blob: 9a8d34110c7698b3fefe5f14f21b92a6b42a9e1e [file] [log] [blame]
/*
* fast-classifier.c
* Shortcut forwarding engine connection manager.
* fast-classifier
*
* Copyright (c) 2013-2016 The Linux Foundation. All rights reserved.
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all copies.
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
* OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/module.h>
#include <linux/sysfs.h>
#include <linux/skbuff.h>
#include <net/route.h>
#include <net/ip6_route.h>
#include <net/addrconf.h>
#include <net/dsfield.h>
#include <linux/inetdevice.h>
#include <linux/netfilter_bridge.h>
#include <linux/netfilter_ipv6.h>
#include <net/netfilter/nf_conntrack_acct.h>
#include <net/netfilter/nf_conntrack_helper.h>
#include <net/netfilter/nf_conntrack_zones.h>
#include <net/netfilter/nf_conntrack_core.h>
#include <linux/netfilter/xt_dscp.h>
#include <net/genetlink.h>
#include <linux/spinlock.h>
#include <linux/if_bridge.h>
#include <linux/hashtable.h>
#include <sfe_backport.h>
#include <sfe.h>
#include <sfe_cm.h>
#include "fast-classifier.h"
typedef enum fast_classifier_exception {
FAST_CL_EXCEPTION_PACKET_BROADCAST,
FAST_CL_EXCEPTION_PACKET_MULTICAST,
FAST_CL_EXCEPTION_NO_IIF,
FAST_CL_EXCEPTION_NO_CT,
FAST_CL_EXCEPTION_CT_NO_TRACK,
FAST_CL_EXCEPTION_CT_NO_CONFIRM,
FAST_CL_EXCEPTION_CT_IS_ALG,
FAST_CL_EXCEPTION_IS_IPV4_MCAST,
FAST_CL_EXCEPTION_IS_IPV6_MCAST,
FAST_CL_EXCEPTION_TCP_NOT_ASSURED,
FAST_CL_EXCEPTION_TCP_NOT_ESTABLISHED,
FAST_CL_EXCEPTION_UNKNOW_PROTOCOL,
FAST_CL_EXCEPTION_NO_SRC_DEV,
FAST_CL_EXCEPTION_NO_SRC_XLATE_DEV,
FAST_CL_EXCEPTION_NO_DEST_DEV,
FAST_CL_EXCEPTION_NO_DEST_XLATE_DEV,
FAST_CL_EXCEPTION_NO_BRIDGE,
FAST_CL_EXCEPTION_LOCAL_OUT,
FAST_CL_EXCEPTION_WAIT_FOR_ACCELERATION,
FAST_CL_EXCEPTION_UPDATE_PROTOCOL_FAIL,
FAST_CL_EXCEPTION_CT_DESTROY_MISS,
FAST_CL_EXCEPTION_MAX
} fast_classifier_exception_t;
static char *fast_classifier_exception_events_string[FAST_CL_EXCEPTION_MAX] = {
"PACKET_BROADCAST",
"PACKET_MULTICAST",
"NO_IIF",
"NO_CT",
"CT_NO_TRACK",
"CT_NO_CONFIRM",
"CT_IS_ALG",
"IS_IPV4_MCAST",
"IS_IPV6_MCAST",
"TCP_NOT_ASSURED",
"TCP_NOT_ESTABLISHED",
"UNKNOW_PROTOCOL",
"NO_SRC_DEV",
"NO_SRC_XLATE_DEV",
"NO_DEST_DEV",
"NO_DEST_XLATE_DEV",
"NO_BRIDGE",
"LOCAL_OUT",
"WAIT_FOR_ACCELERATION",
"UPDATE_PROTOCOL_FAIL",
"CT_DESTROY_MISS",
};
/*
* Per-module structure.
*/
struct fast_classifier {
spinlock_t lock; /* Lock for SMP correctness */
/*
* Control state.
*/
struct kobject *sys_fast_classifier; /* sysfs linkage */
/*
* Callback notifiers.
*/
struct notifier_block dev_notifier; /* Device notifier */
struct notifier_block inet_notifier; /* IPv4 notifier */
struct notifier_block inet6_notifier; /* IPv6 notifier */
u32 exceptions[FAST_CL_EXCEPTION_MAX];
};
static struct fast_classifier __sc;
static struct nla_policy fast_classifier_genl_policy[FAST_CLASSIFIER_A_MAX + 1] = {
[FAST_CLASSIFIER_A_TUPLE] = {
.type = NLA_UNSPEC,
.len = sizeof(struct fast_classifier_tuple)
},
};
static struct genl_multicast_group fast_classifier_genl_mcgrp[] = {
{
.name = FAST_CLASSIFIER_GENL_MCGRP,
},
};
static struct genl_family fast_classifier_gnl_family = {
.id = GENL_ID_GENERATE,
.hdrsize = FAST_CLASSIFIER_GENL_HDRSIZE,
.name = FAST_CLASSIFIER_GENL_NAME,
.version = FAST_CLASSIFIER_GENL_VERSION,
.maxattr = FAST_CLASSIFIER_A_MAX,
};
static int fast_classifier_offload_genl_msg(struct sk_buff *skb, struct genl_info *info);
static int fast_classifier_nl_genl_msg_DUMP(struct sk_buff *skb, struct netlink_callback *cb);
static struct genl_ops fast_classifier_gnl_ops[] = {
{
.cmd = FAST_CLASSIFIER_C_OFFLOAD,
.flags = 0,
.policy = fast_classifier_genl_policy,
.doit = fast_classifier_offload_genl_msg,
.dumpit = NULL,
},
{
.cmd = FAST_CLASSIFIER_C_OFFLOADED,
.flags = 0,
.policy = fast_classifier_genl_policy,
.doit = NULL,
.dumpit = fast_classifier_nl_genl_msg_DUMP,
},
{
.cmd = FAST_CLASSIFIER_C_DONE,
.flags = 0,
.policy = fast_classifier_genl_policy,
.doit = NULL,
.dumpit = fast_classifier_nl_genl_msg_DUMP,
},
};
static atomic_t offload_msgs = ATOMIC_INIT(0);
static atomic_t offload_no_match_msgs = ATOMIC_INIT(0);
static atomic_t offloaded_msgs = ATOMIC_INIT(0);
static atomic_t done_msgs = ATOMIC_INIT(0);
static atomic_t offloaded_fail_msgs = ATOMIC_INIT(0);
static atomic_t done_fail_msgs = ATOMIC_INIT(0);
/*
* Accelerate incoming packets destined for bridge device
* If a incoming packet is ultimatly destined for
* a bridge device we will first see the packet coming
* from the phyiscal device, we can skip straight to
* processing the packet like it came from the bridge
* for some more performance gains
*
* This only works when the hook is above the bridge. We
* only implement ingress for now, because for egress we
* want to have the bridge devices qdiscs be used.
*/
static bool skip_to_bridge_ingress;
/*
* fast_classifier_incr_exceptions()
* increase an exception counter.
*/
static inline void fast_classifier_incr_exceptions(fast_classifier_exception_t except)
{
struct fast_classifier *sc = &__sc;
spin_lock_bh(&sc->lock);
sc->exceptions[except]++;
spin_unlock_bh(&sc->lock);
}
/*
* fast_classifier_recv()
* Handle packet receives.
*
* Returns 1 if the packet is forwarded or 0 if it isn't.
*/
int fast_classifier_recv(struct sk_buff *skb)
{
struct net_device *dev;
struct net_device *master_dev = NULL;
int ret = 0;
/*
* We know that for the vast majority of packets we need the transport
* layer header so we may as well start to fetch it now!
*/
prefetch(skb->data + 32);
barrier();
dev = skb->dev;
/*
* Process packet like it arrived on the bridge device
*/
if (skip_to_bridge_ingress &&
(dev->priv_flags & IFF_BRIDGE_PORT)) {
master_dev = sfe_dev_get_master(dev);
dev = master_dev;
}
/*
* We're only interested in IPv4 and IPv6 packets.
*/
if (likely(htons(ETH_P_IP) == skb->protocol)) {
struct in_device *in_dev;
/*
* Does our input device support IP processing?
*/
in_dev = (struct in_device *)dev->ip_ptr;
if (unlikely(!in_dev)) {
DEBUG_TRACE("no IP processing for device: %s\n", dev->name);
goto rx_exit;
}
/*
* Does it have an IP address? If it doesn't then we can't do anything
* interesting here!
