| /* |
| * sfe-cm.c |
| * Shortcut forwarding engine connection manager. |
| * |
| * Copyright (c) 2013-2015 Qualcomm Atheros, Inc. |
| * |
| * All Rights Reserved. |
| * Qualcomm Atheros Confidential and Proprietary. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/sysfs.h> |
| #include <linux/skbuff.h> |
| #include <net/route.h> |
| #include <net/ip6_route.h> |
| #include <net/addrconf.h> |
| #include <linux/inetdevice.h> |
| #include <linux/netfilter_bridge.h> |
| #include <linux/netfilter_ipv6.h> |
| #include <net/netfilter/nf_conntrack_acct.h> |
| #include <net/netfilter/nf_conntrack_helper.h> |
| #include <net/netfilter/nf_conntrack_zones.h> |
| #include <net/netfilter/nf_conntrack_core.h> |
| #include <linux/if_bridge.h> |
| |
| #include "sfe.h" |
| #include "sfe_cm.h" |
| #include "sfe_backport.h" |
| |
| /* |
| * Per-module structure. |
| */ |
| struct sfe_cm { |
| spinlock_t lock; /* Lock for SMP correctness */ |
| |
| /* |
| * Control state. |
| */ |
| struct kobject *sys_sfe_cm; /* sysfs linkage */ |
| |
| /* |
| * Callback notifiers. |
| */ |
| struct notifier_block dev_notifier; |
| /* Device notifier */ |
| struct notifier_block inet_notifier; |
| /* IPv4 notifier */ |
| struct notifier_block inet6_notifier; |
| /* IPv6 notifier */ |
| }; |
| |
| struct sfe_cm __sc; |
| |
| /* |
| * Expose the hook for the receive processing. |
| */ |
| extern int (*athrs_fast_nat_recv)(struct sk_buff *skb); |
| |
| /* |
| * Expose what should be a static flag in the TCP connection tracker. |
| */ |
| extern int nf_ct_tcp_no_window_check; |
| |
| /* |
| * sfe_cm_recv() |
| * Handle packet receives. |
| * |
| * Returns 1 if the packet is forwarded or 0 if it isn't. |
| */ |
| int sfe_cm_recv(struct sk_buff *skb) |
| { |
| struct net_device *dev; |
| |
| /* |
| * We know that for the vast majority of packets we need the transport |
| * layer header so we may as well start to fetch it now! |
| */ |
| prefetch(skb->data + 32); |
| barrier(); |
| |
| dev = skb->dev; |
| |
| /* |
| * We're only interested in IPv4 and IPv6 packets. |
| */ |
| if (likely(htons(ETH_P_IP) == skb->protocol)) { |
| #if (SFE_HOOK_ABOVE_BRIDGE) |
| struct in_device *in_dev; |
| |
| /* |
| * Does our input device support IP processing? |
| */ |
| in_dev = (struct in_device *)dev->ip_ptr; |
| if (unlikely(!in_dev)) { |
| DEBUG_TRACE("no IP processing for device: %s\n", dev->name); |
| return 0; |
| } |
| |
| /* |
| * Does it have an IP address? If it doesn't then we can't do anything |
| * interesting here! |
| */ |
| if (unlikely(!in_dev->ifa_list)) { |
| DEBUG_TRACE("no IP address for device: %s\n", dev->name); |
| return 0; |
| } |
| #endif |
| |
| return sfe_ipv4_recv(dev, skb); |
| } |
| |
| if (likely(htons(ETH_P_IPV6) == skb->protocol)) { |
| #if (SFE_HOOK_ABOVE_BRIDGE) |
| struct inet6_dev *in_dev; |
| |
| /* |
| * Does our input device support IPv6 processing? |
| */ |
| in_dev = (struct inet6_dev *)dev->ip6_ptr; |
| if (unlikely(!in_dev)) { |
| DEBUG_TRACE("no IPv6 processing for device: %s\n", dev->name); |
| return 0; |
| } |
| |
| /* |
| * Does it have an IPv6 address? If it doesn't then we can't do anything |
| * interesting here! |
| */ |
| if (unlikely(list_empty(&in_dev->addr_list))) { |
| DEBUG_TRACE("no IPv6 address for device: %s\n", dev->name); |
