blob: 17f9582471569c1148b8f5c40f8e3c4efb087ac3 [file] [log] [blame]
/*
* sfe_drv.c
* simulated sfe driver for shortcut forwarding engine.
*
* Copyright (c) 2015 The Linux Foundation. All rights reserved.
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all copies.
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
* OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/module.h>
#include <linux/version.h>
#include <linux/sysfs.h>
#include <linux/skbuff.h>
#include <net/addrconf.h>
#include <linux/inetdevice.h>
#include "../shortcut-fe/sfe.h"
#include "../shortcut-fe/sfe_cm.h"
#include "sfe_drv.h"
typedef enum sfe_drv_exception {
SFE_DRV_EXCEPTION_IPV4_MSG_UNKNOW,
SFE_DRV_EXCEPTION_IPV6_MSG_UNKNOW,
SFE_DRV_EXCEPTION_CONNECTION_INVALID,
SFE_DRV_EXCEPTION_NOT_SUPPORT_BRIDGE,
SFE_DRV_EXCEPTION_TCP_INVALID,
SFE_DRV_EXCEPTION_PROTOCOL_NOT_SUPPORT,
SFE_DRV_EXCEPTION_SRC_DEV_NOT_L3,
SFE_DRV_EXCEPTION_DEST_DEV_NOT_L3,
SFE_DRV_EXCEPTION_CREATE_FAILED,
SFE_DRV_EXCEPTION_ENQUEUE_FAILED,
SFE_DRV_EXCEPTION_NOT_SUPPORT_6RD,
SFE_DRV_EXCEPTION_NO_SYNC_CB,
SFE_DRV_EXCEPTION_MAX
} sfe_drv_exception_t;
static char *sfe_drv_exception_events_string[SFE_DRV_EXCEPTION_MAX] = {
"IPV4_MSG_UNKNOW",
"IPV6_MSG_UNKNOW",
"CONNECTION_INVALID",
"NOT_SUPPORT_BRIDGE",
"TCP_INVALID",
"PROTOCOL_NOT_SUPPORT",
"SRC_DEV_NOT_L3",
"DEST_DEV_NOT_L3",
"CREATE_FAILED",
"ENQUEUE_FAILED",
"NOT_SUPPORT_6RD",
"NO_SYNC_CB"
};
#define SFE_MESSAGE_VERSION 0x1
#define SFE_MAX_CONNECTION_NUM 65535
#define sfe_drv_ipv6_addr_copy(src, dest) memcpy((void *)(dest), (void *)(src), 16)
/*
* message type of queued response message
*/
typedef enum {
SFE_DRV_MSG_TYPE_IPV4,
SFE_DRV_MSG_TYPE_IPV6
} sfe_drv_msg_types_t;
/*
* queued response message,
* will be sent back to caller in workqueue
*/
struct sfe_drv_response_msg {
struct list_head node;
sfe_drv_msg_types_t type;
void *msg[0];
};
#if LINUX_VERSION_CODE < KERNEL_VERSION(3, 10, 0)
#define list_first_entry_or_null(ptr, type, member) \
(!list_empty(ptr) ? list_first_entry(ptr, type, member) : NULL)
#endif
/*
* sfe driver context instance, private for sfe driver
*/
struct sfe_drv_ctx_instance_internal {
struct sfe_drv_ctx_instance base;/* exported sfe driver context, is public to user of sfe driver*/
/*
* Control state.
*/
struct kobject *sys_sfe_drv; /* sysfs linkage */
struct list_head msg_queue; /* response message queue*/
spinlock_t lock; /* Lock to protect message queue */
struct work_struct work; /* work to send response message back to caller*/
sfe_ipv4_msg_callback_t __rcu ipv4_stats_sync_cb; /* callback to call to sync ipv4 statistics */
void *ipv4_stats_sync_data; /* argument for above callback: ipv4_stats_sync_cb */
sfe_ipv6_msg_callback_t __rcu ipv6_stats_sync_cb; /* callback to call to sync ipv6 statistics */
void *ipv6_stats_sync_data; /* argument for above callback: ipv6_stats_sync_cb */
uint32_t exceptions[SFE_DRV_EXCEPTION_MAX]; /* statistics for exception */
} __sfe_drv_ctx;
/*
* convert public sfe driver context to internal context
*/
#define SFE_DRV_CTX_TO_PRIVATE(base) (struct sfe_drv_ctx_instance_internal *)(base)
/*
* convert internal sfe driver context to public context
*/
#define SFE_DRV_CTX_TO_PUBLIC(intrv) (struct sfe_drv_ctx_instance *)(intrv)
/*
* Expose the hook for the receive processing.
*/
extern int (*athrs_fast_nat_recv)(struct sk_buff *skb);
/*
* sfe_drv_incr_exceptions()
* increase an exception counter.
*/
static inline void sfe_drv_incr_exceptions(sfe_drv_exception_t except)
{
struct sfe_drv_ctx_instance_internal *sfe_drv_ctx = &__sfe_drv_ctx;
spin_lock_bh(&sfe_drv_ctx->lock);
sfe_drv_ctx->exceptions[except]++;
spin_unlock_bh(&sfe_drv_ctx->lock);
}
/*
* sfe_drv_dev_is_layer_3_interface()
* check if a network device is ipv4 or ipv6 layer 3 interface
*
* @param dev network device to check
* @param check_v4 check ipv4 layer 3 interface(which have ipv4 address) or ipv6 layer 3 interface(which have ipv6 address)
*/
inline bool sfe_drv_dev_is_layer_3_interface(struct net_device *dev, bool check_v4)
{
struct in_device *in4_dev;
struct inet6_dev *in6_dev;
BUG_ON(!dev);
if (likely(check_v4)) {
/*
* Does our input device support IPv4 processing?
*/
in4_dev = (struct in_device *)dev->ip_ptr;
if (unlikely(!in4_dev)) {
return false;
}
/*
* Does it have an IPv4 address? If it doesn't then we can't do anything
* interesting here!
