blob: 1a08f1e107263f49571337ec6af2d5fffa7a4b9d [file] [log] [blame]
/*
* sfe_ipv6.c
* Shortcut forwarding engine - IPv6 support.
*
* Copyright (c) 2015-2016, 2019-2020, The Linux Foundation. All rights reserved.
* Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/module.h>
#include <linux/sysfs.h>
#include <linux/skbuff.h>
#include <linux/icmp.h>
#include <net/tcp.h>
#include <linux/etherdevice.h>
#include <linux/version.h>
#include <net/udp.h>
#include <net/vxlan.h>
#include <linux/refcount.h>
#include <linux/netfilter.h>
#include <linux/inetdevice.h>
#include <linux/netfilter_ipv6.h>
#include <linux/seqlock.h>
#include <net/protocol.h>
#include <net/addrconf.h>
#include <net/gre.h>
#include "sfe_debug.h"
#include "sfe_api.h"
#include "sfe.h"
#include "sfe_flow_cookie.h"
#include "sfe_ipv6.h"
#include "sfe_ipv6_udp.h"
#include "sfe_ipv6_tcp.h"
#include "sfe_ipv6_icmp.h"
#include "sfe_pppoe.h"
#include "sfe_pppoe_mgr.h"
#include "sfe_ipv6_pppoe_br.h"
#include "sfe_ipv6_tunipip6.h"
#include "sfe_ipv6_gre.h"
#define sfe_ipv6_addr_copy(src, dest) memcpy((void *)(dest), (void *)(src), 16)
static char *sfe_ipv6_exception_events_string[SFE_IPV6_EXCEPTION_EVENT_LAST] = {
"UDP_HEADER_INCOMPLETE",
"UDP_NO_CONNECTION",
"UDP_IP_OPTIONS_OR_INITIAL_FRAGMENT",
"UDP_SMALL_TTL",
"UDP_NEEDS_FRAGMENTATION",
"TCP_HEADER_INCOMPLETE",
"TCP_NO_CONNECTION_SLOW_FLAGS",
"TCP_NO_CONNECTION_FAST_FLAGS",
"TCP_IP_OPTIONS_OR_INITIAL_FRAGMENT",
"TCP_SMALL_TTL",
"TCP_NEEDS_FRAGMENTATION",
"TCP_FLAGS",
"TCP_SEQ_EXCEEDS_RIGHT_EDGE",
"TCP_SMALL_DATA_OFFS",
"TCP_BAD_SACK",
"TCP_BIG_DATA_OFFS",
"TCP_SEQ_BEFORE_LEFT_EDGE",
"TCP_ACK_EXCEEDS_RIGHT_EDGE",
"TCP_ACK_BEFORE_LEFT_EDGE",
"ICMP_HEADER_INCOMPLETE",
"ICMP_UNHANDLED_TYPE",
"ICMP_IPV6_HEADER_INCOMPLETE",
"ICMP_IPV6_NON_V6",
"ICMP_IPV6_IP_OPTIONS_INCOMPLETE",
"ICMP_IPV6_UDP_HEADER_INCOMPLETE",
"ICMP_IPV6_TCP_HEADER_INCOMPLETE",
"ICMP_IPV6_UNHANDLED_PROTOCOL",
"ICMP_NO_CONNECTION",
"ICMP_FLUSHED_CONNECTION",
"HEADER_INCOMPLETE",
"BAD_TOTAL_LENGTH",
"NON_V6",
"NON_INITIAL_FRAGMENT",
"DATAGRAM_INCOMPLETE",
"IP_OPTIONS_INCOMPLETE",
"UNHANDLED_PROTOCOL",
"FLOW_COOKIE_ADD_FAIL",
"NO_HEADROOM",
"INVALID_PPPOE_SESSION",
"INCORRECT_PPPOE_PARSING",
"PPPOE_NOT_SET_IN_CME",
"PPPOE_BR_NOT_IN_CME",
"INGRESS_VLAN_TAG_MISMATCH",
"INVALID_SOURCE_INTERFACE",
"TUNIPIP6_HEADER_INCOMPLETE",
"TUNIPIP6_NO_CONNECTION",
"TUNIPIP6_IP_OPTIONS_OR_INITIAL_FRAGMENT",
"TUNIPIP6_SMALL_TTL",
"TUNIPIP6_NEEDS_FRAGMENTATION",
"TUNIPIP6_SYNC_ON_FIND",
"GRE_HEADER_INCOMPLETE",
"GRE_NO_CONNECTION",
"GRE_IP_OPTIONS_OR_INITIAL_FRAGMENT",
"GRE_SMALL_TTL",
"GRE_NEEDS_FRAGMENTATION"
};
static struct sfe_ipv6 __si6;
struct sfe_ipv6_msg *sfe_ipv6_sync_many_msg;
uint32_t sfe_ipv6_sync_max_number;
/*
* sfe_ipv6_get_debug_dev()
*/
static ssize_t sfe_ipv6_get_debug_dev(struct device *dev, struct device_attribute *attr, char *buf);
/*
* sysfs attributes.
*/
static const struct device_attribute sfe_ipv6_debug_dev_attr =
__ATTR(debug_dev, S_IWUSR | S_IRUGO, sfe_ipv6_get_debug_dev, NULL);
/*
* sfe_ipv6_get_connection_match_hash()
* Generate the hash used in connection match lookups.
*/
static inline unsigned int sfe_ipv6_get_connection_match_hash(struct net_device *dev, u8 protocol,
struct sfe_ipv6_addr *src_ip, __be16 src_port,
struct sfe_ipv6_addr *dest_ip, __be16 dest_port)
{
u32 idx, hash = 0;
for (idx = 0; idx < 4; idx++) {
hash ^= src_ip->addr[idx] ^ dest_ip->addr[idx];
}
hash = hash ^ protocol ^ ntohs(src_port ^ dest_port);
return ((hash >> SFE_IPV6_CONNECTION_HASH_SHIFT) ^ hash) & SFE_IPV6_CONNECTION_HASH_MASK;
}
/*
* sfe_ipv6_find_connection_match_rcu()
* Get the IPv6 flow match info that corresponds to a particular 5-tuple.
*/
struct sfe_ipv6_connection_match *
sfe_ipv6_find_connection_match_rcu(struct sfe_ipv6 *si, struct net_device *dev, u8 protocol,
struct sfe_ipv6_addr *src_ip, __be16 src_port,
struct sfe_ipv6_addr *dest_ip, __be16 dest_port)
{
struct sfe_ipv6_connection_match *cm = NULL;
unsigned int conn_match_idx;
struct hlist_head *lhead;
WARN_ON_ONCE(!rcu_read_lock_held());
conn_match_idx = sfe_ipv6_get_connection_match_hash(dev, protocol, src_ip, src_port, dest_ip, dest_port);
lhead = &si->hlist_conn_match_hash_head[conn_match_idx];
/*
* Hopefully the first entry is the one we want.
*/
hlist_for_each_entry_rcu(cm, lhead, hnode) {
if ((cm->match_dest_port != dest_port) ||
(cm->match_src_port != src_port) ||
(!sfe_ipv6_addr_equal(cm->match_src_ip, src_ip)) ||
(!sfe_ipv6_addr_equal(cm->match_dest_ip, dest_ip)) ||
(cm->match_protocol != protocol)) {
continue;
}
this_cpu_inc(si->stats_pcpu->connection_match_hash_hits64);
break;
}
return cm;
}
/*
* sfe_ipv6_connection_match_update_summary_stats()
* Update the summary stats for a connection match entry.
*/
static inline void sfe_ipv6_connection_match_update_summary_stats(struct sfe_ipv6_connection_match *cm,
u32 *packets, u32 *bytes)
{
u32 packet_count, byte_count;
packet_count = atomic_read(&cm->rx_packet_count);
cm->rx_packet_count64 += packet_count;
atomic_sub(packet_count, &cm->rx_packet_count);
byte_count = atomic_read(&cm->rx_byte_count);
cm->rx_byte_count64 += byte_count;
atomic_sub(byte_count, &cm->rx_byte_count);
*packets = packet_count;
*bytes = byte_count;
}
/*
* sfe_ipv6_connection_match_compute_translations()
* Compute port and address translations for a connection match entry.
*/
static void sfe_ipv6_connection_match_compute_translations(struct sfe_ipv6_connection_match *cm)
{
u32 diff[9];
u32 *idx_32;
u16 *idx_16;
/*
* Before we insert the entry look to see if this is tagged as doing address
* translations. If it is then work out the adjustment that we need to apply
* to the transport checksum.
*/
if (cm->flags & SFE_IPV6_CONNECTION_MATCH_FLAG_XLATE_SRC) {
u32 adj = 0;
u32 carry = 0;
/*
* Precompute an incremental checksum adjustment so we can
* edit packets in this stream very quickly. The algorithm is from RFC1624.
*/
idx_32 = diff;
*(idx_32++) = cm->match_src_ip[0].addr[0];
*(idx_32++) = cm->match_src_ip[0].addr[1];
*(idx_32++) = cm->match_src_ip[0].addr[2];
*(idx_32++) = cm->match_src_ip[0].addr[3];
idx_16 = (u16 *)idx_32;
*(idx_16++) = cm->match_src_port;
*(idx_16++) = ~cm->xlate_src_port;
idx_32 = (u32 *)idx_16;
*(idx_32++) = ~cm->xlate_src_ip[0].addr[0];
*(idx_32++) = ~cm->xlate_src_ip[0].addr[1];
*(idx_32++) = ~cm->xlate_src_ip[0].addr[2];
*(idx_32++) = ~cm->xlate_src_ip[0].addr[3];
/*
* When we compute this fold it down to a 16-bit offset
* as that way we can avoid having to do a double
* folding of the twos-complement result because the
* addition of 2 16-bit values cannot cause a double
* wrap-around!
*/
for (idx_32 = diff; idx_32 < diff + 9; idx_32++) {
u32 w = *idx_32;
adj += carry;
adj += w;
carry = (w > adj);
}
adj += carry;
adj = (adj & 0xffff) + (adj >> 16);
adj = (adj & 0xffff) + (adj >> 16);
cm->xlate_src_csum_adjustment = (u16)adj;
}
if (cm->flags & SFE_IPV6_CONNECTION_MATCH_FLAG_XLATE_DEST) {
u32 adj = 0;
u32 carry = 0;
/*
* Precompute an incremental checksum adjustment so we can
* edit packets in this stream very quickly. The algorithm is from RFC1624.
*/
idx_32 = diff;
*(idx_32++) = cm->match_dest_ip[0].addr[0];
*(idx_32++) = cm->match_dest_ip[0].addr[1];
*(idx_32++) = cm->match_dest_ip[0].addr[2];
*(idx_32++) = cm->match_dest_ip[0].addr[3];
idx_16 = (u16 *)idx_32;
*(idx_16++) = cm->match_dest_port;
*(idx_16++) = ~cm->xlate_dest_port;
idx_32 = (u32 *)idx_16;
*(idx_32++) = ~cm->xlate_dest_ip[0].addr[0];
*(idx_32++) = ~cm->xlate_dest_ip[0].addr[1];
*(idx_32++) = ~cm->xlate_dest_ip[0].addr[2];
*(idx_32++) = ~cm->xlate_dest_ip[0].addr[3];
/*
* When we compute this fold it down to a 16-bit offset
* as that way we can avoid having to do a double
* folding of the twos-complement result because the
* addition of 2 16-bit values cannot cause a double
* wrap-around!
*/
for (idx_32 = diff; idx_32 < diff + 9; idx_32++) {
u32 w = *idx_32;
adj += carry;
adj += w;
carry = (w > adj);
}
adj += carry;
adj = (adj & 0xffff) + (adj >> 16);
adj = (adj & 0xffff) + (adj >> 16);
cm->xlate_dest_csum_adjustment = (u16)adj;
}
}
/*
* sfe_ipv6_update_summary_stats()
* Update the summary stats.
*/
static void sfe_ipv6_update_summary_stats(struct sfe_ipv6 *si, struct sfe_ipv6_stats *stats)
{
int i = 0;
memset(stats, 0, sizeof(*stats));
for_each_possible_cpu(i) {
const struct sfe_ipv6_stats *s = per_cpu_ptr(si->stats_pcpu, i);
stats->connection_create_requests64 += s->connection_create_requests64;
stats->connection_create_collisions64 += s->connection_create_collisions64;
stats->connection_create_failures64 += s->connection_create_failures64;
stats->connection_destroy_requests64 += s->connection_destroy_requests64;
stats->connection_destroy_misses64 += s->connection_destroy_misses64;
stats->connection_match_hash_hits64 += s->connection_match_hash_hits64;
stats->connection_match_hash_reorders64 += s->connection_match_hash_reorders64;
stats->connection_flushes64 += s->connection_flushes64;
stats->packets_dropped64 += s->packets_dropped64;
stats->packets_forwarded64 += s->packets_forwarded64;
stats->packets_fast_xmited64 += s->packets_fast_xmited64;
stats->packets_not_forwarded64 += s->packets_not_forwarded64;
stats->pppoe_encap_packets_forwarded64 += s->pppoe_encap_packets_forwarded64;
stats->pppoe_decap_packets_forwarded64 += s->pppoe_decap_packets_forwarded64;
stats->pppoe_bridge_packets_forwarded64 += s->pppoe_bridge_packets_forwarded64;
stats->pppoe_bridge_packets_3tuple_forwarded64 += s->pppoe_bridge_packets_3tuple_forwarded64;
}
}
/*
* sfe_ipv6_insert_connection_match()
* Insert a connection match into the hash.
*
* On entry we must be holding the lock that protects the hash table.
