| /* |
| * sfe_drv.c |
| * simulated sfe driver for shortcut forwarding engine. |
| * |
| * Copyright (c) 2015 The Linux Foundation. All rights reserved. |
| * Permission to use, copy, modify, and/or distribute this software for |
| * any purpose with or without fee is hereby granted, provided that the |
| * above copyright notice and this permission notice appear in all copies. |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT |
| * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| #include <linux/module.h> |
| #include <linux/version.h> |
| #include <linux/sysfs.h> |
| #include <linux/skbuff.h> |
| #include <net/addrconf.h> |
| #include <linux/inetdevice.h> |
| |
| #include "../shortcut-fe/sfe.h" |
| #include "../shortcut-fe/sfe_cm.h" |
| #include "sfe_drv.h" |
| |
| typedef enum sfe_drv_exception { |
| SFE_DRV_EXCEPTION_IPV4_MSG_UNKNOW, |
| SFE_DRV_EXCEPTION_IPV6_MSG_UNKNOW, |
| SFE_DRV_EXCEPTION_CONNECTION_INVALID, |
| SFE_DRV_EXCEPTION_NOT_SUPPORT_BRIDGE, |
| SFE_DRV_EXCEPTION_TCP_INVALID, |
| SFE_DRV_EXCEPTION_PROTOCOL_NOT_SUPPORT, |
| SFE_DRV_EXCEPTION_SRC_DEV_NOT_L3, |
| SFE_DRV_EXCEPTION_DEST_DEV_NOT_L3, |
| SFE_DRV_EXCEPTION_CREATE_FAILED, |
| SFE_DRV_EXCEPTION_ENQUEUE_FAILED, |
| SFE_DRV_EXCEPTION_NOT_SUPPORT_6RD, |
| SFE_DRV_EXCEPTION_NO_SYNC_CB, |
| SFE_DRV_EXCEPTION_MAX |
| } sfe_drv_exception_t; |
| |
| static char *sfe_drv_exception_events_string[SFE_DRV_EXCEPTION_MAX] = { |
| "IPV4_MSG_UNKNOW", |
| "IPV6_MSG_UNKNOW", |
| "CONNECTION_INVALID", |
| "NOT_SUPPORT_BRIDGE", |
| "TCP_INVALID", |
| "PROTOCOL_NOT_SUPPORT", |
| "SRC_DEV_NOT_L3", |
| "DEST_DEV_NOT_L3", |
| "CREATE_FAILED", |
| "ENQUEUE_FAILED", |
| "NOT_SUPPORT_6RD", |
| "NO_SYNC_CB" |
| }; |
| |
| #define SFE_MESSAGE_VERSION 0x1 |
| #define SFE_MAX_CONNECTION_NUM 65535 |
| #define sfe_drv_ipv6_addr_copy(src, dest) memcpy((void *)(dest), (void *)(src), 16) |
| /* |
| * message type of queued response message |
| */ |
| typedef enum { |
| SFE_DRV_MSG_TYPE_IPV4, |
| SFE_DRV_MSG_TYPE_IPV6 |
| } sfe_drv_msg_types_t; |
| |
| /* |
| * queued response message, |
| * will be sent back to caller in workqueue |
| */ |
| struct sfe_drv_response_msg { |
| struct list_head node; |
| sfe_drv_msg_types_t type; |
| void *msg[0]; |
| }; |
| |
| #if LINUX_VERSION_CODE < KERNEL_VERSION(3, 10, 0) |
| #define list_first_entry_or_null(ptr, type, member) \ |
| (!list_empty(ptr) ? list_first_entry(ptr, type, member) : NULL) |
| #endif |
| |
| /* |
| * sfe driver context instance, private for sfe driver |
| */ |
| struct sfe_drv_ctx_instance_internal { |
| struct sfe_drv_ctx_instance base;/* exported sfe driver context, is public to user of sfe driver*/ |
| |
| /* |
| * Control state. |
| */ |
| struct kobject *sys_sfe_drv; /* sysfs linkage */ |
| |
| struct list_head msg_queue; /* response message queue*/ |
| spinlock_t lock; /* Lock to protect message queue */ |
| |
| struct work_struct work; /* work to send response message back to caller*/ |
| |
| sfe_ipv4_msg_callback_t __rcu ipv4_stats_sync_cb; /* callback to call to sync ipv4 statistics */ |
| void *ipv4_stats_sync_data; /* argument for above callback: ipv4_stats_sync_cb */ |
| |
| sfe_ipv6_msg_callback_t __rcu ipv6_stats_sync_cb; /* callback to call to sync ipv6 statistics */ |
| void *ipv6_stats_sync_data; /* argument for above callback: ipv6_stats_sync_cb */ |
| |
| uint32_t exceptions[SFE_DRV_EXCEPTION_MAX]; /* statistics for exception */ |
| } __sfe_drv_ctx; |
| |
| /* |
| * convert public sfe driver context to internal context |
| */ |
| #define SFE_DRV_CTX_TO_PRIVATE(base) (struct sfe_drv_ctx_instance_internal *)(base) |
| /* |
| * convert internal sfe driver context to public context |
| */ |
| #define SFE_DRV_CTX_TO_PUBLIC(intrv) (struct sfe_drv_ctx_instance *)(intrv) |
| |
| /* |
| * Expose the hook for the receive processing. |
| */ |
| extern int (*athrs_fast_nat_recv)(struct sk_buff *skb); |
| |
| /* |
| * sfe_drv_incr_exceptions() |
| * increase an exception counter. |
| */ |
| static inline void sfe_drv_incr_exceptions(sfe_drv_exception_t except) |
| { |
| struct sfe_drv_ctx_instance_internal *sfe_drv_ctx = &__sfe_drv_ctx; |
| |
| spin_lock_bh(&sfe_drv_ctx->lock); |
| sfe_drv_ctx->exceptions[except]++; |
| spin_unlock_bh(&sfe_drv_ctx->lock); |
| } |
| |
| /* |
| * sfe_drv_dev_is_layer_3_interface() |
| * check if a network device is ipv4 or ipv6 layer 3 interface |
| * |
| * @param dev network device to check |
| * @param check_v4 check ipv4 layer 3 interface(which have ipv4 address) or ipv6 layer 3 interface(which have ipv6 address) |
| */ |
| inline bool sfe_drv_dev_is_layer_3_interface(struct net_device *dev, bool check_v4) |
| { |
| struct in_device *in4_dev; |
| struct inet6_dev *in6_dev; |
| |
| BUG_ON(!dev); |
| |
| if (likely(check_v4)) { |
| /* |
| * Does our input device support IPv4 processing? |
| */ |
| in4_dev = (struct in_device *)dev->ip_ptr; |
| if (unlikely(!in4_dev)) { |
| return false; |
| } |
| |