*/
if (unlikely(!in_dev->ifa_list)) {
DEBUG_TRACE("no IP address for device: %s\n", dev->name);
goto rx_exit;
}
ret = sfe_ipv4_recv(dev, skb);
} else if (likely(htons(ETH_P_IPV6) == skb->protocol)) {
struct inet6_dev *in_dev;
/*
* Does our input device support IPv6 processing?
*/
in_dev = (struct inet6_dev *)dev->ip6_ptr;
if (unlikely(!in_dev)) {
DEBUG_TRACE("no IPv6 processing for device: %s\n", dev->name);
goto rx_exit;
}
/*
* Does it have an IPv6 address? If it doesn't then we can't do anything
* interesting here!
*/
if (unlikely(list_empty(&in_dev->addr_list))) {
DEBUG_TRACE("no IPv6 address for device: %s\n", dev->name);
goto rx_exit;
}
ret = sfe_ipv6_recv(dev, skb);
} else {
DEBUG_TRACE("not IP packet\n");
}
rx_exit:
if (master_dev) {
dev_put(master_dev);
}
return ret;
}
/*
* fast_classifier_find_dev_and_mac_addr()
* Find the device and MAC address for a given IPv4 address.
*
* Returns true if we find the device and MAC address, otherwise false.
*
* We look up the rtable entry for the address and, from its neighbour
* structure, obtain the hardware address. This means this function also
* works if the neighbours are routers too.
*/
static bool fast_classifier_find_dev_and_mac_addr(sfe_ip_addr_t *addr, struct net_device **dev, u8 *mac_addr, bool is_v4)
{
struct neighbour *neigh;
struct rtable *rt;
struct rt6_info *rt6;
struct dst_entry *dst;
struct net_device *mac_dev;
/*
* Look up the rtable entry for the IP address then get the hardware
* address from its neighbour structure. This means this works when the
* neighbours are routers too.
*/
if (likely(is_v4)) {
rt = ip_route_output(&init_net, addr->ip, 0, 0, 0);
if (unlikely(IS_ERR(rt))) {
goto ret_fail;
}
dst = (struct dst_entry *)rt;
} else {
rt6 = rt6_lookup(&init_net, (struct in6_addr *)addr->ip6, 0, 0, 0);
if (!rt6) {
goto ret_fail;
}
dst = (struct dst_entry *)rt6;
}
rcu_read_lock();
neigh = sfe_dst_get_neighbour(dst, addr);
if (unlikely(!neigh)) {
rcu_read_unlock();
dst_release(dst);
goto ret_fail;
}
if (unlikely(!(neigh->nud_state & NUD_VALID))) {
rcu_read_unlock();
neigh_release(neigh);
dst_release(dst);
goto ret_fail;
}
mac_dev = neigh->dev;
if (!mac_dev) {
rcu_read_unlock();
neigh_release(neigh);
dst_release(dst);
goto ret_fail;
}
memcpy(mac_addr, neigh->ha, (size_t)mac_dev->addr_len);
dev_hold(mac_dev);
*dev = mac_dev;
rcu_read_unlock();
neigh_release(neigh);
dst_release(dst);
return true;
ret_fail:
if (is_v4) {
DEBUG_TRACE("failed to find MAC address for IP: %pI4\n", addr);
} else {
DEBUG_TRACE("failed to find MAC address for IP: %pI6\n", addr);
}
return false;
}
static DEFINE_SPINLOCK(sfe_connections_lock);
struct sfe_connection {
struct hlist_node hl;
struct sfe_connection_create *sic;
struct nf_conn *ct;
int hits;
int offload_permit;
int offloaded;
bool is_v4;
unsigned char smac[ETH_ALEN];
unsigned char dmac[ETH_ALEN];
};
static int sfe_connections_size;
#define FC_CONN_HASH_ORDER 13
static DEFINE_HASHTABLE(fc_conn_ht, FC_CONN_HASH_ORDER);
static u32 fc_conn_hash(sfe_ip_addr_t *saddr, sfe_ip_addr_t *daddr,
unsigned short sport, unsigned short dport, bool is_v4)
{
u32 idx, cnt = ((is_v4 ? sizeof(saddr->ip) : sizeof(saddr->ip6))/sizeof(u32));
u32 hash = 0;
for (idx = 0; idx < cnt; idx++) {
hash ^= ((u32 *)saddr)[idx] ^ ((u32 *)daddr)[idx];
}
return hash ^ (sport | (dport << 16));
}
/*
* fast_classifier_update_protocol()
* Update sfe_ipv4_create struct with new protocol information before we offload
*/
static int fast_classifier_update_protocol(struct sfe_connection_create *p_sic, struct nf_conn *ct)
{
switch (p_sic->protocol) {
case IPPROTO_TCP:
p_sic->src_td_window_scale = ct->proto.tcp.seen[0].td_scale;
p_sic->src_td_max_window = ct->proto.tcp.seen[0].td_maxwin;
p_sic->src_td_end = ct->proto.tcp.seen[0].td_end;
p_sic->src_td_max_end = ct->proto.tcp.seen[0].td_maxend;
p_sic->dest_td_window_scale = ct->proto.tcp.seen[1].td_scale;
p_sic->dest_td_max_window = ct->proto.tcp.seen[1].td_maxwin;
p_sic->dest_td_end = ct->proto.tcp.seen[1].td_end;
p_sic->dest_td_max_end = ct->proto.tcp.seen[1].td_maxend;
if (nf_ct_tcp_no_window_check
|| (ct->proto.tcp.seen[0].flags & IP_CT_TCP_FLAG_BE_LIBERAL)
|| (ct->proto.tcp.seen[1].flags & IP_CT_TCP_FLAG_BE_LIBERAL)) {
p_sic->flags |= SFE_CREATE_FLAG_NO_SEQ_CHECK;
}
/*
* If the connection is shutting down do not manage it.
* state can not be SYN_SENT, SYN_RECV because connection is assured
* Not managed states: FIN_WAIT, CLOSE_WAIT, LAST_ACK, TIME_WAIT, CLOSE.
*/
spin_lock(&ct->lock);
if (ct->proto.tcp.state != TCP_CONNTRACK_ESTABLISHED) {
spin_unlock(&ct->lock);
fast_classifier_incr_exceptions(FAST_CL_EXCEPTION_TCP_NOT_ESTABLISHED);
DEBUG_TRACE("connection in termination state: %#x, s: %pI4:%u, d: %pI4:%u\n",
ct->proto.tcp.state, &p_sic->src_ip, ntohs(p_sic->src_port),
&p_sic->dest_ip, ntohs(p_sic->dest_port));
return 0;
}
spin_unlock(&ct->lock);
break;
case IPPROTO_UDP:
break;
default:
fast_classifier_incr_exceptions(FAST_CL_EXCEPTION_UNKNOW_PROTOCOL);
DEBUG_TRACE("unhandled protocol %d\n", p_sic->protocol);
return 0;
}
return 1;
}
/* fast_classifier_send_genl_msg()
* Function to send a generic netlink message
*/
static void fast_classifier_send_genl_msg(int msg, struct fast_classifier_tuple *fc_msg)
{
struct sk_buff *skb;
int rc;
int buf_len;
int total_len;
void *msg_head;
/*
* Calculate our packet payload size.
* Start with our family header.
*/
buf_len = fast_classifier_gnl_family.hdrsize;
/*
* Add the nla_total_size of each attribute we're going to nla_put().
*/
buf_len += nla_total_size(sizeof(*fc_msg));
/*
* Lastly we need to add space for the NL message header since
* genlmsg_new only accounts for the GENL header and not the
* outer NL header. To do this, we use a NL helper function which
* calculates the total size of a netlink message given a payload size.
* Note this value does not include the GENL header, but that's
* added automatically by genlmsg_new.
