| /* |
| * sfe_ipv6.c |
| * Shortcut forwarding engine - IPv6 support. |
| * |
| * Copyright (c) 2015 The Linux Foundation. All rights reserved. |
| * Permission to use, copy, modify, and/or distribute this software for |
| * any purpose with or without fee is hereby granted, provided that the |
| * above copyright notice and this permission notice appear in all copies. |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT |
| * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/sysfs.h> |
| #include <linux/skbuff.h> |
| #include <linux/icmp.h> |
| #include <net/tcp.h> |
| #include <linux/etherdevice.h> |
| |
| #include "sfe.h" |
| #include "sfe_cm.h" |
| |
| /* |
| * By default Linux IP header and transport layer header structures are |
| * unpacked, assuming that such headers should be 32-bit aligned. |
| * Unfortunately some wireless adaptors can't cope with this requirement and |
| * some CPUs can't handle misaligned accesses. For those platforms we |
| * define SFE_IPV6_UNALIGNED_IP_HEADER and mark the structures as packed. |
| * When we do this the compiler will generate slightly worse code than for the |
| * aligned case (on most platforms) but will be much quicker than fixing |
| * things up in an unaligned trap handler. |
| */ |
| #define SFE_IPV6_UNALIGNED_IP_HEADER 1 |
| #if SFE_IPV6_UNALIGNED_IP_HEADER |
| #define SFE_IPV6_UNALIGNED_STRUCT __attribute__((packed)) |
| #else |
| #define SFE_IPV6_UNALIGNED_STRUCT |
| #endif |
| |
| #define CHAR_DEV_MSG_SIZE 768 |
| |
| /* |
| * An Ethernet header, but with an optional "packed" attribute to |
| * help with performance on some platforms (see the definition of |
| * SFE_IPV6_UNALIGNED_STRUCT) |
| */ |
| struct sfe_ipv6_eth_hdr { |
| __be16 h_dest[ETH_ALEN / 2]; |
| __be16 h_source[ETH_ALEN / 2]; |
| __be16 h_proto; |
| } SFE_IPV6_UNALIGNED_STRUCT; |
| |
| /* |
| * An IPv6 header, but with an optional "packed" attribute to |
| * help with performance on some platforms (see the definition of |
| * SFE_IPV6_UNALIGNED_STRUCT) |
| */ |
| struct sfe_ipv6_ip_hdr { |
| #if defined(__LITTLE_ENDIAN_BITFIELD) |
| __u8 priority:4, |
| version:4; |
| #elif defined(__BIG_ENDIAN_BITFIELD) |
| __u8 version:4, |
| priority:4; |
| #else |
| #error "Please fix <asm/byteorder.h>" |
| #endif |
| __u8 flow_lbl[3]; |
| __be16 payload_len; |
| __u8 nexthdr; |
| __u8 hop_limit; |
| struct sfe_ipv6_addr saddr; |
| struct sfe_ipv6_addr daddr; |
| |
| /* |
| * The extension header start here. |
| */ |
| } SFE_IPV6_UNALIGNED_STRUCT; |
| |
| #define SFE_IPV6_EXT_HDR_HOP 0 |
| #define SFE_IPV6_EXT_HDR_ROUTING 43 |
| #define SFE_IPV6_EXT_HDR_FRAG 44 |
| #define SFE_IPV6_EXT_HDR_ESP 50 |
| #define SFE_IPV6_EXT_HDR_AH 51 |
| #define SFE_IPV6_EXT_HDR_NONE 59 |
| #define SFE_IPV6_EXT_HDR_DST 60 |
| #define SFE_IPV6_EXT_HDR_MH 135 |
| |
| /* |
| * fragmentation header |
| */ |
| |
| struct sfe_ipv6_frag_hdr { |
| __u8 nexthdr; |
| __u8 reserved; |
| __be16 frag_off; |
| __be32 identification; |
| }; |
| |
| #define SFE_IPV6_FRAG_OFFSET 0xfff8 |
| |
| /* |
| * generic IPv6 extension header |
| */ |
| struct sfe_ipv6_ext_hdr { |
| __u8 next_hdr; |
| __u8 hdr_len; |
| __u8 padding[6]; |
| } SFE_IPV6_UNALIGNED_STRUCT; |
| |
| /* |
| * A UDP header, but with an optional "packed" attribute to |
| * help with performance on some platforms (see the definition of |
| * SFE_IPV6_UNALIGNED_STRUCT) |
| */ |
| struct sfe_ipv6_udp_hdr { |
| __be16 source; |
| __be16 dest; |
| __be16 len; |
| __sum16 check; |
| } SFE_IPV6_UNALIGNED_STRUCT; |
| |
| /* |
| * A TCP header, but with an optional "packed" attribute to |
| * help with performance on some platforms (see the definition of |
| * SFE_IPV6_UNALIGNED_STRUCT) |
| */ |
| struct sfe_ipv6_tcp_hdr { |
| __be16 source; |
| __be16 dest; |
| __be32 seq; |
| __be32 ack_seq; |
| #if defined(__LITTLE_ENDIAN_BITFIELD) |
| __u16 res1:4, |
| doff:4, |
| fin:1, |
| syn:1, |
| rst:1, |
| psh:1, |
| ack:1, |
| urg:1, |
| ece:1, |
| cwr:1; |
| #elif defined(__BIG_ENDIAN_BITFIELD) |
| __u16 doff:4, |
| res1:4, |
| cwr:1, |
| ece:1, |
| urg:1, |
| ack:1, |
| psh:1, |
| rst:1, |
| syn:1, |
| fin:1; |
| #else |
| #error "Adjust your <asm/byteorder.h> defines" |
| #endif |
| __be16 window; |
| __sum16 check; |
| __be16 urg_ptr; |
| } SFE_IPV6_UNALIGNED_STRUCT; |
| |
| /* |
| * Specifies the lower bound on ACK numbers carried in the TCP header |
| */ |
| #define SFE_IPV6_TCP_MAX_ACK_WINDOW 65520 |
| |
| /* |
| * IPv6 TCP connection match additional data. |
| */ |
| struct sfe_ipv6_tcp_connection_match { |
| uint8_t win_scale; /* Window scale */ |
| uint32_t max_win; /* Maximum window size seen */ |
| uint32_t end; /* Sequence number of the next byte to send (seq + segment length) */ |
| uint32_t max_end; /* Sequence number of the last byte to ack */ |
| }; |
| |
| /* |
| * Bit flags for IPv6 connection matching entry. |
| */ |
| #define SFE_IPV6_CONNECTION_MATCH_FLAG_XLATE_SRC 0x1 |
| /* Perform source translation */ |
| #define SFE_IPV6_CONNECTION_MATCH_FLAG_XLATE_DEST 0x2 |
| /* Perform destination translation */ |
| #define SFE_IPV6_CONNECTION_MATCH_FLAG_NO_SEQ_CHECK 0x4 |
| /* Ignore TCP sequence numbers */ |
| #define SFE_IPV6_CONNECTION_MATCH_FLAG_WRITE_FAST_ETH_HDR 0x8 |
| /* Fast Ethernet header write */ |
| #define SFE_IPV6_CONNECTION_MATCH_FLAG_WRITE_L2_HDR 0x10 |
| /* Fast Ethernet header write */ |
| |
| /* |
| * IPv6 connection matching structure. |
| */ |
| struct sfe_ipv6_connection_match { |
| /* |
| * References to other objects. |
| */ |
| struct sfe_ipv6_connection_match *next; |
| /* Next connection match entry in a list */ |
| struct sfe_ipv6_connection_match *prev; |
| /* Previous connection match entry in a list */ |
| struct sfe_ipv6_connection *connection; |
| /* Pointer to our connection */ |
| struct sfe_ipv6_connection_match *counter_match; |
| /* Pointer to the connection match in the "counter" direction to this one */ |
| struct sfe_ipv6_connection_match *active_next; |
| /* Pointer to the next connection in the active list */ |
| struct sfe_ipv6_connection_match *active_prev; |
| /* Pointer to the previous connection in the active list */ |
| bool active; /* Flag to indicate if we're on the active list */ |
| |
| /* |
| * Characteristics that identify flows that match this rule. |
| */ |
| struct net_device *match_dev; /* Network device */ |
| uint8_t match_protocol; /* Protocol */ |
| struct sfe_ipv6_addr match_src_ip[1]; /* Source IP address */ |
| struct sfe_ipv6_addr match_dest_ip[1]; /* Destination IP address */ |
| __be16 match_src_port; /* Source port/connection ident */ |
| __be16 match_dest_port; /* Destination port/connection ident */ |
| |
| /* |
| * Control the operations of the match. |
| */ |
| uint32_t flags; /* Bit flags */ |
| #ifdef CONFIG_NF_FLOW_COOKIE |
| uint32_t flow_cookie; /* used flow cookie, for debug */ |
| #endif |
| #ifdef CONFIG_XFRM |
| uint32_t flow_accel; /* The flow accelerated or not */ |
| #endif |
| |
| /* |
| * Connection state that we track once we match. |
| */ |
| union { /* Protocol-specific state */ |
| struct sfe_ipv6_tcp_connection_match tcp; |
| } protocol_state; |
| uint32_t rx_packet_count; /* Number of packets RX'd */ |
| uint32_t rx_byte_count; /* Number of bytes RX'd */ |
| |
| /* |
| * Packet translation information. |
| */ |
| struct sfe_ipv6_addr xlate_src_ip[1]; /* Address after source translation */ |
| __be16 xlate_src_port; /* Port/connection ident after source translation */ |
| uint16_t xlate_src_csum_adjustment; |
| /* Transport layer checksum adjustment after source translation */ |
| struct sfe_ipv6_addr xlate_dest_ip[1]; /* Address after destination translation */ |
| __be16 xlate_dest_port; /* Port/connection ident after destination translation */ |
| uint16_t xlate_dest_csum_adjustment; |
| /* Transport layer checksum adjustment after destination translation */ |
| |
| /* |
| * Packet transmit information. |
| */ |
| struct net_device *xmit_dev; /* Network device on which to transmit */ |
| unsigned short int xmit_dev_mtu; |
| /* Interface MTU */ |
| uint16_t xmit_dest_mac[ETH_ALEN / 2]; |
| /* Destination MAC address to use when forwarding */ |
| uint16_t xmit_src_mac[ETH_ALEN / 2]; |
| /* Source MAC address to use when forwarding */ |
| |
| /* |
| * Summary stats. |
| */ |
| uint64_t rx_packet_count64; /* Number of packets RX'd */ |
| uint64_t rx_byte_count64; /* Number of bytes RX'd */ |
| }; |
| |
| /* |
| * Per-connection data structure. |
| */ |
| struct sfe_ipv6_connection { |
| struct sfe_ipv6_connection *next; |
| /* Pointer to the next entry in a hash chain */ |
| struct sfe_ipv6_connection *prev; |
| /* Pointer to the previous entry in a hash chain */ |
| int protocol; /* IP protocol number */ |
| struct sfe_ipv6_addr src_ip[1]; /* Source IP address */ |
| struct sfe_ipv6_addr src_ip_xlate[1]; /* NAT-translated source IP address */ |
| struct sfe_ipv6_addr dest_ip[1]; /* Destination IP address */ |
| struct sfe_ipv6_addr dest_ip_xlate[1]; /* NAT-translated destination IP address */ |
| __be16 src_port; /* Source port */ |
| __be16 src_port_xlate; /* NAT-translated source port */ |
| __be16 dest_port; /* Destination port */ |
| __be16 dest_port_xlate; /* NAT-translated destination port */ |
| struct sfe_ipv6_connection_match *original_match; |
| /* Original direction matching structure */ |
| struct net_device *original_dev; |
| /* Original direction source device */ |
| struct sfe_ipv6_connection_match *reply_match; |
| /* Reply direction matching structure */ |
| struct net_device *reply_dev; /* Reply direction source device */ |
| uint64_t last_sync_jiffies; /* Jiffies count for the last sync */ |
| struct sfe_ipv6_connection *all_connections_next; |
| /* Pointer to the next entry in the list of all connections */ |
| struct sfe_ipv6_connection *all_connections_prev; |
| /* Pointer to the previous entry in the list of all connections */ |
| uint32_t mark; /* mark for outgoing packet */ |
| uint32_t debug_read_seq; /* sequence number for debug dump */ |
| }; |
| |
| /* |
| * IPv6 connections and hash table size information. |
| */ |
| #define SFE_IPV6_CONNECTION_HASH_SHIFT 12 |
| #define SFE_IPV6_CONNECTION_HASH_SIZE (1 << SFE_IPV6_CONNECTION_HASH_SHIFT) |
| #define SFE_IPV6_CONNECTION_HASH_MASK (SFE_IPV6_CONNECTION_HASH_SIZE - 1) |
| |
| #ifdef CONFIG_NF_FLOW_COOKIE |
| #define SFE_FLOW_COOKIE_SIZE 2048 |
| #define SFE_FLOW_COOKIE_MASK 0x7ff |
| |
| struct sfe_ipv6_flow_cookie_entry { |
| struct sfe_ipv6_connection_match *match; |
| unsigned long last_clean_time; |
| }; |
| #endif |
| |
| enum sfe_ipv6_exception_events { |
| SFE_IPV6_EXCEPTION_EVENT_UDP_HEADER_INCOMPLETE, |
| SFE_IPV6_EXCEPTION_EVENT_UDP_NO_CONNECTION, |
| SFE_IPV6_EXCEPTION_EVENT_UDP_IP_OPTIONS_OR_INITIAL_FRAGMENT, |
| SFE_IPV6_EXCEPTION_EVENT_UDP_SMALL_TTL, |
| SFE_IPV6_EXCEPTION_EVENT_UDP_NEEDS_FRAGMENTATION, |
| SFE_IPV6_EXCEPTION_EVENT_TCP_HEADER_INCOMPLETE, |