*/
if (unlikely(!in4_dev->ifa_list)) {
return false;
}
return true;
}
/*
* Does our input device support IPv6 processing?
*/
in6_dev = (struct inet6_dev *)dev->ip6_ptr;
if (unlikely(!in6_dev)) {
return false;
}
/*
* Does it have an IPv6 address? If it doesn't then we can't do anything
* interesting here!
*/
if (unlikely(list_empty(&in6_dev->addr_list))) {
return false;
}
return true;
}
/*
* sfe_drv_process_response_msg()
* send all pending response message to ECM by calling callback function included in message
*
* @param work work structure
*/
static void sfe_drv_process_response_msg(struct work_struct *work)
{
struct sfe_drv_ctx_instance_internal *sfe_drv_ctx = container_of(work, struct sfe_drv_ctx_instance_internal, work);
struct sfe_drv_response_msg *response;
spin_lock_bh(&sfe_drv_ctx->lock);
while ((response = list_first_entry_or_null(&sfe_drv_ctx->msg_queue, struct sfe_drv_response_msg, node))) {
list_del(&response->node);
spin_unlock_bh(&sfe_drv_ctx->lock);
/*
* send response message back to caller
*/
if (response->type == SFE_DRV_MSG_TYPE_IPV4) {
struct sfe_ipv4_msg *msg = (struct sfe_ipv4_msg *)response->msg;
sfe_ipv4_msg_callback_t callback = (sfe_ipv4_msg_callback_t)msg->cm.cb;
if (callback) {
callback((void *)msg->cm.app_data, msg);
}
} else if (response->type == SFE_DRV_MSG_TYPE_IPV6) {
struct sfe_ipv6_msg *msg = (struct sfe_ipv6_msg *)response->msg;
sfe_ipv6_msg_callback_t callback = (sfe_ipv6_msg_callback_t)msg->cm.cb;
if (callback) {
callback((void *)msg->cm.app_data, msg);
}
}
/*
* free response message
*/
kfree(response);
spin_lock_bh(&sfe_drv_ctx->lock);
}
spin_unlock_bh(&sfe_drv_ctx->lock);
}
/*
* sfe_drv_alloc_response_msg()
* alloc and construct new response message
*
* @param type message type
* @param msg used to construct response message if not NULL
*
* @return !NULL, success; NULL, failed
*/
static struct sfe_drv_response_msg *
sfe_drv_alloc_response_msg(sfe_drv_msg_types_t type, void *msg)
{
struct sfe_drv_response_msg *response;
int size;
switch (type) {
case SFE_DRV_MSG_TYPE_IPV4:
size = sizeof(struct sfe_ipv4_msg);
break;
case SFE_DRV_MSG_TYPE_IPV6:
size = sizeof(struct sfe_ipv6_msg);
break;
default:
DEBUG_ERROR("message type %d not supported\n", type);
return NULL;
}
response = (struct sfe_drv_response_msg *)kzalloc(sizeof(struct sfe_drv_response_msg) + size, GFP_ATOMIC);
if (!response) {
DEBUG_ERROR("allocate memory failed\n");
return NULL;
}
response->type = type;
if (msg) {
memcpy(response->msg, msg, size);
}
return response;
}
/*
* sfe_drv_enqueue_msg()
* queue response message
*
* @param sfe_drv_ctx sfe driver context
* @param response response message to be queue
*/
static inline void sfe_drv_enqueue_msg(struct sfe_drv_ctx_instance_internal *sfe_drv_ctx, struct sfe_drv_response_msg *response)
{
spin_lock_bh(&sfe_drv_ctx->lock);
list_add_tail(&response->node, &sfe_drv_ctx->msg_queue);
spin_unlock_bh(&sfe_drv_ctx->lock);
schedule_work(&sfe_drv_ctx->work);
}
/*
* sfe_cmn_msg_init()
* Initialize the common message structure.
*
* @param ncm message to init
* @param if_num interface number related with this message
* @param type message type
* @param cb callback function to process repsonse of this message
* @param app_data argument for above callback function
*/
static void sfe_cmn_msg_init(struct sfe_cmn_msg *ncm, uint16_t if_num, uint32_t type, uint32_t len, void *cb, void *app_data)
{
ncm->interface = if_num;
ncm->version = SFE_MESSAGE_VERSION;
ncm->type = type;
ncm->len = len;
ncm->cb = (uint32_t)cb;
ncm->app_data = (uint32_t)app_data;
}
/*
* sfe_drv_ipv4_stats_sync_callback()
* Synchronize a connection's state.