*/
static inline void sfe_ipv6_insert_connection_match(struct sfe_ipv6 *si,
struct sfe_ipv6_connection_match *cm)
{
unsigned int conn_match_idx
= sfe_ipv6_get_connection_match_hash(cm->match_dev, cm->match_protocol,
cm->match_src_ip, cm->match_src_port,
cm->match_dest_ip, cm->match_dest_port);
lockdep_assert_held(&si->lock);
hlist_add_head_rcu(&cm->hnode, &si->hlist_conn_match_hash_head[conn_match_idx]);
#ifdef CONFIG_NF_FLOW_COOKIE
if (!si->flow_cookie_enable || !(cm->flags & (SFE_IPV6_CONNECTION_MATCH_FLAG_XLATE_SRC | SFE_IPV6_CONNECTION_MATCH_FLAG_XLATE_DEST)))
return;
/*
* Configure hardware to put a flow cookie in packet of this flow,
* then we can accelerate the lookup process when we received this packet.
*/
for (conn_match_idx = 1; conn_match_idx < SFE_FLOW_COOKIE_SIZE; conn_match_idx++) {
struct sfe_ipv6_flow_cookie_entry *entry = &si->sfe_flow_cookie_table[conn_match_idx];
if ((NULL == entry->match) && time_is_before_jiffies(entry->last_clean_time + HZ)) {
sfe_ipv6_flow_cookie_set_func_t func;
rcu_read_lock();
func = rcu_dereference(si->flow_cookie_set_func);
if (func) {
if (!func(cm->match_protocol, cm->match_src_ip->addr, cm->match_src_port,
cm->match_dest_ip->addr, cm->match_dest_port, conn_match_idx)) {
entry->match = cm;
cm->flow_cookie = conn_match_idx;
} else {
si->exception_events[SFE_IPV6_EXCEPTION_EVENT_FLOW_COOKIE_ADD_FAIL]++;
}
}
rcu_read_unlock();
break;
}
}
#endif
}
/*
* sfe_ipv6_remove_connection_match()
* Remove a connection match object from the hash.
*/
static inline void sfe_ipv6_remove_connection_match(struct sfe_ipv6 *si, struct sfe_ipv6_connection_match *cm)
{
lockdep_assert_held(&si->lock);
#ifdef CONFIG_NF_FLOW_COOKIE
if (si->flow_cookie_enable) {
/*
* Tell hardware that we no longer need a flow cookie in packet of this flow
*/
unsigned int conn_match_idx;
for (conn_match_idx = 1; conn_match_idx < SFE_FLOW_COOKIE_SIZE; conn_match_idx++) {
struct sfe_ipv6_flow_cookie_entry *entry = &si->sfe_flow_cookie_table[conn_match_idx];
if (cm == entry->match) {
sfe_ipv6_flow_cookie_set_func_t func;
rcu_read_lock();
func = rcu_dereference(si->flow_cookie_set_func);
if (func) {
func(cm->match_protocol, cm->match_src_ip->addr, cm->match_src_port,
cm->match_dest_ip->addr, cm->match_dest_port, 0);
}
rcu_read_unlock();
cm->flow_cookie = 0;
entry->match = NULL;
entry->last_clean_time = jiffies;
break;
}
}
}
#endif
hlist_del_init_rcu(&cm->hnode);
}
/*
* sfe_ipv6_get_connection_hash()
* Generate the hash used in connection lookups.
*/
static inline unsigned int sfe_ipv6_get_connection_hash(u8 protocol, struct sfe_ipv6_addr *src_ip, __be16 src_port,
struct sfe_ipv6_addr *dest_ip, __be16 dest_port)
{
u32 idx, hash = 0;
for (idx = 0; idx < 4; idx++) {
hash ^= src_ip->addr[idx] ^ dest_ip->addr[idx];
}
hash = hash ^ protocol ^ ntohs(src_port) ^ dest_port;
return ((hash >> SFE_IPV6_CONNECTION_HASH_SHIFT) ^ hash) & SFE_IPV6_CONNECTION_HASH_MASK;
}
/*
* sfe_ipv6_find_connection()
* Get the IPv6 connection info that corresponds to a particular 5-tuple.
*
* On entry we must be holding the lock that protects the hash table.
*/
static inline struct sfe_ipv6_connection *sfe_ipv6_find_connection(struct sfe_ipv6 *si, u32 protocol,
struct sfe_ipv6_addr *src_ip, __be16 src_port,
struct sfe_ipv6_addr *dest_ip, __be16 dest_port)
{
struct sfe_ipv6_connection *c;
unsigned int conn_idx = sfe_ipv6_get_connection_hash(protocol, src_ip, src_port, dest_ip, dest_port);
lockdep_assert_held(&si->lock);
c = si->conn_hash[conn_idx];
while (c) {
if ((c->src_port == src_port)
&& (c->dest_port == dest_port)
&& (sfe_ipv6_addr_equal(c->src_ip, src_ip))
&& (sfe_ipv6_addr_equal(c->dest_ip, dest_ip))
&& (c->protocol == protocol)) {
return c;
}
c = c->next;
}
return NULL;
}
/*
* sfe_ipv6_insert_connection()
* Insert a connection into the hash.
*
* On entry we must be holding the lock that protects the hash table.
*/
static void sfe_ipv6_insert_connection(struct sfe_ipv6 *si, struct sfe_ipv6_connection *c)
{
struct sfe_ipv6_connection **hash_head;
struct sfe_ipv6_connection *prev_head;
unsigned int conn_idx;
lockdep_assert_held(&si->lock);
/*
* Insert entry into the connection hash.
*/
conn_idx = sfe_ipv6_get_connection_hash(c->protocol, c->src_ip, c->src_port,
c->dest_ip, c->dest_port);
hash_head = &si->conn_hash[conn_idx];
prev_head = *hash_head;
c->prev = NULL;
if (prev_head) {
prev_head->prev = c;
}
c->next = prev_head;
*hash_head = c;
/*
* Insert entry into the "all connections" list.
*/
if (si->all_connections_tail) {
c->all_connections_prev = si->all_connections_tail;
si->all_connections_tail->all_connections_next = c;
} else {
c->all_connections_prev = NULL;
si->all_connections_head = c;
}
si->all_connections_tail = c;
c->all_connections_next = NULL;
si->num_connections++;
/*
* Insert the connection match objects too.
*/
sfe_ipv6_insert_connection_match(si, c->original_match);
sfe_ipv6_insert_connection_match(si, c->reply_match);
}
/*
* sfe_ipv6_remove_connection()
* Remove a sfe_ipv6_connection object from the hash.
*
* On entry we must be holding the lock that protects the hash table.
*/
bool sfe_ipv6_remove_connection(struct sfe_ipv6 *si, struct sfe_ipv6_connection *c)
{
lockdep_assert_held(&si->lock);
if (c->removed) {
DEBUG_ERROR("%px: Connection has been removed already\n", c);
return false;
}
/*
* dereference the decap direction top_interface_dev
*/
if (c->reply_match->top_interface_dev) {
dev_put(c->reply_match->top_interface_dev);
}
/*
* Remove the connection match objects.
*/
sfe_ipv6_remove_connection_match(si, c->reply_match);
sfe_ipv6_remove_connection_match(si, c->original_match);
/*
* Unlink the connection.
*/
if (c->prev) {
c->prev->next = c->next;
} else {
unsigned int conn_idx = sfe_ipv6_get_connection_hash(c->protocol, c->src_ip, c->src_port,
c->dest_ip, c->dest_port);
si->conn_hash[conn_idx] = c->next;
}
if (c->next) {
c->next->prev = c->prev;
}
/*
* Unlink connection from all_connections list
*/
if (c->all_connections_prev) {
c->all_connections_prev->all_connections_next = c->all_connections_next;
} else {
si->all_connections_head = c->all_connections_next;
}
if (c->all_connections_next) {
c->all_connections_next->all_connections_prev = c->all_connections_prev;
} else {
si->all_connections_tail = c->all_connections_prev;
}
/*
* If I am the next sync connection, move the sync to my next or head.
*/
if (unlikely(si->wc_next == c)) {
si->wc_next = c->all_connections_next;
}
c->removed = true;
si->num_connections--;
return true;
}
/*
* sfe_ipv6_gen_sync_connection()
* Sync a connection.
*
* On entry to this function we expect that the lock for the connection is either
* already held (while called from sfe_ipv6_periodic_sync() or isn't required
* (while called from sfe_ipv6_flush_sfe_ipv6_connection())
*/
static void sfe_ipv6_gen_sync_connection(struct sfe_ipv6 *si, struct sfe_ipv6_connection *c,
struct sfe_connection_sync *sis, sfe_sync_reason_t reason,
u64 now_jiffies)
{
struct sfe_ipv6_connection_match *original_cm;
struct sfe_ipv6_connection_match *reply_cm;
u32 packet_count, byte_count;
/*
* Fill in the update message.
*/
sis->is_v6 = 1;
sis->protocol = c->protocol;
sis->src_ip.ip6[0] = c->src_ip[0];
sis->src_ip_xlate.ip6[0] = c->src_ip_xlate[0];
sis->dest_ip.ip6[0] = c->dest_ip[0];
sis->dest_ip_xlate.ip6[0] = c->dest_ip_xlate[0];
sis->src_port = c->src_port;
sis->src_port_xlate = c->src_port_xlate;
sis->dest_port = c->dest_port;
sis->dest_port_xlate = c->dest_port_xlate;
original_cm = c->original_match;
reply_cm = c->reply_match;
sis->src_td_max_window = original_cm->protocol_state.tcp.max_win;
sis->src_td_end = original_cm->protocol_state.tcp.end;
sis->src_td_max_end = original_cm->protocol_state.tcp.max_end;
sis->dest_td_max_window = reply_cm->protocol_state.tcp.max_win;
sis->dest_td_end = reply_cm->protocol_state.tcp.end;
sis->dest_td_max_end = reply_cm->protocol_state.tcp.max_end;
sfe_ipv6_connection_match_update_summary_stats(original_cm, &packet_count, &byte_count);
sis->src_new_packet_count = packet_count;
sis->src_new_byte_count = byte_count;
sfe_ipv6_connection_match_update_summary_stats(reply_cm, &packet_count, &byte_count);
sis->dest_new_packet_count = packet_count;
sis->dest_new_byte_count = byte_count;
sis->src_dev = original_cm->match_dev;
sis->src_packet_count = original_cm->rx_packet_count64;
sis->src_byte_count = original_cm->rx_byte_count64;
sis->dest_dev = reply_cm->match_dev;
sis->dest_packet_count = reply_cm->rx_packet_count64;
sis->dest_byte_count = reply_cm->rx_byte_count64;
sis->reason = reason;
/*
* Get the time increment since our last sync.
*/
sis->delta_jiffies = now_jiffies - c->last_sync_jiffies;
c->last_sync_jiffies = now_jiffies;
}
/*
* sfe_ipv6_free_sfe_ipv6_connection_rcu()
* Called at RCU qs state to free the connection object.
*/
static void sfe_ipv6_free_sfe_ipv6_connection_rcu(struct rcu_head *head)
{
struct sfe_ipv6_connection *c;
struct udp_sock *up;
struct sock *sk;
/*
* We dont need spin lock as the connection is already removed from link list
*/
c = container_of(head, struct sfe_ipv6_connection, rcu);
BUG_ON(!c->removed);
DEBUG_TRACE("%px: connecton has been deleted\n", c);
/*
* Decrease the refcount taken in function sfe_ipv6_create_rule()
* during call of __udp6_lib_lookup()
*/
up = c->reply_match->up;
if (up) {
sk = (struct sock *)up;
sock_put(sk);
}
/*
* Release our hold of the source and dest devices and free the memory
* for our connection objects.
*/
dev_put(c->original_dev);
dev_put(c->reply_dev);
kfree(c->original_match);
kfree(c->reply_match);
kfree(c);
}
/*
* sfe_ipv6_sync_status()
* update a connection status to its connection manager.
*
* si: the ipv6 context
* c: which connection to be notified
* reason: what kind of reason: flush, or destroy
*/
void sfe_ipv6_sync_status(struct sfe_ipv6 *si,
struct sfe_ipv6_connection *c,
sfe_sync_reason_t reason)
{
struct sfe_connection_sync sis;
u64 now_jiffies;
sfe_sync_rule_callback_t sync_rule_callback;
rcu_read_lock();
sync_rule_callback = rcu_dereference(si->sync_rule_callback);
rcu_read_unlock();
if (unlikely(!sync_rule_callback)) {
return;
}
/*
* Generate a sync message and then sync.
*/
now_jiffies = get_jiffies_64();
sfe_ipv6_gen_sync_connection(si, c, &sis, reason, now_jiffies);
sync_rule_callback(&sis);
}
/*
* sfe_ipv6_flush_connection()
* Flush a connection and free all associated resources.
*
* We need to be called with bottom halves disabled locally as we need to acquire
* the connection hash lock and release it again. In general we're actually called
* from within a BH and so we're fine, but we're also called when connections are
* torn down.
*/
void sfe_ipv6_flush_connection(struct sfe_ipv6 *si,
struct sfe_ipv6_connection *c,
sfe_sync_reason_t reason)
{
BUG_ON(!c->removed);
this_cpu_inc(si->stats_pcpu->connection_flushes64);
sfe_ipv6_sync_status(si, c, reason);
/*
* Release our hold of the source and dest devices and free the memory
* for our connection objects.
*/
call_rcu(&c->rcu, sfe_ipv6_free_sfe_ipv6_connection_rcu);
}
/*
* sfe_ipv4_service_class_stats_pcpu_get()
* Gets one CPU's service class statistics.