| SFE_IPV6_EXCEPTION_EVENT_TCP_NO_CONNECTION_SLOW_FLAGS, |
| SFE_IPV6_EXCEPTION_EVENT_TCP_NO_CONNECTION_FAST_FLAGS, |
| SFE_IPV6_EXCEPTION_EVENT_TCP_IP_OPTIONS_OR_INITIAL_FRAGMENT, |
| SFE_IPV6_EXCEPTION_EVENT_TCP_SMALL_TTL, |
| SFE_IPV6_EXCEPTION_EVENT_TCP_NEEDS_FRAGMENTATION, |
| SFE_IPV6_EXCEPTION_EVENT_TCP_FLAGS, |
| SFE_IPV6_EXCEPTION_EVENT_TCP_SEQ_EXCEEDS_RIGHT_EDGE, |
| SFE_IPV6_EXCEPTION_EVENT_TCP_SMALL_DATA_OFFS, |
| SFE_IPV6_EXCEPTION_EVENT_TCP_BAD_SACK, |
| SFE_IPV6_EXCEPTION_EVENT_TCP_BIG_DATA_OFFS, |
| SFE_IPV6_EXCEPTION_EVENT_TCP_SEQ_BEFORE_LEFT_EDGE, |
| SFE_IPV6_EXCEPTION_EVENT_TCP_ACK_EXCEEDS_RIGHT_EDGE, |
| SFE_IPV6_EXCEPTION_EVENT_TCP_ACK_BEFORE_LEFT_EDGE, |
| SFE_IPV6_EXCEPTION_EVENT_ICMP_HEADER_INCOMPLETE, |
| SFE_IPV6_EXCEPTION_EVENT_ICMP_UNHANDLED_TYPE, |
| SFE_IPV6_EXCEPTION_EVENT_ICMP_IPV6_HEADER_INCOMPLETE, |
| SFE_IPV6_EXCEPTION_EVENT_ICMP_IPV6_NON_V6, |
| SFE_IPV6_EXCEPTION_EVENT_ICMP_IPV6_IP_OPTIONS_INCOMPLETE, |
| SFE_IPV6_EXCEPTION_EVENT_ICMP_IPV6_UDP_HEADER_INCOMPLETE, |
| SFE_IPV6_EXCEPTION_EVENT_ICMP_IPV6_TCP_HEADER_INCOMPLETE, |
| SFE_IPV6_EXCEPTION_EVENT_ICMP_IPV6_UNHANDLED_PROTOCOL, |
| SFE_IPV6_EXCEPTION_EVENT_ICMP_NO_CONNECTION, |
| SFE_IPV6_EXCEPTION_EVENT_ICMP_FLUSHED_CONNECTION, |
| SFE_IPV6_EXCEPTION_EVENT_HEADER_INCOMPLETE, |
| SFE_IPV6_EXCEPTION_EVENT_BAD_TOTAL_LENGTH, |
| SFE_IPV6_EXCEPTION_EVENT_NON_V6, |
| SFE_IPV6_EXCEPTION_EVENT_NON_INITIAL_FRAGMENT, |
| SFE_IPV6_EXCEPTION_EVENT_DATAGRAM_INCOMPLETE, |
| SFE_IPV6_EXCEPTION_EVENT_IP_OPTIONS_INCOMPLETE, |
| SFE_IPV6_EXCEPTION_EVENT_UNHANDLED_PROTOCOL, |
| SFE_IPV6_EXCEPTION_EVENT_FLOW_COOKIE_ADD_FAIL, |
| SFE_IPV6_EXCEPTION_EVENT_LAST |
| }; |
| |
| static char *sfe_ipv6_exception_events_string[SFE_IPV6_EXCEPTION_EVENT_LAST] = { |
| "UDP_HEADER_INCOMPLETE", |
| "UDP_NO_CONNECTION", |
| "UDP_IP_OPTIONS_OR_INITIAL_FRAGMENT", |
| "UDP_SMALL_TTL", |
| "UDP_NEEDS_FRAGMENTATION", |
| "TCP_HEADER_INCOMPLETE", |
| "TCP_NO_CONNECTION_SLOW_FLAGS", |
| "TCP_NO_CONNECTION_FAST_FLAGS", |
| "TCP_IP_OPTIONS_OR_INITIAL_FRAGMENT", |
| "TCP_SMALL_TTL", |
| "TCP_NEEDS_FRAGMENTATION", |
| "TCP_FLAGS", |
| "TCP_SEQ_EXCEEDS_RIGHT_EDGE", |
| "TCP_SMALL_DATA_OFFS", |
| "TCP_BAD_SACK", |
| "TCP_BIG_DATA_OFFS", |
| "TCP_SEQ_BEFORE_LEFT_EDGE", |
| "TCP_ACK_EXCEEDS_RIGHT_EDGE", |
| "TCP_ACK_BEFORE_LEFT_EDGE", |
| "ICMP_HEADER_INCOMPLETE", |
| "ICMP_UNHANDLED_TYPE", |
| "ICMP_IPV6_HEADER_INCOMPLETE", |
| "ICMP_IPV6_NON_V6", |
| "ICMP_IPV6_IP_OPTIONS_INCOMPLETE", |
| "ICMP_IPV6_UDP_HEADER_INCOMPLETE", |
| "ICMP_IPV6_TCP_HEADER_INCOMPLETE", |
| "ICMP_IPV6_UNHANDLED_PROTOCOL", |
| "ICMP_NO_CONNECTION", |
| "ICMP_FLUSHED_CONNECTION", |
| "HEADER_INCOMPLETE", |
| "BAD_TOTAL_LENGTH", |
| "NON_V6", |
| "NON_INITIAL_FRAGMENT", |
| "DATAGRAM_INCOMPLETE", |
| "IP_OPTIONS_INCOMPLETE", |
| "UNHANDLED_PROTOCOL", |
| "FLOW_COOKIE_ADD_FAIL" |
| }; |
| |
| /* |
| * Per-module structure. |
| */ |
| struct sfe_ipv6 { |
| spinlock_t lock; /* Lock for SMP correctness */ |
| struct sfe_ipv6_connection_match *active_head; |
| /* Head of the list of recently active connections */ |
| struct sfe_ipv6_connection_match *active_tail; |
| /* Tail of the list of recently active connections */ |
| struct sfe_ipv6_connection *all_connections_head; |
| /* Head of the list of all connections */ |
| struct sfe_ipv6_connection *all_connections_tail; |
| /* Tail of the list of all connections */ |
| unsigned int num_connections; /* Number of connections */ |
| struct timer_list timer; /* Timer used for periodic sync ops */ |
| sfe_sync_rule_callback_t __rcu sync_rule_callback; |
| /* Callback function registered by a connection manager for stats syncing */ |
| struct sfe_ipv6_connection *conn_hash[SFE_IPV6_CONNECTION_HASH_SIZE]; |
| /* Connection hash table */ |
| struct sfe_ipv6_connection_match *conn_match_hash[SFE_IPV6_CONNECTION_HASH_SIZE]; |
| /* Connection match hash table */ |
| #ifdef CONFIG_NF_FLOW_COOKIE |
| struct sfe_ipv6_flow_cookie_entry sfe_flow_cookie_table[SFE_FLOW_COOKIE_SIZE]; |
| /* flow cookie table*/ |
| sfe_ipv6_flow_cookie_set_func_t flow_cookie_set_func; |
| /* function used to configure flow cookie in hardware*/ |
| #endif |
| |
| /* |
| * Statistics. |
| */ |
| uint32_t connection_create_requests; |
| /* Number of IPv6 connection create requests */ |
| uint32_t connection_create_collisions; |
| /* Number of IPv6 connection create requests that collided with existing hash table entries */ |
| uint32_t connection_destroy_requests; |
| /* Number of IPv6 connection destroy requests */ |
| uint32_t connection_destroy_misses; |
| /* Number of IPv6 connection destroy requests that missed our hash table */ |
| uint32_t connection_match_hash_hits; |
| /* Number of IPv6 connection match hash hits */ |
| uint32_t connection_match_hash_reorders; |
| /* Number of IPv6 connection match hash reorders */ |
| uint32_t connection_flushes; /* Number of IPv6 connection flushes */ |
| uint32_t packets_forwarded; /* Number of IPv6 packets forwarded */ |
| uint32_t packets_not_forwarded; /* Number of IPv6 packets not forwarded */ |
| uint32_t exception_events[SFE_IPV6_EXCEPTION_EVENT_LAST]; |
| |
| /* |
| * Summary tatistics. |
| */ |
| uint64_t connection_create_requests64; |
| /* Number of IPv6 connection create requests */ |
| uint64_t connection_create_collisions64; |
| /* Number of IPv6 connection create requests that collided with existing hash table entries */ |
| uint64_t connection_destroy_requests64; |
| /* Number of IPv6 connection destroy requests */ |
| uint64_t connection_destroy_misses64; |
| /* Number of IPv6 connection destroy requests that missed our hash table */ |
| uint64_t connection_match_hash_hits64; |
| /* Number of IPv6 connection match hash hits */ |
| uint64_t connection_match_hash_reorders64; |
| /* Number of IPv6 connection match hash reorders */ |
| uint64_t connection_flushes64; /* Number of IPv6 connection flushes */ |
| uint64_t packets_forwarded64; /* Number of IPv6 packets forwarded */ |
| uint64_t packets_not_forwarded64; |
| /* Number of IPv6 packets not forwarded */ |
| uint64_t exception_events64[SFE_IPV6_EXCEPTION_EVENT_LAST]; |
| |
| /* |
| * Control state. |
| */ |
| struct kobject *sys_sfe_ipv6; /* sysfs linkage */ |
| int debug_dev; /* Major number of the debug char device */ |
| uint32_t debug_read_seq; /* sequence number for debug dump */ |
| }; |
| |
| /* |
| * Enumeration of the XML output. |
| */ |
| enum sfe_ipv6_debug_xml_states { |
| SFE_IPV6_DEBUG_XML_STATE_START, |
| SFE_IPV6_DEBUG_XML_STATE_CONNECTIONS_START, |
| SFE_IPV6_DEBUG_XML_STATE_CONNECTIONS_CONNECTION, |
| SFE_IPV6_DEBUG_XML_STATE_CONNECTIONS_END, |
| SFE_IPV6_DEBUG_XML_STATE_EXCEPTIONS_START, |
| SFE_IPV6_DEBUG_XML_STATE_EXCEPTIONS_EXCEPTION, |
| SFE_IPV6_DEBUG_XML_STATE_EXCEPTIONS_END, |
| SFE_IPV6_DEBUG_XML_STATE_STATS, |
| SFE_IPV6_DEBUG_XML_STATE_END, |
| SFE_IPV6_DEBUG_XML_STATE_DONE |
| }; |
| |
| /* |
| * XML write state. |
| */ |
| struct sfe_ipv6_debug_xml_write_state { |
| enum sfe_ipv6_debug_xml_states state; |
| /* XML output file state machine state */ |
| int iter_exception; /* Next exception iterator */ |
| }; |
| |
| typedef bool (*sfe_ipv6_debug_xml_write_method_t)(struct sfe_ipv6 *si, char *buffer, char *msg, size_t *length, |
| int *total_read, struct sfe_ipv6_debug_xml_write_state *ws); |
| |
| struct sfe_ipv6 __si6; |
| |
| /* |
| * sfe_ipv6_get_debug_dev() |
| */ |
| static ssize_t sfe_ipv6_get_debug_dev(struct device *dev, struct device_attribute *attr, char *buf); |
| |
| /* |
| * sysfs attributes. |
| */ |
| static const struct device_attribute sfe_ipv6_debug_dev_attr = |
| __ATTR(debug_dev, S_IWUGO | S_IRUGO, sfe_ipv6_get_debug_dev, NULL); |
| |
| /* |
| * sfe_ipv6_addr_equal() |
| * compare ipv6 address |
| * |
| * return: 1, equal; 0, no equal |
| */ |
| static inline int sfe_ipv6_addr_equal(struct sfe_ipv6_addr *a, |
| struct sfe_ipv6_addr *b) |
| { |
| return a->addr[0] == b->addr[0] && |
| a->addr[1] == b->addr[1] && |
| a->addr[2] == b->addr[2] && |
| a->addr[3] == b->addr[3]; |
| } |
| |
| /* |
| * sfe_ipv6_is_ext_hdr() |
| * check if we recognize ipv6 extension header |
| */ |
| static inline bool sfe_ipv6_is_ext_hdr(uint8_t hdr) |
| { |
| return (hdr == SFE_IPV6_EXT_HDR_HOP) || |
| (hdr == SFE_IPV6_EXT_HDR_ROUTING) || |
| (hdr == SFE_IPV6_EXT_HDR_FRAG) || |
| (hdr == SFE_IPV6_EXT_HDR_AH) || |
| (hdr == SFE_IPV6_EXT_HDR_DST) || |
| (hdr == SFE_IPV6_EXT_HDR_MH); |
| } |
| |
| /* |
| * sfe_ipv6_get_connection_match_hash() |
| * Generate the hash used in connection match lookups. |
| */ |
| static inline unsigned int sfe_ipv6_get_connection_match_hash(struct net_device *dev, uint8_t protocol, |
| struct sfe_ipv6_addr *src_ip, __be16 src_port, |
| struct sfe_ipv6_addr *dest_ip, __be16 dest_port) |
| { |
| uint32_t idx, hash = 0; |
| size_t dev_addr = (size_t)dev; |
| |
| for (idx = 0; idx < 4; idx++) { |
| hash ^= src_ip->addr[idx] ^ dest_ip->addr[idx]; |
| } |
| hash = ((uint32_t)dev_addr) ^ hash ^ protocol ^ ntohs(src_port ^ dest_port); |
| return ((hash >> SFE_IPV6_CONNECTION_HASH_SHIFT) ^ hash) & SFE_IPV6_CONNECTION_HASH_MASK; |
| } |
| |
| /* |
| * sfe_ipv6_find_connection_match() |
| * Get the IPv6 flow match info that corresponds to a particular 5-tuple. |
| * |
| * On entry we must be holding the lock that protects the hash table. |
| */ |
| static struct sfe_ipv6_connection_match * |
| sfe_ipv6_find_connection_match(struct sfe_ipv6 *si, struct net_device *dev, uint8_t protocol, |
| struct sfe_ipv6_addr *src_ip, __be16 src_port, |
| struct sfe_ipv6_addr *dest_ip, __be16 dest_port) __attribute__((always_inline)); |
| static struct sfe_ipv6_connection_match * |
| sfe_ipv6_find_connection_match(struct sfe_ipv6 *si, struct net_device *dev, uint8_t protocol, |
| struct sfe_ipv6_addr *src_ip, __be16 src_port, |
| struct sfe_ipv6_addr *dest_ip, __be16 dest_port) |
| { |
| struct sfe_ipv6_connection_match *cm; |
| struct sfe_ipv6_connection_match *head; |
| unsigned int conn_match_idx; |
| |
| conn_match_idx = sfe_ipv6_get_connection_match_hash(dev, protocol, src_ip, src_port, dest_ip, dest_port); |
| cm = si->conn_match_hash[conn_match_idx]; |
| |
| /* |
| * If we don't have anything in this chain then bale. |
| */ |
| if (unlikely(!cm)) { |
| return cm; |
| } |
| |
| /* |
| * Hopefully the first entry is the one we want. |
| */ |
| if (likely(cm->match_src_port == src_port) |
| && likely(cm->match_dest_port == dest_port) |
| && likely(sfe_ipv6_addr_equal(cm->match_src_ip, src_ip)) |
| && likely(sfe_ipv6_addr_equal(cm->match_dest_ip, dest_ip)) |
| && likely(cm->match_protocol == protocol) |
| && likely(cm->match_dev == dev)) { |
| si->connection_match_hash_hits++; |
| return cm; |
| } |
| |
| /* |
| * We may or may not have a matching entry but if we do then we want to |
| * move that entry to the top of the hash chain when we get to it. We |
| * presume that this will be reused again very quickly. |
| */ |
| head = cm; |