*/
total_len = nlmsg_total_size(buf_len);
skb = genlmsg_new(total_len, GFP_ATOMIC);
if (!skb)
return;
msg_head = genlmsg_put(skb, 0, 0, &fast_classifier_gnl_family, 0, msg);
if (!msg_head) {
nlmsg_free(skb);
return;
}
rc = nla_put(skb, FAST_CLASSIFIER_A_TUPLE, sizeof(struct fast_classifier_tuple), fc_msg);
if (rc != 0) {
genlmsg_cancel(skb, msg_head);
nlmsg_free(skb);
return;
}
rc = genlmsg_end(skb, msg_head);
if (rc < 0) {
genlmsg_cancel(skb, msg_head);
nlmsg_free(skb);
return;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 13, 0))
rc = genlmsg_multicast(&fast_classifier_gnl_family, skb, 0, 0, GFP_ATOMIC);
#else
rc = genlmsg_multicast(skb, 0, fast_classifier_genl_mcgrp[0].id, GFP_ATOMIC);
#endif
switch (msg) {
case FAST_CLASSIFIER_C_OFFLOADED:
if (rc == 0) {
atomic_inc(&offloaded_msgs);
} else {
atomic_inc(&offloaded_fail_msgs);
}
break;
case FAST_CLASSIFIER_C_DONE:
if (rc == 0) {
atomic_inc(&done_msgs);
} else {
atomic_inc(&done_fail_msgs);
}
break;
default:
DEBUG_ERROR("fast-classifer: Unknown message type sent!\n");
break;
}
DEBUG_TRACE("Notify NL message %d ", msg);
if (fc_msg->ethertype == AF_INET) {
DEBUG_TRACE("sip=%pI4 dip=%pI4 ", &fc_msg->src_saddr, &fc_msg->dst_saddr);
} else {
DEBUG_TRACE("sip=%pI6 dip=%pI6 ", &fc_msg->src_saddr, &fc_msg->dst_saddr);
}
DEBUG_TRACE("protocol=%d sport=%d dport=%d smac=%pM dmac=%pM\n",
fc_msg->proto, fc_msg->sport, fc_msg->dport, fc_msg->smac, fc_msg->dmac);
}
/*
* fast_classifier_find_conn()
* find a connection object in the hash table
* @pre the sfe_connection_lock must be held before calling this function
*/
static struct sfe_connection *
fast_classifier_find_conn(sfe_ip_addr_t *saddr, sfe_ip_addr_t *daddr,
unsigned short sport, unsigned short dport,
unsigned char proto, bool is_v4)
{
struct sfe_connection_create *p_sic;
struct sfe_connection *conn;
u32 key;
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 9, 0))
struct hlist_node *node;
#endif
key = fc_conn_hash(saddr, daddr, sport, dport, is_v4);
sfe_hash_for_each_possible(fc_conn_ht, conn, node, hl, key) {
if (conn->is_v4 != is_v4) {
continue;
}
p_sic = conn->sic;
if (p_sic->protocol == proto &&
p_sic->src_port == sport &&
p_sic->dest_port == dport &&
sfe_addr_equal(&p_sic->src_ip, saddr, is_v4) &&
sfe_addr_equal(&p_sic->dest_ip, daddr, is_v4)) {
return conn;
}
}
DEBUG_TRACE("connection not found\n");
return NULL;
}
/*
* fast_classifier_sb_find_conn()
* find a connection object in the hash table according to information of packet
* if not found, reverse the tuple and try again.
* @pre the sfe_connection_lock must be held before calling this function
*/
static struct sfe_connection *
fast_classifier_sb_find_conn(sfe_ip_addr_t *saddr, sfe_ip_addr_t *daddr,
unsigned short sport, unsigned short dport,
unsigned char proto, bool is_v4)
{
struct sfe_connection_create *p_sic;
struct sfe_connection *conn;
u32 key;
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 9, 0))
struct hlist_node *node;
#endif
key = fc_conn_hash(saddr, daddr, sport, dport, is_v4);
sfe_hash_for_each_possible(fc_conn_ht, conn, node, hl, key) {
if (conn->is_v4 != is_v4) {
continue;
}
p_sic = conn->sic;
if (p_sic->protocol == proto &&
p_sic->src_port == sport &&
p_sic->dest_port_xlate == dport &&
sfe_addr_equal(&p_sic->src_ip, saddr, is_v4) &&
sfe_addr_equal(&p_sic->dest_ip_xlate, daddr, is_v4)) {
return conn;
}
}
/*
* Reverse the tuple and try again
*/
key = fc_conn_hash(daddr, saddr, dport, sport, is_v4);
sfe_hash_for_each_possible(fc_conn_ht, conn, node, hl, key) {
if (conn->is_v4 != is_v4) {
continue;
}
p_sic = conn->sic;
if (p_sic->protocol == proto &&
p_sic->src_port == dport &&
p_sic->dest_port_xlate == sport &&
sfe_addr_equal(&p_sic->src_ip, daddr, is_v4) &&
sfe_addr_equal(&p_sic->dest_ip_xlate, saddr, is_v4)) {
return conn;
}
}
DEBUG_TRACE("connection not found\n");
return NULL;
}
/*
* fast_classifier_add_conn()
* add a connection object in the hash table if no duplicate
* @conn connection to add
* @return conn if successful, NULL if duplicate
*/
static struct sfe_connection *
fast_classifier_add_conn(struct sfe_connection *conn)
{
struct sfe_connection_create *sic = conn->sic;
u32 key;
spin_lock_bh(&sfe_connections_lock);
if (fast_classifier_find_conn(&sic->src_ip, &sic->dest_ip, sic->src_port,
sic->dest_port, sic->protocol, conn->is_v4)) {
spin_unlock_bh(&sfe_connections_lock);
return NULL;
}
key = fc_conn_hash(&sic->src_ip, &sic->dest_ip,
sic->src_port, sic->dest_port, conn->is_v4);
hash_add(fc_conn_ht, &conn->hl, key);
sfe_connections_size++;
spin_unlock_bh(&sfe_connections_lock);
DEBUG_TRACE(" -> adding item to sfe_connections, new size: %d\n", sfe_connections_size);
if (conn->is_v4) {
DEBUG_TRACE("new offloadable: key: %u proto: %d src_ip: %pI4 dst_ip: %pI4, src_port: %d, dst_port: %d\n",
key, sic->protocol, &(sic->src_ip), &(sic->dest_ip), sic->src_port, sic->dest_port);
} else {
DEBUG_TRACE("new offloadable: key: %u proto: %d src_ip: %pI6 dst_ip: %pI6, src_port: %d, dst_port: %d\n",
key, sic->protocol, &(sic->src_ip), &(sic->dest_ip), sic->src_port, sic->dest_port);
}
return conn;
}
/*
* fast_classifier_offload_genl_msg()
* Called from user space to offload a connection
*/
static int
fast_classifier_offload_genl_msg(struct sk_buff *skb, struct genl_info *info)
{
struct nlattr *na;
struct fast_classifier_tuple *fc_msg;
struct sfe_connection *conn;
na = info->attrs[FAST_CLASSIFIER_A_TUPLE];
fc_msg = nla_data(na);
DEBUG_TRACE((fc_msg->ethertype == AF_INET ?
"want to offload: %d-%d, %pI4, %pI4, %d, %d SMAC=%pM DMAC=%pM\n" :
"want to offload: %d-%d, %pI6, %pI6, %d, %d SMAC=%pM DMAC=%pM\n"),
fc_msg->ethertype,
fc_msg->proto,
&fc_msg->src_saddr,
&fc_msg->dst_saddr,
fc_msg->sport,
fc_msg->dport,
fc_msg->smac,
fc_msg->dmac);
spin_lock_bh(&sfe_connections_lock);
conn = fast_classifier_sb_find_conn((sfe_ip_addr_t *)&fc_msg->src_saddr,
(sfe_ip_addr_t *)&fc_msg->dst_saddr,
fc_msg->sport,
fc_msg->dport,
fc_msg->proto,
(fc_msg->ethertype == AF_INET));
if (!conn) {
spin_unlock_bh(&sfe_connections_lock);
DEBUG_TRACE("REQUEST OFFLOAD NO MATCH\n");
atomic_inc(&offload_no_match_msgs);
return 0;
}
conn->offload_permit = 1;
spin_unlock_bh(&sfe_connections_lock);
atomic_inc(&offload_msgs);
DEBUG_TRACE("INFO: calling sfe rule creation!\n");
return 0;
}
/*
* fast_classifier_nl_genl_msg_DUMP()
* ignore fast_classifier_messages OFFLOADED and DONE
*/
static int fast_classifier_nl_genl_msg_DUMP(struct sk_buff *skb,
struct netlink_callback *cb)
{
return 0;
}
/* auto offload connection once we have this many packets*/
static int offload_at_pkts = 128;
/*
* fast_classifier_post_routing()
* Called for packets about to leave the box - either locally generated or forwarded from another interface
*/
static unsigned int fast_classifier_post_routing(struct sk_buff *skb, bool is_v4)
{
int ret;
struct sfe_connection_create sic;
struct sfe_connection_create *p_sic;
struct net_device *in;
struct nf_conn *ct;
enum ip_conntrack_info ctinfo;
struct net_device *dev;
struct net_device *src_dev;
struct net_device *dest_dev;
struct net_device *src_br_dev = NULL;
struct net_device *dest_br_dev = NULL;
struct nf_conntrack_tuple orig_tuple;
struct nf_conntrack_tuple reply_tuple;
struct sfe_connection *conn;
/*
* Don't process broadcast or multicast packets.