| return 0; |
| } |
| #endif |
| |
| return sfe_ipv6_recv(dev, skb); |
| } |
| |
| DEBUG_TRACE("not IP packet\n"); |
| return 0; |
| } |
| |
| /* |
| * sfe_cm_find_dev_and_mac_addr() |
| * Find the device and MAC address for a given IPv4/IPv6 address. |
| * |
| * Returns true if we find the device and MAC address, otherwise false. |
| * |
| * We look up the rtable entry for the address and, from its neighbour |
| * structure, obtain the hardware address. This means this function also |
| * works if the neighbours are routers too. |
| */ |
| static bool sfe_cm_find_dev_and_mac_addr(sfe_ip_addr_t *addr, struct net_device **dev, uint8_t *mac_addr, int is_v4) |
| { |
| struct neighbour *neigh; |
| struct rtable *rt; |
| struct rt6_info *rt6; |
| struct dst_entry *dst; |
| struct net_device *mac_dev; |
| |
| /* |
| * Look up the rtable entry for the IP address then get the hardware |
| * address from its neighbour structure. This means this work when the |
| * neighbours are routers too. |
| */ |
| if (likely(is_v4)) { |
| rt = ip_route_output(&init_net, addr->ip, 0, 0, 0); |
| if (unlikely(IS_ERR(rt))) { |
| goto ret_fail; |
| } |
| |
| dst = (struct dst_entry *)rt; |
| } else { |
| rt6 = rt6_lookup(&init_net, (struct in6_addr *)addr->ip6, 0, 0, 0); |
| if (!rt6) { |
| goto ret_fail; |
| } |
| |
| dst = (struct dst_entry *)rt6; |
| } |
| |
| rcu_read_lock(); |
| neigh = dst_neigh_lookup(dst, addr); |
| if (unlikely(!neigh)) { |
| rcu_read_unlock(); |
| dst_release(dst); |
| goto ret_fail; |
| } |
| |
| if (unlikely(!(neigh->nud_state & NUD_VALID))) { |
| rcu_read_unlock(); |
| neigh_release(neigh); |
| dst_release(dst); |
| goto ret_fail; |
| } |
| |
| mac_dev = neigh->dev; |
| if (!mac_dev) { |
| rcu_read_unlock(); |
| neigh_release(neigh); |
| dst_release(dst); |
| goto ret_fail; |
| } |
| |
| memcpy(mac_addr, neigh->ha, (size_t)mac_dev->addr_len); |
| |
| dev_hold(mac_dev); |
| *dev = mac_dev; |
| rcu_read_unlock(); |
| neigh_release(neigh); |
| dst_release(dst); |
| |
| return true; |
| |
| ret_fail: |
| if (is_v4) { |
| DEBUG_TRACE("failed to find MAC address for IP: %pI4\n", &addr->ip); |
| |
| } else { |
| DEBUG_TRACE("failed to find MAC address for IP: %pI6\n", addr->ip6); |
| } |
| |
| return false; |
| } |
| |
| /* |
| * sfe_cm_post_routing() |
| * Called for packets about to leave the box - either locally generated or forwarded from another interface |
| */ |
| static unsigned int sfe_cm_post_routing(struct sk_buff *skb, int is_v4) |
| { |
| struct sfe_connection_create sic; |
| struct net_device *in; |
| struct nf_conn *ct; |
| enum ip_conntrack_info ctinfo; |
| struct net_device *dev; |
| struct net_device *src_dev; |
| struct net_device *dest_dev; |
| struct net_device *src_br_dev = NULL; |
| struct net_device *dest_br_dev = NULL; |
| struct nf_conntrack_tuple orig_tuple; |
| struct nf_conntrack_tuple reply_tuple; |
| |
| /* |
| * Don't process broadcast or multicast packets. |
| */ |
| if (unlikely(skb->pkt_type == PACKET_BROADCAST)) { |
| DEBUG_TRACE("broadcast, ignoring\n"); |
| return NF_ACCEPT; |
| } |
| if (unlikely(skb->pkt_type == PACKET_MULTICAST)) { |
| DEBUG_TRACE("multicast, ignoring\n"); |
| return NF_ACCEPT; |
| } |
| |
| /* |
| * Don't process packets that are not being forwarded. |