| do { |
| cm = cm->next; |
| } while (cm && (cm->match_src_port != src_port |
| || cm->match_dest_port != dest_port |
| || !sfe_ipv6_addr_equal(cm->match_src_ip, src_ip) |
| || !sfe_ipv6_addr_equal(cm->match_dest_ip, dest_ip) |
| || cm->match_protocol != protocol |
| || cm->match_dev != dev)); |
| |
| /* |
| * Not found then we're done. |
| */ |
| if (unlikely(!cm)) { |
| return cm; |
| } |
| |
| /* |
| * We found a match so move it. |
| */ |
| if (cm->next) { |
| cm->next->prev = cm->prev; |
| } |
| cm->prev->next = cm->next; |
| cm->prev = NULL; |
| cm->next = head; |
| head->prev = cm; |
| si->conn_match_hash[conn_match_idx] = cm; |
| si->connection_match_hash_reorders++; |
| |
| return cm; |
| } |
| |
| /* |
| * sfe_ipv6_connection_match_update_summary_stats() |
| * Update the summary stats for a connection match entry. |
| */ |
| static inline void sfe_ipv6_connection_match_update_summary_stats(struct sfe_ipv6_connection_match *cm) |
| { |
| cm->rx_packet_count64 += cm->rx_packet_count; |
| cm->rx_packet_count = 0; |
| cm->rx_byte_count64 += cm->rx_byte_count; |
| cm->rx_byte_count = 0; |
| } |
| |
| /* |
| * sfe_ipv6_connection_match_compute_translations() |
| * Compute port and address translations for a connection match entry. |
| */ |
| static void sfe_ipv6_connection_match_compute_translations(struct sfe_ipv6_connection_match *cm) |
| { |
| uint32_t diff[9]; |
| uint32_t *idx_32; |
| uint16_t *idx_16; |
| |
| /* |
| * Before we insert the entry look to see if this is tagged as doing address |
| * translations. If it is then work out the adjustment that we need to apply |
| * to the transport checksum. |
| */ |
| if (cm->flags & SFE_IPV6_CONNECTION_MATCH_FLAG_XLATE_SRC) { |
| uint32_t adj = 0; |
| uint32_t carry = 0; |
| |
| /* |
| * Precompute an incremental checksum adjustment so we can |
| * edit packets in this stream very quickly. The algorithm is from RFC1624. |
| */ |
| idx_32 = diff; |
| *(idx_32++) = cm->match_src_ip->addr[0]; |
| *(idx_32++) = cm->match_src_ip->addr[1]; |
| *(idx_32++) = cm->match_src_ip->addr[2]; |
| *(idx_32++) = cm->match_src_ip->addr[3]; |
| |
| idx_16 = (uint16_t *)idx_32; |
| *(idx_16++) = cm->match_src_port; |
| *(idx_16++) = ~cm->xlate_src_port; |
| idx_32 = (uint32_t *)idx_16; |
| |
| *(idx_32++) = ~cm->xlate_src_ip->addr[0]; |
| *(idx_32++) = ~cm->xlate_src_ip->addr[1]; |
| *(idx_32++) = ~cm->xlate_src_ip->addr[2]; |
| *(idx_32++) = ~cm->xlate_src_ip->addr[3]; |
| |
| /* |
| * When we compute this fold it down to a 16-bit offset |
| * as that way we can avoid having to do a double |
| * folding of the twos-complement result because the |
| * addition of 2 16-bit values cannot cause a double |
| * wrap-around! |
| */ |
| for (idx_32 = diff; idx_32 < diff + 9; idx_32++) { |
| uint32_t w = *idx_32; |
| adj += carry; |
| adj += w; |
| carry = (w > adj); |
| } |
| adj += carry; |
| adj = (adj & 0xffff) + (adj >> 16); |
| adj = (adj & 0xffff) + (adj >> 16); |
| cm->xlate_src_csum_adjustment = (uint16_t)adj; |
| } |
| |
| if (cm->flags & SFE_IPV6_CONNECTION_MATCH_FLAG_XLATE_DEST) { |
| uint32_t adj = 0; |
| uint32_t carry = 0; |
| |
| /* |
| * Precompute an incremental checksum adjustment so we can |
| * edit packets in this stream very quickly. The algorithm is from RFC1624. |
| */ |
| idx_32 = diff; |
| *(idx_32++) = cm->match_dest_ip->addr[0]; |
| *(idx_32++) = cm->match_dest_ip->addr[1]; |
| *(idx_32++) = cm->match_dest_ip->addr[2]; |
| *(idx_32++) = cm->match_dest_ip->addr[3]; |
| |
| idx_16 = (uint16_t *)idx_32; |
| *(idx_16++) = cm->match_dest_port; |
| *(idx_16++) = ~cm->xlate_dest_port; |
| idx_32 = (uint32_t *)idx_16; |
| |
| *(idx_32++) = ~cm->xlate_dest_ip->addr[0]; |
| *(idx_32++) = ~cm->xlate_dest_ip->addr[1]; |
| *(idx_32++) = ~cm->xlate_dest_ip->addr[2]; |
| *(idx_32++) = ~cm->xlate_dest_ip->addr[3]; |
| |
| /* |
| * When we compute this fold it down to a 16-bit offset |
| * as that way we can avoid having to do a double |
| * folding of the twos-complement result because the |
| * addition of 2 16-bit values cannot cause a double |
| * wrap-around! |
| */ |
| for (idx_32 = diff; idx_32 < diff + 9; idx_32++) { |
| uint32_t w = *idx_32; |
| adj += carry; |
| adj += w; |
| carry = (w > adj); |
| } |
| adj += carry; |
| adj = (adj & 0xffff) + (adj >> 16); |
| adj = (adj & 0xffff) + (adj >> 16); |
| cm->xlate_dest_csum_adjustment = (uint16_t)adj; |
| } |
| } |
| |
| /* |
| * sfe_ipv6_update_summary_stats() |
| * Update the summary stats. |
| */ |
| static void sfe_ipv6_update_summary_stats(struct sfe_ipv6 *si) |
| { |
| int i; |
| |
| si->connection_create_requests64 += si->connection_create_requests; |
| si->connection_create_requests = 0; |
| si->connection_create_collisions64 += si->connection_create_collisions; |
| si->connection_create_collisions = 0; |
| si->connection_destroy_requests64 += si->connection_destroy_requests; |
| si->connection_destroy_requests = 0; |
| si->connection_destroy_misses64 += si->connection_destroy_misses; |
| si->connection_destroy_misses = 0; |
| si->connection_match_hash_hits64 += si->connection_match_hash_hits; |
| si->connection_match_hash_hits = 0; |
| si->connection_match_hash_reorders64 += si->connection_match_hash_reorders; |
| si->connection_match_hash_reorders = 0; |
| si->connection_flushes64 += si->connection_flushes; |
| si->connection_flushes = 0; |
| si->packets_forwarded64 += si->packets_forwarded; |
| si->packets_forwarded = 0; |
| si->packets_not_forwarded64 += si->packets_not_forwarded; |
| si->packets_not_forwarded = 0; |
| |
| for (i = 0; i < SFE_IPV6_EXCEPTION_EVENT_LAST; i++) { |
| si->exception_events64[i] += si->exception_events[i]; |
| si->exception_events[i] = 0; |
| } |
| } |
| |
| /* |
| * sfe_ipv6_insert_connection_match() |
| * Insert a connection match into the hash. |
| * |
| * On entry we must be holding the lock that protects the hash table. |
| */ |
| static inline void sfe_ipv6_insert_connection_match(struct sfe_ipv6 *si, struct sfe_ipv6_connection_match *cm) |
| { |
| struct sfe_ipv6_connection_match **hash_head; |
| struct sfe_ipv6_connection_match *prev_head; |
| unsigned int conn_match_idx |
| = sfe_ipv6_get_connection_match_hash(cm->match_dev, cm->match_protocol, |
| cm->match_src_ip, cm->match_src_port, |
| cm->match_dest_ip, cm->match_dest_port); |
| hash_head = &si->conn_match_hash[conn_match_idx]; |
| prev_head = *hash_head; |
| cm->prev = NULL; |
| if (prev_head) { |
| prev_head->prev = cm; |
| } |
| |
| cm->next = prev_head; |
| *hash_head = cm; |
| |
| #ifdef CONFIG_NF_FLOW_COOKIE |
| if (!(cm->flags & (SFE_IPV6_CONNECTION_MATCH_FLAG_XLATE_SRC | SFE_IPV6_CONNECTION_MATCH_FLAG_XLATE_DEST))) |
| return; |
| |
| /* |
| * Configure hardware to put a flow cookie in packet of this flow, |
| * then we can accelerate the lookup process when we received this packet. |
| */ |
| for (conn_match_idx = 1; conn_match_idx < SFE_FLOW_COOKIE_SIZE; conn_match_idx++) { |
| struct sfe_ipv6_flow_cookie_entry *entry = &si->sfe_flow_cookie_table[conn_match_idx]; |
| |
| if ((NULL == entry->match) && time_is_before_jiffies(entry->last_clean_time + HZ)) { |
| sfe_ipv6_flow_cookie_set_func_t func; |
| |
| rcu_read_lock(); |
| func = rcu_dereference(si->flow_cookie_set_func); |
| if (func) { |
| if (!func(cm->match_protocol, cm->match_src_ip->addr, cm->match_src_port, |
| cm->match_dest_ip->addr, cm->match_dest_port, conn_match_idx)) { |
| entry->match = cm; |
| cm->flow_cookie = conn_match_idx; |
| } else { |
| si->exception_events[SFE_IPV6_EXCEPTION_EVENT_FLOW_COOKIE_ADD_FAIL]++; |
| } |
| } |
| rcu_read_unlock(); |
| |
| break; |
| } |
| } |
| #endif |
| |
| } |
| |
| /* |
| * sfe_ipv6_remove_connection_match() |
| * Remove a connection match object from the hash. |
| * |
| * On entry we must be holding the lock that protects the hash table. |
| */ |
| static inline void sfe_ipv6_remove_connection_match(struct sfe_ipv6 *si, struct sfe_ipv6_connection_match *cm) |
| { |
| #ifdef CONFIG_NF_FLOW_COOKIE |
| /* |
| * Tell hardware that we no longer need a flow cookie in packet of this flow |
| */ |
| unsigned int conn_match_idx; |
| |
| for (conn_match_idx = 1; conn_match_idx < SFE_FLOW_COOKIE_SIZE; conn_match_idx++) { |
| struct sfe_ipv6_flow_cookie_entry *entry = &si->sfe_flow_cookie_table[conn_match_idx]; |
| |
| if (cm == entry->match) { |
| sfe_ipv6_flow_cookie_set_func_t func; |
| |
| rcu_read_lock(); |
| func = rcu_dereference(si->flow_cookie_set_func); |
| if (func) { |
| func(cm->match_protocol, cm->match_src_ip->addr, cm->match_src_port, |
| cm->match_dest_ip->addr, cm->match_dest_port, 0); |
| } |
| rcu_read_unlock(); |
| |
| cm->flow_cookie = 0; |
| entry->match = NULL; |
| entry->last_clean_time = jiffies; |
| break; |
| } |
| } |
| #endif |
| |
| /* |
| * Unlink the connection match entry from the hash. |
| */ |
| if (cm->prev) { |
| cm->prev->next = cm->next; |
| } else { |
| unsigned int conn_match_idx |
| = sfe_ipv6_get_connection_match_hash(cm->match_dev, cm->match_protocol, |
| cm->match_src_ip, cm->match_src_port, |
| cm->match_dest_ip, cm->match_dest_port); |
| si->conn_match_hash[conn_match_idx] = cm->next; |
| } |
| |
| if (cm->next) { |
| cm->next->prev = cm->prev; |
| } |
| |
| /* |
| * If the connection match entry is in the active list remove it. |
| */ |
| if (cm->active) { |
| if (likely(cm->active_prev)) { |
| cm->active_prev->active_next = cm->active_next; |
| } else { |
| si->active_head = cm->active_next; |
| } |
| |
| if (likely(cm->active_next)) { |
| cm->active_next->active_prev = cm->active_prev; |
| } else { |
| si->active_tail = cm->active_prev; |
| } |
| } |
| } |
| |
| /* |
| * sfe_ipv6_get_connection_hash() |
| * Generate the hash used in connection lookups. |
| */ |
| static inline unsigned int sfe_ipv6_get_connection_hash(uint8_t protocol, struct sfe_ipv6_addr *src_ip, __be16 src_port, |
| struct sfe_ipv6_addr *dest_ip, __be16 dest_port) |
| { |
| uint32_t idx, hash = 0; |
| |
| for (idx = 0; idx < 4; idx++) { |
| hash ^= src_ip->addr[idx] ^ dest_ip->addr[idx]; |
| } |
| hash = hash ^ protocol ^ ntohs(src_port ^ dest_port); |
| return ((hash >> SFE_IPV6_CONNECTION_HASH_SHIFT) ^ hash) & SFE_IPV6_CONNECTION_HASH_MASK; |
| } |
| |
| /* |
| * sfe_ipv6_find_connection() |
| * Get the IPv6 connection info that corresponds to a particular 5-tuple. |
| * |
| * On entry we must be holding the lock that protects the hash table. |
| */ |
| static inline struct sfe_ipv6_connection *sfe_ipv6_find_connection(struct sfe_ipv6 *si, uint32_t protocol, |
| struct sfe_ipv6_addr *src_ip, __be16 src_port, |
| struct sfe_ipv6_addr *dest_ip, __be16 dest_port) |
| { |
| struct sfe_ipv6_connection *c; |
| unsigned int conn_idx = sfe_ipv6_get_connection_hash(protocol, src_ip, src_port, dest_ip, dest_port); |
| c = si->conn_hash[conn_idx]; |
| |
| /* |
| * If we don't have anything in this chain then bale. |
| */ |
| if (unlikely(!c)) { |
| return c; |
| } |
| |
| /* |