*
* @param sis SFE statistics from SFE core engine
*/
static void sfe_drv_ipv4_stats_sync_callback(struct sfe_connection_sync *sis)
{
struct sfe_drv_ctx_instance_internal *sfe_drv_ctx = &__sfe_drv_ctx;
struct sfe_ipv4_msg msg;
struct sfe_ipv4_conn_sync *sync_msg;
sfe_ipv4_msg_callback_t sync_cb;
rcu_read_lock();
sync_cb = rcu_dereference(sfe_drv_ctx->ipv4_stats_sync_cb);
if (!sync_cb) {
rcu_read_unlock();
sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_NO_SYNC_CB);
return;
}
sync_msg = &msg.msg.conn_stats;
memset(&msg, 0, sizeof(msg));
sfe_cmn_msg_init(&msg.cm, 0, SFE_RX_CONN_STATS_SYNC_MSG,
sizeof(struct sfe_ipv4_conn_sync), NULL, NULL);
/*
* fill connection specific information
*/
sync_msg->protocol = (uint8_t)sis->protocol;
sync_msg->flow_ip = sis->src_ip.ip;
sync_msg->flow_ip_xlate = sis->src_ip_xlate.ip;
sync_msg->flow_ident = sis->src_port;
sync_msg->flow_ident_xlate = sis->src_port_xlate;
sync_msg->return_ip = sis->dest_ip.ip;
sync_msg->return_ip_xlate = sis->dest_ip_xlate.ip;
sync_msg->return_ident = sis->dest_port;
sync_msg->return_ident_xlate = sis->dest_port_xlate;
/*
* fill TCP protocol specific information
*/
if (sis->protocol == IPPROTO_TCP) {
sync_msg->flow_max_window = sis->src_td_max_window;
sync_msg->flow_end = sis->src_td_end;
sync_msg->flow_max_end = sis->src_td_max_end;
sync_msg->return_max_window = sis->dest_td_max_window;
sync_msg->return_end = sis->dest_td_end;
sync_msg->return_max_end = sis->dest_td_max_end;
}
/*
* fill statistics information
*/
sync_msg->flow_rx_packet_count = sis->src_new_packet_count;
sync_msg->flow_rx_byte_count = sis->src_new_byte_count;
sync_msg->flow_tx_packet_count = sis->dest_new_packet_count;
sync_msg->flow_tx_byte_count = sis->dest_new_byte_count;
sync_msg->return_rx_packet_count = sis->dest_new_packet_count;
sync_msg->return_rx_byte_count = sis->dest_new_byte_count;
sync_msg->return_tx_packet_count = sis->src_new_packet_count;
sync_msg->return_tx_byte_count = sis->src_new_byte_count;
/*
* fill expiration time to extend, in unit of msec
*/
sync_msg->inc_ticks = (((uint32_t)sis->delta_jiffies) * MSEC_PER_SEC)/HZ;
/*
* fill other information
*/
switch (sis->reason) {
case SFE_SYNC_REASON_DESTROY:
sync_msg->reason = SFE_RULE_SYNC_REASON_DESTROY;
break;
case SFE_SYNC_REASON_FLUSH:
sync_msg->reason = SFE_RULE_SYNC_REASON_FLUSH;
break;
default:
sync_msg->reason = SFE_RULE_SYNC_REASON_STATS;
break;
}
/*
* SFE sync calling is excuted in a timer, so we can redirect it to ECM directly.
*/
sync_cb(sfe_drv_ctx->ipv4_stats_sync_data, &msg);
rcu_read_unlock();
}
/*
* sfe_drv_create_ipv4_rule_msg()
* convert create message format from ecm to sfe
*
* @param sfe_drv_ctx sfe driver context
* @param msg The IPv4 message
*
* @return sfe_tx_status_t The status of the Tx operation
*/
sfe_tx_status_t sfe_drv_create_ipv4_rule_msg(struct sfe_drv_ctx_instance_internal *sfe_drv_ctx, struct sfe_ipv4_msg *msg)
{
struct sfe_connection_create sic;
struct net_device *src_dev = NULL;
struct net_device *dest_dev = NULL;
struct sfe_drv_response_msg *response;
enum sfe_cmn_response ret;
response = sfe_drv_alloc_response_msg(SFE_DRV_MSG_TYPE_IPV4, msg);
if (!response) {
sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_ENQUEUE_FAILED);
return SFE_TX_FAILURE_QUEUE;
}
if (!(msg->msg.rule_create.valid_flags & SFE_RULE_CREATE_CONN_VALID)) {
ret = SFE_CMN_RESPONSE_EMSG;
sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_CONNECTION_INVALID);
goto failed_ret;
}
/*
* not support bridged flows now
*/
if (msg->msg.rule_create.rule_flags & SFE_RULE_CREATE_FLAG_BRIDGE_FLOW) {
ret = SFE_CMN_RESPONSE_EINTERFACE;
sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_NOT_SUPPORT_BRIDGE);
goto failed_ret;
}
sic.protocol = msg->msg.rule_create.tuple.protocol;
sic.src_ip.ip = msg->msg.rule_create.tuple.flow_ip;
sic.dest_ip.ip = msg->msg.rule_create.tuple.return_ip;
sic.src_ip_xlate.ip = msg->msg.rule_create.conn_rule.flow_ip_xlate;
sic.dest_ip_xlate.ip = msg->msg.rule_create.conn_rule.return_ip_xlate;
sic.flags = 0;
switch (sic.protocol) {
case IPPROTO_TCP:
if (!(msg->msg.rule_create.valid_flags & SFE_RULE_CREATE_TCP_VALID)) {
ret = SFE_CMN_RESPONSE_EMSG;
sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_TCP_INVALID);
goto failed_ret;
}
sic.src_port = msg->msg.rule_create.tuple.flow_ident;
sic.dest_port = msg->msg.rule_create.tuple.return_ident;
sic.src_port_xlate = msg->msg.rule_create.conn_rule.flow_ident_xlate;
sic.dest_port_xlate = msg->msg.rule_create.conn_rule.return_ident_xlate;
sic.src_td_window_scale = msg->msg.rule_create.tcp_rule.flow_window_scale;
sic.src_td_max_window = msg->msg.rule_create.tcp_rule.flow_max_window;
sic.src_td_end = msg->msg.rule_create.tcp_rule.flow_end;
sic.src_td_max_end = msg->msg.rule_create.tcp_rule.flow_max_end;
sic.dest_td_window_scale = msg->msg.rule_create.tcp_rule.return_window_scale;
sic.dest_td_max_window = msg->msg.rule_create.tcp_rule.return_max_window;
sic.dest_td_end = msg->msg.rule_create.tcp_rule.return_end;
sic.dest_td_max_end = msg->msg.rule_create.tcp_rule.return_max_end;
if (msg->msg.rule_create.rule_flags & SFE_RULE_CREATE_FLAG_NO_SEQ_CHECK) {
sic.flags |= SFE_CREATE_FLAG_NO_SEQ_CHECK;
}
break;
case IPPROTO_UDP:
sic.src_port = msg->msg.rule_create.tuple.flow_ident;
sic.dest_port = msg->msg.rule_create.tuple.return_ident;
sic.src_port_xlate = msg->msg.rule_create.conn_rule.flow_ident_xlate;
sic.dest_port_xlate = msg->msg.rule_create.conn_rule.return_ident_xlate;
break;
default:
ret = SFE_CMN_RESPONSE_EMSG;
sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_PROTOCOL_NOT_SUPPORT);
goto failed_ret;
}
memcpy(sic.src_mac, msg->msg.rule_create.conn_rule.flow_mac, ETH_ALEN);
memset(sic.src_mac_xlate, 0, ETH_ALEN);
memset(sic.dest_mac, 0, ETH_ALEN);
memcpy(sic.dest_mac_xlate, msg->msg.rule_create.conn_rule.return_mac, ETH_ALEN);
/*
* Does our input device support IP processing?