| /* |
| * Does it have an IPv4 address? If it doesn't then we can't do anything |
| * interesting here! |
| */ |
| if (unlikely(!in4_dev->ifa_list)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Does our input device support IPv6 processing? |
| */ |
| in6_dev = (struct inet6_dev *)dev->ip6_ptr; |
| if (unlikely(!in6_dev)) { |
| return false; |
| } |
| |
| /* |
| * Does it have an IPv6 address? If it doesn't then we can't do anything |
| * interesting here! |
| */ |
| if (unlikely(list_empty(&in6_dev->addr_list))) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * sfe_drv_process_response_msg() |
| * send all pending response message to ECM by calling callback function included in message |
| * |
| * @param work work structure |
| */ |
| static void sfe_drv_process_response_msg(struct work_struct *work) |
| { |
| struct sfe_drv_ctx_instance_internal *sfe_drv_ctx = container_of(work, struct sfe_drv_ctx_instance_internal, work); |
| struct sfe_drv_response_msg *response; |
| |
| spin_lock_bh(&sfe_drv_ctx->lock); |
| while ((response = list_first_entry_or_null(&sfe_drv_ctx->msg_queue, struct sfe_drv_response_msg, node))) { |
| list_del(&response->node); |
| spin_unlock_bh(&sfe_drv_ctx->lock); |
| |
| /* |
| * send response message back to caller |
| */ |
| if (response->type == SFE_DRV_MSG_TYPE_IPV4) { |
| struct sfe_ipv4_msg *msg = (struct sfe_ipv4_msg *)response->msg; |
| sfe_ipv4_msg_callback_t callback = (sfe_ipv4_msg_callback_t)msg->cm.cb; |
| if (callback) { |
| callback((void *)msg->cm.app_data, msg); |
| } |
| } else if (response->type == SFE_DRV_MSG_TYPE_IPV6) { |
| struct sfe_ipv6_msg *msg = (struct sfe_ipv6_msg *)response->msg; |
| sfe_ipv6_msg_callback_t callback = (sfe_ipv6_msg_callback_t)msg->cm.cb; |
| if (callback) { |
| callback((void *)msg->cm.app_data, msg); |
| } |
| } |
| |
| /* |
| * free response message |
| */ |
| kfree(response); |
| spin_lock_bh(&sfe_drv_ctx->lock); |
| } |
| spin_unlock_bh(&sfe_drv_ctx->lock); |
| } |
| |
| /* |
| * sfe_drv_alloc_response_msg() |
| * alloc and construct new response message |
| * |
| * @param type message type |
| * @param msg used to construct response message if not NULL |
| * |
| * @return !NULL, success; NULL, failed |
| */ |
| static struct sfe_drv_response_msg * |
| sfe_drv_alloc_response_msg(sfe_drv_msg_types_t type, void *msg) |
| { |
| struct sfe_drv_response_msg *response; |
| int size; |
| |
| switch (type) { |
| case SFE_DRV_MSG_TYPE_IPV4: |
| size = sizeof(struct sfe_ipv4_msg); |
| break; |
| case SFE_DRV_MSG_TYPE_IPV6: |
| size = sizeof(struct sfe_ipv6_msg); |
| break; |
| default: |
| DEBUG_ERROR("message type %d not supported\n", type); |
| return NULL; |
| } |
| |
| response = (struct sfe_drv_response_msg *)kzalloc(sizeof(struct sfe_drv_response_msg) + size, GFP_ATOMIC); |
| if (!response) { |
| DEBUG_ERROR("allocate memory failed\n"); |
| return NULL; |
| } |
| |
| response->type = type; |
| |
| if (msg) { |
| memcpy(response->msg, msg, size); |
| } |
| |
| return response; |
| } |
| |
| /* |
| * sfe_drv_enqueue_msg() |
| * queue response message |
| * |
| * @param sfe_drv_ctx sfe driver context |
| * @param response response message to be queue |
| */ |
| static inline void sfe_drv_enqueue_msg(struct sfe_drv_ctx_instance_internal *sfe_drv_ctx, struct sfe_drv_response_msg *response) |
| { |
| spin_lock_bh(&sfe_drv_ctx->lock); |
| list_add_tail(&response->node, &sfe_drv_ctx->msg_queue); |
| spin_unlock_bh(&sfe_drv_ctx->lock); |
| |
| schedule_work(&sfe_drv_ctx->work); |
| } |
| |
| /* |
| * sfe_cmn_msg_init() |
| * Initialize the common message structure. |
| * |
| * @param ncm message to init |
| * @param if_num interface number related with this message |
| * @param type message type |
| * @param cb callback function to process repsonse of this message |
| * @param app_data argument for above callback function |
| */ |
| static void sfe_cmn_msg_init(struct sfe_cmn_msg *ncm, uint16_t if_num, uint32_t type, uint32_t len, void *cb, void *app_data) |
| { |
| ncm->interface = if_num; |
| ncm->version = SFE_MESSAGE_VERSION; |
| ncm->type = type; |
| ncm->len = len; |
| ncm->cb = (uint32_t)cb; |
| ncm->app_data = (uint32_t)app_data; |
| } |
| |
| /* |
| * sfe_drv_ipv4_stats_sync_callback() |
| * Synchronize a connection's state. |
| * |
| * @param sis SFE statistics from SFE core engine |
| */ |
| static void sfe_drv_ipv4_stats_sync_callback(struct sfe_connection_sync *sis) |
| { |
| struct sfe_drv_ctx_instance_internal *sfe_drv_ctx = &__sfe_drv_ctx; |
| struct sfe_ipv4_msg msg; |
| struct sfe_ipv4_conn_sync *sync_msg; |
| sfe_ipv4_msg_callback_t sync_cb; |
| |
| rcu_read_lock(); |
| sync_cb = rcu_dereference(sfe_drv_ctx->ipv4_stats_sync_cb); |
| if (!sync_cb) { |
| rcu_read_unlock(); |
| sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_NO_SYNC_CB); |
| return; |
| } |
| |
| sync_msg = &msg.msg.conn_stats; |
| |
| memset(&msg, 0, sizeof(msg)); |