*/
static inline bool sfe_ipv6_service_class_stats_pcpu_get(struct sfe_ipv6_per_service_class_stats *sc_stats, uint64_t *bytes, uint64_t *packets)
{
uint32_t retries = 0;
uint32_t seq;
uint64_t bytes_tmp, packets_tmp;
do {
seq = read_seqcount_begin(&sc_stats->seq);
bytes_tmp = sc_stats->tx_bytes;
packets_tmp = sc_stats->tx_packets;
} while (read_seqcount_retry(&sc_stats->seq, seq) && ++retries < SFE_SERVICE_CLASS_STATS_MAX_RETRY);
*bytes += bytes_tmp;
*packets += packets_tmp;
return retries < SFE_SERVICE_CLASS_STATS_MAX_RETRY;
}
/*
* sfe_ipv4_service_class_stats_get()
* Copy the ipv4 statistics for the given service class.
*/
bool sfe_ipv6_service_class_stats_get(uint8_t sid, uint64_t *bytes, uint64_t *packets)
{
struct sfe_ipv6 *si = &__si6;
uint32_t cpu = 0;
for_each_possible_cpu(cpu) {
struct sfe_ipv6_service_class_stats_db *stats_db = per_cpu_ptr(si->stats_pcpu_psc, cpu);
struct sfe_ipv6_per_service_class_stats *sc_stats = &stats_db->psc_stats[sid];
if (!sfe_ipv6_service_class_stats_pcpu_get(sc_stats, bytes, packets)) {
return false;
}
}
return true;
}
/*
* sfe_ipv6_service_class_stats_inc()
* Increment per cpu per service class stats.
*/
void sfe_ipv6_service_class_stats_inc(struct sfe_ipv6 *si, uint8_t sid, uint64_t bytes)
{
struct sfe_ipv6_service_class_stats_db *sc_stats_db = this_cpu_ptr(si->stats_pcpu_psc);
struct sfe_ipv6_per_service_class_stats *sc_stats = &sc_stats_db->psc_stats[sid];
write_seqcount_begin(&sc_stats->seq);
sc_stats->tx_bytes += bytes;
sc_stats->tx_packets++;
write_seqcount_end(&sc_stats->seq);
}
/*
* sfe_ipv6_exception_stats_inc()
* Increment exception stats.
*/
void sfe_ipv6_exception_stats_inc(struct sfe_ipv6 *si, enum sfe_ipv6_exception_events reason)
{
struct sfe_ipv6_stats *stats = this_cpu_ptr(si->stats_pcpu);
stats->exception_events64[reason]++;
stats->packets_not_forwarded64++;
}
/*
* sfe_ipv6_is_local_ip()
* return true if it is local ip otherwise return false
*/
static bool sfe_ipv6_is_local_ip(struct sfe_ipv6 *si, uint8_t *addr)
{
struct net_device *dev;
struct in6_addr ip_addr;
memcpy(ip_addr.s6_addr, addr, 16);
dev = ipv6_dev_find(&init_net, &ip_addr, 1);
if (dev) {
dev_put(dev);
return true;
}
return false;
}
/*
* sfe_ipv6_recv()
* Handle packet receives and forwaring.
*
* Returns 1 if the packet is forwarded or 0 if it isn't.
*/
int sfe_ipv6_recv(struct net_device *dev, struct sk_buff *skb, struct sfe_l2_info *l2_info, bool tun_outer)
{
struct sfe_ipv6 *si = &__si6;
unsigned int len;
unsigned int payload_len;
unsigned int ihl = sizeof(struct ipv6hdr);
bool sync_on_find = false;
struct ipv6hdr *iph;
u8 next_hdr;
/*
* Check that we have space for an IP header and an uplayer header here.
*/
len = skb->len;
if (!pskb_may_pull(skb, ihl + sizeof(struct sfe_ipv6_ext_hdr))) {
sfe_ipv6_exception_stats_inc(si, SFE_IPV6_EXCEPTION_EVENT_HEADER_INCOMPLETE);
DEBUG_TRACE("len: %u is too short\n", len);
return 0;
}
/*
* Is our IP version wrong?
*/
iph = (struct ipv6hdr *)skb->data;
if (unlikely(iph->version != 6)) {
sfe_ipv6_exception_stats_inc(si, SFE_IPV6_EXCEPTION_EVENT_NON_V6);
DEBUG_TRACE("IP version: %u\n", iph->version);
return 0;
}
/*
* Does our datagram fit inside the skb?
*/
payload_len = ntohs(iph->payload_len);
if (unlikely(payload_len > (len - ihl))) {
sfe_ipv6_exception_stats_inc(si, SFE_IPV6_EXCEPTION_EVENT_DATAGRAM_INCOMPLETE);
DEBUG_TRACE("payload_len: %u, exceeds len: %u\n", payload_len, (len - (unsigned int)sizeof(struct ipv6hdr)));
return 0;
}
next_hdr = iph->nexthdr;
while (unlikely(sfe_ipv6_is_ext_hdr(next_hdr))) {
struct sfe_ipv6_ext_hdr *ext_hdr;
unsigned int ext_hdr_len;
ext_hdr = (struct sfe_ipv6_ext_hdr *)(skb->data + ihl);
ext_hdr_len = ext_hdr->hdr_len;
ext_hdr_len <<= 3;
ext_hdr_len += sizeof(struct sfe_ipv6_ext_hdr);
ihl += ext_hdr_len;
if (!pskb_may_pull(skb, ihl + sizeof(struct sfe_ipv6_ext_hdr))) {
sfe_ipv6_exception_stats_inc(si, SFE_IPV6_EXCEPTION_EVENT_HEADER_INCOMPLETE);
DEBUG_TRACE("extension header %d not completed\n", next_hdr);
return 0;
}
/*
* Any packets have extend hdr, won't be handled in the fast
* path,sync its status and exception to the kernel.
*/
sync_on_find = true;
next_hdr = ext_hdr->next_hdr;
}
/*
* Handle PPPoE bridge packets using 3-tuple acceleration if SFE_PPPOE_BR_ACCEL_MODE_EN_3T
*/
if (unlikely(sfe_l2_parse_flag_check(l2_info, SFE_L2_PARSE_FLAGS_PPPOE_INGRESS)) &&
unlikely(sfe_pppoe_get_br_accel_mode() == SFE_PPPOE_BR_ACCEL_MODE_EN_3T)) {
struct ethhdr *eth = eth_hdr(skb);
if (!sfe_pppoe_mgr_find_session(l2_info->pppoe_session_id, eth->h_source)) {
return sfe_ipv6_recv_pppoe_bridge(si, skb, dev, len, iph, ihl, l2_info);
}
}
if (IPPROTO_UDP == next_hdr) {
return sfe_ipv6_recv_udp(si, skb, dev, len, iph, ihl, sync_on_find, l2_info, tun_outer);
}
if (IPPROTO_TCP == next_hdr) {
return sfe_ipv6_recv_tcp(si, skb, dev, len, iph, ihl, sync_on_find, l2_info);
}
if (IPPROTO_ICMPV6 == next_hdr) {
return sfe_ipv6_recv_icmp(si, skb, dev, len, iph, ihl);
}
if (IPPROTO_IPIP == next_hdr) {
return sfe_ipv6_recv_tunipip6(si, skb, dev, len, iph, ihl, sync_on_find, l2_info, true);
}
#ifdef SFE_GRE_TUN_ENABLE
if (IPPROTO_GRE == next_hdr) {
return sfe_ipv6_recv_gre(si, skb, dev, len, iph, ihl, sync_on_find, l2_info, tun_outer);
}
#endif
sfe_ipv6_exception_stats_inc(si, SFE_IPV6_EXCEPTION_EVENT_UNHANDLED_PROTOCOL);
DEBUG_TRACE("not UDP, TCP or ICMP: %u\n", next_hdr);
return 0;
}
/*
* sfe_ipv6_update_tcp_state()
* update TCP window variables.
*/
static void
sfe_ipv6_update_tcp_state(struct sfe_ipv6_connection *c,
struct sfe_ipv6_rule_create_msg *msg)
{
struct sfe_ipv6_connection_match *orig_cm;
struct sfe_ipv6_connection_match *repl_cm;
struct sfe_ipv6_tcp_connection_match *orig_tcp;
struct sfe_ipv6_tcp_connection_match *repl_tcp;
orig_cm = c->original_match;
repl_cm = c->reply_match;
orig_tcp = &orig_cm->protocol_state.tcp;
repl_tcp = &repl_cm->protocol_state.tcp;
/* update orig */
if (orig_tcp->max_win < msg->tcp_rule.flow_max_window) {
orig_tcp->max_win = msg->tcp_rule.flow_max_window;
}
if ((s32)(orig_tcp->end - msg->tcp_rule.flow_end) < 0) {
orig_tcp->end = msg->tcp_rule.flow_end;
}
if ((s32)(orig_tcp->max_end - msg->tcp_rule.flow_max_end) < 0) {
orig_tcp->max_end = msg->tcp_rule.flow_max_end;
}
/* update reply */
if (repl_tcp->max_win < msg->tcp_rule.return_max_window) {
repl_tcp->max_win = msg->tcp_rule.return_max_window;
}
if ((s32)(repl_tcp->end - msg->tcp_rule.return_end) < 0) {
repl_tcp->end = msg->tcp_rule.return_end;
}
if ((s32)(repl_tcp->max_end - msg->tcp_rule.return_max_end) < 0) {
repl_tcp->max_end = msg->tcp_rule.return_max_end;
}
/* update match flags */
orig_cm->flags &= ~SFE_IPV6_CONNECTION_MATCH_FLAG_NO_SEQ_CHECK;
repl_cm->flags &= ~SFE_IPV6_CONNECTION_MATCH_FLAG_NO_SEQ_CHECK;
if (msg->rule_flags & SFE_RULE_CREATE_FLAG_NO_SEQ_CHECK) {
orig_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_NO_SEQ_CHECK;
repl_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_NO_SEQ_CHECK;
}
}
/*
* sfe_ipv6_update_protocol_state()
* update protocol specified state machine.
*/
static void
sfe_ipv6_update_protocol_state(struct sfe_ipv6_connection *c,
struct sfe_ipv6_rule_create_msg *msg)
{
switch (msg->tuple.protocol) {
case IPPROTO_TCP:
sfe_ipv6_update_tcp_state(c, msg);
break;
}
}
/*
* sfe_ipv6_match_entry_set_vlan()
*/
static void sfe_ipv6_match_entry_set_vlan(
struct sfe_ipv6_connection_match *cm,
u32 primary_ingress_vlan_tag,
u32 primary_egress_vlan_tag,
u32 secondary_ingress_vlan_tag,
u32 secondary_egress_vlan_tag)
{
u16 tpid;
/*
* Prevent stacking header counts when updating.
*/
cm->ingress_vlan_hdr_cnt = 0;
cm->egress_vlan_hdr_cnt = 0;
memset(cm->ingress_vlan_hdr, 0, sizeof(cm->ingress_vlan_hdr));
memset(cm->egress_vlan_hdr, 0, sizeof(cm->egress_vlan_hdr));
/*
* vlan_hdr[0] corresponds to outer tag
* vlan_hdr[1] corresponds to inner tag
* Extract the vlan information (tpid and tci) from rule message
*/
if ((primary_ingress_vlan_tag & VLAN_VID_MASK) != SFE_VLAN_ID_NOT_CONFIGURED) {
tpid = (u16)(primary_ingress_vlan_tag >> 16);
cm->ingress_vlan_hdr[0].tpid = ntohs(tpid);
cm->ingress_vlan_hdr[0].tci = (u16)primary_ingress_vlan_tag;
cm->ingress_vlan_hdr_cnt++;
}
if ((secondary_ingress_vlan_tag & VLAN_VID_MASK) != SFE_VLAN_ID_NOT_CONFIGURED) {
tpid = (u16)(secondary_ingress_vlan_tag >> 16);
cm->ingress_vlan_hdr[1].tpid = ntohs(tpid);
cm->ingress_vlan_hdr[1].tci = (u16)secondary_ingress_vlan_tag;
cm->ingress_vlan_hdr_cnt++;
}
if ((primary_egress_vlan_tag & VLAN_VID_MASK) != SFE_VLAN_ID_NOT_CONFIGURED) {
tpid = (u16)(primary_egress_vlan_tag >> 16);
cm->egress_vlan_hdr[0].tpid = ntohs(tpid);
cm->egress_vlan_hdr[0].tci = (u16)primary_egress_vlan_tag;
cm->egress_vlan_hdr_cnt++;
}
if ((secondary_egress_vlan_tag & VLAN_VID_MASK) != SFE_VLAN_ID_NOT_CONFIGURED) {
tpid = (u16)(secondary_egress_vlan_tag >> 16);
cm->egress_vlan_hdr[1].tpid = ntohs(tpid);
cm->egress_vlan_hdr[1].tci = (u16)secondary_egress_vlan_tag;
cm->egress_vlan_hdr_cnt++;
}
}
/*
* sfe_ipv6_update_rule()
* update forwarding rule after rule is created.
*/
void sfe_ipv6_update_rule(struct sfe_ipv6_rule_create_msg *msg)
{
struct sfe_ipv6_connection *c;
struct sfe_ipv6 *si = &__si6;
spin_lock_bh(&si->lock);
c = sfe_ipv6_find_connection(si,
msg->tuple.protocol,
(struct sfe_ipv6_addr *)msg->tuple.flow_ip,
msg->tuple.flow_ident,
(struct sfe_ipv6_addr *)msg->tuple.return_ip,
msg->tuple.return_ident);
if (c != NULL) {
sfe_ipv6_update_protocol_state(c, msg);
}
spin_unlock_bh(&si->lock);
}
/*
* sfe_ipv6_mark_rule_update()
* Updates the mark values of match entries.