| * Hopefully the first entry is the one we want. |
| */ |
| if (likely(c->src_port == src_port) |
| && likely(c->dest_port == dest_port) |
| && likely(sfe_ipv6_addr_equal(c->src_ip, src_ip)) |
| && likely(sfe_ipv6_addr_equal(c->dest_ip, dest_ip)) |
| && likely(c->protocol == protocol)) { |
| return c; |
| } |
| |
| /* |
| * We may or may not have a matching entry but if we do then we want to |
| * move that entry to the top of the hash chain when we get to it. We |
| * presume that this will be reused again very quickly. |
| */ |
| do { |
| c = c->next; |
| } while (c && (c->src_port != src_port |
| || c->dest_port != dest_port |
| || !sfe_ipv6_addr_equal(c->src_ip, src_ip) |
| || !sfe_ipv6_addr_equal(c->dest_ip, dest_ip) |
| || c->protocol != protocol)); |
| |
| /* |
| * Will need connection entry for next create/destroy metadata, |
| * So no need to re-order entry for these requests |
| */ |
| return c; |
| } |
| |
| /* |
| * sfe_ipv6_mark_rule() |
| * Updates the mark for a current offloaded connection |
| * |
| * Will take hash lock upon entry |
| */ |
| void sfe_ipv6_mark_rule(struct sfe_connection_mark *mark) |
| { |
| struct sfe_ipv6 *si = &__si6; |
| struct sfe_ipv6_connection *c; |
| |
| spin_lock_bh(&si->lock); |
| c = sfe_ipv6_find_connection(si, mark->protocol, |
| mark->src_ip.ip6, mark->src_port, |
| mark->dest_ip.ip6, mark->dest_port); |
| if (c) { |
| DEBUG_TRACE("Matching connection found for mark, " |
| "setting from %08x to %08x\n", |
| c->mark, mark->mark); |
| WARN_ON((0 != c->mark) && (0 == mark->mark)); |
| c->mark = mark->mark; |
| } |
| spin_unlock_bh(&si->lock); |
| } |
| |
| /* |
| * sfe_ipv6_insert_connection() |
| * Insert a connection into the hash. |
| * |
| * On entry we must be holding the lock that protects the hash table. |
| */ |
| static void sfe_ipv6_insert_connection(struct sfe_ipv6 *si, struct sfe_ipv6_connection *c) |
| { |
| struct sfe_ipv6_connection **hash_head; |
| struct sfe_ipv6_connection *prev_head; |
| unsigned int conn_idx; |
| |
| /* |
| * Insert entry into the connection hash. |
| */ |
| conn_idx = sfe_ipv6_get_connection_hash(c->protocol, c->src_ip, c->src_port, |
| c->dest_ip, c->dest_port); |
| hash_head = &si->conn_hash[conn_idx]; |
| prev_head = *hash_head; |
| c->prev = NULL; |
| if (prev_head) { |
| prev_head->prev = c; |
| } |
| |
| c->next = prev_head; |
| *hash_head = c; |
| |
| /* |
| * Insert entry into the "all connections" list. |
| */ |
| if (si->all_connections_tail) { |
| c->all_connections_prev = si->all_connections_tail; |
| si->all_connections_tail->all_connections_next = c; |
| } else { |
| c->all_connections_prev = NULL; |
| si->all_connections_head = c; |
| } |
| |
| si->all_connections_tail = c; |
| c->all_connections_next = NULL; |
| si->num_connections++; |
| |
| /* |
| * Insert the connection match objects too. |
| */ |
| sfe_ipv6_insert_connection_match(si, c->original_match); |
| sfe_ipv6_insert_connection_match(si, c->reply_match); |
| } |
| |
| /* |
| * sfe_ipv6_remove_connection() |
| * Remove a sfe_ipv6_connection object from the hash. |
| * |
| * On entry we must be holding the lock that protects the hash table. |
| */ |
| static void sfe_ipv6_remove_connection(struct sfe_ipv6 *si, struct sfe_ipv6_connection *c) |
| { |
| /* |
| * Remove the connection match objects. |
| */ |
| sfe_ipv6_remove_connection_match(si, c->reply_match); |
| sfe_ipv6_remove_connection_match(si, c->original_match); |
| |
| /* |
| * Unlink the connection. |
| */ |
| if (c->prev) { |
| c->prev->next = c->next; |
| } else { |
| unsigned int conn_idx = sfe_ipv6_get_connection_hash(c->protocol, c->src_ip, c->src_port, |
| c->dest_ip, c->dest_port); |
| si->conn_hash[conn_idx] = c->next; |
| } |
| |
| if (c->next) { |
| c->next->prev = c->prev; |
| } |
| |
| /* |
| * Unlink connection from all_connections list |
| */ |
| if (c->all_connections_prev) { |
| c->all_connections_prev->all_connections_next = c->all_connections_next; |
| } else { |
| si->all_connections_head = c->all_connections_next; |
| } |
| |
| if (c->all_connections_next) { |
| c->all_connections_next->all_connections_prev = c->all_connections_prev; |
| } else { |
| si->all_connections_tail = c->all_connections_prev; |
| } |
| |
| si->num_connections--; |
| } |
| |
| /* |
| * sfe_ipv6_gen_sync_connection() |
| * Sync a connection. |
| * |
| * On entry to this function we expect that the lock for the connection is either |
| * already held or isn't required. |
| */ |
| static void sfe_ipv6_gen_sync_connection(struct sfe_ipv6 *si, struct sfe_ipv6_connection *c, |
| struct sfe_connection_sync *sis, uint64_t now_jiffies) |
| { |
| struct sfe_ipv6_connection_match *original_cm; |
| struct sfe_ipv6_connection_match *reply_cm; |
| |
| /* |
| * Fill in the update message. |
| */ |
| sis->protocol = c->protocol; |
| sis->src_ip.ip6[0] = c->src_ip[0]; |
| sis->dest_ip.ip6[0] = c->dest_ip[0]; |
| sis->src_port = c->src_port; |
| sis->dest_port = c->dest_port; |
| |
| original_cm = c->original_match; |
| reply_cm = c->reply_match; |
| sis->src_td_max_window = original_cm->protocol_state.tcp.max_win; |
| sis->src_td_end = original_cm->protocol_state.tcp.end; |
| sis->src_td_max_end = original_cm->protocol_state.tcp.max_end; |
| sis->dest_td_max_window = reply_cm->protocol_state.tcp.max_win; |
| sis->dest_td_end = reply_cm->protocol_state.tcp.end; |
| sis->dest_td_max_end = reply_cm->protocol_state.tcp.max_end; |
| |
| sis->src_new_packet_count = original_cm->rx_packet_count; |
| sis->src_new_byte_count = original_cm->rx_byte_count; |
| sis->dest_new_packet_count = reply_cm->rx_packet_count; |
| sis->dest_new_byte_count = reply_cm->rx_byte_count; |
| |
| sfe_ipv6_connection_match_update_summary_stats(original_cm); |
| sfe_ipv6_connection_match_update_summary_stats(reply_cm); |
| |
| sis->src_dev = original_cm->match_dev; |
| sis->src_packet_count = original_cm->rx_packet_count64; |
| sis->src_byte_count = original_cm->rx_byte_count64; |
| |
| sis->dest_dev = reply_cm->match_dev; |
| sis->dest_packet_count = reply_cm->rx_packet_count64; |
| sis->dest_byte_count = reply_cm->rx_byte_count64; |
| |
| /* |
| * Get the time increment since our last sync. |
| */ |
| sis->delta_jiffies = now_jiffies - c->last_sync_jiffies; |
| c->last_sync_jiffies = now_jiffies; |
| } |
| |
| /* |
| * sfe_ipv6_flush_connection() |
| * Flush a connection and free all associated resources. |
| * |
| * We need to be called with bottom halves disabled locally as we need to acquire |
| * the connection hash lock and release it again. In general we're actually called |
| * from within a BH and so we're fine, but we're also called when connections are |
| * torn down. |
| */ |
| static void sfe_ipv6_flush_connection(struct sfe_ipv6 *si, struct sfe_ipv6_connection *c) |
| { |
| struct sfe_connection_sync sis; |
| uint64_t now_jiffies; |
| sfe_sync_rule_callback_t sync_rule_callback; |
| |
| rcu_read_lock(); |
| spin_lock_bh(&si->lock); |
| si->connection_flushes++; |
| sync_rule_callback = rcu_dereference(si->sync_rule_callback); |
| spin_unlock_bh(&si->lock); |
| |
| if (sync_rule_callback) { |
| /* |
| * Generate a sync message and then sync. |
| */ |
| now_jiffies = get_jiffies_64(); |
| sfe_ipv6_gen_sync_connection(si, c, &sis, now_jiffies); |
| sync_rule_callback(&sis); |
| } |
| |
| rcu_read_unlock(); |
| |
| /* |
| * Release our hold of the source and dest devices and free the memory |
| * for our connection objects. |
| */ |
| dev_put(c->original_dev); |
| dev_put(c->reply_dev); |
| kfree(c->original_match); |
| kfree(c->reply_match); |
| kfree(c); |
| } |
| |
| /* |
| * sfe_ipv6_recv_udp() |
| * Handle UDP packet receives and forwarding. |
| */ |
| static int sfe_ipv6_recv_udp(struct sfe_ipv6 *si, struct sk_buff *skb, struct net_device *dev, |
| unsigned int len, struct sfe_ipv6_ip_hdr *iph, unsigned int ihl, bool flush_on_find) |
| { |
| struct sfe_ipv6_udp_hdr *udph; |
| struct sfe_ipv6_addr *src_ip; |
| struct sfe_ipv6_addr *dest_ip; |
| __be16 src_port; |
| __be16 dest_port; |
| struct sfe_ipv6_connection_match *cm; |
| struct net_device *xmit_dev; |
| |
| /* |
| * Is our packet too short to contain a valid UDP header? |
| */ |
| if (!pskb_may_pull(skb, (sizeof(struct sfe_ipv6_udp_hdr) + ihl))) { |
| spin_lock_bh(&si->lock); |
| si->exception_events[SFE_IPV6_EXCEPTION_EVENT_UDP_HEADER_INCOMPLETE]++; |
| si->packets_not_forwarded++; |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("packet too short for UDP header\n"); |
| return 0; |
| } |
| |
| /* |
| * Read the IP address and port information. Read the IP header data first |
| * because we've almost certainly got that in the cache. We may not yet have |
| * the UDP header cached though so allow more time for any prefetching. |
| */ |
| src_ip = &iph->saddr; |
| dest_ip = &iph->daddr; |
| |
| udph = (struct sfe_ipv6_udp_hdr *)(skb->data + ihl); |
| src_port = udph->source; |
| dest_port = udph->dest; |
| |
| spin_lock_bh(&si->lock); |
| |
| /* |
| * Look for a connection match. |
| */ |
| #ifdef CONFIG_NF_FLOW_COOKIE |
| cm = si->sfe_flow_cookie_table[skb->flow_cookie & SFE_FLOW_COOKIE_MASK].match; |
| if (unlikely(!cm)) { |
| cm = sfe_ipv6_find_connection_match(si, dev, IPPROTO_UDP, src_ip, src_port, dest_ip, dest_port); |
| } |
| #else |
| cm = sfe_ipv6_find_connection_match(si, dev, IPPROTO_UDP, src_ip, src_port, dest_ip, dest_port); |
| #endif |
| if (unlikely(!cm)) { |
| si->exception_events[SFE_IPV6_EXCEPTION_EVENT_UDP_NO_CONNECTION]++; |
| si->packets_not_forwarded++; |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("no connection found\n"); |
| return 0; |
| } |
| |
| /* |
| * If our packet has beern marked as "flush on find" we can't actually |
| * forward it in the fast path, but now that we've found an associated |
| * connection we can flush that out before we process the packet. |
| */ |
| if (unlikely(flush_on_find)) { |
| struct sfe_ipv6_connection *c = cm->connection; |
| sfe_ipv6_remove_connection(si, c); |
| si->exception_events[SFE_IPV6_EXCEPTION_EVENT_UDP_IP_OPTIONS_OR_INITIAL_FRAGMENT]++; |
| si->packets_not_forwarded++; |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("flush on find\n"); |
| sfe_ipv6_flush_connection(si, c); |
| return 0; |
| } |
| |
| #ifdef CONFIG_XFRM |
| /* |
| * We can't accelerate the flow on this direction, just let it go |
| * through the slow path. |
| */ |
| if (unlikely(!cm->flow_accel)) { |
| si->packets_not_forwarded++; |
| spin_unlock_bh(&si->lock); |
| return 0; |
| } |
| #endif |
| |
| /* |
| * Does our hop_limit allow forwarding? |
| */ |
| if (unlikely(iph->hop_limit < 2)) { |
| struct sfe_ipv6_connection *c = cm->connection; |
| sfe_ipv6_remove_connection(si, c); |
| si->exception_events[SFE_IPV6_EXCEPTION_EVENT_UDP_SMALL_TTL]++; |
| si->packets_not_forwarded++; |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("hop_limit too low\n"); |
| sfe_ipv6_flush_connection(si, c); |
| return 0; |