*/
if (unlikely(skb->pkt_type == PACKET_BROADCAST)) {
fast_classifier_incr_exceptions(FAST_CL_EXCEPTION_PACKET_BROADCAST);
DEBUG_TRACE("broadcast, ignoring\n");
return NF_ACCEPT;
}
if (unlikely(skb->pkt_type == PACKET_MULTICAST)) {
fast_classifier_incr_exceptions(FAST_CL_EXCEPTION_PACKET_MULTICAST);
DEBUG_TRACE("multicast, ignoring\n");
return NF_ACCEPT;
}
/*
* Don't process packets that are not being forwarded.
*/
in = dev_get_by_index(&init_net, skb->skb_iif);
if (!in) {
fast_classifier_incr_exceptions(FAST_CL_EXCEPTION_NO_IIF);
DEBUG_TRACE("packet not forwarding\n");
return NF_ACCEPT;
}
dev_put(in);
/*
* Don't process packets that aren't being tracked by conntrack.
*/
ct = nf_ct_get(skb, &ctinfo);
if (unlikely(!ct)) {
fast_classifier_incr_exceptions(FAST_CL_EXCEPTION_NO_CT);
DEBUG_TRACE("no conntrack connection, ignoring\n");
return NF_ACCEPT;
}
/*
* Don't process untracked connections.
*/
if (unlikely(nf_ct_is_untracked(ct))) {
fast_classifier_incr_exceptions(FAST_CL_EXCEPTION_CT_NO_TRACK);
DEBUG_TRACE("untracked connection\n");
return NF_ACCEPT;
}
/*
* Unconfirmed connection may be dropped by Linux at the final step,
* So we don't process unconfirmed connections.
*/
if (!nf_ct_is_confirmed(ct)) {
fast_classifier_incr_exceptions(FAST_CL_EXCEPTION_CT_NO_CONFIRM);
DEBUG_TRACE("unconfirmed connection\n");
return NF_ACCEPT;
}
/*
* Don't process connections that require support from a 'helper' (typically a NAT ALG).
*/
if (unlikely(nfct_help(ct))) {
fast_classifier_incr_exceptions(FAST_CL_EXCEPTION_CT_IS_ALG);
DEBUG_TRACE("connection has helper\n");
return NF_ACCEPT;
}
memset(&sic, 0, sizeof(sic));
/*
* Look up the details of our connection in conntrack.
*
* Note that the data we get from conntrack is for the "ORIGINAL" direction
* but our packet may actually be in the "REPLY" direction.
*/
orig_tuple = ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
reply_tuple = ct->tuplehash[IP_CT_DIR_REPLY].tuple;
sic.protocol = (s32)orig_tuple.dst.protonum;
sic.flags = 0;
/*
* Get addressing information, non-NAT first
*/
if (likely(is_v4)) {
u32 dscp;
sic.src_ip.ip = (__be32)orig_tuple.src.u3.ip;
sic.dest_ip.ip = (__be32)orig_tuple.dst.u3.ip;
if (ipv4_is_multicast(sic.src_ip.ip) || ipv4_is_multicast(sic.dest_ip.ip)) {
fast_classifier_incr_exceptions(FAST_CL_EXCEPTION_IS_IPV4_MCAST);
DEBUG_TRACE("multicast address\n");
return NF_ACCEPT;
}
/*
* NAT'ed addresses - note these are as seen from the 'reply' direction
* When NAT does not apply to this connection these will be identical to the above.
*/
sic.src_ip_xlate.ip = (__be32)reply_tuple.dst.u3.ip;
sic.dest_ip_xlate.ip = (__be32)reply_tuple.src.u3.ip;
dscp = ipv4_get_dsfield(ip_hdr(skb)) >> XT_DSCP_SHIFT;
if (dscp) {
sic.dest_dscp = dscp;
sic.src_dscp = sic.dest_dscp;
sic.flags |= SFE_CREATE_FLAG_REMARK_DSCP;
}
} else {
u32 dscp;
sic.src_ip.ip6[0] = *((struct sfe_ipv6_addr *)&orig_tuple.src.u3.in6);
sic.dest_ip.ip6[0] = *((struct sfe_ipv6_addr *)&orig_tuple.dst.u3.in6);
if (ipv6_addr_is_multicast((struct in6_addr *)sic.src_ip.ip6) ||
ipv6_addr_is_multicast((struct in6_addr *)sic.dest_ip.ip6)) {
fast_classifier_incr_exceptions(FAST_CL_EXCEPTION_IS_IPV6_MCAST);
DEBUG_TRACE("multicast address\n");
return NF_ACCEPT;
}
/*
* NAT'ed addresses - note these are as seen from the 'reply' direction
* When NAT does not apply to this connection these will be identical to the above.
*/
sic.src_ip_xlate.ip6[0] = *((struct sfe_ipv6_addr *)&reply_tuple.dst.u3.in6);
sic.dest_ip_xlate.ip6[0] = *((struct sfe_ipv6_addr *)&reply_tuple.src.u3.in6);
dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> XT_DSCP_SHIFT;
if (dscp) {
sic.dest_dscp = dscp;
sic.src_dscp = sic.dest_dscp;
sic.flags |= SFE_CREATE_FLAG_REMARK_DSCP;
}
}
switch (sic.protocol) {
case IPPROTO_TCP:
sic.src_port = orig_tuple.src.u.tcp.port;
sic.dest_port = orig_tuple.dst.u.tcp.port;
sic.src_port_xlate = reply_tuple.dst.u.tcp.port;
sic.dest_port_xlate = reply_tuple.src.u.tcp.port;
/*
* Don't try to manage a non-established connection.