*/
src_dev = dev_get_by_index(&init_net, msg->msg.rule_create.conn_rule.flow_top_interface_num);
if (!src_dev || !sfe_drv_dev_is_layer_3_interface(src_dev, true)) {
ret = SFE_CMN_RESPONSE_EINTERFACE;
sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_SRC_DEV_NOT_L3);
goto failed_ret;
}
/*
* Does our output device support IP processing?
*/
dest_dev = dev_get_by_index(&init_net, msg->msg.rule_create.conn_rule.return_top_interface_num);
if (!dest_dev || !sfe_drv_dev_is_layer_3_interface(dest_dev, true)) {
ret = SFE_CMN_RESPONSE_EINTERFACE;
sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_DEST_DEV_NOT_L3);
goto failed_ret;
}
sic.src_dev = src_dev;
sic.dest_dev = dest_dev;
sic.src_mtu = msg->msg.rule_create.conn_rule.flow_mtu;
sic.dest_mtu = msg->msg.rule_create.conn_rule.return_mtu;
if (msg->msg.rule_create.valid_flags & SFE_RULE_CREATE_QOS_VALID) {
sic.src_priority = msg->msg.rule_create.qos_rule.flow_qos_tag;
sic.dest_priority = msg->msg.rule_create.qos_rule.return_qos_tag;
sic.flags |= SFE_CREATE_FLAG_REMARK_PRIORITY;
}
if (msg->msg.rule_create.valid_flags & SFE_RULE_CREATE_DSCP_MARKING_VALID) {
sic.src_dscp = msg->msg.rule_create.dscp_rule.flow_dscp;
sic.dest_dscp = msg->msg.rule_create.dscp_rule.return_dscp;
sic.flags |= SFE_CREATE_FLAG_REMARK_DSCP;
}
if (!sfe_ipv4_create_rule(&sic)) {
/* success */
ret = SFE_CMN_RESPONSE_ACK;
} else {
/* failed */
ret = SFE_CMN_RESPONSE_EMSG;
sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_CREATE_FAILED);
}
/*
* fall through
*/
failed_ret:
if (src_dev) {
dev_put(src_dev);
}
if (dest_dev) {
dev_put(dest_dev);
}
/*
* try to queue response message
*/
((struct sfe_ipv4_msg *)response->msg)->cm.response = msg->cm.response = ret;
sfe_drv_enqueue_msg(sfe_drv_ctx, response);
return SFE_TX_SUCCESS;
}
/*
* sfe_drv_destroy_ipv4_rule_msg()
* convert destroy message format from ecm to sfe
*
* @param sfe_drv_ctx sfe driver context
* @param msg The IPv4 message
*
* @return sfe_tx_status_t The status of the Tx operation
*/
sfe_tx_status_t sfe_drv_destroy_ipv4_rule_msg(struct sfe_drv_ctx_instance_internal *sfe_drv_ctx, struct sfe_ipv4_msg *msg)
{
struct sfe_connection_destroy sid;
struct sfe_drv_response_msg *response;
response = sfe_drv_alloc_response_msg(SFE_DRV_MSG_TYPE_IPV4, msg);
if (!response) {
sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_ENQUEUE_FAILED);
return SFE_TX_FAILURE_QUEUE;
}
sid.protocol = msg->msg.rule_destroy.tuple.protocol;
sid.src_ip.ip = msg->msg.rule_destroy.tuple.flow_ip;
sid.dest_ip.ip = msg->msg.rule_destroy.tuple.return_ip;
sid.src_port = msg->msg.rule_destroy.tuple.flow_ident;
sid.dest_port = msg->msg.rule_destroy.tuple.return_ident;
sfe_ipv4_destroy_rule(&sid);
/*
* try to queue response message
*/
((struct sfe_ipv4_msg *)response->msg)->cm.response = msg->cm.response = SFE_CMN_RESPONSE_ACK;
sfe_drv_enqueue_msg(sfe_drv_ctx, response);
return SFE_TX_SUCCESS;
}
/*
* sfe_drv_ipv4_tx()
* Transmit an IPv4 message to the sfe
*
* @param sfe_drv_ctx sfe driver context
* @param msg The IPv4 message
*
* @return sfe_tx_status_t The status of the Tx operation
*/
sfe_tx_status_t sfe_drv_ipv4_tx(struct sfe_drv_ctx_instance *sfe_drv_ctx, struct sfe_ipv4_msg *msg)
{
switch (msg->cm.type) {
case SFE_TX_CREATE_RULE_MSG:
return sfe_drv_create_ipv4_rule_msg(SFE_DRV_CTX_TO_PRIVATE(sfe_drv_ctx), msg);
case SFE_TX_DESTROY_RULE_MSG:
return sfe_drv_destroy_ipv4_rule_msg(SFE_DRV_CTX_TO_PRIVATE(sfe_drv_ctx), msg);
default:
sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_IPV4_MSG_UNKNOW);
return SFE_TX_FAILURE_NOT_ENABLED;
}
}
EXPORT_SYMBOL(sfe_drv_ipv4_tx);
/*
* sfe_ipv4_msg_init()
* Initialize IPv4 message.