| sfe_cmn_msg_init(&msg.cm, 0, SFE_RX_CONN_STATS_SYNC_MSG, |
| sizeof(struct sfe_ipv4_conn_sync), NULL, NULL); |
| |
| /* |
| * fill connection specific information |
| */ |
| sync_msg->protocol = (uint8_t)sis->protocol; |
| sync_msg->flow_ip = sis->src_ip.ip; |
| sync_msg->flow_ip_xlate = sis->src_ip_xlate.ip; |
| sync_msg->flow_ident = sis->src_port; |
| sync_msg->flow_ident_xlate = sis->src_port_xlate; |
| |
| sync_msg->return_ip = sis->dest_ip.ip; |
| sync_msg->return_ip_xlate = sis->dest_ip_xlate.ip; |
| sync_msg->return_ident = sis->dest_port; |
| sync_msg->return_ident_xlate = sis->dest_port_xlate; |
| |
| /* |
| * fill TCP protocol specific information |
| */ |
| if (sis->protocol == IPPROTO_TCP) { |
| sync_msg->flow_max_window = sis->src_td_max_window; |
| sync_msg->flow_end = sis->src_td_end; |
| sync_msg->flow_max_end = sis->src_td_max_end; |
| |
| sync_msg->return_max_window = sis->dest_td_max_window; |
| sync_msg->return_end = sis->dest_td_end; |
| sync_msg->return_max_end = sis->dest_td_max_end; |
| } |
| |
| /* |
| * fill statistics information |
| */ |
| sync_msg->flow_rx_packet_count = sis->src_new_packet_count; |
| sync_msg->flow_rx_byte_count = sis->src_new_byte_count; |
| sync_msg->flow_tx_packet_count = sis->dest_new_packet_count; |
| sync_msg->flow_tx_byte_count = sis->dest_new_byte_count; |
| |
| sync_msg->return_rx_packet_count = sis->dest_new_packet_count; |
| sync_msg->return_rx_byte_count = sis->dest_new_byte_count; |
| sync_msg->return_tx_packet_count = sis->src_new_packet_count; |
| sync_msg->return_tx_byte_count = sis->src_new_byte_count; |
| |
| /* |
| * fill expiration time to extend, in unit of msec |
| */ |
| sync_msg->inc_ticks = (((uint32_t)sis->delta_jiffies) * MSEC_PER_SEC)/HZ; |
| |
| /* |
| * fill other information |
| */ |
| switch (sis->reason) { |
| case SFE_SYNC_REASON_DESTROY: |
| sync_msg->reason = SFE_RULE_SYNC_REASON_DESTROY; |
| break; |
| case SFE_SYNC_REASON_FLUSH: |
| sync_msg->reason = SFE_RULE_SYNC_REASON_FLUSH; |
| break; |
| default: |
| sync_msg->reason = SFE_RULE_SYNC_REASON_STATS; |
| break; |
| } |
| |
| /* |
| * SFE sync calling is excuted in a timer, so we can redirect it to ECM directly. |
| */ |
| sync_cb(sfe_drv_ctx->ipv4_stats_sync_data, &msg); |
| rcu_read_unlock(); |
| } |
| |
| /* |
| * sfe_drv_create_ipv4_rule_msg() |
| * convert create message format from ecm to sfe |
| * |
| * @param sfe_drv_ctx sfe driver context |
| * @param msg The IPv4 message |
| * |
| * @return sfe_tx_status_t The status of the Tx operation |
| */ |
| sfe_tx_status_t sfe_drv_create_ipv4_rule_msg(struct sfe_drv_ctx_instance_internal *sfe_drv_ctx, struct sfe_ipv4_msg *msg) |
| { |
| struct sfe_connection_create sic; |
| struct net_device *src_dev = NULL; |
| struct net_device *dest_dev = NULL; |
| struct sfe_drv_response_msg *response; |
| enum sfe_cmn_response ret; |
| |
| response = sfe_drv_alloc_response_msg(SFE_DRV_MSG_TYPE_IPV4, msg); |
| if (!response) { |
| sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_ENQUEUE_FAILED); |
| return SFE_TX_FAILURE_QUEUE; |
| } |
| |
| if (!(msg->msg.rule_create.valid_flags & SFE_RULE_CREATE_CONN_VALID)) { |
| ret = SFE_CMN_RESPONSE_EMSG; |
| sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_CONNECTION_INVALID); |
| goto failed_ret; |
| } |
| |
| /* |
| * not support bridged flows now |
| */ |
| if (msg->msg.rule_create.rule_flags & SFE_RULE_CREATE_FLAG_BRIDGE_FLOW) { |
| ret = SFE_CMN_RESPONSE_EINTERFACE; |
| sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_NOT_SUPPORT_BRIDGE); |
| goto failed_ret; |
| } |
| |
| sic.protocol = msg->msg.rule_create.tuple.protocol; |
| sic.src_ip.ip = msg->msg.rule_create.tuple.flow_ip; |
| sic.dest_ip.ip = msg->msg.rule_create.tuple.return_ip; |
| sic.src_ip_xlate.ip = msg->msg.rule_create.conn_rule.flow_ip_xlate; |
| sic.dest_ip_xlate.ip = msg->msg.rule_create.conn_rule.return_ip_xlate; |
| |
| sic.flags = 0; |
| switch (sic.protocol) { |
| case IPPROTO_TCP: |
| if (!(msg->msg.rule_create.valid_flags & SFE_RULE_CREATE_TCP_VALID)) { |
| ret = SFE_CMN_RESPONSE_EMSG; |
| sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_TCP_INVALID); |
| goto failed_ret; |
| } |
| |
| sic.src_port = msg->msg.rule_create.tuple.flow_ident; |
| sic.dest_port = msg->msg.rule_create.tuple.return_ident; |
| sic.src_port_xlate = msg->msg.rule_create.conn_rule.flow_ident_xlate; |
| sic.dest_port_xlate = msg->msg.rule_create.conn_rule.return_ident_xlate; |
| sic.src_td_window_scale = msg->msg.rule_create.tcp_rule.flow_window_scale; |
| sic.src_td_max_window = msg->msg.rule_create.tcp_rule.flow_max_window; |
| sic.src_td_end = msg->msg.rule_create.tcp_rule.flow_end; |
| sic.src_td_max_end = msg->msg.rule_create.tcp_rule.flow_max_end; |
| sic.dest_td_window_scale = msg->msg.rule_create.tcp_rule.return_window_scale; |
| sic.dest_td_max_window = msg->msg.rule_create.tcp_rule.return_max_window; |
| sic.dest_td_end = msg->msg.rule_create.tcp_rule.return_end; |