*/
if (!test_bit(IPS_ASSURED_BIT, &ct->status)) {
fast_classifier_incr_exceptions(FAST_CL_EXCEPTION_TCP_NOT_ASSURED);
DEBUG_TRACE("non-established connection\n");
return NF_ACCEPT;
}
break;
case IPPROTO_UDP:
sic.src_port = orig_tuple.src.u.udp.port;
sic.dest_port = orig_tuple.dst.u.udp.port;
sic.src_port_xlate = reply_tuple.dst.u.udp.port;
sic.dest_port_xlate = reply_tuple.src.u.udp.port;
break;
default:
fast_classifier_incr_exceptions(FAST_CL_EXCEPTION_UNKNOW_PROTOCOL);
DEBUG_TRACE("unhandled protocol %d\n", sic.protocol);
return NF_ACCEPT;
}
#ifdef CONFIG_XFRM
sic.original_accel = 1;
sic.reply_accel = 1;
#endif
/*
* Get QoS information
*/
if (skb->priority) {
sic.dest_priority = skb->priority;
sic.src_priority = sic.dest_priority;
sic.flags |= SFE_CREATE_FLAG_REMARK_PRIORITY;
}
if (is_v4) {
DEBUG_TRACE("POST_ROUTE: checking new connection: %d src_ip: %pI4 dst_ip: %pI4, src_port: %d, dst_port: %d\n",
sic.protocol, &sic.src_ip, &sic.dest_ip, sic.src_port, sic.dest_port);
} else {
DEBUG_TRACE("POST_ROUTE: checking new connection: %d src_ip: %pI6 dst_ip: %pI6, src_port: %d, dst_port: %d\n",
sic.protocol, &sic.src_ip, &sic.dest_ip, sic.src_port, sic.dest_port);
}
/*
* If we already have this connection in our list, skip it
* XXX: this may need to be optimized
*/
spin_lock_bh(&sfe_connections_lock);
conn = fast_classifier_find_conn(&sic.src_ip, &sic.dest_ip, sic.src_port, sic.dest_port, sic.protocol, is_v4);
if (conn) {
conn->hits++;
if (!conn->offloaded) {
if (conn->offload_permit || conn->hits >= offload_at_pkts) {
DEBUG_TRACE("OFFLOADING CONNECTION, TOO MANY HITS\n");
if (fast_classifier_update_protocol(conn->sic, conn->ct) == 0) {
spin_unlock_bh(&sfe_connections_lock);
fast_classifier_incr_exceptions(FAST_CL_EXCEPTION_UPDATE_PROTOCOL_FAIL);
DEBUG_TRACE("UNKNOWN PROTOCOL OR CONNECTION CLOSING, SKIPPING\n");
return NF_ACCEPT;
}
DEBUG_TRACE("INFO: calling sfe rule creation!\n");
spin_unlock_bh(&sfe_connections_lock);
ret = is_v4 ? sfe_ipv4_create_rule(conn->sic) : sfe_ipv6_create_rule(conn->sic);
if ((ret == 0) || (ret == -EADDRINUSE)) {
struct fast_classifier_tuple fc_msg;
if (is_v4) {
fc_msg.ethertype = AF_INET;
fc_msg.src_saddr.in = *((struct in_addr *)&sic.src_ip);
fc_msg.dst_saddr.in = *((struct in_addr *)&sic.dest_ip_xlate);
} else {
fc_msg.ethertype = AF_INET6;
fc_msg.src_saddr.in6 = *((struct in6_addr *)&sic.src_ip);
fc_msg.dst_saddr.in6 = *((struct in6_addr *)&sic.dest_ip_xlate);
}
fc_msg.proto = sic.protocol;
fc_msg.sport = sic.src_port;
fc_msg.dport = sic.dest_port_xlate;
memcpy(fc_msg.smac, conn->smac, ETH_ALEN);
memcpy(fc_msg.dmac, conn->dmac, ETH_ALEN);
fast_classifier_send_genl_msg(FAST_CLASSIFIER_C_OFFLOADED, &fc_msg);
conn->offloaded = 1;
}
return NF_ACCEPT;
}
}
spin_unlock_bh(&sfe_connections_lock);
if (conn->offloaded) {
is_v4 ? sfe_ipv4_update_rule(conn->sic) : sfe_ipv6_update_rule(conn->sic);
}
DEBUG_TRACE("FOUND, SKIPPING\n");
fast_classifier_incr_exceptions(FAST_CL_EXCEPTION_WAIT_FOR_ACCELERATION);
return NF_ACCEPT;
}
spin_unlock_bh(&sfe_connections_lock);
/*
* Get the net device and MAC addresses that correspond to the various source and
* destination host addresses.
*/
if (!fast_classifier_find_dev_and_mac_addr(&sic.src_ip, &src_dev, sic.src_mac, is_v4)) {
fast_classifier_incr_exceptions(FAST_CL_EXCEPTION_NO_SRC_DEV);
return NF_ACCEPT;
}
if (!fast_classifier_find_dev_and_mac_addr(&sic.src_ip_xlate, &dev, sic.src_mac_xlate, is_v4)) {
fast_classifier_incr_exceptions(FAST_CL_EXCEPTION_NO_SRC_XLATE_DEV);
goto done1;
}
dev_put(dev);
if (!fast_classifier_find_dev_and_mac_addr(&sic.dest_ip, &dev, sic.dest_mac, is_v4)) {
fast_classifier_incr_exceptions(FAST_CL_EXCEPTION_NO_DEST_DEV);
goto done1;
}
dev_put(dev);
if (!fast_classifier_find_dev_and_mac_addr(&sic.dest_ip_xlate, &dest_dev, sic.dest_mac_xlate, is_v4)) {
fast_classifier_incr_exceptions(FAST_CL_EXCEPTION_NO_DEST_XLATE_DEV);
goto done1;
}
/*
* Our devices may actually be part of a bridge interface. If that's
* the case then find the bridge interface instead.
*/
if (src_dev->priv_flags & IFF_BRIDGE_PORT) {
src_br_dev = sfe_dev_get_master(src_dev);
if (!src_br_dev) {
fast_classifier_incr_exceptions(FAST_CL_EXCEPTION_NO_BRIDGE);
DEBUG_TRACE("no bridge found for: %s\n", src_dev->name);
goto done2;
}
src_dev = src_br_dev;
}
if (dest_dev->priv_flags & IFF_BRIDGE_PORT) {
dest_br_dev = sfe_dev_get_master(dest_dev);
if (!dest_br_dev) {
fast_classifier_incr_exceptions(FAST_CL_EXCEPTION_NO_BRIDGE);
DEBUG_TRACE("no bridge found for: %s\n", dest_dev->name);
goto done3;
}
dest_dev = dest_br_dev;
}
sic.src_dev = src_dev;
sic.dest_dev = dest_dev;
sic.src_mtu = src_dev->mtu;
sic.dest_mtu = dest_dev->mtu;
if (skb->mark) {
DEBUG_TRACE("SKB MARK NON ZERO %x\n", skb->mark);
}
sic.mark = skb->mark;
conn = kmalloc(sizeof(*conn), GFP_ATOMIC);
if (!conn) {
printk(KERN_CRIT "ERROR: no memory for sfe\n");
goto done3;
}
conn->hits = 0;
conn->offload_permit = 0;
conn->offloaded = 0;
conn->is_v4 = is_v4;
DEBUG_TRACE("Source MAC=%pM\n", sic.src_mac);
memcpy(conn->smac, sic.src_mac, ETH_ALEN);
memcpy(conn->dmac, sic.dest_mac_xlate, ETH_ALEN);
p_sic = kmalloc(sizeof(*p_sic), GFP_ATOMIC);
if (!p_sic) {
printk(KERN_CRIT "ERROR: no memory for sfe\n");
kfree(conn);
goto done3;
}
memcpy(p_sic, &sic, sizeof(sic));
conn->sic = p_sic;
conn->ct = ct;
if (!fast_classifier_add_conn(conn)) {
kfree(conn->sic);
kfree(conn);
}
/*
* If we had bridge ports then release them too.
*/
if (dest_br_dev) {
dev_put(dest_br_dev);
}
done3:
if (src_br_dev) {
dev_put(src_br_dev);
}
done2:
dev_put(dest_dev);
done1:
dev_put(src_dev);
return NF_ACCEPT;
}
/*
* fast_classifier_ipv4_post_routing_hook()
* Called for packets about to leave the box - either locally generated or forwarded from another interface
*/
fast_classifier_ipv4_post_routing_hook(hooknum, ops, skb, in_unused, out, okfn)
{
return fast_classifier_post_routing(skb, true);
}
/*
* fast_classifier_ipv6_post_routing_hook()
* Called for packets about to leave the box - either locally generated or forwarded from another interface
*/
fast_classifier_ipv6_post_routing_hook(hooknum, ops, skb, in_unused, out, okfn)
{
return fast_classifier_post_routing(skb, false);
}
/*
* fast_classifier_update_mark()
* updates the mark for a fast-classifier connection
*/
static void fast_classifier_update_mark(struct sfe_connection_mark *mark, bool is_v4)
{
struct sfe_connection *conn;
spin_lock_bh(&sfe_connections_lock);
conn = fast_classifier_find_conn(&mark->src_ip, &mark->dest_ip,
mark->src_port, mark->dest_port,
mark->protocol, is_v4);
if (conn) {
conn->sic->mark = mark->mark;
}
spin_unlock_bh(&sfe_connections_lock);
}
#ifdef CONFIG_NF_CONNTRACK_EVENTS
/*
* fast_classifier_conntrack_event()
* Callback event invoked when a conntrack connection's state changes.
*/
#ifdef CONFIG_NF_CONNTRACK_CHAIN_EVENTS
static int fast_classifier_conntrack_event(struct notifier_block *this,
unsigned long events, void *ptr)
#else
static int fast_classifier_conntrack_event(unsigned int events, struct nf_ct_event *item)
#endif
{
#ifdef CONFIG_NF_CONNTRACK_CHAIN_EVENTS
struct nf_ct_event *item = ptr;
#endif
struct sfe_connection_destroy sid;
struct nf_conn *ct = item->ct;
struct nf_conntrack_tuple orig_tuple;
struct sfe_connection *conn;
struct fast_classifier_tuple fc_msg;
int offloaded = 0;
bool is_v4;
/*
* If we don't have a conntrack entry then we're done.