*/
void sfe_ipv4_msg_init(struct sfe_ipv4_msg *nim, uint16_t if_num, uint32_t type, uint32_t len,
sfe_ipv4_msg_callback_t cb, void *app_data)
{
sfe_cmn_msg_init(&nim->cm, if_num, type, len, (void *)cb, app_data);
}
EXPORT_SYMBOL(sfe_ipv4_msg_init);
/*
* sfe_drv_ipv4_max_conn_count()
* return maximum number of entries SFE supported
*/
int sfe_drv_ipv4_max_conn_count(void)
{
return SFE_MAX_CONNECTION_NUM;
}
EXPORT_SYMBOL(sfe_drv_ipv4_max_conn_count);
/*
* sfe_drv_ipv4_notify_register()
* Register a notifier callback for IPv4 messages from sfe driver
*
* @param cb The callback pointer
* @param app_data The application context for this message
*
* @return struct sfe_drv_ctx_instance * The sfe driver context
*/
struct sfe_drv_ctx_instance *sfe_drv_ipv4_notify_register(sfe_ipv4_msg_callback_t cb, void *app_data)
{
struct sfe_drv_ctx_instance_internal *sfe_drv_ctx = &__sfe_drv_ctx;
spin_lock_bh(&sfe_drv_ctx->lock);
/*
* Hook the shortcut sync callback.
*/
if (cb && !sfe_drv_ctx->ipv4_stats_sync_cb) {
sfe_ipv4_register_sync_rule_callback(sfe_drv_ipv4_stats_sync_callback);
}
rcu_assign_pointer(sfe_drv_ctx->ipv4_stats_sync_cb, cb);
sfe_drv_ctx->ipv4_stats_sync_data = app_data;
spin_unlock_bh(&sfe_drv_ctx->lock);
return SFE_DRV_CTX_TO_PUBLIC(sfe_drv_ctx);
}
EXPORT_SYMBOL(sfe_drv_ipv4_notify_register);
/*
* sfe_drv_ipv4_notify_unregister()
* Un-Register a notifier callback for IPv4 messages from sfe driver
*/
void sfe_drv_ipv4_notify_unregister(void)
{
struct sfe_drv_ctx_instance_internal *sfe_drv_ctx = &__sfe_drv_ctx;
spin_lock_bh(&sfe_drv_ctx->lock);
/*
* Unregister our sync callback.
*/
if (sfe_drv_ctx->ipv4_stats_sync_cb) {
sfe_ipv4_register_sync_rule_callback(NULL);
rcu_assign_pointer(sfe_drv_ctx->ipv4_stats_sync_cb, NULL);
sfe_drv_ctx->ipv4_stats_sync_data = NULL;
}
spin_unlock_bh(&sfe_drv_ctx->lock);
return;
}
EXPORT_SYMBOL(sfe_drv_ipv4_notify_unregister);
/*
* sfe_drv_ipv6_stats_sync_callback()
* Synchronize a connection's state.
*/
static void sfe_drv_ipv6_stats_sync_callback(struct sfe_connection_sync *sis)
{
struct sfe_drv_ctx_instance_internal *sfe_drv_ctx = &__sfe_drv_ctx;
struct sfe_ipv6_msg msg;
struct sfe_ipv6_conn_sync *sync_msg;
sfe_ipv6_msg_callback_t sync_cb;
rcu_read_lock();
sync_cb = rcu_dereference(sfe_drv_ctx->ipv6_stats_sync_cb);
if (!sync_cb) {
rcu_read_unlock();
sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_NO_SYNC_CB);
return;
}
sync_msg = &msg.msg.conn_stats;
memset(&msg, 0, sizeof(msg));
sfe_cmn_msg_init(&msg.cm, 0, SFE_RX_CONN_STATS_SYNC_MSG,
sizeof(struct sfe_ipv6_conn_sync), NULL, NULL);
/*
* fill connection specific information
*/
sync_msg->protocol = (uint8_t)sis->protocol;
sfe_drv_ipv6_addr_copy(sis->src_ip.ip6, sync_msg->flow_ip);
sync_msg->flow_ident = sis->src_port;
sfe_drv_ipv6_addr_copy(sis->dest_ip.ip6, sync_msg->return_ip);
sync_msg->return_ident = sis->dest_port;
/*
* fill TCP protocol specific information
*/
if (sis->protocol == IPPROTO_TCP) {
sync_msg->flow_max_window = sis->src_td_max_window;
sync_msg->flow_end = sis->src_td_end;
sync_msg->flow_max_end = sis->src_td_max_end;
sync_msg->return_max_window = sis->dest_td_max_window;
sync_msg->return_end = sis->dest_td_end;
sync_msg->return_max_end = sis->dest_td_max_end;
}
/*
* fill statistics information
*/
sync_msg->flow_rx_packet_count = sis->src_new_packet_count;
sync_msg->flow_rx_byte_count = sis->src_new_byte_count;
sync_msg->flow_tx_packet_count = sis->dest_new_packet_count;
sync_msg->flow_tx_byte_count = sis->dest_new_byte_count;
sync_msg->return_rx_packet_count = sis->dest_new_packet_count;
sync_msg->return_rx_byte_count = sis->dest_new_byte_count;
sync_msg->return_tx_packet_count = sis->src_new_packet_count;
sync_msg->return_tx_byte_count = sis->src_new_byte_count;
/*
* fill expiration time to extend, in unit of msec
*/
sync_msg->inc_ticks = (((uint32_t)sis->delta_jiffies) * MSEC_PER_SEC)/HZ;
/*
* fill other information
*/
switch (sis->reason) {
case SFE_SYNC_REASON_DESTROY:
sync_msg->reason = SFE_RULE_SYNC_REASON_DESTROY;
break;
case SFE_SYNC_REASON_FLUSH:
sync_msg->reason = SFE_RULE_SYNC_REASON_FLUSH;
break;
default:
sync_msg->reason = SFE_RULE_SYNC_REASON_STATS;
break;
}
/*
* SFE sync calling is excuted in a timer, so we can redirect it to ECM directly.