*/
void sfe_ipv6_mark_rule_update(struct sfe_connection_mark *mark)
{
struct sfe_ipv6_connection *c;
struct sfe_ipv6 *si = &__si6;
spin_lock_bh(&si->lock);
c = sfe_ipv6_find_connection(si, mark->protocol,
(struct sfe_ipv6_addr *)mark->src_ip,
mark->src_port,
(struct sfe_ipv6_addr *)mark->dest_ip,
mark->dest_port);
if (!c) {
spin_unlock_bh(&si->lock);
DEBUG_WARN("%px: connection not found for mark update\n", mark);
return;
}
c->original_match ->mark = mark->mark;
c->reply_match->mark = mark->mark;
spin_unlock_bh(&si->lock);
DEBUG_TRACE("%px: connection mark updated with %d\n", mark, mark->mark);
}
EXPORT_SYMBOL(sfe_ipv6_mark_rule_update);
/*
* sfe_ipv6_xmit_eth_type_check
* Checking if MAC header has to be written.
*/
static inline bool sfe_ipv6_xmit_eth_type_check(struct net_device *dev, u32 cm_flags)
{
if (!(dev->flags & IFF_NOARP)) {
return true;
}
/*
* For PPPoE, since we are now supporting PPPoE encapsulation, we are writing L2 header.
*/
if (cm_flags & SFE_IPV6_CONNECTION_MATCH_FLAG_PPPOE_ENCAP) {
return true;
}
return false;
}
/*
* sfe_ipv6_create_rule()
* Create a forwarding rule.
*/
int sfe_ipv6_create_rule(struct sfe_ipv6_rule_create_msg *msg)
{
struct sfe_ipv6 *si = &__si6;
struct sfe_ipv6_connection *c, *old_c;
struct sfe_ipv6_connection_match *original_cm;
struct sfe_ipv6_connection_match *reply_cm;
struct net_device *dest_dev;
struct net_device *src_dev;
struct sfe_ipv6_5tuple *tuple = &msg->tuple;
struct sock *sk;
struct net *net;
unsigned int src_if_idx;
s32 flow_interface_num = msg->conn_rule.flow_top_interface_num;
s32 return_interface_num = msg->conn_rule.return_top_interface_num;
u32 flow_sawf_tag;
u32 return_sawf_tag;
if (msg->rule_flags & SFE_RULE_CREATE_FLAG_USE_FLOW_BOTTOM_INTERFACE) {
flow_interface_num = msg->conn_rule.flow_interface_num;
}
if (msg->rule_flags & SFE_RULE_CREATE_FLAG_USE_RETURN_BOTTOM_INTERFACE) {
return_interface_num = msg->conn_rule.return_interface_num;
}
src_dev = dev_get_by_index(&init_net, flow_interface_num);
if (!src_dev) {
DEBUG_WARN("%px: Unable to find src_dev corresponding to %d\n", msg,
flow_interface_num);
this_cpu_inc(si->stats_pcpu->connection_create_failures64);
return -EINVAL;
}
dest_dev = dev_get_by_index(&init_net, return_interface_num);
if (!dest_dev) {
DEBUG_WARN("%px: Unable to find dest_dev corresponding to %d\n", msg,
return_interface_num);
this_cpu_inc(si->stats_pcpu->connection_create_failures64);
dev_put(src_dev);
return -EINVAL;
}
if (unlikely((dest_dev->reg_state != NETREG_REGISTERED) ||
(src_dev->reg_state != NETREG_REGISTERED))) {
DEBUG_WARN("%px: src_dev=%s and dest_dev=%s are unregistered\n", msg,
src_dev->name, dest_dev->name);
this_cpu_inc(si->stats_pcpu->connection_create_failures64);
dev_put(src_dev);
dev_put(dest_dev);
return -EINVAL;
}
/*
* Allocate the various connection tracking objects.
*/
c = (struct sfe_ipv6_connection *)kzalloc(sizeof(struct sfe_ipv6_connection), GFP_ATOMIC);
if (unlikely(!c)) {
DEBUG_WARN("%px: memory allocation of connection entry failed\n", msg);
this_cpu_inc(si->stats_pcpu->connection_create_failures64);
dev_put(src_dev);
dev_put(dest_dev);
return -ENOMEM;
}
original_cm = (struct sfe_ipv6_connection_match *)kzalloc(sizeof(struct sfe_ipv6_connection_match), GFP_ATOMIC);
if (unlikely(!original_cm)) {
this_cpu_inc(si->stats_pcpu->connection_create_failures64);
DEBUG_WARN("%px: memory allocation of connection match entry failed\n", msg);
kfree(c);
dev_put(src_dev);
dev_put(dest_dev);
return -ENOMEM;
}
reply_cm = (struct sfe_ipv6_connection_match *)kzalloc(sizeof(struct sfe_ipv6_connection_match), GFP_ATOMIC);
if (unlikely(!reply_cm)) {
this_cpu_inc(si->stats_pcpu->connection_create_failures64);
DEBUG_WARN("%px: memory allocation of connection match entry failed\n", msg);
kfree(original_cm);
kfree(c);
dev_put(src_dev);
dev_put(dest_dev);
return -ENOMEM;
}
this_cpu_inc(si->stats_pcpu->connection_create_requests64);
spin_lock_bh(&si->lock);
/*
* Check to see if there is already a flow that matches the rule we're
* trying to create. If there is then we can't create a new one.
*/
old_c = sfe_ipv6_find_connection(si,
tuple->protocol,
(struct sfe_ipv6_addr *)tuple->flow_ip,
tuple->flow_ident,
(struct sfe_ipv6_addr *)tuple->return_ip,
tuple->return_ident);
if (old_c != NULL) {
this_cpu_inc(si->stats_pcpu->connection_create_collisions64);
/*
* If we already have the flow then it's likely that this
* request to create the connection rule contains more
* up-to-date information. Check and update accordingly.
*/
sfe_ipv6_update_protocol_state(old_c, msg);
spin_unlock_bh(&si->lock);
kfree(reply_cm);
kfree(original_cm);
kfree(c);
dev_put(src_dev);
dev_put(dest_dev);
DEBUG_TRACE("connection already exists - p: %d\n"
" s: %s:%pxM:%pI6:%u, d: %s:%pxM:%pI6:%u\n",
tuple->protocol,
src_dev->name, msg->conn_rule.flow_mac, tuple->flow_ip, ntohs(tuple->flow_ident),
dest_dev->name, msg->conn_rule.return_mac, tuple->return_ip, ntohs(tuple->return_ident));
return -EADDRINUSE;
}
/*
* Fill in the "original" direction connection matching object.
* Note that the transmit MAC address is "dest_mac_xlate" because
* we always know both ends of a connection by their translated
* addresses and not their public addresses.
*/
original_cm->match_dev = src_dev;
original_cm->match_protocol = tuple->protocol;
original_cm->match_src_ip[0] = *(struct sfe_ipv6_addr *)tuple->flow_ip;
original_cm->match_src_port = netif_is_vxlan(src_dev) ? 0 : tuple->flow_ident;
original_cm->match_dest_ip[0] = *(struct sfe_ipv6_addr *)tuple->return_ip;
original_cm->match_dest_port = tuple->return_ident;
original_cm->xlate_src_ip[0] = *(struct sfe_ipv6_addr *)tuple->flow_ip;
original_cm->xlate_src_port = tuple->flow_ident;
original_cm->xlate_dest_ip[0] = *(struct sfe_ipv6_addr *)tuple->return_ip;
original_cm->xlate_dest_port = tuple->return_ident;
original_cm->xmit_dev = dest_dev;
original_cm->xmit_dev_mtu = msg->conn_rule.return_mtu;
original_cm->connection = c;
original_cm->counter_match = reply_cm;
/*
* Valid in decap direction only
*/
RCU_INIT_POINTER(original_cm->up, NULL);
if (msg->valid_flags & SFE_RULE_CREATE_MARK_VALID) {
original_cm->mark = msg->mark_rule.flow_mark;
original_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_MARK;
}
if (msg->valid_flags & SFE_RULE_CREATE_QOS_VALID) {
original_cm->priority = msg->qos_rule.flow_qos_tag;
original_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_PRIORITY_REMARK;
}
if (msg->valid_flags & SFE_RULE_CREATE_DSCP_MARKING_VALID) {
original_cm->dscp = msg->dscp_rule.flow_dscp << SFE_IPV6_DSCP_SHIFT;
original_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_DSCP_REMARK;
}
if (msg->rule_flags & SFE_RULE_CREATE_FLAG_BRIDGE_FLOW) {
original_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_BRIDGE_FLOW;
}
if (msg->rule_flags & SFE_RULE_CREATE_FLAG_FLOW_TRANSMIT_FAST) {
original_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_FAST_XMIT_DEV_ADMISSION;
}
/*
* Mark SAWF metadata if the sawf tag is valid.
*/
original_cm->sawf_valid = false;
flow_sawf_tag = SFE_GET_SAWF_TAG(msg->sawf_rule.flow_mark);
if (likely(SFE_SAWF_TAG_IS_VALID(flow_sawf_tag))) {
original_cm->mark = msg->sawf_rule.flow_mark;
original_cm->sawf_valid = true;
original_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_MARK;
}
/*
* Add VLAN rule to original_cm
*/
if (msg->valid_flags & SFE_RULE_CREATE_VLAN_VALID) {
struct sfe_vlan_rule *vlan_primary_rule = &msg->vlan_primary_rule;
struct sfe_vlan_rule *vlan_secondary_rule = &msg->vlan_secondary_rule;
sfe_ipv6_match_entry_set_vlan(original_cm,
vlan_primary_rule->ingress_vlan_tag,
vlan_primary_rule->egress_vlan_tag,
vlan_secondary_rule->ingress_vlan_tag,
vlan_secondary_rule->egress_vlan_tag);
if ((msg->rule_flags & SFE_RULE_CREATE_FLAG_USE_RETURN_BOTTOM_INTERFACE) &&
original_cm->egress_vlan_hdr_cnt > 0) {
original_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_INSERT_EGRESS_VLAN_TAG;
original_cm->l2_hdr_size += original_cm->egress_vlan_hdr_cnt * VLAN_HLEN;
}
}
if ((IPPROTO_GRE == tuple->protocol) && !sfe_ipv6_is_local_ip(si, (uint8_t *)original_cm->match_dest_ip)) {
original_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_PASSTHROUGH;
}
#ifdef CONFIG_NF_FLOW_COOKIE
original_cm->flow_cookie = 0;
#endif
#ifdef CONFIG_XFRM
if (msg->valid_flags & SFE_RULE_CREATE_DIRECTION_VALID) {
original_cm->flow_accel = msg->direction_rule.flow_accel;
} else {
original_cm->flow_accel = 1;
}
#endif
/*
* If l2_features are disabled and flow uses l2 features such as macvlan/bridge/pppoe/vlan,
* bottom interfaces are expected to be disabled in the flow rule and always top interfaces
* are used. In such cases, do not use HW csum offload. csum offload is used only when we
* are sending directly to the destination interface that supports it.
*/
if (likely(dest_dev->features & NETIF_F_HW_CSUM) && sfe_dev_has_hw_csum(dest_dev)) {
if ((msg->conn_rule.return_top_interface_num == msg->conn_rule.return_interface_num) ||
(msg->rule_flags & SFE_RULE_CREATE_FLAG_USE_RETURN_BOTTOM_INTERFACE)) {
/*
* Dont enable CSUM offload
*/
#if 0
original_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_CSUM_OFFLOAD;
#endif
}
}
/*
* Adding PPPoE parameters to original and reply entries based on the direction where
* PPPoE header is valid in ECM rule.
*
* If PPPoE is valid in flow direction (from interface is PPPoE), then
* original cm will have PPPoE at ingress (strip PPPoE header)
* reply cm will have PPPoE at egress (add PPPoE header)
*
* If PPPoE is valid in return direction (to interface is PPPoE), then
* original cm will have PPPoE at egress (add PPPoE header)
* reply cm will have PPPoE at ingress (strip PPPoE header)
*/
if (msg->valid_flags & SFE_RULE_CREATE_PPPOE_DECAP_VALID) {
original_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_PPPOE_DECAP;
original_cm->pppoe_session_id = msg->pppoe_rule.flow_pppoe_session_id;
ether_addr_copy(original_cm->pppoe_remote_mac, msg->pppoe_rule.flow_pppoe_remote_mac);
reply_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_PPPOE_ENCAP;
reply_cm->l2_hdr_size += PPPOE_SES_HLEN;
reply_cm->pppoe_session_id = msg->pppoe_rule.flow_pppoe_session_id;
ether_addr_copy(reply_cm->pppoe_remote_mac, msg->pppoe_rule.flow_pppoe_remote_mac);
}
if (msg->valid_flags & SFE_RULE_CREATE_PPPOE_ENCAP_VALID) {
original_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_PPPOE_ENCAP;
original_cm->l2_hdr_size += PPPOE_SES_HLEN;
original_cm->pppoe_session_id = msg->pppoe_rule.return_pppoe_session_id;
ether_addr_copy(original_cm->pppoe_remote_mac, msg->pppoe_rule.return_pppoe_remote_mac);
reply_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_PPPOE_DECAP;
reply_cm->pppoe_session_id = msg->pppoe_rule.return_pppoe_session_id;
ether_addr_copy(reply_cm->pppoe_remote_mac, msg->pppoe_rule.return_pppoe_remote_mac);
}
if (msg->rule_flags & SFE_RULE_CREATE_FLAG_FLOW_SRC_INTERFACE_CHECK) {
original_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_SRC_INTERFACE_CHECK;
}
if (msg->rule_flags & SFE_RULE_CREATE_FLAG_FLOW_SRC_INTERFACE_CHECK_NO_FLUSH) {
original_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_SRC_INTERFACE_CHECK_NO_FLUSH;
}
/*
* For the non-arp interface, we don't write L2 HDR.