*/
if (unlikely(!ct)) {
DEBUG_WARN("no ct in conntrack event callback\n");
return NOTIFY_DONE;
}
/*
* If this is an untracked connection then we can't have any state either.
*/
if (unlikely(nf_ct_is_untracked(ct))) {
DEBUG_TRACE("ignoring untracked conn\n");
return NOTIFY_DONE;
}
orig_tuple = ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
sid.protocol = (s32)orig_tuple.dst.protonum;
/*
* Extract information from the conntrack connection. We're only interested
* in nominal connection information (i.e. we're ignoring any NAT information).
*/
if (likely(nf_ct_l3num(ct) == AF_INET)) {
sid.src_ip.ip = (__be32)orig_tuple.src.u3.ip;
sid.dest_ip.ip = (__be32)orig_tuple.dst.u3.ip;
is_v4 = true;
} else if (likely(nf_ct_l3num(ct) == AF_INET6)) {
sid.src_ip.ip6[0] = *((struct sfe_ipv6_addr *)&orig_tuple.src.u3.in6);
sid.dest_ip.ip6[0] = *((struct sfe_ipv6_addr *)&orig_tuple.dst.u3.in6);
is_v4 = false;
} else {
DEBUG_TRACE("ignoring non-IPv4 and non-IPv6 connection\n");
return NOTIFY_DONE;
}
switch (sid.protocol) {
case IPPROTO_TCP:
sid.src_port = orig_tuple.src.u.tcp.port;
sid.dest_port = orig_tuple.dst.u.tcp.port;
break;
case IPPROTO_UDP:
sid.src_port = orig_tuple.src.u.udp.port;
sid.dest_port = orig_tuple.dst.u.udp.port;
break;
default:
DEBUG_TRACE("unhandled protocol: %d\n", sid.protocol);
return NOTIFY_DONE;
}
/*
* Check for an updated mark
*/
if ((events & (1 << IPCT_MARK)) && (ct->mark != 0)) {
struct sfe_connection_mark mark;
mark.protocol = sid.protocol;
mark.src_ip = sid.src_ip;
mark.dest_ip = sid.dest_ip;
mark.src_port = sid.src_port;
mark.dest_port = sid.dest_port;
mark.mark = ct->mark;
is_v4 ? sfe_ipv4_mark_rule(&mark) : sfe_ipv6_mark_rule(&mark);
fast_classifier_update_mark(&mark, is_v4);
}
/*
* We're only interested in destroy events at this point
*/
if (unlikely(!(events & (1 << IPCT_DESTROY)))) {
DEBUG_TRACE("ignoring non-destroy event\n");
return NOTIFY_DONE;
}
if (is_v4) {
DEBUG_TRACE("Try to clean up: proto: %d src_ip: %pI4 dst_ip: %pI4, src_port: %d, dst_port: %d\n",
sid.protocol, &sid.src_ip, &sid.dest_ip, sid.src_port, sid.dest_port);
} else {
DEBUG_TRACE("Try to clean up: proto: %d src_ip: %pI6 dst_ip: %pI6, src_port: %d, dst_port: %d\n",
sid.protocol, &sid.src_ip, &sid.dest_ip, sid.src_port, sid.dest_port);
}
spin_lock_bh(&sfe_connections_lock);
conn = fast_classifier_find_conn(&sid.src_ip, &sid.dest_ip, sid.src_port, sid.dest_port, sid.protocol, is_v4);
if (conn && conn->offloaded) {
if (is_v4) {
fc_msg.ethertype = AF_INET;
fc_msg.src_saddr.in = *((struct in_addr *)&conn->sic->src_ip);
fc_msg.dst_saddr.in = *((struct in_addr *)&conn->sic->dest_ip_xlate);
} else {
fc_msg.ethertype = AF_INET6;
fc_msg.src_saddr.in6 = *((struct in6_addr *)&conn->sic->src_ip);
fc_msg.dst_saddr.in6 = *((struct in6_addr *)&conn->sic->dest_ip_xlate);
}
fc_msg.proto = conn->sic->protocol;
fc_msg.sport = conn->sic->src_port;
fc_msg.dport = conn->sic->dest_port_xlate;
memcpy(fc_msg.smac, conn->smac, ETH_ALEN);
memcpy(fc_msg.dmac, conn->dmac, ETH_ALEN);
offloaded = 1;
}
if (conn) {
DEBUG_TRACE("Free connection\n");
hash_del(&conn->hl);
sfe_connections_size--;
kfree(conn->sic);
kfree(conn);
} else {
fast_classifier_incr_exceptions(FAST_CL_EXCEPTION_CT_DESTROY_MISS);
}
spin_unlock_bh(&sfe_connections_lock);
is_v4 ? sfe_ipv4_destroy_rule(&sid) : sfe_ipv6_destroy_rule(&sid);
if (offloaded) {
fast_classifier_send_genl_msg(FAST_CLASSIFIER_C_DONE, &fc_msg);
}
return NOTIFY_DONE;
}
/*
* Netfilter conntrack event system to monitor connection tracking changes
*/
#ifdef CONFIG_NF_CONNTRACK_CHAIN_EVENTS
static struct notifier_block fast_classifier_conntrack_notifier = {
.notifier_call = fast_classifier_conntrack_event,
};
#else
static struct nf_ct_event_notifier fast_classifier_conntrack_notifier = {
.fcn = fast_classifier_conntrack_event,
};
#endif
#endif
/*
* Structure to establish a hook into the post routing netfilter point - this
* will pick up local outbound and packets going from one interface to another.
*
* Note: see include/linux/netfilter_ipv4.h for info related to priority levels.
* We want to examine packets after NAT translation and any ALG processing.
*/
static struct nf_hook_ops fast_classifier_ops_post_routing[] __read_mostly = {
SFE_IPV4_NF_POST_ROUTING_HOOK(__fast_classifier_ipv4_post_routing_hook),
SFE_IPV6_NF_POST_ROUTING_HOOK(__fast_classifier_ipv6_post_routing_hook),
};
/*
* fast_classifier_sync_rule()
* Synchronize a connection's state.