| sic.dest_td_max_end = msg->msg.rule_create.tcp_rule.return_max_end; |
| if (msg->msg.rule_create.rule_flags & SFE_RULE_CREATE_FLAG_NO_SEQ_CHECK) { |
| sic.flags |= SFE_CREATE_FLAG_NO_SEQ_CHECK; |
| } |
| break; |
| |
| case IPPROTO_UDP: |
| sic.src_port = msg->msg.rule_create.tuple.flow_ident; |
| sic.dest_port = msg->msg.rule_create.tuple.return_ident; |
| sic.src_port_xlate = msg->msg.rule_create.conn_rule.flow_ident_xlate; |
| sic.dest_port_xlate = msg->msg.rule_create.conn_rule.return_ident_xlate; |
| break; |
| |
| default: |
| ret = SFE_CMN_RESPONSE_EMSG; |
| sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_PROTOCOL_NOT_SUPPORT); |
| goto failed_ret; |
| } |
| |
| memcpy(sic.src_mac, msg->msg.rule_create.conn_rule.flow_mac, ETH_ALEN); |
| memset(sic.src_mac_xlate, 0, ETH_ALEN); |
| memset(sic.dest_mac, 0, ETH_ALEN); |
| memcpy(sic.dest_mac_xlate, msg->msg.rule_create.conn_rule.return_mac, ETH_ALEN); |
| |
| /* |
| * Does our input device support IP processing? |
| */ |
| src_dev = dev_get_by_index(&init_net, msg->msg.rule_create.conn_rule.flow_top_interface_num); |
| if (!src_dev || !sfe_drv_dev_is_layer_3_interface(src_dev, true)) { |
| ret = SFE_CMN_RESPONSE_EINTERFACE; |
| sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_SRC_DEV_NOT_L3); |
| goto failed_ret; |
| } |
| |
| /* |
| * Does our output device support IP processing? |
| */ |
| dest_dev = dev_get_by_index(&init_net, msg->msg.rule_create.conn_rule.return_top_interface_num); |
| if (!dest_dev || !sfe_drv_dev_is_layer_3_interface(dest_dev, true)) { |
| ret = SFE_CMN_RESPONSE_EINTERFACE; |
| sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_DEST_DEV_NOT_L3); |
| goto failed_ret; |
| } |
| |
| sic.src_dev = src_dev; |
| sic.dest_dev = dest_dev; |
| |
| sic.src_mtu = msg->msg.rule_create.conn_rule.flow_mtu; |
| sic.dest_mtu = msg->msg.rule_create.conn_rule.return_mtu; |
| |
| if (msg->msg.rule_create.valid_flags & SFE_RULE_CREATE_QOS_VALID) { |
| sic.src_priority = msg->msg.rule_create.qos_rule.flow_qos_tag; |
| sic.dest_priority = msg->msg.rule_create.qos_rule.return_qos_tag; |
| sic.flags |= SFE_CREATE_FLAG_REMARK_PRIORITY; |
| } |
| |
| if (msg->msg.rule_create.valid_flags & SFE_RULE_CREATE_DSCP_MARKING_VALID) { |
| sic.src_dscp = msg->msg.rule_create.dscp_rule.flow_dscp; |
| sic.dest_dscp = msg->msg.rule_create.dscp_rule.return_dscp; |
| sic.flags |= SFE_CREATE_FLAG_REMARK_DSCP; |
| } |
| |
| if (!sfe_ipv4_create_rule(&sic)) { |
| /* success */ |
| ret = SFE_CMN_RESPONSE_ACK; |
| } else { |
| /* failed */ |
| ret = SFE_CMN_RESPONSE_EMSG; |
| sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_CREATE_FAILED); |
| } |
| |
| /* |
| * fall through |
| */ |
| failed_ret: |
| if (src_dev) { |
| dev_put(src_dev); |
| } |
| |
| if (dest_dev) { |
| dev_put(dest_dev); |
| } |
| |
| /* |
| * try to queue response message |
| */ |
| ((struct sfe_ipv4_msg *)response->msg)->cm.response = msg->cm.response = ret; |
| sfe_drv_enqueue_msg(sfe_drv_ctx, response); |
| |
| return SFE_TX_SUCCESS; |
| } |
| |
| /* |
| * sfe_drv_destroy_ipv4_rule_msg() |
| * convert destroy message format from ecm to sfe |
| * |
| * @param sfe_drv_ctx sfe driver context |
| * @param msg The IPv4 message |
| * |
| * @return sfe_tx_status_t The status of the Tx operation |
| */ |
| sfe_tx_status_t sfe_drv_destroy_ipv4_rule_msg(struct sfe_drv_ctx_instance_internal *sfe_drv_ctx, struct sfe_ipv4_msg *msg) |
| { |
| struct sfe_connection_destroy sid; |
| struct sfe_drv_response_msg *response; |
| |
| response = sfe_drv_alloc_response_msg(SFE_DRV_MSG_TYPE_IPV4, msg); |
| if (!response) { |
| sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_ENQUEUE_FAILED); |
| return SFE_TX_FAILURE_QUEUE; |
| } |
| |
| sid.protocol = msg->msg.rule_destroy.tuple.protocol; |
| sid.src_ip.ip = msg->msg.rule_destroy.tuple.flow_ip; |
| sid.dest_ip.ip = msg->msg.rule_destroy.tuple.return_ip; |
| sid.src_port = msg->msg.rule_destroy.tuple.flow_ident; |
| sid.dest_port = msg->msg.rule_destroy.tuple.return_ident; |
| |
| sfe_ipv4_destroy_rule(&sid); |
| |
| /* |
| * try to queue response message |
| */ |
| ((struct sfe_ipv4_msg *)response->msg)->cm.response = msg->cm.response = SFE_CMN_RESPONSE_ACK; |
| sfe_drv_enqueue_msg(sfe_drv_ctx, response); |
| |
| return SFE_TX_SUCCESS; |
| } |
| |
| /* |
| * sfe_drv_ipv4_tx() |
| * Transmit an IPv4 message to the sfe |
| * |
| * @param sfe_drv_ctx sfe driver context |
| * @param msg The IPv4 message |
| * |
| * @return sfe_tx_status_t The status of the Tx operation |
| */ |
| sfe_tx_status_t sfe_drv_ipv4_tx(struct sfe_drv_ctx_instance *sfe_drv_ctx, struct sfe_ipv4_msg *msg) |
| { |
| switch (msg->cm.type) { |
| case SFE_TX_CREATE_RULE_MSG: |
| return sfe_drv_create_ipv4_rule_msg(SFE_DRV_CTX_TO_PRIVATE(sfe_drv_ctx), msg); |
| case SFE_TX_DESTROY_RULE_MSG: |
| return sfe_drv_destroy_ipv4_rule_msg(SFE_DRV_CTX_TO_PRIVATE(sfe_drv_ctx), msg); |
| default: |
| sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_IPV4_MSG_UNKNOW); |