| } |
| |
| /* |
| * If our packet is larger than the MTU of the transmit interface then |
| * we can't forward it easily. |
| */ |
| if (unlikely(len > cm->xmit_dev_mtu)) { |
| struct sfe_ipv6_connection *c = cm->connection; |
| sfe_ipv6_remove_connection(si, c); |
| si->exception_events[SFE_IPV6_EXCEPTION_EVENT_UDP_NEEDS_FRAGMENTATION]++; |
| si->packets_not_forwarded++; |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("larger than mtu\n"); |
| sfe_ipv6_flush_connection(si, c); |
| return 0; |
| } |
| |
| /* |
| * From this point on we're good to modify the packet. |
| */ |
| |
| /* |
| * Decrement our hop_limit. |
| */ |
| iph->hop_limit -= 1; |
| |
| /* |
| * Do we have to perform translations of the source address/port? |
| */ |
| if (unlikely(cm->flags & SFE_IPV6_CONNECTION_MATCH_FLAG_XLATE_SRC)) { |
| uint16_t udp_csum; |
| |
| iph->saddr = cm->xlate_src_ip[0]; |
| udph->source = cm->xlate_src_port; |
| |
| /* |
| * Do we have a non-zero UDP checksum? If we do then we need |
| * to update it. |
| */ |
| udp_csum = udph->check; |
| if (likely(udp_csum)) { |
| uint32_t sum = udp_csum + cm->xlate_src_csum_adjustment; |
| sum = (sum & 0xffff) + (sum >> 16); |
| udph->check = (uint16_t)sum; |
| } |
| } |
| |
| /* |
| * Do we have to perform translations of the destination address/port? |
| */ |
| if (unlikely(cm->flags & SFE_IPV6_CONNECTION_MATCH_FLAG_XLATE_DEST)) { |
| uint16_t udp_csum; |
| |
| iph->daddr = cm->xlate_dest_ip[0]; |
| udph->dest = cm->xlate_dest_port; |
| |
| /* |
| * Do we have a non-zero UDP checksum? If we do then we need |
| * to update it. |
| */ |
| udp_csum = udph->check; |
| if (likely(udp_csum)) { |
| uint32_t sum = udp_csum + cm->xlate_dest_csum_adjustment; |
| sum = (sum & 0xffff) + (sum >> 16); |
| udph->check = (uint16_t)sum; |
| } |
| } |
| |
| /* |
| * Update traffic stats. |
| */ |
| cm->rx_packet_count++; |
| cm->rx_byte_count += len; |
| |
| /* |
| * If we're not already on the active list then insert ourselves at the tail |
| * of the current list. |
| */ |
| if (unlikely(!cm->active)) { |
| cm->active = true; |
| cm->active_prev = si->active_tail; |
| if (likely(si->active_tail)) { |
| si->active_tail->active_next = cm; |
| } else { |
| si->active_head = cm; |
| } |
| si->active_tail = cm; |
| } |
| |
| xmit_dev = cm->xmit_dev; |
| skb->dev = xmit_dev; |
| |
| /* |
| * Check to see if we need to write a header. |
| */ |
| if (likely(cm->flags & SFE_IPV6_CONNECTION_MATCH_FLAG_WRITE_L2_HDR)) { |
| if (unlikely(!(cm->flags & SFE_IPV6_CONNECTION_MATCH_FLAG_WRITE_FAST_ETH_HDR))) { |
| dev_hard_header(skb, xmit_dev, ETH_P_IPV6, |
| cm->xmit_dest_mac, cm->xmit_src_mac, len); |
| } else { |
| /* |
| * For the simple case we write this really fast. |
| */ |
| struct sfe_ipv6_eth_hdr *eth = (struct sfe_ipv6_eth_hdr *)__skb_push(skb, ETH_HLEN); |
| eth->h_proto = htons(ETH_P_IPV6); |
| eth->h_dest[0] = cm->xmit_dest_mac[0]; |
| eth->h_dest[1] = cm->xmit_dest_mac[1]; |
| eth->h_dest[2] = cm->xmit_dest_mac[2]; |
| eth->h_source[0] = cm->xmit_src_mac[0]; |
| eth->h_source[1] = cm->xmit_src_mac[1]; |
| eth->h_source[2] = cm->xmit_src_mac[2]; |
| } |
| } |
| |
| /* |
| * Mark outgoing packet. |
| */ |
| skb->mark = cm->connection->mark; |
| if (skb->mark) { |
| DEBUG_TRACE("SKB MARK is NON ZERO %x\n", skb->mark); |
| } |
| |
| si->packets_forwarded++; |
| spin_unlock_bh(&si->lock); |
| |
| /* |
| * We're going to check for GSO flags when we transmit the packet so |
| * start fetching the necessary cache line now. |
| */ |
| prefetch(skb_shinfo(skb)); |
| |
| /* |
| * Mark that this packet has been fast forwarded. |
| */ |
| skb->fast_forwarded = 1; |
| |
| /* |
| * Send the packet on its way. |
| */ |
| dev_queue_xmit(skb); |
| |
| return 1; |
| } |
| |
| /* |
| * sfe_ipv6_process_tcp_option_sack() |
| * Parse TCP SACK option and update ack according |
| */ |
| static bool sfe_ipv6_process_tcp_option_sack(const struct sfe_ipv6_tcp_hdr *th, const uint32_t data_offs, |
| uint32_t *ack) __attribute__((always_inline)); |
| static bool sfe_ipv6_process_tcp_option_sack(const struct sfe_ipv6_tcp_hdr *th, const uint32_t data_offs, |
| uint32_t *ack) |
| { |
| uint32_t length = sizeof(struct sfe_ipv6_tcp_hdr); |
| uint8_t *ptr = (uint8_t *)th + length; |
| |
| /* |
| * If option is TIMESTAMP discard it. |
| */ |
| if (likely(data_offs == length + TCPOLEN_TIMESTAMP + 1 + 1) |
| && likely(ptr[0] == TCPOPT_NOP) |
| && likely(ptr[1] == TCPOPT_NOP) |
| && likely(ptr[2] == TCPOPT_TIMESTAMP) |
| && likely(ptr[3] == TCPOLEN_TIMESTAMP)) { |
| return true; |
| } |
| |
| /* |
| * TCP options. Parse SACK option. |
| */ |
| while (length < data_offs) { |
| uint8_t size; |
| uint8_t kind; |
| |
| ptr = (uint8_t *)th + length; |
| kind = *ptr; |
| |
| /* |
| * NOP, for padding |
| * Not in the switch because to fast escape and to not calculate size |
| */ |
| if (kind == TCPOPT_NOP) { |
| length++; |
| continue; |
| } |
| |
| if (kind == TCPOPT_SACK) { |
| uint32_t sack = 0; |
| uint8_t re = 1 + 1; |
| |
| size = *(ptr + 1); |
| if ((size < (1 + 1 + TCPOLEN_SACK_PERBLOCK)) |
| || ((size - (1 + 1)) % (TCPOLEN_SACK_PERBLOCK)) |
| || (size > (data_offs - length))) { |
| return false; |
| } |
| |
| re += 4; |
| while (re < size) { |
| uint32_t sack_re; |
| uint8_t *sptr = ptr + re; |
| sack_re = (sptr[0] << 24) | (sptr[1] << 16) | (sptr[2] << 8) | sptr[3]; |
| if (sack_re > sack) { |
| sack = sack_re; |
| } |
| re += TCPOLEN_SACK_PERBLOCK; |
| } |
| if (sack > *ack) { |
| *ack = sack; |
| } |
| length += size; |
| continue; |
| } |
| if (kind == TCPOPT_EOL) { |
| return true; |
| } |
| size = *(ptr + 1); |
| if (size < 2) { |
| return false; |
| } |
| length += size; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * sfe_ipv6_recv_tcp() |
| * Handle TCP packet receives and forwarding. |
| */ |
| static int sfe_ipv6_recv_tcp(struct sfe_ipv6 *si, struct sk_buff *skb, struct net_device *dev, |
| unsigned int len, struct sfe_ipv6_ip_hdr *iph, unsigned int ihl, bool flush_on_find) |
| { |
| struct sfe_ipv6_tcp_hdr *tcph; |
| struct sfe_ipv6_addr *src_ip; |
| struct sfe_ipv6_addr *dest_ip; |
| __be16 src_port; |
| __be16 dest_port; |
| struct sfe_ipv6_connection_match *cm; |
| struct sfe_ipv6_connection_match *counter_cm; |
| uint32_t flags; |
| struct net_device *xmit_dev; |
| |
| /* |
| * Is our packet too short to contain a valid UDP header? |
| */ |
| if (!pskb_may_pull(skb, (sizeof(struct sfe_ipv6_tcp_hdr) + ihl))) { |
| spin_lock_bh(&si->lock); |
| si->exception_events[SFE_IPV6_EXCEPTION_EVENT_TCP_HEADER_INCOMPLETE]++; |
| si->packets_not_forwarded++; |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("packet too short for TCP header\n"); |
| return 0; |
| } |
| |
| /* |
| * Read the IP address and port information. Read the IP header data first |
| * because we've almost certainly got that in the cache. We may not yet have |
| * the TCP header cached though so allow more time for any prefetching. |
| */ |
| src_ip = &iph->saddr; |
| dest_ip = &iph->daddr; |
| |
| tcph = (struct sfe_ipv6_tcp_hdr *)(skb->data + ihl); |
| src_port = tcph->source; |
| dest_port = tcph->dest; |
| flags = tcp_flag_word(tcph); |
| |
| spin_lock_bh(&si->lock); |
| |
| /* |
| * Look for a connection match. |
| */ |
| #ifdef CONFIG_NF_FLOW_COOKIE |
| cm = si->sfe_flow_cookie_table[skb->flow_cookie & SFE_FLOW_COOKIE_MASK].match; |
| if (unlikely(!cm)) { |
| cm = sfe_ipv6_find_connection_match(si, dev, IPPROTO_TCP, src_ip, src_port, dest_ip, dest_port); |
| } |
| #else |
| cm = sfe_ipv6_find_connection_match(si, dev, IPPROTO_TCP, src_ip, src_port, dest_ip, dest_port); |
| #endif |
| if (unlikely(!cm)) { |
| /* |
| * We didn't get a connection but as TCP is connection-oriented that |
| * may be because this is a non-fast connection (not running established). |
| * For diagnostic purposes we differentiate this here. |
| */ |
| if (likely((flags & (TCP_FLAG_SYN | TCP_FLAG_RST | TCP_FLAG_FIN | TCP_FLAG_ACK)) == TCP_FLAG_ACK)) { |
| si->exception_events[SFE_IPV6_EXCEPTION_EVENT_TCP_NO_CONNECTION_FAST_FLAGS]++; |
| si->packets_not_forwarded++; |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("no connection found - fast flags\n"); |
| return 0; |
| } |
| si->exception_events[SFE_IPV6_EXCEPTION_EVENT_TCP_NO_CONNECTION_SLOW_FLAGS]++; |
| si->packets_not_forwarded++; |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("no connection found - slow flags: 0x%x\n", |
| flags & (TCP_FLAG_SYN | TCP_FLAG_RST | TCP_FLAG_FIN | TCP_FLAG_ACK)); |
| return 0; |
| } |
| |
| /* |
| * If our packet has beern marked as "flush on find" we can't actually |
| * forward it in the fast path, but now that we've found an associated |
| * connection we can flush that out before we process the packet. |
| */ |
| if (unlikely(flush_on_find)) { |
| struct sfe_ipv6_connection *c = cm->connection; |
| sfe_ipv6_remove_connection(si, c); |
| si->exception_events[SFE_IPV6_EXCEPTION_EVENT_TCP_IP_OPTIONS_OR_INITIAL_FRAGMENT]++; |
| si->packets_not_forwarded++; |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("flush on find\n"); |
| sfe_ipv6_flush_connection(si, c); |
| return 0; |
| } |
| |
| #ifdef CONFIG_XFRM |
| /* |
| * We can't accelerate the flow on this direction, just let it go |
| * through the slow path. |
| */ |
| if (unlikely(!cm->flow_accel)) { |
| si->packets_not_forwarded++; |
| spin_unlock_bh(&si->lock); |
| return 0; |
| } |
| #endif |
| |
| /* |
| * Does our hop_limit allow forwarding? |
| */ |
| if (unlikely(iph->hop_limit < 2)) { |
| struct sfe_ipv6_connection *c = cm->connection; |
| sfe_ipv6_remove_connection(si, c); |
| si->exception_events[SFE_IPV6_EXCEPTION_EVENT_TCP_SMALL_TTL]++; |
| si->packets_not_forwarded++; |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("hop_limit too low\n"); |
| sfe_ipv6_flush_connection(si, c); |
| return 0; |
| } |
| |
| /* |
| * If our packet is larger than the MTU of the transmit interface then |
| * we can't forward it easily. |
| */ |
| if (unlikely((len > cm->xmit_dev_mtu) && !skb_is_gso(skb))) { |
| struct sfe_ipv6_connection *c = cm->connection; |
| sfe_ipv6_remove_connection(si, c); |
| si->exception_events[SFE_IPV6_EXCEPTION_EVENT_TCP_NEEDS_FRAGMENTATION]++; |
| si->packets_not_forwarded++; |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("larger than mtu\n"); |
| sfe_ipv6_flush_connection(si, c); |
| return 0; |
| } |
| |
| /* |
| * Look at our TCP flags. Anything missing an ACK or that has RST, SYN or FIN |
| * set is not a fast path packet. |
| */ |
| if (unlikely((flags & (TCP_FLAG_SYN | TCP_FLAG_RST | TCP_FLAG_FIN | TCP_FLAG_ACK)) != TCP_FLAG_ACK)) { |
| struct sfe_ipv6_connection *c = cm->connection; |
| sfe_ipv6_remove_connection(si, c); |
| si->exception_events[SFE_IPV6_EXCEPTION_EVENT_TCP_FLAGS]++; |
| si->packets_not_forwarded++; |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("TCP flags: 0x%x are not fast\n", |
| flags & (TCP_FLAG_SYN | TCP_FLAG_RST | TCP_FLAG_FIN | TCP_FLAG_ACK)); |