| */ |
| in = dev_get_by_index(&init_net, skb->skb_iif); |
| if (!in) { |
| DEBUG_TRACE("packet not forwarding\n"); |
| return NF_ACCEPT; |
| } |
| |
| dev_put(in); |
| |
| /* |
| * Don't process packets that aren't being tracked by conntrack. |
| */ |
| ct = nf_ct_get(skb, &ctinfo); |
| if (unlikely(!ct)) { |
| DEBUG_TRACE("no conntrack connection, ignoring\n"); |
| return NF_ACCEPT; |
| } |
| |
| /* |
| * Don't process untracked connections. |
| */ |
| if (unlikely(ct == &nf_conntrack_untracked)) { |
| DEBUG_TRACE("untracked connection\n"); |
| return NF_ACCEPT; |
| } |
| |
| /* |
| * Unconfirmed connection may be dropped by Linux at the final step, |
| * So we don't process unconfirmed connections. |
| */ |
| if (!nf_ct_is_confirmed(ct)) { |
| DEBUG_TRACE("unconfirmed connection\n"); |
| return NF_ACCEPT; |
| } |
| |
| /* |
| * Don't process connections that require support from a 'helper' (typically a NAT ALG). |
| */ |
| if (unlikely(nfct_help(ct))) { |
| DEBUG_TRACE("connection has helper\n"); |
| return NF_ACCEPT; |
| } |
| |
| /* |
| * Look up the details of our connection in conntrack. |
| * |
| * Note that the data we get from conntrack is for the "ORIGINAL" direction |
| * but our packet may actually be in the "REPLY" direction. |
| */ |
| orig_tuple = ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple; |
| reply_tuple = ct->tuplehash[IP_CT_DIR_REPLY].tuple; |
| sic.protocol = (int32_t)orig_tuple.dst.protonum; |
| |
| /* |
| * Get addressing information, non-NAT first |
| */ |
| if (likely(is_v4)) { |
| sic.src_ip.ip = (__be32)orig_tuple.src.u3.ip; |
| sic.dest_ip.ip = (__be32)orig_tuple.dst.u3.ip; |
| |
| if (ipv4_is_multicast(sic.src_ip.ip) || ipv4_is_multicast(sic.dest_ip.ip)) { |
| DEBUG_TRACE("multicast address\n"); |
| return NF_ACCEPT; |
| } |
| |
| /* |
| * NAT'ed addresses - note these are as seen from the 'reply' direction |
| * When NAT does not apply to this connection these will be identical to the above. |
| */ |
| sic.src_ip_xlate.ip = (__be32)reply_tuple.dst.u3.ip; |
| sic.dest_ip_xlate.ip = (__be32)reply_tuple.src.u3.ip; |
| } else { |
| sic.src_ip.ip6[0] = *((struct sfe_ipv6_addr *)&orig_tuple.src.u3.in6); |
| sic.dest_ip.ip6[0] = *((struct sfe_ipv6_addr *)&orig_tuple.dst.u3.in6); |
| |
| if (ipv6_addr_is_multicast((struct in6_addr *)sic.src_ip.ip6) || |
| ipv6_addr_is_multicast((struct in6_addr *)sic.dest_ip.ip6)) { |
| DEBUG_TRACE("multicast address\n"); |
| return NF_ACCEPT; |
| } |
| |
| /* |
| * NAT'ed addresses - note these are as seen from the 'reply' direction |
| * When NAT does not apply to this connection these will be identical to the above. |
| */ |
| sic.src_ip_xlate.ip6[0] = *((struct sfe_ipv6_addr *)&reply_tuple.dst.u3.in6); |
| sic.dest_ip_xlate.ip6[0] = *((struct sfe_ipv6_addr *)&reply_tuple.src.u3.in6); |
| } |
| |
| sic.flags = 0; |
| |
| switch (sic.protocol) { |
| case IPPROTO_TCP: |
| sic.src_port = orig_tuple.src.u.tcp.port; |
| sic.dest_port = orig_tuple.dst.u.tcp.port; |
| sic.src_port_xlate = reply_tuple.dst.u.tcp.port; |
| sic.dest_port_xlate = reply_tuple.src.u.tcp.port; |
| sic.src_td_window_scale = ct->proto.tcp.seen[0].td_scale; |
| sic.src_td_max_window = ct->proto.tcp.seen[0].td_maxwin; |
| sic.src_td_end = ct->proto.tcp.seen[0].td_end; |