| return SFE_TX_FAILURE_NOT_ENABLED; |
| } |
| } |
| EXPORT_SYMBOL(sfe_drv_ipv4_tx); |
| |
| /* |
| * sfe_ipv4_msg_init() |
| * Initialize IPv4 message. |
| */ |
| void sfe_ipv4_msg_init(struct sfe_ipv4_msg *nim, uint16_t if_num, uint32_t type, uint32_t len, |
| sfe_ipv4_msg_callback_t cb, void *app_data) |
| { |
| sfe_cmn_msg_init(&nim->cm, if_num, type, len, (void *)cb, app_data); |
| } |
| EXPORT_SYMBOL(sfe_ipv4_msg_init); |
| |
| /* |
| * sfe_drv_ipv4_max_conn_count() |
| * return maximum number of entries SFE supported |
| */ |
| int sfe_drv_ipv4_max_conn_count(void) |
| { |
| return SFE_MAX_CONNECTION_NUM; |
| } |
| EXPORT_SYMBOL(sfe_drv_ipv4_max_conn_count); |
| |
| /* |
| * sfe_drv_ipv4_notify_register() |
| * Register a notifier callback for IPv4 messages from sfe driver |
| * |
| * @param cb The callback pointer |
| * @param app_data The application context for this message |
| * |
| * @return struct sfe_drv_ctx_instance * The sfe driver context |
| */ |
| struct sfe_drv_ctx_instance *sfe_drv_ipv4_notify_register(sfe_ipv4_msg_callback_t cb, void *app_data) |
| { |
| struct sfe_drv_ctx_instance_internal *sfe_drv_ctx = &__sfe_drv_ctx; |
| |
| spin_lock_bh(&sfe_drv_ctx->lock); |
| /* |
| * Hook the shortcut sync callback. |
| */ |
| if (cb && !sfe_drv_ctx->ipv4_stats_sync_cb) { |
| sfe_ipv4_register_sync_rule_callback(sfe_drv_ipv4_stats_sync_callback); |
| } |
| |
| rcu_assign_pointer(sfe_drv_ctx->ipv4_stats_sync_cb, cb); |
| sfe_drv_ctx->ipv4_stats_sync_data = app_data; |
| |
| spin_unlock_bh(&sfe_drv_ctx->lock); |
| |
| return SFE_DRV_CTX_TO_PUBLIC(sfe_drv_ctx); |
| } |
| EXPORT_SYMBOL(sfe_drv_ipv4_notify_register); |
| |
| /* |
| * sfe_drv_ipv4_notify_unregister() |
| * Un-Register a notifier callback for IPv4 messages from sfe driver |
| */ |
| void sfe_drv_ipv4_notify_unregister(void) |
| { |
| struct sfe_drv_ctx_instance_internal *sfe_drv_ctx = &__sfe_drv_ctx; |
| |
| spin_lock_bh(&sfe_drv_ctx->lock); |
| /* |
| * Unregister our sync callback. |
| */ |
| if (sfe_drv_ctx->ipv4_stats_sync_cb) { |
| sfe_ipv4_register_sync_rule_callback(NULL); |
| rcu_assign_pointer(sfe_drv_ctx->ipv4_stats_sync_cb, NULL); |
| sfe_drv_ctx->ipv4_stats_sync_data = NULL; |
| } |
| spin_unlock_bh(&sfe_drv_ctx->lock); |
| |
| return; |
| } |
| EXPORT_SYMBOL(sfe_drv_ipv4_notify_unregister); |
| |
| /* |
| * sfe_drv_ipv6_stats_sync_callback() |
| * Synchronize a connection's state. |
| */ |
| static void sfe_drv_ipv6_stats_sync_callback(struct sfe_connection_sync *sis) |
| { |
| struct sfe_drv_ctx_instance_internal *sfe_drv_ctx = &__sfe_drv_ctx; |
| struct sfe_ipv6_msg msg; |
| struct sfe_ipv6_conn_sync *sync_msg; |
| sfe_ipv6_msg_callback_t sync_cb; |
| |
| rcu_read_lock(); |
| sync_cb = rcu_dereference(sfe_drv_ctx->ipv6_stats_sync_cb); |
| if (!sync_cb) { |
| rcu_read_unlock(); |
| sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_NO_SYNC_CB); |
| return; |
| } |
| |
| sync_msg = &msg.msg.conn_stats; |
| |
| memset(&msg, 0, sizeof(msg)); |
| sfe_cmn_msg_init(&msg.cm, 0, SFE_RX_CONN_STATS_SYNC_MSG, |
| sizeof(struct sfe_ipv6_conn_sync), NULL, NULL); |
| |
| /* |
| * fill connection specific information |
| */ |
| sync_msg->protocol = (uint8_t)sis->protocol; |
| sfe_drv_ipv6_addr_copy(sis->src_ip.ip6, sync_msg->flow_ip); |
| sync_msg->flow_ident = sis->src_port; |
| |
| sfe_drv_ipv6_addr_copy(sis->dest_ip.ip6, sync_msg->return_ip); |
| sync_msg->return_ident = sis->dest_port; |
| |
| /* |
| * fill TCP protocol specific information |
| */ |
| if (sis->protocol == IPPROTO_TCP) { |
| sync_msg->flow_max_window = sis->src_td_max_window; |
| sync_msg->flow_end = sis->src_td_end; |
| sync_msg->flow_max_end = sis->src_td_max_end; |
| |
| sync_msg->return_max_window = sis->dest_td_max_window; |
| sync_msg->return_end = sis->dest_td_end; |
| sync_msg->return_max_end = sis->dest_td_max_end; |
| } |
| |
| /* |
| * fill statistics information |
| */ |
| sync_msg->flow_rx_packet_count = sis->src_new_packet_count; |
| sync_msg->flow_rx_byte_count = sis->src_new_byte_count; |
| sync_msg->flow_tx_packet_count = sis->dest_new_packet_count; |
| sync_msg->flow_tx_byte_count = sis->dest_new_byte_count; |
| |
| sync_msg->return_rx_packet_count = sis->dest_new_packet_count; |
| sync_msg->return_rx_byte_count = sis->dest_new_byte_count; |
| sync_msg->return_tx_packet_count = sis->src_new_packet_count; |
| sync_msg->return_tx_byte_count = sis->src_new_byte_count; |
| |
| /* |
| * fill expiration time to extend, in unit of msec |
| */ |
| sync_msg->inc_ticks = (((uint32_t)sis->delta_jiffies) * MSEC_PER_SEC)/HZ; |
| |
| /* |
| * fill other information |
| */ |
| switch (sis->reason) { |
| case SFE_SYNC_REASON_DESTROY: |
| sync_msg->reason = SFE_RULE_SYNC_REASON_DESTROY; |
| break; |
| case SFE_SYNC_REASON_FLUSH: |
| sync_msg->reason = SFE_RULE_SYNC_REASON_FLUSH; |
| break; |
| default: |
| sync_msg->reason = SFE_RULE_SYNC_REASON_STATS; |
| break; |
| } |