| sfe_ipv6_flush_connection(si, c); |
| return 0; |
| } |
| |
| counter_cm = cm->counter_match; |
| |
| /* |
| * Are we doing sequence number checking? |
| */ |
| if (likely(!(cm->flags & SFE_IPV6_CONNECTION_MATCH_FLAG_NO_SEQ_CHECK))) { |
| uint32_t seq; |
| uint32_t ack; |
| uint32_t sack; |
| uint32_t data_offs; |
| uint32_t end; |
| uint32_t left_edge; |
| uint32_t scaled_win; |
| uint32_t max_end; |
| |
| /* |
| * Is our sequence fully past the right hand edge of the window? |
| */ |
| seq = ntohl(tcph->seq); |
| if (unlikely((int32_t)(seq - (cm->protocol_state.tcp.max_end + 1)) > 0)) { |
| struct sfe_ipv6_connection *c = cm->connection; |
| sfe_ipv6_remove_connection(si, c); |
| si->exception_events[SFE_IPV6_EXCEPTION_EVENT_TCP_SEQ_EXCEEDS_RIGHT_EDGE]++; |
| si->packets_not_forwarded++; |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("seq: %u exceeds right edge: %u\n", |
| seq, cm->protocol_state.tcp.max_end + 1); |
| sfe_ipv6_flush_connection(si, c); |
| return 0; |
| } |
| |
| /* |
| * Check that our TCP data offset isn't too short. |
| */ |
| data_offs = tcph->doff << 2; |
| if (unlikely(data_offs < sizeof(struct sfe_ipv6_tcp_hdr))) { |
| struct sfe_ipv6_connection *c = cm->connection; |
| sfe_ipv6_remove_connection(si, c); |
| si->exception_events[SFE_IPV6_EXCEPTION_EVENT_TCP_SMALL_DATA_OFFS]++; |
| si->packets_not_forwarded++; |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("TCP data offset: %u, too small\n", data_offs); |
| sfe_ipv6_flush_connection(si, c); |
| return 0; |
| } |
| |
| /* |
| * Update ACK according to any SACK option. |
| */ |
| ack = ntohl(tcph->ack_seq); |
| sack = ack; |
| if (unlikely(!sfe_ipv6_process_tcp_option_sack(tcph, data_offs, &sack))) { |
| struct sfe_ipv6_connection *c = cm->connection; |
| sfe_ipv6_remove_connection(si, c); |
| si->exception_events[SFE_IPV6_EXCEPTION_EVENT_TCP_BAD_SACK]++; |
| si->packets_not_forwarded++; |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("TCP option SACK size is wrong\n"); |
| sfe_ipv6_flush_connection(si, c); |
| return 0; |
| } |
| |
| /* |
| * Check that our TCP data offset isn't past the end of the packet. |
| */ |
| data_offs += sizeof(struct sfe_ipv6_ip_hdr); |
| if (unlikely(len < data_offs)) { |
| struct sfe_ipv6_connection *c = cm->connection; |
| sfe_ipv6_remove_connection(si, c); |
| si->exception_events[SFE_IPV6_EXCEPTION_EVENT_TCP_BIG_DATA_OFFS]++; |
| si->packets_not_forwarded++; |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("TCP data offset: %u, past end of packet: %u\n", |
| data_offs, len); |
| sfe_ipv6_flush_connection(si, c); |
| return 0; |
| } |
| |
| end = seq + len - data_offs; |
| |
| /* |
| * Is our sequence fully before the left hand edge of the window? |
| */ |
| if (unlikely((int32_t)(end - (cm->protocol_state.tcp.end |
| - counter_cm->protocol_state.tcp.max_win - 1)) < 0)) { |
| struct sfe_ipv6_connection *c = cm->connection; |
| sfe_ipv6_remove_connection(si, c); |
| si->exception_events[SFE_IPV6_EXCEPTION_EVENT_TCP_SEQ_BEFORE_LEFT_EDGE]++; |
| si->packets_not_forwarded++; |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("seq: %u before left edge: %u\n", |
| end, cm->protocol_state.tcp.end - counter_cm->protocol_state.tcp.max_win - 1); |
| sfe_ipv6_flush_connection(si, c); |
| return 0; |
| } |
| |
| /* |
| * Are we acking data that is to the right of what has been sent? |
| */ |
| if (unlikely((int32_t)(sack - (counter_cm->protocol_state.tcp.end + 1)) > 0)) { |
| struct sfe_ipv6_connection *c = cm->connection; |
| sfe_ipv6_remove_connection(si, c); |
| si->exception_events[SFE_IPV6_EXCEPTION_EVENT_TCP_ACK_EXCEEDS_RIGHT_EDGE]++; |
| si->packets_not_forwarded++; |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("ack: %u exceeds right edge: %u\n", |
| sack, counter_cm->protocol_state.tcp.end + 1); |
| sfe_ipv6_flush_connection(si, c); |
| return 0; |
| } |
| |
| /* |
| * Is our ack too far before the left hand edge of the window? |
| */ |
| left_edge = counter_cm->protocol_state.tcp.end |
| - cm->protocol_state.tcp.max_win |
| - SFE_IPV6_TCP_MAX_ACK_WINDOW |
| - 1; |
| if (unlikely((int32_t)(sack - left_edge) < 0)) { |
| struct sfe_ipv6_connection *c = cm->connection; |
| sfe_ipv6_remove_connection(si, c); |
| si->exception_events[SFE_IPV6_EXCEPTION_EVENT_TCP_ACK_BEFORE_LEFT_EDGE]++; |
| si->packets_not_forwarded++; |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("ack: %u before left edge: %u\n", sack, left_edge); |
| sfe_ipv6_flush_connection(si, c); |
| return 0; |
| } |
| |
| /* |
| * Have we just seen the largest window size yet for this connection? If yes |
| * then we need to record the new value. |
| */ |
| scaled_win = ntohs(tcph->window) << cm->protocol_state.tcp.win_scale; |
| scaled_win += (sack - ack); |
| if (unlikely(cm->protocol_state.tcp.max_win < scaled_win)) { |
| cm->protocol_state.tcp.max_win = scaled_win; |
| } |
| |
| /* |
| * If our sequence and/or ack numbers have advanced then record the new state. |
| */ |
| if (likely((int32_t)(end - cm->protocol_state.tcp.end) >= 0)) { |
| cm->protocol_state.tcp.end = end; |
| } |
| |
| max_end = sack + scaled_win; |
| if (likely((int32_t)(max_end - counter_cm->protocol_state.tcp.max_end) >= 0)) { |
| counter_cm->protocol_state.tcp.max_end = max_end; |
| } |
| } |
| |
| /* |
| * From this point on we're good to modify the packet. |
| */ |
| |
| /* |
| * Decrement our hop_limit. |
| */ |
| iph->hop_limit -= 1; |
| |
| /* |
| * Do we have to perform translations of the source address/port? |
| */ |
| if (unlikely(cm->flags & SFE_IPV6_CONNECTION_MATCH_FLAG_XLATE_SRC)) { |
| uint16_t tcp_csum; |
| uint32_t sum; |
| |
| iph->saddr = cm->xlate_src_ip[0]; |
| tcph->source = cm->xlate_src_port; |
| |
| /* |
| * Do we have a non-zero UDP checksum? If we do then we need |
| * to update it. |
| */ |
| tcp_csum = tcph->check; |
| sum = tcp_csum + cm->xlate_src_csum_adjustment; |
| sum = (sum & 0xffff) + (sum >> 16); |
| tcph->check = (uint16_t)sum; |
| } |
| |
| /* |
| * Do we have to perform translations of the destination address/port? |
| */ |
| if (unlikely(cm->flags & SFE_IPV6_CONNECTION_MATCH_FLAG_XLATE_DEST)) { |
| uint16_t tcp_csum; |
| uint32_t sum; |
| |
| iph->daddr = cm->xlate_dest_ip[0]; |
| tcph->dest = cm->xlate_dest_port; |
| |
| /* |
| * Do we have a non-zero UDP checksum? If we do then we need |
| * to update it. |
| */ |
| tcp_csum = tcph->check; |
| sum = tcp_csum + cm->xlate_dest_csum_adjustment; |
| sum = (sum & 0xffff) + (sum >> 16); |
| tcph->check = (uint16_t)sum; |
| } |
| |
| /* |
| * Update traffic stats. |
| */ |
| cm->rx_packet_count++; |
| cm->rx_byte_count += len; |
| |
| /* |
| * If we're not already on the active list then insert ourselves at the tail |
| * of the current list. |
| */ |
| if (unlikely(!cm->active)) { |
| cm->active = true; |
| cm->active_prev = si->active_tail; |
| if (likely(si->active_tail)) { |
| si->active_tail->active_next = cm; |
| } else { |
| si->active_head = cm; |
| } |
| si->active_tail = cm; |
| } |
| |
| xmit_dev = cm->xmit_dev; |
| skb->dev = xmit_dev; |
| |
| /* |
| * Check to see if we need to write a header. |
| */ |
| if (likely(cm->flags & SFE_IPV6_CONNECTION_MATCH_FLAG_WRITE_L2_HDR)) { |
| if (unlikely(!(cm->flags & SFE_IPV6_CONNECTION_MATCH_FLAG_WRITE_FAST_ETH_HDR))) { |
| dev_hard_header(skb, xmit_dev, ETH_P_IPV6, |
| cm->xmit_dest_mac, cm->xmit_src_mac, len); |
| } else { |
| /* |
| * For the simple case we write this really fast. |
| */ |
| struct sfe_ipv6_eth_hdr *eth = (struct sfe_ipv6_eth_hdr *)__skb_push(skb, ETH_HLEN); |
| eth->h_proto = htons(ETH_P_IPV6); |
| eth->h_dest[0] = cm->xmit_dest_mac[0]; |
| eth->h_dest[1] = cm->xmit_dest_mac[1]; |
| eth->h_dest[2] = cm->xmit_dest_mac[2]; |
| eth->h_source[0] = cm->xmit_src_mac[0]; |
| eth->h_source[1] = cm->xmit_src_mac[1]; |
| eth->h_source[2] = cm->xmit_src_mac[2]; |
| } |
| } |
| |
| /* |
| * Mark outgoing packet |
| */ |
| skb->mark = cm->connection->mark; |
| if (skb->mark) { |
| DEBUG_TRACE("SKB MARK is NON ZERO %x\n", skb->mark); |
| } |
| |
| si->packets_forwarded++; |
| spin_unlock_bh(&si->lock); |
| |
| /* |
| * We're going to check for GSO flags when we transmit the packet so |
| * start fetching the necessary cache line now. |
| */ |
| prefetch(skb_shinfo(skb)); |
| |
| /* |
| * Mark that this packet has been fast forwarded. |
| */ |
| skb->fast_forwarded = 1; |
| |
| /* |
| * Send the packet on its way. |
| */ |
| dev_queue_xmit(skb); |
| |
| return 1; |
| } |
| |
| /* |
| * sfe_ipv6_recv_icmp() |
| * Handle ICMP packet receives. |
| * |
| * ICMP packets aren't handled as a "fast path" and always have us process them |
| * through the default Linux stack. What we do need to do is look for any errors |
| * about connections we are handling in the fast path. If we find any such |
| * connections then we want to flush their state so that the ICMP error path |
| * within Linux has all of the correct state should it need it. |
| */ |
| static int sfe_ipv6_recv_icmp(struct sfe_ipv6 *si, struct sk_buff *skb, struct net_device *dev, |
| unsigned int len, struct sfe_ipv6_ip_hdr *iph, unsigned int ihl) |
| { |
| struct icmp6hdr *icmph; |
| struct sfe_ipv6_ip_hdr *icmp_iph; |
| struct sfe_ipv6_udp_hdr *icmp_udph; |
| struct sfe_ipv6_tcp_hdr *icmp_tcph; |
| struct sfe_ipv6_addr *src_ip; |
| struct sfe_ipv6_addr *dest_ip; |
| __be16 src_port; |
| __be16 dest_port; |
| struct sfe_ipv6_connection_match *cm; |
| struct sfe_ipv6_connection *c; |
| uint8_t next_hdr; |
| |
| /* |
| * Is our packet too short to contain a valid UDP header? |
| */ |
| len -= ihl; |
| if (!pskb_may_pull(skb, ihl + sizeof(struct icmp6hdr))) { |
| spin_lock_bh(&si->lock); |
| si->exception_events[SFE_IPV6_EXCEPTION_EVENT_ICMP_HEADER_INCOMPLETE]++; |
| si->packets_not_forwarded++; |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("packet too short for ICMP header\n"); |
| return 0; |
| } |
| |
| /* |
| * We only handle "destination unreachable" and "time exceeded" messages. |
| */ |
| icmph = (struct icmp6hdr *)(skb->data + ihl); |
| if ((icmph->icmp6_type != ICMPV6_DEST_UNREACH) |
| && (icmph->icmp6_type != ICMPV6_TIME_EXCEED)) { |
| spin_lock_bh(&si->lock); |
| si->exception_events[SFE_IPV6_EXCEPTION_EVENT_ICMP_UNHANDLED_TYPE]++; |
| si->packets_not_forwarded++; |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("unhandled ICMP type: 0x%x\n", icmph->icmp6_type); |
| return 0; |
| } |
| |
| /* |
| * Do we have the full embedded IP header? |
| * We should have 8 bytes of next L4 header - that's enough to identify |
| * the connection. |
| */ |
| len -= sizeof(struct icmp6hdr); |
| ihl += sizeof(struct icmp6hdr); |
| if (!pskb_may_pull(skb, ihl + sizeof(struct sfe_ipv6_ip_hdr) + sizeof(struct sfe_ipv6_ext_hdr))) { |
| spin_lock_bh(&si->lock); |
| si->exception_events[SFE_IPV6_EXCEPTION_EVENT_ICMP_IPV6_HEADER_INCOMPLETE]++; |