| sic.src_td_max_end = ct->proto.tcp.seen[0].td_maxend; |
| sic.dest_td_window_scale = ct->proto.tcp.seen[1].td_scale; |
| sic.dest_td_max_window = ct->proto.tcp.seen[1].td_maxwin; |
| sic.dest_td_end = ct->proto.tcp.seen[1].td_end; |
| sic.dest_td_max_end = ct->proto.tcp.seen[1].td_maxend; |
| if (nf_ct_tcp_no_window_check |
| || (ct->proto.tcp.seen[0].flags & IP_CT_TCP_FLAG_BE_LIBERAL) |
| || (ct->proto.tcp.seen[1].flags & IP_CT_TCP_FLAG_BE_LIBERAL)) { |
| sic.flags |= SFE_CREATE_FLAG_NO_SEQ_CHECK; |
| } |
| |
| /* |
| * Don't try to manage a non-established connection. |
| */ |
| if (!test_bit(IPS_ASSURED_BIT, &ct->status)) { |
| DEBUG_TRACE("non-established connection\n"); |
| return NF_ACCEPT; |
| } |
| |
| /* |
| * If the connection is shutting down do not manage it. |
| * state can not be SYN_SENT, SYN_RECV because connection is assured |
| * Not managed states: FIN_WAIT, CLOSE_WAIT, LAST_ACK, TIME_WAIT, CLOSE. |
| */ |
| spin_lock_bh(&ct->lock); |
| if (ct->proto.tcp.state != TCP_CONNTRACK_ESTABLISHED) { |
| spin_unlock_bh(&ct->lock); |
| DEBUG_TRACE("connection in termination state: %#x, s: %pI4:%u, d: %pI4:%u\n", |
| ct->proto.tcp.state, &sic.src_ip, ntohs(sic.src_port), |
| &sic.dest_ip, ntohs(sic.dest_port)); |
| return NF_ACCEPT; |
| } |
| spin_unlock_bh(&ct->lock); |
| break; |
| |
| case IPPROTO_UDP: |
| sic.src_port = orig_tuple.src.u.udp.port; |
| sic.dest_port = orig_tuple.dst.u.udp.port; |
| sic.src_port_xlate = reply_tuple.dst.u.udp.port; |
| sic.dest_port_xlate = reply_tuple.src.u.udp.port; |
| break; |
| |
| default: |
| DEBUG_TRACE("unhandled protocol %d\n", sic.protocol); |
| return NF_ACCEPT; |
| } |
| |
| /* |
| * Get the net device and MAC addresses that correspond to the various source and |
| * destination host addresses. |
| */ |
| if (!sfe_cm_find_dev_and_mac_addr(&sic.src_ip, &src_dev, sic.src_mac, is_v4)) { |
| return NF_ACCEPT; |
| } |
| |
| if (!sfe_cm_find_dev_and_mac_addr(&sic.src_ip_xlate, &dev, sic.src_mac_xlate, is_v4)) { |
| goto done1; |
| } |
| |
| dev_put(dev); |
| |
| if (!sfe_cm_find_dev_and_mac_addr(&sic.dest_ip, &dev, sic.dest_mac, is_v4)) { |
| goto done1; |
| } |
| |
| dev_put(dev); |
| |
| if (!sfe_cm_find_dev_and_mac_addr(&sic.dest_ip_xlate, &dest_dev, sic.dest_mac_xlate, is_v4)) { |
| goto done1; |
| } |
| |
| #if (!SFE_HOOK_ABOVE_BRIDGE) |
| /* |
| * Now our devices may actually be a bridge interface. If that's |
| * the case then we need to hunt down the underlying interface. |
| */ |
| if (src_dev->priv_flags & IFF_EBRIDGE) { |
| src_br_dev = br_port_dev_get(src_dev, sic.src_mac); |
| if (!src_br_dev) { |
| DEBUG_TRACE("no port found on bridge\n"); |
| goto done2; |
| } |
| |
| src_dev = src_br_dev; |
| } |
| |
| if (dest_dev->priv_flags & IFF_EBRIDGE) { |
| dest_br_dev = br_port_dev_get(dest_dev, sic.dest_mac_xlate); |
| if (!dest_br_dev) { |
| DEBUG_TRACE("no port found on bridge\n"); |
| goto done3; |
| } |
| |
| dest_dev = dest_br_dev; |
| } |
| #else |
| /* |
| * Our devices may actually be part of a bridge interface. If that's |
| * the case then find the bridge interface instead. |
| */ |
| if (src_dev->priv_flags & IFF_BRIDGE_PORT) { |
| src_br_dev = SFE_DEV_MASTER(src_dev); |
| if (!src_br_dev) { |
| DEBUG_TRACE("no bridge found for: %s\n", src_dev->name); |