| |
| /* |
| * SFE sync calling is excuted in a timer, so we can redirect it to ECM directly. |
| */ |
| sync_cb(sfe_drv_ctx->ipv6_stats_sync_data, &msg); |
| rcu_read_unlock(); |
| } |
| |
| /* |
| * sfe_drv_create_ipv6_rule_msg() |
| * convert create message format from ecm to sfe |
| * |
| * @param sfe_drv_ctx sfe driver context |
| * @param msg The IPv6 message |
| * |
| * @return sfe_tx_status_t The status of the Tx operation |
| */ |
| sfe_tx_status_t sfe_drv_create_ipv6_rule_msg(struct sfe_drv_ctx_instance_internal *sfe_drv_ctx, struct sfe_ipv6_msg *msg) |
| { |
| struct sfe_connection_create sic; |
| struct net_device *src_dev = NULL; |
| struct net_device *dest_dev = NULL; |
| struct sfe_drv_response_msg *response; |
| enum sfe_cmn_response ret; |
| |
| response = sfe_drv_alloc_response_msg(SFE_DRV_MSG_TYPE_IPV6, msg); |
| if (!response) { |
| sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_ENQUEUE_FAILED); |
| return SFE_TX_FAILURE_QUEUE; |
| } |
| |
| if (!(msg->msg.rule_create.valid_flags & SFE_RULE_CREATE_CONN_VALID)) { |
| ret = SFE_CMN_RESPONSE_EMSG; |
| sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_CONNECTION_INVALID); |
| goto failed_ret; |
| } |
| |
| /* |
| * not support bridged flows now |
| */ |
| if (msg->msg.rule_create.rule_flags & SFE_RULE_CREATE_FLAG_BRIDGE_FLOW) { |
| ret = SFE_CMN_RESPONSE_EINTERFACE; |
| sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_NOT_SUPPORT_BRIDGE); |
| goto failed_ret; |
| } |
| |
| sic.protocol = msg->msg.rule_create.tuple.protocol; |
| sfe_drv_ipv6_addr_copy(msg->msg.rule_create.tuple.flow_ip, sic.src_ip.ip6); |
| sfe_drv_ipv6_addr_copy(msg->msg.rule_create.tuple.return_ip, sic.dest_ip.ip6); |
| sfe_drv_ipv6_addr_copy(msg->msg.rule_create.tuple.flow_ip, sic.src_ip_xlate.ip6); |
| sfe_drv_ipv6_addr_copy(msg->msg.rule_create.tuple.return_ip, sic.dest_ip_xlate.ip6); |
| |
| sic.flags = 0; |
| switch (sic.protocol) { |
| case IPPROTO_TCP: |
| if (!(msg->msg.rule_create.valid_flags & SFE_RULE_CREATE_TCP_VALID)) { |
| ret = SFE_CMN_RESPONSE_EMSG; |
| sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_TCP_INVALID); |
| goto failed_ret; |
| } |
| |
| sic.src_port = msg->msg.rule_create.tuple.flow_ident; |
| sic.dest_port = msg->msg.rule_create.tuple.return_ident; |
| sic.src_port_xlate = msg->msg.rule_create.tuple.flow_ident; |
| sic.dest_port_xlate = msg->msg.rule_create.tuple.return_ident; |
| sic.src_td_window_scale = msg->msg.rule_create.tcp_rule.flow_window_scale; |
| sic.src_td_max_window = msg->msg.rule_create.tcp_rule.flow_max_window; |
| sic.src_td_end = msg->msg.rule_create.tcp_rule.flow_end; |
| sic.src_td_max_end = msg->msg.rule_create.tcp_rule.flow_max_end; |
| sic.dest_td_window_scale = msg->msg.rule_create.tcp_rule.return_window_scale; |
| sic.dest_td_max_window = msg->msg.rule_create.tcp_rule.return_max_window; |
| sic.dest_td_end = msg->msg.rule_create.tcp_rule.return_end; |
| sic.dest_td_max_end = msg->msg.rule_create.tcp_rule.return_max_end; |
| if (msg->msg.rule_create.rule_flags & SFE_RULE_CREATE_FLAG_NO_SEQ_CHECK) { |
| sic.flags |= SFE_CREATE_FLAG_NO_SEQ_CHECK; |
| } |
| break; |
| |
| case IPPROTO_UDP: |
| sic.src_port = msg->msg.rule_create.tuple.flow_ident; |
| sic.dest_port = msg->msg.rule_create.tuple.return_ident; |
| sic.src_port_xlate = msg->msg.rule_create.tuple.flow_ident; |
| sic.dest_port_xlate = msg->msg.rule_create.tuple.return_ident; |
| break; |
| |
| default: |
| ret = SFE_CMN_RESPONSE_EMSG; |
| sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_PROTOCOL_NOT_SUPPORT); |
| goto failed_ret; |
| } |
| |
| memcpy(sic.src_mac, msg->msg.rule_create.conn_rule.flow_mac, ETH_ALEN); |
| memset(sic.src_mac_xlate, 0, ETH_ALEN); |
| memset(sic.dest_mac, 0, ETH_ALEN); |
| memcpy(sic.dest_mac_xlate, msg->msg.rule_create.conn_rule.return_mac, ETH_ALEN); |
| /* |
| * Does our input device support IP processing? |
| */ |
| src_dev = dev_get_by_index(&init_net, msg->msg.rule_create.conn_rule.flow_top_interface_num); |
| if (!src_dev || !sfe_drv_dev_is_layer_3_interface(src_dev, false)) { |
| ret = SFE_CMN_RESPONSE_EINTERFACE; |
| sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_SRC_DEV_NOT_L3); |
| goto failed_ret; |
| } |
| |
| /* |
| * Does our output device support IP processing? |
| */ |
| dest_dev = dev_get_by_index(&init_net, msg->msg.rule_create.conn_rule.return_top_interface_num); |
| if (!dest_dev || !sfe_drv_dev_is_layer_3_interface(dest_dev, false)) { |
| ret = SFE_CMN_RESPONSE_EINTERFACE; |
| sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_DEST_DEV_NOT_L3); |
| goto failed_ret; |
| } |
| |
| sic.src_dev = src_dev; |
| sic.dest_dev = dest_dev; |
| |
| sic.src_mtu = msg->msg.rule_create.conn_rule.flow_mtu; |
| sic.dest_mtu = msg->msg.rule_create.conn_rule.return_mtu; |
| |
| if (msg->msg.rule_create.valid_flags & SFE_RULE_CREATE_QOS_VALID) { |
| sic.src_priority = msg->msg.rule_create.qos_rule.flow_qos_tag; |