| si->packets_not_forwarded++; |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("Embedded IP header not complete\n"); |
| return 0; |
| } |
| |
| /* |
| * Is our embedded IP version wrong? |
| */ |
| icmp_iph = (struct sfe_ipv6_ip_hdr *)(icmph + 1); |
| if (unlikely(icmp_iph->version != 6)) { |
| spin_lock_bh(&si->lock); |
| si->exception_events[SFE_IPV6_EXCEPTION_EVENT_ICMP_IPV6_NON_V6]++; |
| si->packets_not_forwarded++; |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("IP version: %u\n", icmp_iph->version); |
| return 0; |
| } |
| |
| len -= sizeof(struct sfe_ipv6_ip_hdr); |
| ihl += sizeof(struct sfe_ipv6_ip_hdr); |
| next_hdr = icmp_iph->nexthdr; |
| while (unlikely(sfe_ipv6_is_ext_hdr(next_hdr))) { |
| struct sfe_ipv6_ext_hdr *ext_hdr; |
| unsigned int ext_hdr_len; |
| |
| ext_hdr = (struct sfe_ipv6_ext_hdr *)(skb->data + ihl); |
| if (next_hdr == SFE_IPV6_EXT_HDR_FRAG) { |
| struct sfe_ipv6_frag_hdr *frag_hdr = (struct sfe_ipv6_frag_hdr *)ext_hdr; |
| unsigned int frag_off = ntohs(frag_hdr->frag_off); |
| |
| if (frag_off & SFE_IPV6_FRAG_OFFSET) { |
| spin_lock_bh(&si->lock); |
| si->exception_events[SFE_IPV6_EXCEPTION_EVENT_NON_INITIAL_FRAGMENT]++; |
| si->packets_not_forwarded++; |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("non-initial fragment\n"); |
| return 0; |
| } |
| } |
| |
| ext_hdr_len = ext_hdr->hdr_len; |
| ext_hdr_len <<= 3; |
| ext_hdr_len += sizeof(struct sfe_ipv6_ext_hdr); |
| len -= ext_hdr_len; |
| ihl += ext_hdr_len; |
| /* |
| * We should have 8 bytes of next header - that's enough to identify |
| * the connection. |
| */ |
| if (!pskb_may_pull(skb, ihl + sizeof(struct sfe_ipv6_ext_hdr))) { |
| spin_lock_bh(&si->lock); |
| si->exception_events[SFE_IPV6_EXCEPTION_EVENT_HEADER_INCOMPLETE]++; |
| si->packets_not_forwarded++; |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("extension header %d not completed\n", next_hdr); |
| return 0; |
| } |
| |
| next_hdr = ext_hdr->next_hdr; |
| } |
| |
| /* |
| * Handle the embedded transport layer header. |
| */ |
| switch (next_hdr) { |
| case IPPROTO_UDP: |
| icmp_udph = (struct sfe_ipv6_udp_hdr *)(skb->data + ihl); |
| src_port = icmp_udph->source; |
| dest_port = icmp_udph->dest; |
| break; |
| |
| case IPPROTO_TCP: |
| icmp_tcph = (struct sfe_ipv6_tcp_hdr *)(skb->data + ihl); |
| src_port = icmp_tcph->source; |
| dest_port = icmp_tcph->dest; |
| break; |
| |
| default: |
| spin_lock_bh(&si->lock); |
| si->exception_events[SFE_IPV6_EXCEPTION_EVENT_ICMP_IPV6_UNHANDLED_PROTOCOL]++; |
| si->packets_not_forwarded++; |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("Unhandled embedded IP protocol: %u\n", icmp_iph->protocol); |
| return 0; |
| } |
| |
| src_ip = &icmp_iph->saddr; |
| dest_ip = &icmp_iph->daddr; |
| |
| spin_lock_bh(&si->lock); |
| |
| /* |
| * Look for a connection match. Note that we reverse the source and destination |
| * here because our embedded message contains a packet that was sent in the |
| * opposite direction to the one in which we just received it. It will have |
| * been sent on the interface from which we received it though so that's still |
| * ok to use. |
| */ |
| cm = sfe_ipv6_find_connection_match(si, dev, icmp_iph->nexthdr, dest_ip, dest_port, src_ip, src_port); |
| if (unlikely(!cm)) { |
| si->exception_events[SFE_IPV6_EXCEPTION_EVENT_ICMP_NO_CONNECTION]++; |
| si->packets_not_forwarded++; |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("no connection found\n"); |
| return 0; |
| } |
| |
| /* |
| * We found a connection so now remove it from the connection list and flush |
| * its state. |
| */ |
| c = cm->connection; |
| sfe_ipv6_remove_connection(si, c); |
| si->exception_events[SFE_IPV6_EXCEPTION_EVENT_ICMP_FLUSHED_CONNECTION]++; |
| si->packets_not_forwarded++; |
| spin_unlock_bh(&si->lock); |
| |
| sfe_ipv6_flush_connection(si, c); |
| return 0; |
| } |
| |
| /* |
| * sfe_ipv6_recv() |
| * Handle packet receives and forwaring. |
| * |
| * Returns 1 if the packet is forwarded or 0 if it isn't. |
| */ |
| int sfe_ipv6_recv(struct net_device *dev, struct sk_buff *skb) |
| { |
| struct sfe_ipv6 *si = &__si6; |
| unsigned int len; |
| unsigned int payload_len; |
| unsigned int ihl = sizeof(struct sfe_ipv6_ip_hdr); |
| bool flush_on_find = false; |
| struct sfe_ipv6_ip_hdr *iph; |
| uint8_t next_hdr; |
| |
| /* |
| * Check that we have space for an IP header and an uplayer header here. |
| */ |
| len = skb->len; |
| if (!pskb_may_pull(skb, ihl + sizeof(struct sfe_ipv6_ext_hdr))) { |
| spin_lock_bh(&si->lock); |
| si->exception_events[SFE_IPV6_EXCEPTION_EVENT_HEADER_INCOMPLETE]++; |
| si->packets_not_forwarded++; |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("len: %u is too short\n", len); |
| return 0; |
| } |
| |
| /* |
| * Is our IP version wrong? |
| */ |
| iph = (struct sfe_ipv6_ip_hdr *)skb->data; |
| if (unlikely(iph->version != 6)) { |
| spin_lock_bh(&si->lock); |
| si->exception_events[SFE_IPV6_EXCEPTION_EVENT_NON_V6]++; |
| si->packets_not_forwarded++; |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("IP version: %u\n", iph->version); |
| return 0; |
| } |
| |
| /* |
| * Does our datagram fit inside the skb? |
| */ |
| payload_len = ntohs(iph->payload_len); |
| if (unlikely(payload_len > (len - ihl))) { |
| spin_lock_bh(&si->lock); |
| si->exception_events[SFE_IPV6_EXCEPTION_EVENT_DATAGRAM_INCOMPLETE]++; |
| si->packets_not_forwarded++; |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("payload_len: %u, exceeds len: %u\n", payload_len, (len - sizeof(struct sfe_ipv6_ip_hdr))); |
| return 0; |
| } |
| |
| next_hdr = iph->nexthdr; |
| while (unlikely(sfe_ipv6_is_ext_hdr(next_hdr))) { |
| struct sfe_ipv6_ext_hdr *ext_hdr; |
| unsigned int ext_hdr_len; |
| |
| ext_hdr = (struct sfe_ipv6_ext_hdr *)(skb->data + ihl); |
| if (next_hdr == SFE_IPV6_EXT_HDR_FRAG) { |
| struct sfe_ipv6_frag_hdr *frag_hdr = (struct sfe_ipv6_frag_hdr *)ext_hdr; |
| unsigned int frag_off = ntohs(frag_hdr->frag_off); |
| |
| if (frag_off & SFE_IPV6_FRAG_OFFSET) { |
| spin_lock_bh(&si->lock); |
| si->exception_events[SFE_IPV6_EXCEPTION_EVENT_NON_INITIAL_FRAGMENT]++; |
| si->packets_not_forwarded++; |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("non-initial fragment\n"); |
| return 0; |
| } |
| } |
| |
| ext_hdr_len = ext_hdr->hdr_len; |
| ext_hdr_len <<= 3; |
| ext_hdr_len += sizeof(struct sfe_ipv6_ext_hdr); |
| ihl += ext_hdr_len; |
| if (!pskb_may_pull(skb, ihl + sizeof(struct sfe_ipv6_ext_hdr))) { |
| spin_lock_bh(&si->lock); |
| si->exception_events[SFE_IPV6_EXCEPTION_EVENT_HEADER_INCOMPLETE]++; |
| si->packets_not_forwarded++; |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("extension header %d not completed\n", next_hdr); |
| return 0; |
| } |
| |
| flush_on_find = true; |
| next_hdr = ext_hdr->next_hdr; |
| } |
| |
| if (IPPROTO_UDP == next_hdr) { |
| return sfe_ipv6_recv_udp(si, skb, dev, len, iph, ihl, flush_on_find); |
| } |
| |
| if (IPPROTO_TCP == next_hdr) { |
| return sfe_ipv6_recv_tcp(si, skb, dev, len, iph, ihl, flush_on_find); |
| } |
| |
| if (IPPROTO_ICMPV6 == next_hdr) { |
| return sfe_ipv6_recv_icmp(si, skb, dev, len, iph, ihl); |
| } |
| |
| spin_lock_bh(&si->lock); |
| si->exception_events[SFE_IPV6_EXCEPTION_EVENT_UNHANDLED_PROTOCOL]++; |
| si->packets_not_forwarded++; |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("not UDP, TCP or ICMP: %u\n", next_hdr); |
| return 0; |
| } |
| |
| /* |
| * sfe_ipv6_update_tcp_state() |
| * update TCP window variables. |
| */ |
| static void |
| sfe_ipv6_update_tcp_state(struct sfe_ipv6_connection *c, |
| struct sfe_connection_create *sic) |
| { |
| struct sfe_ipv6_connection_match *orig_cm; |
| struct sfe_ipv6_connection_match *repl_cm; |
| struct sfe_ipv6_tcp_connection_match *orig_tcp; |
| struct sfe_ipv6_tcp_connection_match *repl_tcp; |
| |
| orig_cm = c->original_match; |
| repl_cm = c->reply_match; |
| orig_tcp = &orig_cm->protocol_state.tcp; |
| repl_tcp = &repl_cm->protocol_state.tcp; |
| |
| /* update orig */ |
| if (orig_tcp->max_win < sic->src_td_max_window) { |
| orig_tcp->max_win = sic->src_td_max_window; |
| } |
| if ((int32_t)(orig_tcp->end - sic->src_td_end) < 0) { |
| orig_tcp->end = sic->src_td_end; |
| } |
| if ((int32_t)(orig_tcp->max_end - sic->src_td_max_end) < 0) { |
| orig_tcp->max_end = sic->src_td_max_end; |
| } |
| |
| /* update reply */ |
| if (repl_tcp->max_win < sic->dest_td_max_window) { |
| repl_tcp->max_win = sic->dest_td_max_window; |
| } |
| if ((int32_t)(repl_tcp->end - sic->dest_td_end) < 0) { |
| repl_tcp->end = sic->dest_td_end; |
| } |
| if ((int32_t)(repl_tcp->max_end - sic->dest_td_max_end) < 0) { |
| repl_tcp->max_end = sic->dest_td_max_end; |
| } |
| |
| /* update match flags */ |
| orig_cm->flags &= ~SFE_IPV6_CONNECTION_MATCH_FLAG_NO_SEQ_CHECK; |
| repl_cm->flags &= ~SFE_IPV6_CONNECTION_MATCH_FLAG_NO_SEQ_CHECK; |
| if (sic->flags & SFE_CREATE_FLAG_NO_SEQ_CHECK) { |
| orig_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_NO_SEQ_CHECK; |
| repl_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_NO_SEQ_CHECK; |
| } |
| } |
| |
| /* |
| * sfe_ipv6_update_protocol_state() |
| * update protocol specified state machine. |
| */ |
| static void |
| sfe_ipv6_update_protocol_state(struct sfe_ipv6_connection *c, |
| struct sfe_connection_create *sic) |
| { |
| switch (sic->protocol) { |
| case IPPROTO_TCP: |
| sfe_ipv6_update_tcp_state(c, sic); |
| break; |
| } |
| } |
| |
| /* |
| * sfe_ipv6_update_rule() |
| * update forwarding rule after rule is created. |
| */ |
| void sfe_ipv6_update_rule(struct sfe_connection_create *sic) |
| { |
| struct sfe_ipv6_connection *c; |
| struct sfe_ipv6 *si = &__si6; |
| |
| spin_lock_bh(&si->lock); |
| |
| c = sfe_ipv6_find_connection(si, |
| sic->protocol, |
| sic->src_ip.ip6, |
| sic->src_port, |
| sic->dest_ip.ip6, |
| sic->dest_port); |
| if (c != NULL) { |
| sfe_ipv6_update_protocol_state(c, sic); |
| } |
| |
| spin_unlock_bh(&si->lock); |
| } |
| |
| /* |
| * sfe_ipv6_create_rule() |
| * Create a forwarding rule. |
| */ |
| int sfe_ipv6_create_rule(struct sfe_connection_create *sic) |
| { |
| struct sfe_ipv6 *si = &__si6; |
| struct sfe_ipv6_connection *c; |
| struct sfe_ipv6_connection_match *original_cm; |
| struct sfe_ipv6_connection_match *reply_cm; |
| struct net_device *dest_dev; |
| struct net_device *src_dev; |
| |
| dest_dev = sic->dest_dev; |
| src_dev = sic->src_dev; |
| |
| if (unlikely((dest_dev->reg_state != NETREG_REGISTERED) || |
| (src_dev->reg_state != NETREG_REGISTERED))) { |
| return -EINVAL; |
| } |
| |
| spin_lock_bh(&si->lock); |
| si->connection_create_requests++; |
| |
| /* |
| * Check to see if there is already a flow that matches the rule we're |
| * trying to create. If there is then we can't create a new one. |
| */ |
| c = sfe_ipv6_find_connection(si, |
| sic->protocol, |
| sic->src_ip.ip6, |
| sic->src_port, |
| sic->dest_ip.ip6, |
| sic->dest_port); |
| if (c != NULL) { |
| si->connection_create_collisions++; |
