
| 512 | raw_spin_lock(&tick_freeze_lock); |
| 513 | |
| 514 | if (tick_freeze_depth == num_online_cpus()) { |
| 515 | timekeeping_resume(); |
| 516 | trace_suspend_resume(TPS("timekeeping_freeze"), |
| 517 | smp_processor_id(), false); |
| 518 | } else { |
| 519 | tick_resume_local(); |
| 520 | } |
| 521 | |
| 522 | tick_freeze_depth--; |
| 523 | |
| 524 | raw_spin_unlock(&tick_freeze_lock); |
| 525 | } |
| 526 | #endif /* CONFIG_SUSPEND */ |
| 527 | |
| 528 | /** |
| 529 | * tick_init - initialize the tick control |
| 530 | */ |
| 531 | void __init tick_init(void) |
| 532 | { |
| 533 | tick_broadcast_init(); |
| 534 | tick_nohz_init(); |
| 535 | } |