*/
sync_cb(sfe_drv_ctx->ipv6_stats_sync_data, &msg);
rcu_read_unlock();
}
/*
* sfe_drv_create_ipv6_rule_msg()
* convert create message format from ecm to sfe
*
* @param sfe_drv_ctx sfe driver context
* @param msg The IPv6 message
*
* @return sfe_tx_status_t The status of the Tx operation
*/
sfe_tx_status_t sfe_drv_create_ipv6_rule_msg(struct sfe_drv_ctx_instance_internal *sfe_drv_ctx, struct sfe_ipv6_msg *msg)
{
struct sfe_connection_create sic;
struct net_device *src_dev = NULL;
struct net_device *dest_dev = NULL;
struct sfe_drv_response_msg *response;
enum sfe_cmn_response ret;
response = sfe_drv_alloc_response_msg(SFE_DRV_MSG_TYPE_IPV6, msg);
if (!response) {
sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_ENQUEUE_FAILED);
return SFE_TX_FAILURE_QUEUE;
}
if (!(msg->msg.rule_create.valid_flags & SFE_RULE_CREATE_CONN_VALID)) {
ret = SFE_CMN_RESPONSE_EMSG;
sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_CONNECTION_INVALID);
goto failed_ret;
}
/*
* not support bridged flows now
*/
if (msg->msg.rule_create.rule_flags & SFE_RULE_CREATE_FLAG_BRIDGE_FLOW) {
ret = SFE_CMN_RESPONSE_EINTERFACE;
sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_NOT_SUPPORT_BRIDGE);
goto failed_ret;
}
sic.protocol = msg->msg.rule_create.tuple.protocol;
sfe_drv_ipv6_addr_copy(msg->msg.rule_create.tuple.flow_ip, sic.src_ip.ip6);
sfe_drv_ipv6_addr_copy(msg->msg.rule_create.tuple.return_ip, sic.dest_ip.ip6);
sfe_drv_ipv6_addr_copy(msg->msg.rule_create.tuple.flow_ip, sic.src_ip_xlate.ip6);
sfe_drv_ipv6_addr_copy(msg->msg.rule_create.tuple.return_ip, sic.dest_ip_xlate.ip6);
sic.flags = 0;
switch (sic.protocol) {
case IPPROTO_TCP:
if (!(msg->msg.rule_create.valid_flags & SFE_RULE_CREATE_TCP_VALID)) {
ret = SFE_CMN_RESPONSE_EMSG;
sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_TCP_INVALID);
goto failed_ret;
}
sic.src_port = msg->msg.rule_create.tuple.flow_ident;
sic.dest_port = msg->msg.rule_create.tuple.return_ident;
sic.src_port_xlate = msg->msg.rule_create.tuple.flow_ident;
sic.dest_port_xlate = msg->msg.rule_create.tuple.return_ident;
sic.src_td_window_scale = msg->msg.rule_create.tcp_rule.flow_window_scale;
sic.src_td_max_window = msg->msg.rule_create.tcp_rule.flow_max_window;
sic.src_td_end = msg->msg.rule_create.tcp_rule.flow_end;
sic.src_td_max_end = msg->msg.rule_create.tcp_rule.flow_max_end;
sic.dest_td_window_scale = msg->msg.rule_create.tcp_rule.return_window_scale;
sic.dest_td_max_window = msg->msg.rule_create.tcp_rule.return_max_window;
sic.dest_td_end = msg->msg.rule_create.tcp_rule.return_end;
sic.dest_td_max_end = msg->msg.rule_create.tcp_rule.return_max_end;
if (msg->msg.rule_create.rule_flags & SFE_RULE_CREATE_FLAG_NO_SEQ_CHECK) {
sic.flags |= SFE_CREATE_FLAG_NO_SEQ_CHECK;
}
break;
case IPPROTO_UDP:
sic.src_port = msg->msg.rule_create.tuple.flow_ident;
sic.dest_port = msg->msg.rule_create.tuple.return_ident;
sic.src_port_xlate = msg->msg.rule_create.tuple.flow_ident;
sic.dest_port_xlate = msg->msg.rule_create.tuple.return_ident;
break;
default:
ret = SFE_CMN_RESPONSE_EMSG;
sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_PROTOCOL_NOT_SUPPORT);
goto failed_ret;
}
memcpy(sic.src_mac, msg->msg.rule_create.conn_rule.flow_mac, ETH_ALEN);
memset(sic.src_mac_xlate, 0, ETH_ALEN);
memset(sic.dest_mac, 0, ETH_ALEN);
memcpy(sic.dest_mac_xlate, msg->msg.rule_create.conn_rule.return_mac, ETH_ALEN);
/*
* Does our input device support IP processing?
*/
src_dev = dev_get_by_index(&init_net, msg->msg.rule_create.conn_rule.flow_top_interface_num);
if (!src_dev || !sfe_drv_dev_is_layer_3_interface(src_dev, false)) {
ret = SFE_CMN_RESPONSE_EINTERFACE;
sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_SRC_DEV_NOT_L3);
goto failed_ret;
}
/*
* Does our output device support IP processing?