* Excluding PPPoE from this, since we are now supporting PPPoE encap/decap.
*/
if (sfe_ipv6_xmit_eth_type_check(dest_dev, original_cm->flags)) {
/*
* Check whether the rule has configured a specific source MAC address to use.
* This is needed when virtual L3 interfaces such as br-lan, macvlan, vlan are used during egress
*/
if (msg->rule_flags & SFE_RULE_CREATE_FLAG_BRIDGE_FLOW) {
ether_addr_copy((u8 *)original_cm->xmit_src_mac, (u8 *)msg->conn_rule.flow_mac);
} else {
if ((msg->valid_flags & SFE_RULE_CREATE_SRC_MAC_VALID) &&
(msg->src_mac_rule.mac_valid_flags & SFE_SRC_MAC_RETURN_VALID)) {
ether_addr_copy((u8 *)original_cm->xmit_src_mac, (u8 *)msg->src_mac_rule.return_src_mac);
} else {
ether_addr_copy((u8 *)original_cm->xmit_src_mac, (u8 *)dest_dev->dev_addr);
}
}
ether_addr_copy((u8 *)original_cm->xmit_dest_mac, (u8 *)msg->conn_rule.return_mac);
original_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_WRITE_L2_HDR;
original_cm->l2_hdr_size += ETH_HLEN;
/*
* If our dev writes Ethernet headers then we can write a really fast
* version
*/
if (dest_dev->header_ops) {
if (dest_dev->header_ops->create == eth_header) {
original_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_WRITE_FAST_ETH_HDR;
}
}
}
/*
* Fill in the "reply" direction connection matching object.
*/
reply_cm->match_dev = dest_dev;
reply_cm->match_protocol = tuple->protocol;
reply_cm->match_src_ip[0] = *(struct sfe_ipv6_addr *)tuple->return_ip;
reply_cm->match_dest_ip[0] = *(struct sfe_ipv6_addr *)tuple->flow_ip;
reply_cm->match_dest_port = tuple->flow_ident;
reply_cm->xlate_src_ip[0] = *(struct sfe_ipv6_addr *)tuple->return_ip;
reply_cm->xlate_src_port = tuple->return_ident;
reply_cm->xlate_dest_ip[0] = *(struct sfe_ipv6_addr *)tuple->flow_ip;
reply_cm->xlate_dest_port = tuple->flow_ident;
/*
* Keep source port as 0 for VxLAN tunnels.
*/
if (netif_is_vxlan(src_dev) || netif_is_vxlan(dest_dev)) {
reply_cm->match_src_port = 0;
} else {
reply_cm->match_src_port = tuple->return_ident;
}
reply_cm->xmit_dev = src_dev;
reply_cm->xmit_dev_mtu = msg->conn_rule.flow_mtu;
reply_cm->connection = c;
reply_cm->counter_match = original_cm;
if (msg->valid_flags & SFE_RULE_CREATE_MARK_VALID) {
reply_cm->mark = msg->mark_rule.return_mark;
reply_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_MARK;
}
if (msg->valid_flags & SFE_RULE_CREATE_QOS_VALID) {
reply_cm->priority = msg->qos_rule.return_qos_tag;
reply_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_PRIORITY_REMARK;
}
if (msg->valid_flags & SFE_RULE_CREATE_DSCP_MARKING_VALID) {
reply_cm->dscp = msg->dscp_rule.return_dscp << SFE_IPV6_DSCP_SHIFT;
reply_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_DSCP_REMARK;
}
if (msg->rule_flags & SFE_RULE_CREATE_FLAG_BRIDGE_FLOW) {
reply_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_BRIDGE_FLOW;
}
if (msg->rule_flags & SFE_RULE_CREATE_FLAG_RETURN_TRANSMIT_FAST) {
reply_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_FAST_XMIT_DEV_ADMISSION;
}
if ((IPPROTO_GRE == tuple->protocol) && !sfe_ipv6_is_local_ip(si, (uint8_t *)reply_cm->match_dest_ip)) {
reply_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_PASSTHROUGH;
}
/*
* Mark return SAWF metadata if the sawf tag is valid.
*/
reply_cm->sawf_valid = false;
return_sawf_tag = SFE_GET_SAWF_TAG(msg->sawf_rule.return_mark);
if (likely(SFE_SAWF_TAG_IS_VALID(return_sawf_tag))) {
reply_cm->mark = msg->sawf_rule.return_mark;
reply_cm->sawf_valid = true;
reply_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_MARK;
}
/*
* Setup UDP Socket if found to be valid for decap.
*/
RCU_INIT_POINTER(reply_cm->up, NULL);
net = dev_net(reply_cm->match_dev);
src_if_idx = src_dev->ifindex;
rcu_read_lock();
/*
* Look for the associated sock object.
* __udp6_lib_lookup() holds a reference for this sock object,
* which will be released in sfe_ipv6_flush_connection()
*/
#if (LINUX_VERSION_CODE < KERNEL_VERSION(4, 13, 0))
sk = __udp6_lib_lookup(net, (const struct in6_addr *)reply_cm->match_dest_ip,
reply_cm->match_dest_port, (const struct in6_addr *)reply_cm->xlate_src_ip,
reply_cm->xlate_src_port, src_if_idx, &udp_table);
#else
sk = __udp6_lib_lookup(net, (const struct in6_addr *)reply_cm->match_dest_ip,
reply_cm->match_dest_port, (const struct in6_addr *)reply_cm->xlate_src_ip,
reply_cm->xlate_src_port, src_if_idx, 0, &udp_table, NULL);
#endif
rcu_read_unlock();
/*
* We set the UDP sock pointer as valid only for decap direction.
*/
if (sk && udp_sk(sk)->encap_type) {
#if (LINUX_VERSION_CODE < KERNEL_VERSION(4, 13, 0))
if (!atomic_add_unless(&sk->sk_refcnt, 1, 0)) {
#else
if (!refcount_inc_not_zero(&sk->sk_refcnt)) {
#endif
this_cpu_inc(si->stats_pcpu->connection_create_failures64);
spin_unlock_bh(&si->lock);
kfree(reply_cm);
kfree(original_cm);
kfree(c);
DEBUG_INFO("sfe: unable to take reference for socket p:%d\n", tuple->protocol);
DEBUG_INFO("SK: connection - \n"
" s: %s:%pI6(%pI6):%u(%u)\n"
" d: %s:%pI6(%pI6):%u(%u)\n",
reply_cm->match_dev->name, &reply_cm->match_src_ip, &reply_cm->xlate_src_ip,
ntohs(reply_cm->match_src_port), ntohs(reply_cm->xlate_src_port),
reply_cm->xmit_dev->name, &reply_cm->match_dest_ip, &reply_cm->xlate_dest_ip,
ntohs(reply_cm->match_dest_port), ntohs(reply_cm->xlate_dest_port));
dev_put(src_dev);
dev_put(dest_dev);
return -ESHUTDOWN;
}
rcu_assign_pointer(reply_cm->up, udp_sk(sk));
DEBUG_INFO("Sock lookup success with reply_cm direction(%p)\n", sk);
DEBUG_INFO("SK: connection - \n"
" s: %s:%pI6(%pI6):%u(%u)\n"
" d: %s:%pI6(%pI6):%u(%u)\n",
reply_cm->match_dev->name, &reply_cm->match_src_ip, &reply_cm->xlate_src_ip,
ntohs(reply_cm->match_src_port), ntohs(reply_cm->xlate_src_port),
reply_cm->xmit_dev->name, &reply_cm->match_dest_ip, &reply_cm->xlate_dest_ip,
ntohs(reply_cm->match_dest_port), ntohs(reply_cm->xlate_dest_port));
}
/*
* Add VLAN rule to reply_cm
*/
if (msg->valid_flags & SFE_RULE_CREATE_VLAN_VALID) {
struct sfe_vlan_rule *vlan_primary_rule = &msg->vlan_primary_rule;
struct sfe_vlan_rule *vlan_secondary_rule = &msg->vlan_secondary_rule;
sfe_ipv6_match_entry_set_vlan(reply_cm,
vlan_primary_rule->egress_vlan_tag,
vlan_primary_rule->ingress_vlan_tag,
vlan_secondary_rule->egress_vlan_tag,
vlan_secondary_rule->ingress_vlan_tag);
if ((msg->rule_flags & SFE_RULE_CREATE_FLAG_USE_FLOW_BOTTOM_INTERFACE) &&
reply_cm->egress_vlan_hdr_cnt > 0) {
reply_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_INSERT_EGRESS_VLAN_TAG;
reply_cm->l2_hdr_size += reply_cm->egress_vlan_hdr_cnt * VLAN_HLEN;
}
}
#ifdef CONFIG_NF_FLOW_COOKIE
reply_cm->flow_cookie = 0;
#endif
#ifdef CONFIG_XFRM
if (msg->valid_flags & SFE_RULE_CREATE_DIRECTION_VALID) {
reply_cm->flow_accel = msg->direction_rule.return_accel;
} else {
reply_cm->flow_accel = 1;
}
#endif
/*
* the inet6_protocol handler will be used only in decap path
* for non passthrough case.
*/
original_cm->proto = NULL;
reply_cm->proto = NULL;
original_cm->top_interface_dev = NULL;
reply_cm->top_interface_dev = NULL;
#ifdef SFE_GRE_TUN_ENABLE
if ((IPPROTO_GRE == tuple->protocol) && !(reply_cm->flags & SFE_IPV6_CONNECTION_MATCH_FLAG_PASSTHROUGH)) {
rcu_read_lock();
reply_cm->proto = rcu_dereference(inet6_protos[tuple->protocol]);
rcu_read_unlock();
if (unlikely(!reply_cm->proto)) {
this_cpu_inc(si->stats_pcpu->connection_create_failures64);
spin_unlock_bh(&si->lock);
kfree(reply_cm);
kfree(original_cm);
kfree(c);
dev_put(src_dev);
dev_put(dest_dev);
DEBUG_WARN("sfe: GRE proto handler is not registered\n");
return -EPERM;
}
}
#endif
/*
* Decapsulation path have proto set.
* This is used to differentiate de/encap, and call protocol specific handler.
*/
if (IPPROTO_IPIP == tuple->protocol) {
original_cm->proto = NULL;
rcu_read_lock();
reply_cm->proto = rcu_dereference(inet6_protos[tuple->protocol]);
rcu_read_unlock();
reply_cm->top_interface_dev = dev_get_by_index(&init_net, msg->conn_rule.return_top_interface_num);
if (unlikely(!reply_cm->top_interface_dev)) {
DEBUG_WARN("%px: Unable to find top_interface_dev corresponding to %d\n", msg,
msg->conn_rule.return_top_interface_num);
this_cpu_inc(si->stats_pcpu->connection_create_failures64);
spin_unlock_bh(&si->lock);
kfree(reply_cm);
kfree(original_cm);
kfree(c);
dev_put(src_dev);
dev_put(dest_dev);
return -EINVAL;
}
}
/*
* If l2_features are disabled and flow uses l2 features such as macvlan/bridge/pppoe/vlan,
* bottom interfaces are expected to be disabled in the flow rule and always top interfaces
* are used. In such cases, do not use HW csum offload. csum offload is used only when we
* are sending directly to the destination interface that supports it.
*/
if (likely(src_dev->features & NETIF_F_HW_CSUM) && sfe_dev_has_hw_csum(src_dev)) {
if ((msg->conn_rule.flow_top_interface_num == msg->conn_rule.flow_interface_num) ||
(msg->rule_flags & SFE_RULE_CREATE_FLAG_USE_FLOW_BOTTOM_INTERFACE)) {
/*
* Dont enable CSUM offload
*/
#if 0
reply_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_CSUM_OFFLOAD;
#endif
}
}
if (msg->rule_flags & SFE_RULE_CREATE_FLAG_RETURN_SRC_INTERFACE_CHECK) {
reply_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_SRC_INTERFACE_CHECK;
}
if (msg->rule_flags & SFE_RULE_CREATE_FLAG_RETURN_SRC_INTERFACE_CHECK_NO_FLUSH) {
reply_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_SRC_INTERFACE_CHECK_NO_FLUSH;
}
/*
* For the non-arp interface, we don't write L2 HDR.
* Excluding PPPoE from this, since we are now supporting PPPoE encap/decap.
*/
if (sfe_ipv6_xmit_eth_type_check(src_dev, reply_cm->flags)) {
/*
* Check whether the rule has configured a specific source MAC address to use.
* This is needed when virtual L3 interfaces such as br-lan, macvlan, vlan are used during egress
*/
if (msg->rule_flags & SFE_RULE_CREATE_FLAG_BRIDGE_FLOW) {
ether_addr_copy((u8 *)reply_cm->xmit_src_mac, (u8 *)msg->conn_rule.return_mac);
} else {
if ((msg->valid_flags & SFE_RULE_CREATE_SRC_MAC_VALID) &&
(msg->src_mac_rule.mac_valid_flags & SFE_SRC_MAC_FLOW_VALID)) {
ether_addr_copy((u8 *)reply_cm->xmit_src_mac, (u8 *)msg->src_mac_rule.flow_src_mac);
} else {
ether_addr_copy((u8 *)reply_cm->xmit_src_mac, (u8 *)src_dev->dev_addr);
}
}
ether_addr_copy((u8 *)reply_cm->xmit_dest_mac, (u8 *)msg->conn_rule.flow_mac);
reply_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_WRITE_L2_HDR;
reply_cm->l2_hdr_size += ETH_HLEN;
/*
* If our dev writes Ethernet headers then we can write a really fast
* version.