| goto done2; |
| } |
| |
| dev_hold(src_br_dev); |
| src_dev = src_br_dev; |
| } |
| |
| if (dest_dev->priv_flags & IFF_BRIDGE_PORT) { |
| dest_br_dev = SFE_DEV_MASTER(dest_dev); |
| if (!dest_br_dev) { |
| DEBUG_TRACE("no bridge found for: %s\n", dest_dev->name); |
| goto done3; |
| } |
| |
| dev_hold(dest_br_dev); |
| dest_dev = dest_br_dev; |
| } |
| #endif |
| |
| sic.src_dev = src_dev; |
| sic.dest_dev = dest_dev; |
| |
| sic.src_mtu = src_dev->mtu; |
| sic.dest_mtu = dest_dev->mtu; |
| |
| if (likely(is_v4)) { |
| sfe_ipv4_create_rule(&sic); |
| } else { |
| sfe_ipv6_create_rule(&sic); |
| } |
| |
| /* |
| * If we had bridge ports then release them too. |
| */ |
| if (dest_br_dev) { |
| dev_put(dest_br_dev); |
| } |
| |
| done3: |
| if (src_br_dev) { |
| dev_put(src_br_dev); |
| } |
| |
| done2: |
| dev_put(dest_dev); |
| |
| done1: |
| dev_put(src_dev); |
| |
| return NF_ACCEPT; |
| } |
| |
| /* |
| * sfe_cm_ipv4_post_routing_hook() |
| * Called for packets about to leave the box - either locally generated or forwarded from another interface |
| */ |
| sfe_cm_ipv4_post_routing_hook(hooknum, ops, skb, in_unused, out, okfn) |
| { |
| return sfe_cm_post_routing(skb, true); |
| } |
| |
| /* |
| * sfe_cm_ipv6_post_routing_hook() |
| * Called for packets about to leave the box - either locally generated or forwarded from another interface |
| */ |
| sfe_cm_ipv6_post_routing_hook(hooknum, ops, skb, in_unused, out, okfn) |
| { |
| return sfe_cm_post_routing(skb, false); |
| } |
| |
| |
| #ifdef CONFIG_NF_CONNTRACK_EVENTS |
| /* |
| * sfe_cm_conntrack_event() |
| * Callback event invoked when a conntrack connection's state changes. |
| */ |
| #ifdef CONFIG_NF_CONNTRACK_CHAIN_EVENTS |
| static int sfe_cm_conntrack_event(struct notifier_block *this, |
| unsigned long events, void *ptr) |
| #else |
| static int sfe_cm_conntrack_event(unsigned int events, struct nf_ct_event *item) |
| #endif |
| { |
| #ifdef CONFIG_NF_CONNTRACK_CHAIN_EVENTS |
| struct nf_ct_event *item = ptr; |
| #endif |
| struct sfe_connection_destroy sid; |
| struct nf_conn *ct = item->ct; |
| struct nf_conntrack_tuple orig_tuple; |
| |
| /* |
| * If we don't have a conntrack entry then we're done. |
| */ |
| if (unlikely(!ct)) { |
| DEBUG_WARN("no ct in conntrack event callback\n"); |
| return NOTIFY_DONE; |
| } |
| |
| /* |
| * If this is an untracked connection then we can't have any state either. |
| */ |
| if (unlikely(ct == &nf_conntrack_untracked)) { |
| DEBUG_TRACE("ignoring untracked conn\n"); |
| return NOTIFY_DONE; |
| } |
| |
| /* |
| * We're only interested in destroy events. |
| */ |
| if (unlikely(!(events & (1 << IPCT_DESTROY)))) { |
| DEBUG_TRACE("ignoring non-destroy event\n"); |
| return NOTIFY_DONE; |
| } |
| |
| orig_tuple = ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple; |
| sid.protocol = (int32_t)orig_tuple.dst.protonum; |
| |
| /* |
| * Extract information from the conntrack connection. We're only interested |
| * in nominal connection information (i.e. we're ignoring any NAT information). |
| */ |
| switch (sid.protocol) { |
| case IPPROTO_TCP: |
| sid.src_port = orig_tuple.src.u.tcp.port; |
| sid.dest_port = orig_tuple.dst.u.tcp.port; |
| break; |
| |
| case IPPROTO_UDP: |
| sid.src_port = orig_tuple.src.u.udp.port; |