| sic.dest_priority = msg->msg.rule_create.qos_rule.return_qos_tag; |
| } |
| |
| if (msg->msg.rule_create.valid_flags & SFE_RULE_CREATE_DSCP_MARKING_VALID) { |
| sic.src_dscp = msg->msg.rule_create.dscp_rule.flow_dscp; |
| sic.dest_dscp = msg->msg.rule_create.dscp_rule.return_dscp; |
| } |
| |
| if (!sfe_ipv6_create_rule(&sic)) { |
| /* success */ |
| ret = SFE_CMN_RESPONSE_ACK; |
| } else { |
| /* failed */ |
| ret = SFE_CMN_RESPONSE_EMSG; |
| sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_CREATE_FAILED); |
| } |
| |
| /* |
| * fall through |
| */ |
| failed_ret: |
| if (src_dev) { |
| dev_put(src_dev); |
| } |
| |
| if (dest_dev) { |
| dev_put(dest_dev); |
| } |
| |
| /* |
| * try to queue response message |
| */ |
| ((struct sfe_ipv6_msg *)response->msg)->cm.response = msg->cm.response = ret; |
| sfe_drv_enqueue_msg(sfe_drv_ctx, response); |
| |
| return SFE_TX_SUCCESS; |
| } |
| |
| /* |
| * sfe_drv_destroy_ipv6_rule_msg() |
| * convert destroy message format from ecm to sfe |
| * |
| * @param sfe_drv_ctx sfe driver context |
| * @param msg The IPv6 message |
| * |
| * @return sfe_tx_status_t The status of the Tx operation |
| */ |
| sfe_tx_status_t sfe_drv_destroy_ipv6_rule_msg(struct sfe_drv_ctx_instance_internal *sfe_drv_ctx, struct sfe_ipv6_msg *msg) |
| { |
| struct sfe_connection_destroy sid; |
| struct sfe_drv_response_msg *response; |
| |
| response = sfe_drv_alloc_response_msg(SFE_DRV_MSG_TYPE_IPV6, msg); |
| if (!response) { |
| sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_ENQUEUE_FAILED); |
| return SFE_TX_FAILURE_QUEUE; |
| } |
| |
| sid.protocol = msg->msg.rule_destroy.tuple.protocol; |
| sfe_drv_ipv6_addr_copy(msg->msg.rule_destroy.tuple.flow_ip, sid.src_ip.ip6); |
| sfe_drv_ipv6_addr_copy(msg->msg.rule_destroy.tuple.return_ip, sid.dest_ip.ip6); |
| sid.src_port = msg->msg.rule_destroy.tuple.flow_ident; |
| sid.dest_port = msg->msg.rule_destroy.tuple.return_ident; |
| |
| sfe_ipv6_destroy_rule(&sid); |
| |
| /* |
| * try to queue response message |
| */ |
| ((struct sfe_ipv6_msg *)response->msg)->cm.response = msg->cm.response = SFE_CMN_RESPONSE_ACK; |
| sfe_drv_enqueue_msg(sfe_drv_ctx, response); |
| |
| return SFE_TX_SUCCESS; |
| } |
| |
| /* |
| * sfe_drv_ipv6_tx() |
| * Transmit an IPv6 message to the sfe |
| * |
| * @param sfe_drv_ctx sfe driver context |
| * @param msg The IPv6 message |
| * |
| * @return sfe_tx_status_t The status of the Tx operation |
| */ |
| sfe_tx_status_t sfe_drv_ipv6_tx(struct sfe_drv_ctx_instance *sfe_drv_ctx, struct sfe_ipv6_msg *msg) |
| { |
| switch (msg->cm.type) { |
| case SFE_TX_CREATE_RULE_MSG: |
| return sfe_drv_create_ipv6_rule_msg(SFE_DRV_CTX_TO_PRIVATE(sfe_drv_ctx), msg); |
| case SFE_TX_DESTROY_RULE_MSG: |
| return sfe_drv_destroy_ipv6_rule_msg(SFE_DRV_CTX_TO_PRIVATE(sfe_drv_ctx), msg); |
| default: |
| sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_IPV6_MSG_UNKNOW); |
| return SFE_TX_FAILURE_NOT_ENABLED; |
| } |
| } |
| EXPORT_SYMBOL(sfe_drv_ipv6_tx); |
| |
| /* |
| * sfe_ipv6_msg_init() |
| * Initialize IPv6 message. |
| */ |
| void sfe_ipv6_msg_init(struct sfe_ipv6_msg *nim, uint16_t if_num, uint32_t type, uint32_t len, |
| sfe_ipv6_msg_callback_t cb, void *app_data) |
| { |
| sfe_cmn_msg_init(&nim->cm, if_num, type, len, (void *)cb, app_data); |
| } |
| EXPORT_SYMBOL(sfe_ipv6_msg_init); |
| |
| /* |
| * sfe_drv_ipv6_max_conn_count() |
| * return maximum number of entries SFE supported |
| */ |
| int sfe_drv_ipv6_max_conn_count(void) |
| { |
| return SFE_MAX_CONNECTION_NUM; |
| } |
| EXPORT_SYMBOL(sfe_drv_ipv6_max_conn_count); |
| |
| /* |
| * sfe_drv_ipv6_notify_register() |
| * Register a notifier callback for IPv6 messages from sfe driver |
| * |
| * @param cb The callback pointer |
| * @param app_data The application context for this message |
| * |
| * @return struct sfe_drv_ctx_instance * The sfe driver context |
| */ |
| struct sfe_drv_ctx_instance *sfe_drv_ipv6_notify_register(sfe_ipv6_msg_callback_t cb, void *app_data) |
| { |
| struct sfe_drv_ctx_instance_internal *sfe_drv_ctx = &__sfe_drv_ctx; |
| |
| spin_lock_bh(&sfe_drv_ctx->lock); |
| /* |
| * Hook the shortcut sync callback. |
| */ |
| if (cb && !sfe_drv_ctx->ipv6_stats_sync_cb) { |
| sfe_ipv6_register_sync_rule_callback(sfe_drv_ipv6_stats_sync_callback); |
| } |
| |
| rcu_assign_pointer(sfe_drv_ctx->ipv6_stats_sync_cb, cb); |
| sfe_drv_ctx->ipv6_stats_sync_data = app_data; |
| |
| spin_unlock_bh(&sfe_drv_ctx->lock); |
| |
| return SFE_DRV_CTX_TO_PUBLIC(sfe_drv_ctx); |
| } |
| EXPORT_SYMBOL(sfe_drv_ipv6_notify_register); |
| |
| /* |
| * sfe_drv_ipv6_notify_unregister() |
| * Un-Register a notifier callback for IPv6 messages from sfe driver |
| */ |
| void sfe_drv_ipv6_notify_unregister(void) |
| { |
| struct sfe_drv_ctx_instance_internal *sfe_drv_ctx = &__sfe_drv_ctx; |
| |
| spin_lock_bh(&sfe_drv_ctx->lock); |
| /* |
| * Unregister our sync callback. |
| */ |
| if (sfe_drv_ctx->ipv6_stats_sync_cb) { |