*/
static void fast_classifier_sync_rule(struct sfe_connection_sync *sis)
{
struct nf_conntrack_tuple_hash *h;
struct nf_conntrack_tuple tuple;
struct nf_conn *ct;
SFE_NF_CONN_ACCT(acct);
/*
* Create a tuple so as to be able to look up a connection
*/
memset(&tuple, 0, sizeof(tuple));
tuple.src.u.all = (__be16)sis->src_port;
tuple.dst.dir = IP_CT_DIR_ORIGINAL;
tuple.dst.protonum = (u8)sis->protocol;
tuple.dst.u.all = (__be16)sis->dest_port;
if (sis->is_v6) {
tuple.src.u3.in6 = *((struct in6_addr *)sis->src_ip.ip6);
tuple.dst.u3.in6 = *((struct in6_addr *)sis->dest_ip.ip6);
tuple.src.l3num = AF_INET6;
DEBUG_TRACE("update connection - p: %d, s: %pI6:%u, d: %pI6:%u\n",
(int)tuple.dst.protonum,
&tuple.src.u3.in6, (unsigned int)ntohs(tuple.src.u.all),
&tuple.dst.u3.in6, (unsigned int)ntohs(tuple.dst.u.all));
} else {
tuple.src.u3.ip = sis->src_ip.ip;
tuple.dst.u3.ip = sis->dest_ip.ip;
tuple.src.l3num = AF_INET;
DEBUG_TRACE("update connection - p: %d, s: %pI4:%u, d: %pI4:%u\n",
(int)tuple.dst.protonum,
&tuple.src.u3.ip, (unsigned int)ntohs(tuple.src.u.all),
&tuple.dst.u3.ip, (unsigned int)ntohs(tuple.dst.u.all));
}
/*
* Update packet count for ingress on bridge device
*/
if (skip_to_bridge_ingress) {
struct rtnl_link_stats64 nlstats;
nlstats.tx_packets = 0;
nlstats.tx_bytes = 0;
if (sis->src_dev && IFF_EBRIDGE &&
(sis->src_new_packet_count || sis->src_new_byte_count)) {
nlstats.rx_packets = sis->src_new_packet_count;
nlstats.rx_bytes = sis->src_new_byte_count;
spin_lock_bh(&sfe_connections_lock);
br_dev_update_stats(sis->src_dev, &nlstats);
spin_unlock_bh(&sfe_connections_lock);
}
if (sis->dest_dev && IFF_EBRIDGE &&
(sis->dest_new_packet_count || sis->dest_new_byte_count)) {
nlstats.rx_packets = sis->dest_new_packet_count;
nlstats.rx_bytes = sis->dest_new_byte_count;
spin_lock_bh(&sfe_connections_lock);
br_dev_update_stats(sis->dest_dev, &nlstats);
spin_unlock_bh(&sfe_connections_lock);
}
}
/*
* Look up conntrack connection
*/
h = nf_conntrack_find_get(&init_net, SFE_NF_CT_DEFAULT_ZONE, &tuple);
if (unlikely(!h)) {
DEBUG_TRACE("no connection found\n");
return;
}
ct = nf_ct_tuplehash_to_ctrack(h);
NF_CT_ASSERT(ct->timeout.data == (unsigned long)ct);
/*
* Only update if this is not a fixed timeout
*/
if (!test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status)) {
spin_lock_bh(&ct->lock);
ct->timeout.expires += sis->delta_jiffies;
spin_unlock_bh(&ct->lock);
}
acct = nf_conn_acct_find(ct);
if (acct) {
spin_lock_bh(&ct->lock);
atomic64_add(sis->src_new_packet_count, &SFE_ACCT_COUNTER(acct)[IP_CT_DIR_ORIGINAL].packets);
atomic64_add(sis->src_new_byte_count, &SFE_ACCT_COUNTER(acct)[IP_CT_DIR_ORIGINAL].bytes);
atomic64_add(sis->dest_new_packet_count, &SFE_ACCT_COUNTER(acct)[IP_CT_DIR_REPLY].packets);
atomic64_add(sis->dest_new_byte_count, &SFE_ACCT_COUNTER(acct)[IP_CT_DIR_REPLY].bytes);
spin_unlock_bh(&ct->lock);
}
switch (sis->protocol) {
case IPPROTO_TCP:
spin_lock_bh(&ct->lock);
if (ct->proto.tcp.seen[0].td_maxwin < sis->src_td_max_window) {
ct->proto.tcp.seen[0].td_maxwin = sis->src_td_max_window;
}
if ((s32)(ct->proto.tcp.seen[0].td_end - sis->src_td_end) < 0) {
ct->proto.tcp.seen[0].td_end = sis->src_td_end;
}
if ((s32)(ct->proto.tcp.seen[0].td_maxend - sis->src_td_max_end) < 0) {
ct->proto.tcp.seen[0].td_maxend = sis->src_td_max_end;
}
if (ct->proto.tcp.seen[1].td_maxwin < sis->dest_td_max_window) {
ct->proto.tcp.seen[1].td_maxwin = sis->dest_td_max_window;
}
if ((s32)(ct->proto.tcp.seen[1].td_end - sis->dest_td_end) < 0) {
ct->proto.tcp.seen[1].td_end = sis->dest_td_end;
}
if ((s32)(ct->proto.tcp.seen[1].td_maxend - sis->dest_td_max_end) < 0) {
ct->proto.tcp.seen[1].td_maxend = sis->dest_td_max_end;
}
spin_unlock_bh(&ct->lock);
break;
}
/*
* Release connection
*/
nf_ct_put(ct);
}
/*
* fast_classifier_device_event()
*/
static int fast_classifier_device_event(struct notifier_block *this, unsigned long event, void *ptr)
{
struct net_device *dev = SFE_DEV_EVENT_PTR(ptr);
if (dev && (event == NETDEV_DOWN)) {
sfe_ipv4_destroy_all_rules_for_dev(dev);
sfe_ipv6_destroy_all_rules_for_dev(dev);
}
return NOTIFY_DONE;
}
/*
* fast_classifier_inet_event()
*/
static int fast_classifier_inet_event(struct notifier_block *this, unsigned long event, void *ptr)
{
struct net_device *dev = ((struct in_ifaddr *)ptr)->ifa_dev->dev;
if (dev && (event == NETDEV_DOWN)) {
sfe_ipv4_destroy_all_rules_for_dev(dev);
}
return NOTIFY_DONE;
}
/*
* fast_classifier_inet6_event()
*/
static int fast_classifier_inet6_event(struct notifier_block *this, unsigned long event, void *ptr)
{
struct net_device *dev = ((struct inet6_ifaddr *)ptr)->idev->dev;
if (dev && (event == NETDEV_DOWN)) {
sfe_ipv6_destroy_all_rules_for_dev(dev);
}
return NOTIFY_DONE;
}
/*
* fast_classifier_get_offload_at_pkts()
*/
static ssize_t fast_classifier_get_offload_at_pkts(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return snprintf(buf, (ssize_t)PAGE_SIZE, "%d\n", offload_at_pkts);
}
/*
* fast_classifier_set_offload_at_pkts()
*/
static ssize_t fast_classifier_set_offload_at_pkts(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
long new;
int ret;
ret = kstrtol(buf, 0, &new);
if (ret == -EINVAL || ((int)new != new))
return -EINVAL;
offload_at_pkts = new;
return size;
}
/*
* fast_classifier_get_debug_info()
*/
static ssize_t fast_classifier_get_debug_info(struct device *dev,
struct device_attribute *attr,
char *buf)
{
size_t len = 0;
struct sfe_connection *conn;
u32 i;
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 9, 0))
struct hlist_node *node;
#endif
spin_lock_bh(&sfe_connections_lock);
len += scnprintf(buf, PAGE_SIZE - len, "size=%d offload=%d offload_no_match=%d"
" offloaded=%d done=%d offloaded_fail=%d done_fail=%d\n",
sfe_connections_size,
atomic_read(&offload_msgs),
atomic_read(&offload_no_match_msgs),
atomic_read(&offloaded_msgs),
atomic_read(&done_msgs),
atomic_read(&offloaded_fail_msgs),
atomic_read(&done_fail_msgs));
sfe_hash_for_each(fc_conn_ht, i, node, conn, hl) {
len += scnprintf(buf + len, PAGE_SIZE - len,
(conn->is_v4 ? "o=%d, p=%d [%pM]:%pI4:%u %pI4:%u:[%pM] m=%08x h=%d\n" : "o=%d, p=%d [%pM]:%pI6:%u %pI6:%u:[%pM] m=%08x h=%d\n"),
conn->offloaded,
conn->sic->protocol,
conn->sic->src_mac,
&conn->sic->src_ip,
conn->sic->src_port,
&conn->sic->dest_ip,
conn->sic->dest_port,
conn->sic->dest_mac_xlate,
conn->sic->mark,
conn->hits);
}
spin_unlock_bh(&sfe_connections_lock);
return len;
}
/*
* fast_classifier_get_skip_bridge_ingress()
*/
static ssize_t fast_classifier_get_skip_bridge_ingress(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return snprintf(buf, (ssize_t)PAGE_SIZE, "%d\n", skip_to_bridge_ingress);
}
/*
* fast_classifier_set_skip_bridge_ingress()
*/
static ssize_t fast_classifier_set_skip_bridge_ingress(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
long new;
int ret;
ret = kstrtol(buf, 0, &new);
if (ret == -EINVAL || ((int)new != new))
return -EINVAL;
skip_to_bridge_ingress = new ? 1 : 0;
return size;
}
/*
* fast_classifier_get_exceptions
* dump exception counters
*/
static ssize_t fast_classifier_get_exceptions(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int idx, len;
struct fast_classifier *sc = &__sc;
spin_lock_bh(&sc->lock);
for (len = 0, idx = 0; idx < FAST_CL_EXCEPTION_MAX; idx++) {
if (sc->exceptions[idx]) {
len += snprintf(buf + len, (ssize_t)(PAGE_SIZE - len), "%s = %d\n", fast_classifier_exception_events_string[idx], sc->exceptions[idx]);
}
}
spin_unlock_bh(&sc->lock);
return len;
}
/*
* sysfs attributes.