| sid.dest_port = orig_tuple.dst.u.udp.port; |
| break; |
| |
| default: |
| DEBUG_TRACE("unhandled protocol: %d\n", sid.protocol); |
| return NOTIFY_DONE; |
| } |
| |
| if (likely(nf_ct_l3num(ct) == AF_INET)) { |
| sid.src_ip.ip = (__be32)orig_tuple.src.u3.ip; |
| sid.dest_ip.ip = (__be32)orig_tuple.dst.u3.ip; |
| |
| sfe_ipv4_destroy_rule(&sid); |
| } else if (likely(nf_ct_l3num(ct) == AF_INET6)) { |
| sid.src_ip.ip6[0] = *((struct sfe_ipv6_addr *)&orig_tuple.src.u3.in6); |
| sid.dest_ip.ip6[0] = *((struct sfe_ipv6_addr *)&orig_tuple.dst.u3.in6); |
| |
| sfe_ipv6_destroy_rule(&sid); |
| } else { |
| DEBUG_TRACE("ignoring non-IPv4 and non-IPv6 connection\n"); |
| } |
| |
| return NOTIFY_DONE; |
| } |
| |
| /* |
| * Netfilter conntrack event system to monitor connection tracking changes |
| */ |
| #ifdef CONFIG_NF_CONNTRACK_CHAIN_EVENTS |
| static struct notifier_block sfe_cm_conntrack_notifier = { |
| .notifier_call = sfe_cm_conntrack_event, |
| }; |
| #else |
| static struct nf_ct_event_notifier sfe_cm_conntrack_notifier = { |
| .fcn = sfe_cm_conntrack_event, |
| }; |
| #endif |
| #endif |
| |
| /* |
| * Structure to establish a hook into the post routing netfilter point - this |
| * will pick up local outbound and packets going from one interface to another. |
| * |
| * Note: see include/linux/netfilter_ipv4.h for info related to priority levels. |
| * We want to examine packets after NAT translation and any ALG processing. |
| */ |
| static struct nf_hook_ops sfe_cm_ops_post_routing[] __read_mostly = { |
| { |
| .hook = __sfe_cm_ipv4_post_routing_hook, |
| .owner = THIS_MODULE, |
| .pf = NFPROTO_IPV4, |
| .hooknum = NF_INET_POST_ROUTING, |
| .priority = NF_IP_PRI_NAT_SRC + 1, |
| }, |
| #ifdef SFE_SUPPORT_IPV6 |
| { |
| .hook = __sfe_cm_ipv6_post_routing_hook, |
| .owner = THIS_MODULE, |
| .pf = NFPROTO_IPV6, |
| .hooknum = NF_INET_POST_ROUTING, |
| .priority = NF_IP6_PRI_NAT_SRC + 1, |
| }, |
| #endif |
| }; |
| |
| /* |
| * sfe_cm_sync_rule() |
| * Synchronize a connection's state. |
| */ |
| static void sfe_cm_sync_rule(struct sfe_connection_sync *sis) |
| { |
| struct nf_conntrack_tuple_hash *h; |
| struct nf_conntrack_tuple tuple; |
| struct nf_conn *ct; |
| SFE_NF_CONN_ACCT(acct); |
| |
| /* |
| * Create a tuple so as to be able to look up a connection |
| */ |
| memset(&tuple, 0, sizeof(tuple)); |
| tuple.src.u.all = (__be16)sis->src_port; |
| tuple.dst.dir = IP_CT_DIR_ORIGINAL; |
| tuple.dst.protonum = (uint8_t)sis->protocol; |
| tuple.dst.u.all = (__be16)sis->dest_port; |
| |
| if (sis->is_v6) { |
| tuple.src.u3.in6 = *((struct in6_addr *)sis->src_ip.ip6); |
| tuple.dst.u3.in6 = *((struct in6_addr *)sis->dest_ip.ip6); |
| tuple.src.l3num = AF_INET6; |
| |
| DEBUG_TRACE("update connection - p: %d, s: %pI6:%u, d: %pI6:%u\n", |
| (int)tuple.dst.protonum, |
| &tuple.src.u3.in6, (unsigned int)ntohs(tuple.src.u.all), |
| &tuple.dst.u3.in6, (unsigned int)ntohs(tuple.dst.u.all)); |
| } else { |
| tuple.src.u3.ip = sis->src_ip.ip; |
| tuple.dst.u3.ip = sis->dest_ip.ip; |
| tuple.src.l3num = AF_INET; |
| |
| DEBUG_TRACE("update connection - p: %d, s: %pI4:%u, d: %pI4:%u\n", |
| (int)tuple.dst.protonum, |
| &tuple.src.u3.ip, (unsigned int)ntohs(tuple.src.u.all), |
| &tuple.dst.u3.ip, (unsigned int)ntohs(tuple.dst.u.all)); |