| sfe_ipv6_register_sync_rule_callback(NULL); |
| rcu_assign_pointer(sfe_drv_ctx->ipv6_stats_sync_cb, NULL); |
| sfe_drv_ctx->ipv6_stats_sync_data = NULL; |
| } |
| spin_unlock_bh(&sfe_drv_ctx->lock); |
| |
| return; |
| } |
| EXPORT_SYMBOL(sfe_drv_ipv6_notify_unregister); |
| |
| /* |
| * sfe_tun6rd_tx() |
| * Transmit a tun6rd message to sfe engine |
| */ |
| sfe_tx_status_t sfe_tun6rd_tx(struct sfe_drv_ctx_instance *sfe_drv_ctx, struct sfe_tun6rd_msg *msg) |
| { |
| sfe_drv_incr_exceptions(SFE_DRV_EXCEPTION_NOT_SUPPORT_6RD); |
| return SFE_TX_FAILURE_NOT_ENABLED; |
| } |
| EXPORT_SYMBOL(sfe_tun6rd_tx); |
| |
| /* |
| * sfe_tun6rd_msg_init() |
| * Initialize sfe_tun6rd msg. |
| */ |
| void sfe_tun6rd_msg_init(struct sfe_tun6rd_msg *ncm, uint16_t if_num, uint32_t type, uint32_t len, void *cb, void *app_data) |
| { |
| sfe_cmn_msg_init(&ncm->cm, if_num, type, len, cb, app_data); |
| } |
| EXPORT_SYMBOL(sfe_tun6rd_msg_init); |
| |
| /* |
| * sfe_drv_recv() |
| * Handle packet receives. |
| * |
| * Returns 1 if the packet is forwarded or 0 if it isn't. |
| */ |
| int sfe_drv_recv(struct sk_buff *skb) |
| { |
| struct net_device *dev; |
| |
| /* |
| * We know that for the vast majority of packets we need the transport |
| * layer header so we may as well start to fetch it now! |
| */ |
| prefetch(skb->data + 32); |
| barrier(); |
| |
| dev = skb->dev; |
| |
| /* |
| * We're only interested in IPv4 and IPv6 packets. |
| */ |
| if (likely(htons(ETH_P_IP) == skb->protocol)) { |
| if (sfe_drv_dev_is_layer_3_interface(dev, true)) { |
| return sfe_ipv4_recv(dev, skb); |
| } else { |
| DEBUG_TRACE("no IPv4 address for device: %s\n", dev->name); |
| return 0; |
| } |
| } |
| |
| if (likely(htons(ETH_P_IPV6) == skb->protocol)) { |
| if (sfe_drv_dev_is_layer_3_interface(dev, false)) { |
| return sfe_ipv6_recv(dev, skb); |
| } else { |
| DEBUG_TRACE("no IPv6 address for device: %s\n", dev->name); |
| return 0; |
| } |
| } |
| |
| DEBUG_TRACE("not IP packet\n"); |
| return 0; |
| } |
| |
| /* |
| * sfe_drv_get_exceptions() |
| * dump exception counters |
| */ |
| static ssize_t sfe_drv_get_exceptions(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| int idx, len; |
| struct sfe_drv_ctx_instance_internal *sfe_drv_ctx = &__sfe_drv_ctx; |
| |
| spin_lock_bh(&sfe_drv_ctx->lock); |
| for (len = 0, idx = 0; idx < SFE_DRV_EXCEPTION_MAX; idx++) { |
| if (sfe_drv_ctx->exceptions[idx]) { |
| len += sprintf(buf + len, "%s = %d\n", sfe_drv_exception_events_string[idx], sfe_drv_ctx->exceptions[idx]); |
| } |
| } |
| spin_unlock_bh(&sfe_drv_ctx->lock); |
| |
| return len; |
| } |
| |
| /* |
| * sysfs attributes. |
| */ |
| static const struct device_attribute sfe_drv_exceptions_attr = |
| __ATTR(exceptions, S_IRUGO, sfe_drv_get_exceptions, NULL); |
| |
| /* |
| * sfe_drv_init() |
| */ |
| static int __init sfe_drv_init(void) |
| { |
| struct sfe_drv_ctx_instance_internal *sfe_drv_ctx = &__sfe_drv_ctx; |
| int result = -1; |
| |
| /* |
| * Create sys/sfe_drv |
| */ |
| sfe_drv_ctx->sys_sfe_drv = kobject_create_and_add("sfe_drv", NULL); |
| if (!sfe_drv_ctx->sys_sfe_drv) { |
| DEBUG_ERROR("failed to register sfe_drv\n"); |
| goto exit1; |
| } |
| |
| /* |
| * Create sys/sfe_drv/exceptions |
| */ |
| result = sysfs_create_file(sfe_drv_ctx->sys_sfe_drv, &sfe_drv_exceptions_attr.attr); |
| if (result) { |
| DEBUG_ERROR("failed to register exceptions file: %d\n", result); |
| goto exit2; |
| } |
| |
| spin_lock_init(&sfe_drv_ctx->lock); |
| |
| INIT_LIST_HEAD(&sfe_drv_ctx->msg_queue); |
| INIT_WORK(&sfe_drv_ctx->work, sfe_drv_process_response_msg); |
| |
| /* |
| * Hook the receive path in the network stack. |
| */ |
| BUG_ON(athrs_fast_nat_recv != NULL); |
| RCU_INIT_POINTER(athrs_fast_nat_recv, sfe_drv_recv); |
| |
| return 0; |
| exit2: |
| kobject_put(sfe_drv_ctx->sys_sfe_drv); |
| exit1: |
| return result; |
| } |
| |
| /* |
| * sfe_drv_exit() |
| */ |
| static void __exit sfe_drv_exit(void) |
| { |
| struct sfe_drv_ctx_instance_internal *sfe_drv_ctx = &__sfe_drv_ctx; |
| |
| /* |
| * Unregister our receive callback. |
| */ |
| RCU_INIT_POINTER(athrs_fast_nat_recv, NULL); |
| |
| /* |
| * Wait for all callbacks to complete. |
| */ |
| rcu_barrier(); |
| |
| /* |
| * Destroy all connections. |
| */ |
| sfe_ipv4_destroy_all_rules_for_dev(NULL); |
| sfe_ipv6_destroy_all_rules_for_dev(NULL); |
| |
| /* |
| * stop work queue, and flush all pending message in queue |
| */ |
| cancel_work_sync(&sfe_drv_ctx->work); |
| sfe_drv_process_response_msg(&sfe_drv_ctx->work); |
| |
| /* |
| * Unregister our sync callback. |
| */ |
| sfe_drv_ipv4_notify_unregister(); |
| sfe_drv_ipv6_notify_unregister(); |
| |
| kobject_put(sfe_drv_ctx->sys_sfe_drv); |
| |
| return; |
| } |
| |
| module_init(sfe_drv_init) |
| module_exit(sfe_drv_exit) |
| |
| MODULE_AUTHOR("Qualcomm Atheros Inc."); |
| MODULE_DESCRIPTION("Simulated driver for Shortcut Forwarding Engine"); |
| MODULE_LICENSE("Dual BSD/GPL"); |
| |