*/
dest_dev = dev_get_by_index(&init_net, msg->msg.rule_create.conn_rule.return_top_interface_num);
if (!dest_dev || !sfe_drv_dev_is_layer_3_interface(dest_dev, false)) {
ret = SFE_CMN_RESPONSE_EINTERFACE;
sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_DEST_DEV_NOT_L3);
goto failed_ret;
}
sic.src_dev = src_dev;
sic.dest_dev = dest_dev;
sic.src_mtu = msg->msg.rule_create.conn_rule.flow_mtu;
sic.dest_mtu = msg->msg.rule_create.conn_rule.return_mtu;
if (msg->msg.rule_create.valid_flags & SFE_RULE_CREATE_QOS_VALID) {
sic.src_priority = msg->msg.rule_create.qos_rule.flow_qos_tag;
sic.dest_priority = msg->msg.rule_create.qos_rule.return_qos_tag;
}
if (msg->msg.rule_create.valid_flags & SFE_RULE_CREATE_DSCP_MARKING_VALID) {
sic.src_dscp = msg->msg.rule_create.dscp_rule.flow_dscp;
sic.dest_dscp = msg->msg.rule_create.dscp_rule.return_dscp;
}
if (!sfe_ipv6_create_rule(&sic)) {
/* success */
ret = SFE_CMN_RESPONSE_ACK;
} else {
/* failed */
ret = SFE_CMN_RESPONSE_EMSG;
sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_CREATE_FAILED);
}
/*
* fall through
*/
failed_ret:
if (src_dev) {
dev_put(src_dev);
}
if (dest_dev) {
dev_put(dest_dev);
}
/*
* try to queue response message
*/
((struct sfe_ipv6_msg *)response->msg)->cm.response = msg->cm.response = ret;
sfe_drv_enqueue_msg(sfe_drv_ctx, response);
return SFE_TX_SUCCESS;
}
/*
* sfe_drv_destroy_ipv6_rule_msg()
* convert destroy message format from ecm to sfe
*
* @param sfe_drv_ctx sfe driver context
* @param msg The IPv6 message
*
* @return sfe_tx_status_t The status of the Tx operation
*/
sfe_tx_status_t sfe_drv_destroy_ipv6_rule_msg(struct sfe_drv_ctx_instance_internal *sfe_drv_ctx, struct sfe_ipv6_msg *msg)
{
struct sfe_connection_destroy sid;
struct sfe_drv_response_msg *response;
response = sfe_drv_alloc_response_msg(SFE_DRV_MSG_TYPE_IPV6, msg);
if (!response) {
sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_ENQUEUE_FAILED);
return SFE_TX_FAILURE_QUEUE;
}
sid.protocol = msg->msg.rule_destroy.tuple.protocol;
sfe_drv_ipv6_addr_copy(msg->msg.rule_destroy.tuple.flow_ip, sid.src_ip.ip6);
sfe_drv_ipv6_addr_copy(msg->msg.rule_destroy.tuple.return_ip, sid.dest_ip.ip6);
sid.src_port = msg->msg.rule_destroy.tuple.flow_ident;
sid.dest_port = msg->msg.rule_destroy.tuple.return_ident;
sfe_ipv6_destroy_rule(&sid);
/*
* try to queue response message
*/
((struct sfe_ipv6_msg *)response->msg)->cm.response = msg->cm.response = SFE_CMN_RESPONSE_ACK;
sfe_drv_enqueue_msg(sfe_drv_ctx, response);
return SFE_TX_SUCCESS;
}
/*
* sfe_drv_ipv6_tx()
* Transmit an IPv6 message to the sfe
*
* @param sfe_drv_ctx sfe driver context
* @param msg The IPv6 message
*
* @return sfe_tx_status_t The status of the Tx operation
*/
sfe_tx_status_t sfe_drv_ipv6_tx(struct sfe_drv_ctx_instance *sfe_drv_ctx, struct sfe_ipv6_msg *msg)
{
switch (msg->cm.type) {
case SFE_TX_CREATE_RULE_MSG:
return sfe_drv_create_ipv6_rule_msg(SFE_DRV_CTX_TO_PRIVATE(sfe_drv_ctx), msg);
case SFE_TX_DESTROY_RULE_MSG:
return sfe_drv_destroy_ipv6_rule_msg(SFE_DRV_CTX_TO_PRIVATE(sfe_drv_ctx), msg);
default:
sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_IPV6_MSG_UNKNOW);
return SFE_TX_FAILURE_NOT_ENABLED;
}
}
EXPORT_SYMBOL(sfe_drv_ipv6_tx);
/*
* sfe_ipv6_msg_init()
* Initialize IPv6 message.
*/
void sfe_ipv6_msg_init(struct sfe_ipv6_msg *nim, uint16_t if_num, uint32_t type, uint32_t len,
sfe_ipv6_msg_callback_t cb, void *app_data)
{
sfe_cmn_msg_init(&nim->cm, if_num, type, len, (void *)cb, app_data);
}
EXPORT_SYMBOL(sfe_ipv6_msg_init);
/*
* sfe_drv_ipv6_max_conn_count()
* return maximum number of entries SFE supported
*/
int sfe_drv_ipv6_max_conn_count(void)
{
return SFE_MAX_CONNECTION_NUM;
}
EXPORT_SYMBOL(sfe_drv_ipv6_max_conn_count);
/*
* sfe_drv_ipv6_notify_register()
* Register a notifier callback for IPv6 messages from sfe driver
*
* @param cb The callback pointer
* @param app_data The application context for this message
*
* @return struct sfe_drv_ctx_instance * The sfe driver context
*/
struct sfe_drv_ctx_instance *sfe_drv_ipv6_notify_register(sfe_ipv6_msg_callback_t cb, void *app_data)
{
struct sfe_drv_ctx_instance_internal *sfe_drv_ctx = &__sfe_drv_ctx;
spin_lock_bh(&sfe_drv_ctx->lock);
/*
* Hook the shortcut sync callback.
*/
if (cb && !sfe_drv_ctx->ipv6_stats_sync_cb) {
sfe_ipv6_register_sync_rule_callback(sfe_drv_ipv6_stats_sync_callback);
}
rcu_assign_pointer(sfe_drv_ctx->ipv6_stats_sync_cb, cb);
sfe_drv_ctx->ipv6_stats_sync_data = app_data;
spin_unlock_bh(&sfe_drv_ctx->lock);
return SFE_DRV_CTX_TO_PUBLIC(sfe_drv_ctx);
}
EXPORT_SYMBOL(sfe_drv_ipv6_notify_register);
/*
* sfe_drv_ipv6_notify_unregister()
* Un-Register a notifier callback for IPv6 messages from sfe driver
*/
void sfe_drv_ipv6_notify_unregister(void)
{
struct sfe_drv_ctx_instance_internal *sfe_drv_ctx = &__sfe_drv_ctx;
spin_lock_bh(&sfe_drv_ctx->lock);
/*
* Unregister our sync callback.