| } |
| |
| /* |
| * Look up conntrack connection |
| */ |
| h = nf_conntrack_find_get(&init_net, NF_CT_DEFAULT_ZONE, &tuple); |
| if (unlikely(!h)) { |
| DEBUG_TRACE("no connection found\n"); |
| return; |
| } |
| |
| ct = nf_ct_tuplehash_to_ctrack(h); |
| NF_CT_ASSERT(ct->timeout.data == (unsigned long)ct); |
| |
| /* |
| * Only update if this is not a fixed timeout |
| */ |
| if (!test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status)) { |
| spin_lock_bh(&ct->lock); |
| ct->timeout.expires += sis->delta_jiffies; |
| spin_unlock_bh(&ct->lock); |
| } |
| |
| acct = nf_conn_acct_find(ct); |
| if (acct) { |
| spin_lock_bh(&ct->lock); |
| atomic64_set(&SFE_ACCT_COUNTER(acct)[IP_CT_DIR_ORIGINAL].packets, sis->src_packet_count); |
| atomic64_set(&SFE_ACCT_COUNTER(acct)[IP_CT_DIR_ORIGINAL].bytes, sis->src_byte_count); |
| atomic64_set(&SFE_ACCT_COUNTER(acct)[IP_CT_DIR_REPLY].packets, sis->dest_packet_count); |
| atomic64_set(&SFE_ACCT_COUNTER(acct)[IP_CT_DIR_REPLY].bytes, sis->dest_byte_count); |
| spin_unlock_bh(&ct->lock); |
| } |
| |
| switch (sis->protocol) { |
| case IPPROTO_TCP: |
| spin_lock_bh(&ct->lock); |
| if (ct->proto.tcp.seen[0].td_maxwin < sis->src_td_max_window) { |
| ct->proto.tcp.seen[0].td_maxwin = sis->src_td_max_window; |
| } |
| if ((int32_t)(ct->proto.tcp.seen[0].td_end - sis->src_td_end) < 0) { |
| ct->proto.tcp.seen[0].td_end = sis->src_td_end; |
| } |
| if ((int32_t)(ct->proto.tcp.seen[0].td_maxend - sis->src_td_max_end) < 0) { |
| ct->proto.tcp.seen[0].td_maxend = sis->src_td_max_end; |
| } |
| if (ct->proto.tcp.seen[1].td_maxwin < sis->dest_td_max_window) { |
| ct->proto.tcp.seen[1].td_maxwin = sis->dest_td_max_window; |
| } |
| if ((int32_t)(ct->proto.tcp.seen[1].td_end - sis->dest_td_end) < 0) { |
| ct->proto.tcp.seen[1].td_end = sis->dest_td_end; |
| } |
| if ((int32_t)(ct->proto.tcp.seen[1].td_maxend - sis->dest_td_max_end) < 0) { |
| ct->proto.tcp.seen[1].td_maxend = sis->dest_td_max_end; |
| } |
| spin_unlock_bh(&ct->lock); |
| break; |
| } |
| |
| /* |
| * Release connection |
| */ |
| nf_ct_put(ct); |
| } |
| |
| /* |
| * sfe_cm_device_event() |
| */ |
| static int sfe_cm_device_event(struct notifier_block *this, unsigned long event, void *ptr) |
| { |
| struct net_device *dev = (struct net_device *)ptr; |
| |
| switch (event) { |
| case NETDEV_DOWN: |
| if (dev) { |
| sfe_ipv4_destroy_all_rules_for_dev(dev); |
| sfe_ipv6_destroy_all_rules_for_dev(dev); |
| } |
| break; |
| } |
| |
| return NOTIFY_DONE; |
| } |
| |
| /* |
| * sfe_cm_inet_event() |
| */ |
| static int sfe_cm_inet_event(struct notifier_block *this, unsigned long event, void *ptr) |
| { |
| struct net_device *dev = ((struct in_ifaddr *)ptr)->ifa_dev->dev; |
| return sfe_cm_device_event(this, event, dev); |
| } |
| |
| /* |
| * sfe_cm_inet6_event() |
| */ |
| static int sfe_cm_inet6_event(struct notifier_block *this, unsigned long event, void *ptr) |
| { |
| struct net_device *dev = ((struct inet6_ifaddr *)ptr)->idev->dev; |
| return sfe_cm_device_event(this, event, dev); |
| } |
| |
| /* |
| * sfe_cm_init() |
| */ |
| static int __init sfe_cm_init(void) |
| { |
| struct sfe_cm *sc = &__sc; |
| int result = -1; |
| |
| DEBUG_INFO("SFE CM init\n"); |
| |
| /* |
| * Create sys/sfe_cm |
| */ |