*/
if (src_dev->header_ops) {
if (src_dev->header_ops->create == eth_header) {
reply_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_WRITE_FAST_ETH_HDR;
}
}
}
/*
* No support for NAT in ipv6
*/
/*
* Initialize the protocol-specific information that we track.
*/
switch (tuple->protocol) {
case IPPROTO_TCP:
original_cm->protocol_state.tcp.win_scale = msg->tcp_rule.flow_window_scale;
original_cm->protocol_state.tcp.max_win = msg->tcp_rule.flow_max_window ? msg->tcp_rule.flow_max_window : 1;
original_cm->protocol_state.tcp.end = msg->tcp_rule.flow_end;
original_cm->protocol_state.tcp.max_end = msg->tcp_rule.flow_max_end;
reply_cm->protocol_state.tcp.win_scale = msg->tcp_rule.return_window_scale;
reply_cm->protocol_state.tcp.max_win = msg->tcp_rule.return_max_window ? msg->tcp_rule.return_max_window : 1;
reply_cm->protocol_state.tcp.end = msg->tcp_rule.return_end;
reply_cm->protocol_state.tcp.max_end = msg->tcp_rule.return_max_end;
if (msg->rule_flags & SFE_RULE_CREATE_FLAG_NO_SEQ_CHECK) {
original_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_NO_SEQ_CHECK;
reply_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_NO_SEQ_CHECK;
}
break;
case IPPROTO_RAW:
/*
* Set src_port to 0 to avoid hash collision in connection match lookups.
*/
original_cm->match_src_port = 0;
original_cm->xlate_src_port = 0;
reply_cm->match_src_port = 0;
reply_cm->xlate_src_port = 0;
break;
}
/*
* Fill in the ipv6_connection object.
*/
c->protocol = tuple->protocol;
c->src_ip[0] = *(struct sfe_ipv6_addr *)tuple->flow_ip;
c->src_ip_xlate[0] = *(struct sfe_ipv6_addr *)tuple->flow_ip;
c->src_port = tuple->flow_ident;
c->src_port_xlate = tuple->flow_ident;
c->original_dev = src_dev;
c->original_match = original_cm;
c->dest_ip[0] = *(struct sfe_ipv6_addr *)tuple->return_ip;
c->dest_ip_xlate[0] = *(struct sfe_ipv6_addr *)tuple->return_ip;
c->dest_port = tuple->return_ident;
c->dest_port_xlate = tuple->return_ident;
c->reply_dev = dest_dev;
c->reply_match = reply_cm;
c->debug_read_seq = 0;
c->last_sync_jiffies = get_jiffies_64();
c->removed = false;
sfe_ipv6_connection_match_compute_translations(original_cm);
sfe_ipv6_connection_match_compute_translations(reply_cm);
sfe_ipv6_insert_connection(si, c);
spin_unlock_bh(&si->lock);
/*
* We have everything we need!
*/
DEBUG_INFO("%px: new connection - p: %d\n"
" s: %s:%pxM(%pxM):%pI6(%pI6):%u(%u)\n"
" d: %s:%pxM(%pxM):%pI6(%pI6):%u(%u)\n",
c, tuple->protocol,
src_dev->name, msg->conn_rule.flow_mac, NULL,
(void *)tuple->flow_ip, (void *)tuple->flow_ip, ntohs(tuple->flow_ident), ntohs(tuple->flow_ident),
dest_dev->name, NULL, msg->conn_rule.return_mac,
(void *)tuple->return_ip, (void *)tuple->return_ip, ntohs(tuple->return_ident), ntohs(tuple->return_ident));
return 0;
}
/*
* sfe_ipv6_destroy_rule()
* Destroy a forwarding rule.
*/
void sfe_ipv6_destroy_rule(struct sfe_ipv6_rule_destroy_msg *msg)
{
struct sfe_ipv6 *si = &__si6;
struct sfe_ipv6_connection *c;
bool ret;
struct sfe_ipv6_5tuple *tuple = &msg->tuple;
this_cpu_inc(si->stats_pcpu->connection_destroy_requests64);
spin_lock_bh(&si->lock);
/*
* Check to see if we have a flow that matches the rule we're trying
* to destroy. If there isn't then we can't destroy it.
*/
c = sfe_ipv6_find_connection(si, tuple->protocol, (struct sfe_ipv6_addr *)tuple->flow_ip, tuple->flow_ident,
(struct sfe_ipv6_addr *)tuple->return_ip, tuple->return_ident);
if (!c) {
spin_unlock_bh(&si->lock);
this_cpu_inc(si->stats_pcpu->connection_destroy_misses64);
DEBUG_TRACE("connection does not exist - p: %d, s: %pI6:%u, d: %pI6:%u\n",
tuple->protocol, tuple->flow_ip, ntohs(tuple->flow_ident),
tuple->return_ip, ntohs(tuple->return_ident));
return;
}
/*
* Remove our connection details from the hash tables.
*/
ret = sfe_ipv6_remove_connection(si, c);
spin_unlock_bh(&si->lock);
if (ret) {
sfe_ipv6_flush_connection(si, c, SFE_SYNC_REASON_DESTROY);
}
DEBUG_INFO("connection destroyed - p: %d, s: %pI6:%u, d: %pI6:%u\n",
tuple->protocol, tuple->flow_ip, ntohs(tuple->flow_ident),
tuple->return_ip, ntohs(tuple->return_ident));
}
/*
* sfe_ipv6_sync_invoke()
* Schedule many sync stats.
*/
bool sfe_ipv6_sync_invoke(uint16_t index)
{
struct sfe_ipv6 *si = &__si6;
return schedule_delayed_work_on(si->work_cpu, &(si->sync_dwork), 0);
}
/*
* sfe_ipv6_register_sync_rule_callback()
* Register a callback for rule synchronization.
*/
void sfe_ipv6_register_sync_rule_callback(sfe_sync_rule_callback_t sync_rule_callback)
{
struct sfe_ipv6 *si = &__si6;
spin_lock_bh(&si->lock);
rcu_assign_pointer(si->sync_rule_callback, sync_rule_callback);
spin_unlock_bh(&si->lock);
}
/*
* sfe_ipv6_register_sync_rule_callback()
* Register a callback for rule synchronization.
*/
void sfe_ipv6_register_many_sync_callback(sfe_ipv6_many_sync_callback_t cb)
{
struct sfe_ipv6 *si = &__si6;
spin_lock_bh(&si->lock);
rcu_assign_pointer(si->many_sync_callback, cb);
spin_unlock_bh(&si->lock);
}
/*
* sfe_ipv6_get_debug_dev()
*/
static ssize_t sfe_ipv6_get_debug_dev(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct sfe_ipv6 *si = &__si6;
ssize_t count;
int num;
spin_lock_bh(&si->lock);
num = si->debug_dev;
spin_unlock_bh(&si->lock);
count = snprintf(buf, (ssize_t)PAGE_SIZE, "%d\n", num);
return count;
}
/*
* sfe_ipv6_destroy_all_rules_for_dev()
* Destroy all connections that match a particular device.
*
* If we pass dev as NULL then this destroys all connections.
*/
void sfe_ipv6_destroy_all_rules_for_dev(struct net_device *dev)
{
struct sfe_ipv6 *si = &__si6;
struct sfe_ipv6_connection *c;
bool ret;
another_round:
spin_lock_bh(&si->lock);
for (c = si->all_connections_head; c; c = c->all_connections_next) {
/*
* Does this connection relate to the device we are destroying?
*/
if (!dev
|| (dev == c->original_dev)
|| (dev == c->reply_dev)) {
break;
}
}
if (c) {
ret = sfe_ipv6_remove_connection(si, c);
}
spin_unlock_bh(&si->lock);
if (c) {
if (ret) {
sfe_ipv6_flush_connection(si, c, SFE_SYNC_REASON_DESTROY);
}
goto another_round;
}
}
/*
* sfe_ipv6_periodic_sync()
*/
static void sfe_ipv6_periodic_sync(struct work_struct *work)
{
struct sfe_ipv6 *si = container_of((struct delayed_work *)work, struct sfe_ipv6, sync_dwork);
u64 now_jiffies;
int quota;
sfe_ipv6_many_sync_callback_t sync_rule_callback;
struct sfe_ipv6_connection *c;
struct sfe_ipv6_conn_sync *conn_sync;
now_jiffies = get_jiffies_64();
rcu_read_lock();
sync_rule_callback = rcu_dereference(si->many_sync_callback);
rcu_read_unlock();
if (!sync_rule_callback) {
return;
}
spin_lock_bh(&si->lock);
/*
* If we have reached the end of the connection list, walk from
* the connection head.
*/
c = si->wc_next;
if (unlikely(!c)) {
c = si->all_connections_head;
}
/*
* Get the max number of connections to be put in this sync msg.
*/
quota = sfe_ipv6_sync_max_number;
conn_sync = sfe_ipv6_sync_many_msg->msg.conn_stats_many.conn_sync;
/*
* Walk the "all connection" list and sync the connection state.
*/
while (likely(c && quota)) {
struct sfe_ipv6_connection_match *cm;
struct sfe_ipv6_connection_match *counter_cm;
struct sfe_connection_sync sis;
cm = c->original_match;
counter_cm = c->reply_match;
/*
* Didn't receive packets in the origial direction or reply
* direction, move to the next connection.
*/
if (!atomic_read(&cm->rx_packet_count) && !atomic_read(&counter_cm->rx_packet_count)) {
c = c->all_connections_next;
continue;
}
/*
* Sync the connection state.
*/
sfe_ipv6_gen_sync_connection(si, c, &sis, SFE_SYNC_REASON_STATS, now_jiffies);
sfe_ipv6_stats_convert(conn_sync, &sis);
quota--;
conn_sync++;
c = c->all_connections_next;
}
/*
* At the end of loop, put wc_next to the connection we left
*/
si->wc_next = c;
spin_unlock_bh(&si->lock);
if (c == NULL) {
DEBUG_INFO("Synced all connections\n");
sfe_ipv6_sync_many_msg->msg.conn_stats_many.next = 0;
} else {
DEBUG_INFO("Some connections left\n");
sfe_ipv6_sync_many_msg->msg.conn_stats_many.next = sfe_ipv6_sync_max_number - quota;
}
DEBUG_INFO("Synced [%d] connections\n", (sfe_ipv6_sync_max_number - quota));
sfe_ipv6_sync_many_msg->msg.conn_stats_many.count = sfe_ipv6_sync_max_number - quota;
sfe_ipv6_sync_many_msg->cm.response = SFE_CMN_RESPONSE_ACK;
sync_rule_callback(sfe_ipv6_sync_many_msg);
}
/*
* sfe_ipv6_debug_dev_read_start()
* Generate part of the XML output.
*/
static bool sfe_ipv6_debug_dev_read_start(struct sfe_ipv6 *si, char *buffer, char *msg, size_t *length,
int *total_read, struct sfe_ipv6_debug_xml_write_state *ws)
{
int bytes_read;
si->debug_read_seq++;
bytes_read = snprintf(msg, CHAR_DEV_MSG_SIZE, "<sfe_ipv6>\n");
if (copy_to_user(buffer + *total_read, msg, CHAR_DEV_MSG_SIZE)) {
return false;
}
*length -= bytes_read;
*total_read += bytes_read;
ws->state++;
return true;
}
/*
* sfe_ipv6_debug_dev_read_connections_start()
* Generate part of the XML output.
*/
static bool sfe_ipv6_debug_dev_read_connections_start(struct sfe_ipv6 *si, char *buffer, char *msg, size_t *length,
int *total_read, struct sfe_ipv6_debug_xml_write_state *ws)
{
int bytes_read;
bytes_read = snprintf(msg, CHAR_DEV_MSG_SIZE, "\t<connections>\n");
if (copy_to_user(buffer + *total_read, msg, CHAR_DEV_MSG_SIZE)) {
return false;
}
*length -= bytes_read;
*total_read += bytes_read;
ws->state++;
return true;
}
/*
* sfe_ipv6_debug_dev_read_connections_connection()
* Generate part of the XML output.
*/
static bool sfe_ipv6_debug_dev_read_connections_connection(struct sfe_ipv6 *si, char *buffer, char *msg, size_t *length,
int *total_read, struct sfe_ipv6_debug_xml_write_state *ws)
{
struct sfe_ipv6_connection *c;
struct sfe_ipv6_connection_match *original_cm;
struct sfe_ipv6_connection_match *reply_cm;
int bytes_read;
int protocol;
struct net_device *src_dev;
struct sfe_ipv6_addr src_ip;
struct sfe_ipv6_addr src_ip_xlate;
__be16 src_port;
__be16 src_port_xlate;
u64 src_rx_packets;
u64 src_rx_bytes;
struct net_device *dest_dev;
struct sfe_ipv6_addr dest_ip;
struct sfe_ipv6_addr dest_ip_xlate;
__be16 dest_port;
__be16 dest_port_xlate;
u64 dest_rx_packets;
u64 dest_rx_bytes;
u64 last_sync_jiffies;
u32 src_mark, dest_mark, src_priority, dest_priority, src_dscp, dest_dscp;
bool original_cm_sawf_valid, reply_cm_sawf_valid;
u32 flow_service_class, return_service_class;
u32 flow_msduq, return_msduq;
u32 packet, byte, original_cm_flags;
u16 pppoe_session_id;
u8 pppoe_remote_mac[ETH_ALEN];
u32 original_fast_xmit, reply_fast_xmit;
#ifdef CONFIG_NF_FLOW_COOKIE
int src_flow_cookie, dst_flow_cookie;
#endif
spin_lock_bh(&si->lock);
for (c = si->all_connections_head; c; c = c->all_connections_next) {
if (c->debug_read_seq < si->debug_read_seq) {
c->debug_read_seq = si->debug_read_seq;
break;
}
}
/*
* If there were no connections then move to the next state.