*/
static const struct device_attribute fast_classifier_offload_at_pkts_attr =
__ATTR(offload_at_pkts, S_IWUSR | S_IRUGO, fast_classifier_get_offload_at_pkts, fast_classifier_set_offload_at_pkts);
static const struct device_attribute fast_classifier_debug_info_attr =
__ATTR(debug_info, S_IRUGO, fast_classifier_get_debug_info, NULL);
static const struct device_attribute fast_classifier_skip_bridge_ingress =
__ATTR(skip_to_bridge_ingress, S_IWUSR | S_IRUGO, fast_classifier_get_skip_bridge_ingress, fast_classifier_set_skip_bridge_ingress);
static const struct device_attribute fast_classifier_exceptions_attr =
__ATTR(exceptions, S_IRUGO, fast_classifier_get_exceptions, NULL);
/*
* fast_classifier_init()
*/
static int __init fast_classifier_init(void)
{
struct fast_classifier *sc = &__sc;
int result = -1;
printk(KERN_ALERT "fast-classifier: starting up\n");
DEBUG_INFO("SFE CM init\n");
hash_init(fc_conn_ht);
/*
* Create sys/fast_classifier
*/
sc->sys_fast_classifier = kobject_create_and_add("fast_classifier", NULL);
if (!sc->sys_fast_classifier) {
DEBUG_ERROR("failed to register fast_classifier\n");
goto exit1;
}
result = sysfs_create_file(sc->sys_fast_classifier, &fast_classifier_offload_at_pkts_attr.attr);
if (result) {
DEBUG_ERROR("failed to register offload at pkgs: %d\n", result);
goto exit2;
}
result = sysfs_create_file(sc->sys_fast_classifier, &fast_classifier_debug_info_attr.attr);
if (result) {
DEBUG_ERROR("failed to register debug dev: %d\n", result);
sysfs_remove_file(sc->sys_fast_classifier, &fast_classifier_offload_at_pkts_attr.attr);
goto exit2;
}
result = sysfs_create_file(sc->sys_fast_classifier, &fast_classifier_skip_bridge_ingress.attr);
if (result) {
DEBUG_ERROR("failed to register skip bridge on ingress: %d\n", result);
sysfs_remove_file(sc->sys_fast_classifier, &fast_classifier_offload_at_pkts_attr.attr);
sysfs_remove_file(sc->sys_fast_classifier, &fast_classifier_debug_info_attr.attr);
goto exit2;
}
result = sysfs_create_file(sc->sys_fast_classifier, &fast_classifier_exceptions_attr.attr);
if (result) {
DEBUG_ERROR("failed to register exceptions file: %d\n", result);
sysfs_remove_file(sc->sys_fast_classifier, &fast_classifier_offload_at_pkts_attr.attr);
sysfs_remove_file(sc->sys_fast_classifier, &fast_classifier_debug_info_attr.attr);
sysfs_remove_file(sc->sys_fast_classifier, &fast_classifier_skip_bridge_ingress.attr);
goto exit2;
}
sc->dev_notifier.notifier_call = fast_classifier_device_event;
sc->dev_notifier.priority = 1;
register_netdevice_notifier(&sc->dev_notifier);
sc->inet_notifier.notifier_call = fast_classifier_inet_event;
sc->inet_notifier.priority = 1;
register_inetaddr_notifier(&sc->inet_notifier);
sc->inet6_notifier.notifier_call = fast_classifier_inet6_event;
sc->inet6_notifier.priority = 1;
register_inet6addr_notifier(&sc->inet6_notifier);
/*
* Register our netfilter hooks.
*/
result = nf_register_hooks(fast_classifier_ops_post_routing, ARRAY_SIZE(fast_classifier_ops_post_routing));
if (result < 0) {
DEBUG_ERROR("can't register nf post routing hook: %d\n", result);
goto exit3;
}
#ifdef CONFIG_NF_CONNTRACK_EVENTS
/*
* Register a notifier hook to get fast notifications of expired connections.
*/
result = nf_conntrack_register_notifier(&init_net, &fast_classifier_conntrack_notifier);
if (result < 0) {
DEBUG_ERROR("can't register nf notifier hook: %d\n", result);
goto exit4;
}
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 13, 0))
result = genl_register_family_with_ops_groups(&fast_classifier_gnl_family,
fast_classifier_gnl_ops,
fast_classifier_genl_mcgrp);
if (result) {
DEBUG_ERROR("failed to register genl ops: %d\n", result);
goto exit5;
}
#else
result = genl_register_family(&fast_classifier_gnl_family);
if (result) {
printk(KERN_CRIT "unable to register genl family\n");
goto exit5;
}
result = genl_register_ops(&fast_classifier_gnl_family, fast_classifier_gnl_ops);
if (result) {
printk(KERN_CRIT "unable to register ops\n");
goto exit6;
}
result = genl_register_mc_group(&fast_classifier_gnl_family,
fast_classifier_genl_mcgrp);
if (result) {
printk(KERN_CRIT "unable to register multicast group\n");
goto exit6;
}
#endif
printk(KERN_ALERT "fast-classifier: registered\n");
spin_lock_init(&sc->lock);
/*
* Hook the receive path in the network stack.
*/
BUG_ON(athrs_fast_nat_recv);
RCU_INIT_POINTER(athrs_fast_nat_recv, fast_classifier_recv);
/*
* Hook the shortcut sync callback.
*/
sfe_ipv4_register_sync_rule_callback(fast_classifier_sync_rule);
sfe_ipv6_register_sync_rule_callback(fast_classifier_sync_rule);
return 0;
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 13, 0))
exit6:
genl_unregister_family(&fast_classifier_gnl_family);
#endif
exit5:
#ifdef CONFIG_NF_CONNTRACK_EVENTS
nf_conntrack_unregister_notifier(&init_net, &fast_classifier_conntrack_notifier);
exit4:
#endif
nf_unregister_hooks(fast_classifier_ops_post_routing, ARRAY_SIZE(fast_classifier_ops_post_routing));
exit3:
unregister_inetaddr_notifier(&sc->inet_notifier);
unregister_inet6addr_notifier(&sc->inet6_notifier);
unregister_netdevice_notifier(&sc->dev_notifier);
sysfs_remove_file(sc->sys_fast_classifier, &fast_classifier_offload_at_pkts_attr.attr);
sysfs_remove_file(sc->sys_fast_classifier, &fast_classifier_debug_info_attr.attr);
sysfs_remove_file(sc->sys_fast_classifier, &fast_classifier_skip_bridge_ingress.attr);
sysfs_remove_file(sc->sys_fast_classifier, &fast_classifier_exceptions_attr.attr);
exit2:
kobject_put(sc->sys_fast_classifier);
exit1:
return result;
}
/*
* fast_classifier_exit()
*/
static void __exit fast_classifier_exit(void)
{
struct fast_classifier *sc = &__sc;
int result = -1;
DEBUG_INFO("SFE CM exit\n");
printk(KERN_ALERT "fast-classifier: shutting down\n");
/*
* Unregister our sync callback.
*/
sfe_ipv4_register_sync_rule_callback(NULL);
sfe_ipv6_register_sync_rule_callback(NULL);
/*
* Unregister our receive callback.
*/
RCU_INIT_POINTER(athrs_fast_nat_recv, NULL);
/*
* Wait for all callbacks to complete.
*/
rcu_barrier();
/*
* Destroy all connections.
*/
sfe_ipv4_destroy_all_rules_for_dev(NULL);
sfe_ipv6_destroy_all_rules_for_dev(NULL);
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 13, 0))
result = genl_unregister_ops(&fast_classifier_gnl_family, fast_classifier_gnl_ops);
if (result != 0) {
printk(KERN_CRIT "Unable to unreigster genl_ops\n");
}
#endif
result = genl_unregister_family(&fast_classifier_gnl_family);
if (result != 0) {
printk(KERN_CRIT "Unable to unreigster genl_family\n");
}
#ifdef CONFIG_NF_CONNTRACK_EVENTS
nf_conntrack_unregister_notifier(&init_net, &fast_classifier_conntrack_notifier);
#endif
nf_unregister_hooks(fast_classifier_ops_post_routing, ARRAY_SIZE(fast_classifier_ops_post_routing));
unregister_inet6addr_notifier(&sc->inet6_notifier);
unregister_inetaddr_notifier(&sc->inet_notifier);
unregister_netdevice_notifier(&sc->dev_notifier);
kobject_put(sc->sys_fast_classifier);
}
module_init(fast_classifier_init)
module_exit(fast_classifier_exit)
MODULE_DESCRIPTION("Shortcut Forwarding Engine - Connection Manager");
MODULE_LICENSE("Dual BSD/GPL");