| sc->sys_sfe_cm = kobject_create_and_add("sfe_cm", NULL); |
| if (!sc->sys_sfe_cm) { |
| DEBUG_ERROR("failed to register sfe_cm\n"); |
| goto exit1; |
| } |
| |
| sc->dev_notifier.notifier_call = sfe_cm_device_event; |
| sc->dev_notifier.priority = 1; |
| register_netdevice_notifier(&sc->dev_notifier); |
| |
| sc->inet_notifier.notifier_call = sfe_cm_inet_event; |
| sc->inet_notifier.priority = 1; |
| register_inetaddr_notifier(&sc->inet_notifier); |
| |
| sc->inet6_notifier.notifier_call = sfe_cm_inet6_event; |
| sc->inet6_notifier.priority = 1; |
| register_inet6addr_notifier(&sc->inet6_notifier); |
| /* |
| * Register our netfilter hooks. |
| */ |
| result = nf_register_hooks(sfe_cm_ops_post_routing, ARRAY_SIZE(sfe_cm_ops_post_routing)); |
| if (result < 0) { |
| DEBUG_ERROR("can't register nf post routing hook: %d\n", result); |
| goto exit2; |
| } |
| |
| #ifdef CONFIG_NF_CONNTRACK_EVENTS |
| /* |
| * Register a notifier hook to get fast notifications of expired connections. |
| */ |
| result = nf_conntrack_register_notifier(&init_net, &sfe_cm_conntrack_notifier); |
| if (result < 0) { |
| DEBUG_ERROR("can't register nf notifier hook: %d\n", result); |
| goto exit3; |
| } |
| #endif |
| |
| spin_lock_init(&sc->lock); |
| |
| /* |
| * Hook the receive path in the network stack. |
| */ |
| BUG_ON(athrs_fast_nat_recv != NULL); |
| RCU_INIT_POINTER(athrs_fast_nat_recv, sfe_cm_recv); |
| |
| /* |
| * Hook the shortcut sync callback. |
| */ |
| sfe_ipv4_register_sync_rule_callback(sfe_cm_sync_rule); |
| sfe_ipv6_register_sync_rule_callback(sfe_cm_sync_rule); |
| return 0; |
| |
| #ifdef CONFIG_NF_CONNTRACK_EVENTS |
| exit3: |
| #endif |
| nf_unregister_hooks(sfe_cm_ops_post_routing, ARRAY_SIZE(sfe_cm_ops_post_routing)); |
| |
| exit2: |
| unregister_inet6addr_notifier(&sc->inet6_notifier); |
| unregister_inetaddr_notifier(&sc->inet_notifier); |
| unregister_netdevice_notifier(&sc->dev_notifier); |
| kobject_put(sc->sys_sfe_cm); |
| |
| exit1: |
| return result; |
| } |
| |
| /* |
| * sfe_cm_exit() |
| */ |
| static void __exit sfe_cm_exit(void) |
| { |
| struct sfe_cm *sc = &__sc; |
| |
| DEBUG_INFO("SFE CM exit\n"); |
| |
| /* |
| * Unregister our sync callback. |
| */ |
| sfe_ipv4_register_sync_rule_callback(NULL); |
| sfe_ipv6_register_sync_rule_callback(NULL); |
| |
| /* |
| * Unregister our receive callback. |
| */ |
| RCU_INIT_POINTER(athrs_fast_nat_recv, NULL); |
| |
| /* |
| * Wait for all callbacks to complete. |
| */ |
| rcu_barrier(); |
| |
| /* |
| * Destroy all connections. |
| */ |
| sfe_ipv4_destroy_all_rules_for_dev(NULL); |
| sfe_ipv6_destroy_all_rules_for_dev(NULL); |
| |
| #ifdef CONFIG_NF_CONNTRACK_EVENTS |
| nf_conntrack_unregister_notifier(&init_net, &sfe_cm_conntrack_notifier); |
| |
| #endif |
| nf_unregister_hooks(sfe_cm_ops_post_routing, ARRAY_SIZE(sfe_cm_ops_post_routing)); |
| |
| unregister_inet6addr_notifier(&sc->inet6_notifier); |
| unregister_inetaddr_notifier(&sc->inet_notifier); |
| unregister_netdevice_notifier(&sc->dev_notifier); |
| |
| kobject_put(sc->sys_sfe_cm); |
| } |
| |
| module_init(sfe_cm_init) |
| module_exit(sfe_cm_exit) |
| |
| MODULE_AUTHOR("Qualcomm Atheros Inc."); |
| MODULE_DESCRIPTION("Shortcut Forwarding Engine - Connection Manager"); |
| MODULE_LICENSE("Dual BSD/GPL"); |
| |