*/
if (!c) {
spin_unlock_bh(&si->lock);
ws->state++;
return true;
}
original_cm = c->original_match;
reply_cm = c->reply_match;
protocol = c->protocol;
src_dev = c->original_dev;
src_ip = c->src_ip[0];
src_ip_xlate = c->src_ip_xlate[0];
src_port = c->src_port;
src_port_xlate = c->src_port_xlate;
src_priority = original_cm->priority;
src_dscp = original_cm->dscp >> SFE_IPV6_DSCP_SHIFT;
sfe_ipv6_connection_match_update_summary_stats(original_cm, &packet, &byte);
sfe_ipv6_connection_match_update_summary_stats(reply_cm, &packet, &byte);
src_rx_packets = original_cm->rx_packet_count64;
src_rx_bytes = original_cm->rx_byte_count64;
src_mark = original_cm->mark;
original_fast_xmit = original_cm->flags & SFE_IPV6_CONNECTION_MATCH_FLAG_FAST_XMIT;
dest_dev = c->reply_dev;
dest_ip = c->dest_ip[0];
dest_ip_xlate = c->dest_ip_xlate[0];
dest_port = c->dest_port;
dest_port_xlate = c->dest_port_xlate;
dest_priority = reply_cm->priority;
dest_dscp = reply_cm->dscp >> SFE_IPV6_DSCP_SHIFT;
dest_rx_packets = reply_cm->rx_packet_count64;
dest_rx_bytes = reply_cm->rx_byte_count64;
last_sync_jiffies = get_jiffies_64() - c->last_sync_jiffies;
original_cm_flags = original_cm->flags;
pppoe_session_id = original_cm->pppoe_session_id;
ether_addr_copy(pppoe_remote_mac, original_cm->pppoe_remote_mac);
dest_mark = reply_cm->mark;
reply_fast_xmit = reply_cm->flags & SFE_IPV6_CONNECTION_MATCH_FLAG_FAST_XMIT;
original_cm_sawf_valid = original_cm->sawf_valid;
reply_cm_sawf_valid = reply_cm->sawf_valid;
flow_service_class = SFE_GET_SAWF_SERVICE_CLASS(original_cm->mark);
flow_msduq = SFE_GET_SAWF_MSDUQ(original_cm->mark);
return_service_class = SFE_GET_SAWF_SERVICE_CLASS(reply_cm->mark);
return_msduq = SFE_GET_SAWF_MSDUQ(reply_cm->mark);
#ifdef CONFIG_NF_FLOW_COOKIE
src_flow_cookie = original_cm->flow_cookie;
dst_flow_cookie = reply_cm->flow_cookie;
#endif
spin_unlock_bh(&si->lock);
bytes_read = snprintf(msg, CHAR_DEV_MSG_SIZE, "\t\t<connection "
"protocol=\"%u\" "
"src_dev=\"%s\" "
"src_ip=\"%pI6\" src_ip_xlate=\"%pI6\" "
"src_port=\"%u\" src_port_xlate=\"%u\" "
"src_priority=\"%u\" src_dscp=\"%u\" "
"src_rx_pkts=\"%llu\" src_rx_bytes=\"%llu\" "
"src_mark=\"%08x\" "
"src_fast_xmit=\"%s\" "
"dest_dev=\"%s\" "
"dest_ip=\"%pI6\" dest_ip_xlate=\"%pI6\" "
"dest_port=\"%u\" dest_port_xlate=\"%u\" "
"dest_priority=\"%u\" dest_dscp=\"%u\" "
"dest_rx_pkts=\"%llu\" dest_rx_bytes=\"%llu\" "
"dest_mark=\"%08x\" "
"reply_fast_xmit=\"%s\" "
#ifdef CONFIG_NF_FLOW_COOKIE
"src_flow_cookie=\"%d\" dst_flow_cookie=\"%d\" "
#endif
"last_sync=\"%llu\" ",
protocol,
src_dev->name,
&src_ip, &src_ip_xlate,
ntohs(src_port), ntohs(src_port_xlate),
src_priority, src_dscp,
src_rx_packets, src_rx_bytes,
src_mark,
original_fast_xmit ? "Yes" : "No",
dest_dev->name,
&dest_ip, &dest_ip_xlate,
ntohs(dest_port), ntohs(dest_port_xlate),
dest_priority, dest_dscp,
dest_rx_packets, dest_rx_bytes,
dest_mark,
reply_fast_xmit ? "Yes" : "No",
#ifdef CONFIG_NF_FLOW_COOKIE
src_flow_cookie, dst_flow_cookie,
#endif
last_sync_jiffies);
if (original_cm_flags &= (SFE_IPV6_CONNECTION_MATCH_FLAG_PPPOE_DECAP | SFE_IPV6_CONNECTION_MATCH_FLAG_PPPOE_ENCAP)) {
bytes_read += snprintf(msg + bytes_read, CHAR_DEV_MSG_SIZE, "pppoe_session_id=\"%u\" pppoe_server_MAC=\"%pM\" ",
pppoe_session_id, pppoe_remote_mac);
}
if (original_cm_sawf_valid) {
bytes_read += snprintf(msg + bytes_read, CHAR_DEV_MSG_SIZE, "flow_service_class=\"%d\" flow_msduq= \"0x%x\" ",
flow_service_class, flow_msduq);
}
if (reply_cm_sawf_valid) {
bytes_read += snprintf(msg + bytes_read, CHAR_DEV_MSG_SIZE, "return_service_class=\"%d\" return_msduq= \"0x%x\" ",
return_service_class, return_msduq);
}
bytes_read += snprintf(msg + bytes_read, CHAR_DEV_MSG_SIZE, ")/>\n");
if (copy_to_user(buffer + *total_read, msg, CHAR_DEV_MSG_SIZE)) {
return false;
}
*length -= bytes_read;
*total_read += bytes_read;
return true;
}
/*
* sfe_ipv6_debug_dev_read_connections_end()
* Generate part of the XML output.
*/
static bool sfe_ipv6_debug_dev_read_connections_end(struct sfe_ipv6 *si, char *buffer, char *msg, size_t *length,
int *total_read, struct sfe_ipv6_debug_xml_write_state *ws)
{
int bytes_read;
bytes_read = snprintf(msg, CHAR_DEV_MSG_SIZE, "\t</connections>\n");
if (copy_to_user(buffer + *total_read, msg, CHAR_DEV_MSG_SIZE)) {
return false;
}
*length -= bytes_read;
*total_read += bytes_read;
ws->state++;
return true;
}
/*
* sfe_ipv6_debug_dev_read_exceptions_start()
* Generate part of the XML output.
*/
static bool sfe_ipv6_debug_dev_read_exceptions_start(struct sfe_ipv6 *si, char *buffer, char *msg, size_t *length,
int *total_read, struct sfe_ipv6_debug_xml_write_state *ws)
{
int bytes_read;
bytes_read = snprintf(msg, CHAR_DEV_MSG_SIZE, "\t<exceptions>\n");
if (copy_to_user(buffer + *total_read, msg, CHAR_DEV_MSG_SIZE)) {
return false;
}
*length -= bytes_read;
*total_read += bytes_read;
ws->state++;
return true;
}
/*
* sfe_ipv6_debug_dev_read_exceptions_exception()
* Generate part of the XML output.
*/
static bool sfe_ipv6_debug_dev_read_exceptions_exception(struct sfe_ipv6 *si, char *buffer, char *msg, size_t *length,
int *total_read, struct sfe_ipv6_debug_xml_write_state *ws)
{
int i;
u64 val = 0;
for_each_possible_cpu(i) {
const struct sfe_ipv6_stats *s = per_cpu_ptr(si->stats_pcpu, i);
val += s->exception_events64[ws->iter_exception];
}
if (val) {
int bytes_read;
bytes_read = snprintf(msg, CHAR_DEV_MSG_SIZE,
"\t\t<exception name=\"%s\" count=\"%llu\" />\n",
sfe_ipv6_exception_events_string[ws->iter_exception],
val);
if (copy_to_user(buffer + *total_read, msg, CHAR_DEV_MSG_SIZE)) {
return false;
}
*length -= bytes_read;
*total_read += bytes_read;
}
ws->iter_exception++;
if (ws->iter_exception >= SFE_IPV6_EXCEPTION_EVENT_LAST) {
ws->iter_exception = 0;
ws->state++;
}
return true;
}
/*
* sfe_ipv6_debug_dev_read_exceptions_end()
* Generate part of the XML output.
*/
static bool sfe_ipv6_debug_dev_read_exceptions_end(struct sfe_ipv6 *si, char *buffer, char *msg, size_t *length,
int *total_read, struct sfe_ipv6_debug_xml_write_state *ws)
{
int bytes_read;
bytes_read = snprintf(msg, CHAR_DEV_MSG_SIZE, "\t</exceptions>\n");
if (copy_to_user(buffer + *total_read, msg, CHAR_DEV_MSG_SIZE)) {
return false;
}
*length -= bytes_read;
*total_read += bytes_read;
ws->state++;
return true;
}
/*
* sfe_ipv6_debug_dev_read_stats()
* Generate part of the XML output.
*/
static bool sfe_ipv6_debug_dev_read_stats(struct sfe_ipv6 *si, char *buffer, char *msg, size_t *length,
int *total_read, struct sfe_ipv6_debug_xml_write_state *ws)
{
int bytes_read;
struct sfe_ipv6_stats stats;
unsigned int num_conn;
sfe_ipv6_update_summary_stats(si, &stats);
spin_lock_bh(&si->lock);
num_conn = si->num_connections;
spin_unlock_bh(&si->lock);
bytes_read = snprintf(msg, CHAR_DEV_MSG_SIZE, "\t<stats "
"num_connections=\"%u\" "
"pkts_dropped=\"%llu\" "
"pkts_fast_xmited=\"%llu\" "
"pkts_forwarded=\"%llu\" pkts_not_forwarded=\"%llu\" "
"create_requests=\"%llu\" create_collisions=\"%llu\" "
"create_failures=\"%llu\" "
"destroy_requests=\"%llu\" destroy_misses=\"%llu\" "
"flushes=\"%llu\" "
"hash_hits=\"%llu\" hash_reorders=\"%llu\" "
"pppoe_encap_pkts_fwded=\"%llu\" "
"pppoe_decap_pkts_fwded=\"%llu\" "
"pppoe_bridge_pkts_fwded=\"%llu\" "
"pppoe_bridge_pkts_3tuple_fwded=\"%llu\" />\n",
num_conn,
stats.packets_dropped64,
stats.packets_fast_xmited64,
stats.packets_forwarded64,
stats.packets_not_forwarded64,
stats.connection_create_requests64,
stats.connection_create_collisions64,
stats.connection_create_failures64,
stats.connection_destroy_requests64,
stats.connection_destroy_misses64,
stats.connection_flushes64,
stats.connection_match_hash_hits64,
stats.connection_match_hash_reorders64,
stats.pppoe_encap_packets_forwarded64,
stats.pppoe_decap_packets_forwarded64,
stats.pppoe_bridge_packets_forwarded64,
stats.pppoe_bridge_packets_3tuple_forwarded64);
if (copy_to_user(buffer + *total_read, msg, CHAR_DEV_MSG_SIZE)) {
return false;
}
*length -= bytes_read;
*total_read += bytes_read;
ws->state++;
return true;
}
/*
* sfe_ipv6_debug_dev_read_end()
* Generate part of the XML output.
*/
static bool sfe_ipv6_debug_dev_read_end(struct sfe_ipv6 *si, char *buffer, char *msg, size_t *length,
int *total_read, struct sfe_ipv6_debug_xml_write_state *ws)
{
int bytes_read;
bytes_read = snprintf(msg, CHAR_DEV_MSG_SIZE, "</sfe_ipv6>\n");
if (copy_to_user(buffer + *total_read, msg, CHAR_DEV_MSG_SIZE)) {
return false;
}
*length -= bytes_read;
*total_read += bytes_read;
ws->state++;
return true;
}
/*
* Array of write functions that write various XML elements that correspond to
* our XML output state machine.