*/
if (sfe_drv_ctx->ipv6_stats_sync_cb) {
sfe_ipv6_register_sync_rule_callback(NULL);
rcu_assign_pointer(sfe_drv_ctx->ipv6_stats_sync_cb, NULL);
sfe_drv_ctx->ipv6_stats_sync_data = NULL;
}
spin_unlock_bh(&sfe_drv_ctx->lock);
return;
}
EXPORT_SYMBOL(sfe_drv_ipv6_notify_unregister);
/*
* sfe_tun6rd_tx()
* Transmit a tun6rd message to sfe engine
*/
sfe_tx_status_t sfe_tun6rd_tx(struct sfe_drv_ctx_instance *sfe_drv_ctx, struct sfe_tun6rd_msg *msg)
{
sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_NOT_SUPPORT_6RD);
return SFE_TX_FAILURE_NOT_ENABLED;
}
EXPORT_SYMBOL(sfe_tun6rd_tx);
/*
* sfe_tun6rd_msg_init()
* Initialize sfe_tun6rd msg.
*/
void sfe_tun6rd_msg_init(struct sfe_tun6rd_msg *ncm, uint16_t if_num, uint32_t type, uint32_t len, void *cb, void *app_data)
{
sfe_cmn_msg_init(&ncm->cm, if_num, type, len, cb, app_data);
}
EXPORT_SYMBOL(sfe_tun6rd_msg_init);
/*
* sfe_drv_recv()
* Handle packet receives.
*
* Returns 1 if the packet is forwarded or 0 if it isn't.
*/
int sfe_drv_recv(struct sk_buff *skb)
{
struct net_device *dev;
/*
* We know that for the vast majority of packets we need the transport
* layer header so we may as well start to fetch it now!
*/
prefetch(skb->data + 32);
barrier();
dev = skb->dev;
/*
* We're only interested in IPv4 and IPv6 packets.
*/
if (likely(htons(ETH_P_IP) == skb->protocol)) {
if (sfe_drv_dev_is_layer_3_interface(dev, true)) {
return sfe_ipv4_recv(dev, skb);
} else {
DEBUG_TRACE("no IPv4 address for device: %s\n", dev->name);
return 0;
}
}
if (likely(htons(ETH_P_IPV6) == skb->protocol)) {
if (sfe_drv_dev_is_layer_3_interface(dev, false)) {
return sfe_ipv6_recv(dev, skb);
} else {
DEBUG_TRACE("no IPv6 address for device: %s\n", dev->name);
return 0;
}
}
DEBUG_TRACE("not IP packet\n");
return 0;
}
/*
* sfe_drv_get_exceptions()
* dump exception counters
*/
static ssize_t sfe_drv_get_exceptions(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int idx, len;
struct sfe_drv_ctx_instance_internal *sfe_drv_ctx = &__sfe_drv_ctx;
spin_lock_bh(&sfe_drv_ctx->lock);
for (len = 0, idx = 0; idx < SFE_DRV_EXCEPTION_MAX; idx++) {
if (sfe_drv_ctx->exceptions[idx]) {
len += sprintf(buf + len, "%s = %d\n", sfe_drv_exception_events_string[idx], sfe_drv_ctx->exceptions[idx]);
}
}
spin_unlock_bh(&sfe_drv_ctx->lock);
return len;
}
/*
* sysfs attributes.
*/
static const struct device_attribute sfe_drv_exceptions_attr =
__ATTR(exceptions, S_IRUGO, sfe_drv_get_exceptions, NULL);
/*
* sfe_drv_init()
*/
static int __init sfe_drv_init(void)
{
struct sfe_drv_ctx_instance_internal *sfe_drv_ctx = &__sfe_drv_ctx;
int result = -1;
/*
* Create sys/sfe_drv
*/
sfe_drv_ctx->sys_sfe_drv = kobject_create_and_add("sfe_drv", NULL);
if (!sfe_drv_ctx->sys_sfe_drv) {
DEBUG_ERROR("failed to register sfe_drv\n");
goto exit1;
}
/*
* Create sys/sfe_drv/exceptions
*/
result = sysfs_create_file(sfe_drv_ctx->sys_sfe_drv, &sfe_drv_exceptions_attr.attr);
if (result) {
DEBUG_ERROR("failed to register exceptions file: %d\n", result);
goto exit2;
}
spin_lock_init(&sfe_drv_ctx->lock);
INIT_LIST_HEAD(&sfe_drv_ctx->msg_queue);
INIT_WORK(&sfe_drv_ctx->work, sfe_drv_process_response_msg);
/*
* Hook the receive path in the network stack.
*/
BUG_ON(athrs_fast_nat_recv != NULL);
RCU_INIT_POINTER(athrs_fast_nat_recv, sfe_drv_recv);
return 0;
exit2:
kobject_put(sfe_drv_ctx->sys_sfe_drv);
exit1:
return result;
}
/*
* sfe_drv_exit()
*/
static void __exit sfe_drv_exit(void)
{
struct sfe_drv_ctx_instance_internal *sfe_drv_ctx = &__sfe_drv_ctx;
/*
* Unregister our receive callback.
*/
RCU_INIT_POINTER(athrs_fast_nat_recv, NULL);
/*
* Wait for all callbacks to complete.
*/
rcu_barrier();
/*
* Destroy all connections.
*/
sfe_ipv4_destroy_all_rules_for_dev(NULL);
sfe_ipv6_destroy_all_rules_for_dev(NULL);
/*
* stop work queue, and flush all pending message in queue
*/
cancel_work_sync(&sfe_drv_ctx->work);
sfe_drv_process_response_msg(&sfe_drv_ctx->work);
/*
* Unregister our sync callback.
*/
sfe_drv_ipv4_notify_unregister();
sfe_drv_ipv6_notify_unregister();
kobject_put(sfe_drv_ctx->sys_sfe_drv);
return;
}
module_init(sfe_drv_init)
module_exit(sfe_drv_exit)
MODULE_AUTHOR("Qualcomm Atheros Inc.");
MODULE_DESCRIPTION("Simulated driver for Shortcut Forwarding Engine");
MODULE_LICENSE("Dual BSD/GPL");