*/
static sfe_ipv6_debug_xml_write_method_t sfe_ipv6_debug_xml_write_methods[SFE_IPV6_DEBUG_XML_STATE_DONE] = {
sfe_ipv6_debug_dev_read_start,
sfe_ipv6_debug_dev_read_connections_start,
sfe_ipv6_debug_dev_read_connections_connection,
sfe_ipv6_debug_dev_read_connections_end,
sfe_ipv6_debug_dev_read_exceptions_start,
sfe_ipv6_debug_dev_read_exceptions_exception,
sfe_ipv6_debug_dev_read_exceptions_end,
sfe_ipv6_debug_dev_read_stats,
sfe_ipv6_debug_dev_read_end,
};
/*
* sfe_ipv6_debug_dev_read()
* Send info to userspace upon read request from user
*/
static ssize_t sfe_ipv6_debug_dev_read(struct file *filp, char *buffer, size_t length, loff_t *offset)
{
char msg[CHAR_DEV_MSG_SIZE];
int total_read = 0;
struct sfe_ipv6_debug_xml_write_state *ws;
struct sfe_ipv6 *si = &__si6;
ws = (struct sfe_ipv6_debug_xml_write_state *)filp->private_data;
while ((ws->state != SFE_IPV6_DEBUG_XML_STATE_DONE) && (length > CHAR_DEV_MSG_SIZE)) {
if ((sfe_ipv6_debug_xml_write_methods[ws->state])(si, buffer, msg, &length, &total_read, ws)) {
continue;
}
}
return total_read;
}
/*
* sfe_ipv6_debug_dev_open()
*/
static int sfe_ipv6_debug_dev_open(struct inode *inode, struct file *file)
{
struct sfe_ipv6_debug_xml_write_state *ws;
ws = (struct sfe_ipv6_debug_xml_write_state *)file->private_data;
if (ws) {
return 0;
}
ws = kzalloc(sizeof(struct sfe_ipv6_debug_xml_write_state), GFP_KERNEL);
if (!ws) {
return -ENOMEM;
}
ws->state = SFE_IPV6_DEBUG_XML_STATE_START;
file->private_data = ws;
return 0;
}
/*
* sfe_ipv6_debug_dev_release()
*/
static int sfe_ipv6_debug_dev_release(struct inode *inode, struct file *file)
{
struct sfe_ipv6_debug_xml_write_state *ws;
ws = (struct sfe_ipv6_debug_xml_write_state *)file->private_data;
if (ws) {
/*
* We've finished with our output so free the write state.
*/
kfree(ws);
file->private_data = NULL;
}
return 0;
}
/*
* File operations used in the debug char device
*/
static struct file_operations sfe_ipv6_debug_dev_fops = {
.read = sfe_ipv6_debug_dev_read,
.open = sfe_ipv6_debug_dev_open,
.release = sfe_ipv6_debug_dev_release
};
#ifdef CONFIG_NF_FLOW_COOKIE
/*
* sfe_ipv6_register_flow_cookie_cb
* register a function in SFE to let SFE use this function to configure flow cookie for a flow
*
* Hardware driver which support flow cookie should register a callback function in SFE. Then SFE
* can use this function to configure flow cookie for a flow.
* return: 0, success; !=0, fail
*/
int sfe_ipv6_register_flow_cookie_cb(sfe_ipv6_flow_cookie_set_func_t cb)
{
struct sfe_ipv6 *si = &__si6;
BUG_ON(!cb);
if (si->flow_cookie_set_func) {
return -1;
}
rcu_assign_pointer(si->flow_cookie_set_func, cb);
return 0;
}
/*
* sfe_ipv6_unregister_flow_cookie_cb
* unregister function which is used to configure flow cookie for a flow
*
* return: 0, success; !=0, fail
*/
int sfe_ipv6_unregister_flow_cookie_cb(sfe_ipv6_flow_cookie_set_func_t cb)
{
struct sfe_ipv6 *si = &__si6;
RCU_INIT_POINTER(si->flow_cookie_set_func, NULL);
return 0;
}
/*
* sfe_ipv6_get_flow_cookie()
*/
static ssize_t sfe_ipv6_get_flow_cookie(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct sfe_ipv6 *si = &__si6;
return snprintf(buf, (ssize_t)PAGE_SIZE, "%d\n", si->flow_cookie_enable);
}
/*
* sfe_ipv6_set_flow_cookie()
*/
static ssize_t sfe_ipv6_set_flow_cookie(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct sfe_ipv6 *si = &__si6;
si->flow_cookie_enable = strict_strtol(buf, NULL, 0);
return size;
}
/*
* sysfs attributes.
*/
static const struct device_attribute sfe_ipv6_flow_cookie_attr =
__ATTR(flow_cookie_enable, S_IWUSR | S_IRUGO, sfe_ipv6_get_flow_cookie, sfe_ipv6_set_flow_cookie);
#endif /*CONFIG_NF_FLOW_COOKIE*/
/*
* sfe_ipv6_get_cpu()
*/
static ssize_t sfe_ipv6_get_cpu(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct sfe_ipv6 *si = &__si6;
return snprintf(buf, (ssize_t)PAGE_SIZE, "%d\n", si->work_cpu);
}
/*
* sfe_ipv6_set_cpu()
*/
static ssize_t sfe_ipv6_set_cpu(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
struct sfe_ipv6 *si = &__si6;
int work_cpu;
work_cpu = simple_strtol(buf, NULL, 0);
if ((work_cpu >= 0) && (work_cpu <= NR_CPUS)) {
si->work_cpu = work_cpu;
} else {
dev_err(dev, "%s is not in valid range[0,%d]", buf, NR_CPUS);
}
return size;
}
/*
* sysfs attributes.
*/
static const struct device_attribute sfe_ipv6_cpu_attr =
__ATTR(stat_work_cpu, S_IWUSR | S_IRUGO, sfe_ipv6_get_cpu, sfe_ipv6_set_cpu);
/*
* sfe_ipv6_hash_init()
* Initialize conn match hash lists
*/
static void sfe_ipv6_conn_match_hash_init(struct sfe_ipv6 *si, int len)
{
struct hlist_head *hash_list = si->hlist_conn_match_hash_head;
int i;
for (i = 0; i < len; i++) {
INIT_HLIST_HEAD(&hash_list[i]);
}
}
#ifdef SFE_PROCESS_LOCAL_OUT
/*
* sfe_ipv6_local_out()
* Called for packets from ip_local_out() - post encapsulation & other packets
*/
static unsigned int sfe_ipv6_local_out(void *priv,
struct sk_buff *skb,
const struct nf_hook_state *nhs)
{
struct sfe_l2_info l2_info = {0};
DEBUG_TRACE("sfe: sfe_ipv6_local_out hook called.\n");
if (likely(skb->skb_iif)) {
return sfe_ipv6_recv(skb->dev, skb, &l2_info, true) ? NF_STOLEN : NF_ACCEPT;
}
return NF_ACCEPT;
}
/*
* struct nf_hook_ops sfe_ipv6_ops_local_out[]
* Hooks into netfilter local out packet monitoring points.
*/
static struct nf_hook_ops sfe_ipv6_ops_local_out[] __read_mostly = {
/*
* Local out routing hook is used to monitor packets.
*/
{
.hook = sfe_ipv6_local_out,
.pf = PF_INET6,
.hooknum = NF_INET_LOCAL_OUT,
.priority = NF_IP6_PRI_FIRST,
},
};
#endif
/*
* sfe_ipv6_init()
*/
int sfe_ipv6_init(void)
{
struct sfe_ipv6 *si = &__si6;
int result = -1;
DEBUG_INFO("SFE IPv6 init\n");
sfe_ipv6_conn_match_hash_init(si, ARRAY_SIZE(si->hlist_conn_match_hash_head));
si->stats_pcpu = alloc_percpu_gfp(struct sfe_ipv6_stats, GFP_KERNEL | __GFP_ZERO);
if (!si->stats_pcpu) {
DEBUG_ERROR("failed to allocate stats memory for sfe_ipv6\n");
goto exit0;
}
/*
* Allocate per cpu per service class memory.
*/
si->stats_pcpu_psc = alloc_percpu_gfp(struct sfe_ipv6_service_class_stats_db,
GFP_KERNEL | __GFP_ZERO);
if (!si->stats_pcpu_psc) {
DEBUG_ERROR("failed to allocate per cpu per service clas stats memory\n");
goto exit1;
}
/*
* Create sys/sfe_ipv6
*/
si->sys_ipv6 = kobject_create_and_add("sfe_ipv6", NULL);
if (!si->sys_ipv6) {
DEBUG_ERROR("failed to register sfe_ipv6\n");
goto exit2;
}
/*
* Create files, one for each parameter supported by this module.
*/
result = sysfs_create_file(si->sys_ipv6, &sfe_ipv6_debug_dev_attr.attr);
if (result) {
DEBUG_ERROR("failed to register debug dev file: %d\n", result);
goto exit3;
}
result = sysfs_create_file(si->sys_ipv6, &sfe_ipv6_cpu_attr.attr);
if (result) {
DEBUG_ERROR("failed to register debug dev file: %d\n", result);
goto exit4;
}
#ifdef CONFIG_NF_FLOW_COOKIE
result = sysfs_create_file(si->sys_ipv6, &sfe_ipv6_flow_cookie_attr.attr);
if (result) {
DEBUG_ERROR("failed to register flow cookie enable file: %d\n", result);
goto exit5;
}
#endif /* CONFIG_NF_FLOW_COOKIE */
#ifdef SFE_PROCESS_LOCAL_OUT
#if (LINUX_VERSION_CODE < KERNEL_VERSION(4, 13, 0))
result = nf_register_hooks(sfe_ipv6_ops_local_out, ARRAY_SIZE(sfe_ipv6_ops_local_out));
#else
result = nf_register_net_hooks(&init_net, sfe_ipv6_ops_local_out, ARRAY_SIZE(sfe_ipv6_ops_local_out));
#endif
if (result < 0) {
DEBUG_ERROR("can't register nf local out hook: %d\n", result);
goto exit6;
}
DEBUG_INFO("Register nf local out hook success: %d\n", result);
#endif
/*
* Register our debug char device.
*/
result = register_chrdev(0, "sfe_ipv6", &sfe_ipv6_debug_dev_fops);
if (result < 0) {
DEBUG_ERROR("Failed to register chrdev: %d\n", result);
goto exit7;
}
si->debug_dev = result;
si->work_cpu = WORK_CPU_UNBOUND;
/*
* Create work to handle periodic statistics.
*/
INIT_DELAYED_WORK(&(si->sync_dwork), sfe_ipv6_periodic_sync);
sfe_ipv6_sync_many_msg = kzalloc(PAGE_SIZE, GFP_KERNEL);
if(!sfe_ipv6_sync_many_msg) {
goto exit8;
}
sfe_ipv6_msg_init(sfe_ipv6_sync_many_msg, SFE_SPECIAL_INTERFACE_IPV6,
SFE_TX_CONN_STATS_SYNC_MANY_MSG,
sizeof(struct sfe_ipv4_conn_sync_many_msg),
NULL,
NULL);
sfe_ipv6_sync_max_number = (PAGE_SIZE - sizeof(struct sfe_ipv6_msg)) / sizeof(struct sfe_ipv6_conn_sync);
spin_lock_init(&si->lock);
return 0;
exit8:
unregister_chrdev(si->debug_dev, "sfe_ipv6");
exit7:
#ifdef SFE_PROCESS_LOCAL_OUT
#if (LINUX_VERSION_CODE < KERNEL_VERSION(4, 13, 0))
DEBUG_TRACE("sfe: Unregister local out hook\n");
nf_unregister_hooks(sfe_ipv6_ops_local_out, ARRAY_SIZE(sfe_ipv6_ops_local_out));
#else
DEBUG_TRACE("sfe: Unregister local out hook\n");
nf_unregister_net_hooks(&init_net, sfe_ipv6_ops_local_out, ARRAY_SIZE(sfe_ipv6_ops_local_out));
#endif
exit6:
#endif
#ifdef CONFIG_NF_FLOW_COOKIE
sysfs_remove_file(si->sys_ipv6, &sfe_ipv6_flow_cookie_attr.attr);
exit5:
#endif /* CONFIG_NF_FLOW_COOKIE */
sysfs_remove_file(si->sys_ipv6, &sfe_ipv6_cpu_attr.attr);
exit4:
sysfs_remove_file(si->sys_ipv6, &sfe_ipv6_debug_dev_attr.attr);
exit3:
kobject_put(si->sys_ipv6);
exit2:
free_percpu(si->stats_pcpu_psc);
exit1:
free_percpu(si->stats_pcpu);
exit0:
return result;
}
/*
* sfe_ipv6_exit()
*/
void sfe_ipv6_exit(void)
{
struct sfe_ipv6 *si = &__si6;
DEBUG_INFO("SFE IPv6 exit\n");
/*
* Destroy all connections.
*/
sfe_ipv6_destroy_all_rules_for_dev(NULL);
cancel_delayed_work(&si->sync_dwork);
unregister_chrdev(si->debug_dev, "sfe_ipv6");
free_percpu(si->stats_pcpu);
free_percpu(si->stats_pcpu_psc);
#ifdef SFE_PROCESS_LOCAL_OUT
#if (LINUX_VERSION_CODE < KERNEL_VERSION(4, 13, 0))
DEBUG_TRACE("sfe: Unregister local out hook\n");
nf_unregister_hooks(sfe_ipv6_ops_local_out, ARRAY_SIZE(sfe_ipv6_ops_local_out));
#else
DEBUG_TRACE("sfe: Unregister local out hook\n");
nf_unregister_net_hooks(&init_net, sfe_ipv6_ops_local_out, ARRAY_SIZE(sfe_ipv6_ops_local_out));
#endif
#endif
#ifdef CONFIG_NF_FLOW_COOKIE
sysfs_remove_file(si->sys_ipv6, &sfe_ipv6_flow_cookie_attr.attr);
#endif /* CONFIG_NF_FLOW_COOKIE */
sysfs_remove_file(si->sys_ipv6, &sfe_ipv6_cpu_attr.attr);
sysfs_remove_file(si->sys_ipv6, &sfe_ipv6_debug_dev_attr.attr);
kobject_put(si->sys_ipv6);
}
#ifdef CONFIG_NF_FLOW_COOKIE
EXPORT_SYMBOL(sfe_ipv6_register_flow_cookie_cb);
EXPORT_SYMBOL(sfe_ipv6_unregister_flow_cookie_cb);
#endif