| |
| /* |
| * If we already have the flow then it's likely that this |
| * request to create the connection rule contains more |
| * up-to-date information. Check and update accordingly. |
| */ |
| sfe_ipv6_update_protocol_state(c, sic); |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("connection already exists - mark: %08x, p: %d\n" |
| " s: %s:%pM:%pI6:%u, d: %s:%pM:%pI6:%u\n", |
| sic->mark, sic->protocol, |
| sic->src_dev->name, sic->src_mac, sic->src_ip.ip6, ntohs(sic->src_port), |
| sic->dest_dev->name, sic->dest_mac, sic->dest_ip.ip6, ntohs(sic->dest_port)); |
| return -EADDRINUSE; |
| } |
| |
| /* |
| * Allocate the various connection tracking objects. |
| */ |
| c = (struct sfe_ipv6_connection *)kmalloc(sizeof(struct sfe_ipv6_connection), GFP_ATOMIC); |
| if (unlikely(!c)) { |
| spin_unlock_bh(&si->lock); |
| return -ENOMEM; |
| } |
| |
| original_cm = (struct sfe_ipv6_connection_match *)kmalloc(sizeof(struct sfe_ipv6_connection_match), GFP_ATOMIC); |
| if (unlikely(!original_cm)) { |
| spin_unlock_bh(&si->lock); |
| kfree(c); |
| return -ENOMEM; |
| } |
| |
| reply_cm = (struct sfe_ipv6_connection_match *)kmalloc(sizeof(struct sfe_ipv6_connection_match), GFP_ATOMIC); |
| if (unlikely(!reply_cm)) { |
| spin_unlock_bh(&si->lock); |
| kfree(original_cm); |
| kfree(c); |
| return -ENOMEM; |
| } |
| |
| /* |
| * Fill in the "original" direction connection matching object. |
| * Note that the transmit MAC address is "dest_mac_xlate" because |
| * we always know both ends of a connection by their translated |
| * addresses and not their public addresses. |
| */ |
| original_cm->match_dev = src_dev; |
| original_cm->match_protocol = sic->protocol; |
| original_cm->match_src_ip[0] = sic->src_ip.ip6[0]; |
| original_cm->match_src_port = sic->src_port; |
| original_cm->match_dest_ip[0] = sic->dest_ip.ip6[0]; |
| original_cm->match_dest_port = sic->dest_port; |
| original_cm->xlate_src_ip[0] = sic->src_ip_xlate.ip6[0]; |
| original_cm->xlate_src_port = sic->src_port_xlate; |
| original_cm->xlate_dest_ip[0] = sic->dest_ip_xlate.ip6[0]; |
| original_cm->xlate_dest_port = sic->dest_port_xlate; |
| original_cm->rx_packet_count = 0; |
| original_cm->rx_packet_count64 = 0; |
| original_cm->rx_byte_count = 0; |
| original_cm->rx_byte_count64 = 0; |
| original_cm->xmit_dev = dest_dev; |
| original_cm->xmit_dev_mtu = sic->dest_mtu; |
| memcpy(original_cm->xmit_src_mac, dest_dev->dev_addr, ETH_ALEN); |
| memcpy(original_cm->xmit_dest_mac, sic->dest_mac_xlate, ETH_ALEN); |
| original_cm->connection = c; |
| original_cm->counter_match = reply_cm; |
| original_cm->flags = 0; |
| #ifdef CONFIG_NF_FLOW_COOKIE |
| original_cm->flow_cookie = 0; |
| #endif |
| #ifdef CONFIG_XFRM |
| original_cm->flow_accel = sic->original_accel; |
| #endif |
| original_cm->active_next = NULL; |
| original_cm->active_prev = NULL; |
| original_cm->active = false; |
| |
| /* |
| * For PPP links we don't write an L2 header. For everything else we do. |
| */ |
| if (!(dest_dev->flags & IFF_POINTOPOINT)) { |
| original_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_WRITE_L2_HDR; |
| |
| /* |
| * If our dev writes Ethernet headers then we can write a really fast |
| * version. |
| */ |
| if (dest_dev->header_ops) { |
| if (dest_dev->header_ops->create == eth_header) { |
| original_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_WRITE_FAST_ETH_HDR; |
| } |
| } |
| } |
| |
| /* |
| * Fill in the "reply" direction connection matching object. |
| */ |
| reply_cm->match_dev = dest_dev; |
| reply_cm->match_protocol = sic->protocol; |
| reply_cm->match_src_ip[0] = sic->dest_ip_xlate.ip6[0]; |
| reply_cm->match_src_port = sic->dest_port_xlate; |
| reply_cm->match_dest_ip[0] = sic->src_ip_xlate.ip6[0]; |
| reply_cm->match_dest_port = sic->src_port_xlate; |
| reply_cm->xlate_src_ip[0] = sic->dest_ip.ip6[0]; |
| reply_cm->xlate_src_port = sic->dest_port; |
| reply_cm->xlate_dest_ip[0] = sic->src_ip.ip6[0]; |
| reply_cm->xlate_dest_port = sic->src_port; |
| reply_cm->rx_packet_count = 0; |
| reply_cm->rx_packet_count64 = 0; |
| reply_cm->rx_byte_count = 0; |
| reply_cm->rx_byte_count64 = 0; |
| reply_cm->xmit_dev = src_dev; |
| reply_cm->xmit_dev_mtu = sic->src_mtu; |
| memcpy(reply_cm->xmit_src_mac, src_dev->dev_addr, ETH_ALEN); |
| memcpy(reply_cm->xmit_dest_mac, sic->src_mac, ETH_ALEN); |
| reply_cm->connection = c; |
| reply_cm->counter_match = original_cm; |
| reply_cm->flags = 0; |
| #ifdef CONFIG_NF_FLOW_COOKIE |
| reply_cm->flow_cookie = 0; |
| #endif |
| #ifdef CONFIG_XFRM |
| reply_cm->flow_accel = sic->reply_accel; |
| #endif |
| reply_cm->active_next = NULL; |
| reply_cm->active_prev = NULL; |
| reply_cm->active = false; |
| |
| /* |
| * For PPP links we don't write an L2 header. For everything else we do. |
| */ |
| if (!(src_dev->flags & IFF_POINTOPOINT)) { |
| reply_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_WRITE_L2_HDR; |
| |
| /* |
| * If our dev writes Ethernet headers then we can write a really fast |
| * version. |
| */ |
| if (src_dev->header_ops) { |
| if (src_dev->header_ops->create == eth_header) { |
| reply_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_WRITE_FAST_ETH_HDR; |
| } |
| } |
| } |
| |
| |
| if (!sfe_ipv6_addr_equal(sic->dest_ip.ip6, sic->dest_ip_xlate.ip6) || sic->dest_port != sic->dest_port_xlate) { |
| original_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_XLATE_DEST; |
| reply_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_XLATE_SRC; |
| } |
| |
| if (!sfe_ipv6_addr_equal(sic->src_ip.ip6, sic->src_ip_xlate.ip6) || sic->src_port != sic->src_port_xlate) { |
| original_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_XLATE_SRC; |
| reply_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_XLATE_DEST; |
| } |
| |
| c->protocol = sic->protocol; |
| c->src_ip[0] = sic->src_ip.ip6[0]; |
| c->src_ip_xlate[0] = sic->src_ip_xlate.ip6[0]; |
| c->src_port = sic->src_port; |
| c->src_port_xlate = sic->src_port_xlate; |
| c->original_dev = src_dev; |
| c->original_match = original_cm; |
| c->dest_ip[0] = sic->dest_ip.ip6[0]; |
| c->dest_ip_xlate[0] = sic->dest_ip_xlate.ip6[0]; |
| c->dest_port = sic->dest_port; |
| c->dest_port_xlate = sic->dest_port_xlate; |
| c->reply_dev = dest_dev; |
| c->reply_match = reply_cm; |
| c->mark = sic->mark; |
| c->debug_read_seq = 0; |
| c->last_sync_jiffies = get_jiffies_64(); |
| |
| /* |
| * Take hold of our source and dest devices for the duration of the connection. |
| */ |
| dev_hold(c->original_dev); |
| dev_hold(c->reply_dev); |
| |
| /* |
| * Initialize the protocol-specific information that we track. |
| */ |
| switch (sic->protocol) { |
| case IPPROTO_TCP: |
| original_cm->protocol_state.tcp.win_scale = sic->src_td_window_scale; |
| original_cm->protocol_state.tcp.max_win = sic->src_td_max_window ? sic->src_td_max_window : 1; |
| original_cm->protocol_state.tcp.end = sic->src_td_end; |
| original_cm->protocol_state.tcp.max_end = sic->src_td_max_end; |
| reply_cm->protocol_state.tcp.win_scale = sic->dest_td_window_scale; |
| reply_cm->protocol_state.tcp.max_win = sic->dest_td_max_window ? sic->dest_td_max_window : 1; |
| reply_cm->protocol_state.tcp.end = sic->dest_td_end; |
| reply_cm->protocol_state.tcp.max_end = sic->dest_td_max_end; |
| if (sic->flags & SFE_CREATE_FLAG_NO_SEQ_CHECK) { |
| original_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_NO_SEQ_CHECK; |
| reply_cm->flags |= SFE_IPV6_CONNECTION_MATCH_FLAG_NO_SEQ_CHECK; |
| } |
| break; |
| } |
| |
| sfe_ipv6_connection_match_compute_translations(original_cm); |
| sfe_ipv6_connection_match_compute_translations(reply_cm); |
| sfe_ipv6_insert_connection(si, c); |
| |
| spin_unlock_bh(&si->lock); |
| |
| /* |
| * We have everything we need! |
| */ |
| DEBUG_INFO("new connection - mark: %08x, p: %d\n" |
| " s: %s:%pM(%pM):%pI6(%pI6):%u(%u)\n" |
| " d: %s:%pM(%pM):%pI6(%pI6):%u(%u)\n", |
| sic->mark, sic->protocol, |
| sic->src_dev->name, sic->src_mac, sic->src_mac_xlate, |
| sic->src_ip.ip6, sic->src_ip_xlate.ip6, ntohs(sic->src_port), ntohs(sic->src_port_xlate), |
| dest_dev->name, sic->dest_mac, sic->dest_mac_xlate, |
| sic->dest_ip.ip6, sic->dest_ip_xlate.ip6, ntohs(sic->dest_port), ntohs(sic->dest_port_xlate)); |
| |
| return 0; |
| } |
| |
| /* |
| * sfe_ipv6_destroy_rule() |
| * Destroy a forwarding rule. |
| */ |
| void sfe_ipv6_destroy_rule(struct sfe_connection_destroy *sid) |
| { |
| struct sfe_ipv6 *si = &__si6; |
| struct sfe_ipv6_connection *c; |
| |
| spin_lock_bh(&si->lock); |
| si->connection_destroy_requests++; |
| |
| /* |
| * Check to see if we have a flow that matches the rule we're trying |
| * to destroy. If there isn't then we can't destroy it. |
| */ |
| c = sfe_ipv6_find_connection(si, sid->protocol, sid->src_ip.ip6, sid->src_port, |
| sid->dest_ip.ip6, sid->dest_port); |
| if (!c) { |
| si->connection_destroy_misses++; |
| spin_unlock_bh(&si->lock); |
| |
| DEBUG_TRACE("connection does not exist - p: %d, s: %pI6:%u, d: %pI6:%u\n", |
| sid->protocol, sid->src_ip.ip6, ntohs(sid->src_port), |
| sid->dest_ip.ip6, ntohs(sid->dest_port)); |
| return; |
| } |
| |
| /* |
| * Remove our connection details from the hash tables. |
| */ |
| sfe_ipv6_remove_connection(si, c); |
| spin_unlock_bh(&si->lock); |
| |
| sfe_ipv6_flush_connection(si, c); |
| |
| DEBUG_INFO("connection destroyed - p: %d, s: %pI6:%u, d: %pI6:%u\n", |
| sid->protocol, sid->src_ip.ip6, ntohs(sid->src_port), |
| sid->dest_ip.ip6, ntohs(sid->dest_port)); |
| } |
| |
| /* |
| * sfe_ipv6_register_sync_rule_callback() |
| * Register a callback for rule synchronization. |
| */ |
| void sfe_ipv6_register_sync_rule_callback(sfe_sync_rule_callback_t sync_rule_callback) |
| { |
| struct sfe_ipv6 *si = &__si6; |
| |
| spin_lock_bh(&si->lock); |
| rcu_assign_pointer(si->sync_rule_callback, sync_rule_callback); |
| spin_unlock_bh(&si->lock); |
| } |
| |
| /* |
| * sfe_ipv6_get_debug_dev() |
| */ |
| static ssize_t sfe_ipv6_get_debug_dev(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct sfe_ipv6 *si = &__si6; |
| ssize_t count; |
| int num; |
| |
| spin_lock_bh(&si->lock); |
| num = si->debug_dev; |
| spin_unlock_bh(&si->lock); |
| |
| count = snprintf(buf, (ssize_t)PAGE_SIZE, "%d\n", num); |
| return count; |
| } |
| |
| /* |
| * sfe_ipv6_destroy_all_rules_for_dev() |
| * Destroy all connections that match a particular device. |
| * |
| * If we pass dev as NULL then this destroys all connections. |
| */ |
| void sfe_ipv6_destroy_all_rules_for_dev(struct net_device *dev) |
| { |
| struct sfe_ipv6 *si = &__si6; |
| struct sfe_ipv6_connection *c; |
| |
| another_round: |
| spin_lock_bh(&si->lock); |
| |
| for (c = si->all_connections_head; c; c = c->all_connections_next) { |
| /* |
| * Does this connection relate to the device we are destroying? |
| */ |
| if (!dev |
| || (dev == c->original_dev) |
| || (dev == c->reply_dev)) { |
| break; |
| } |
| } |
| |
| if (c) { |
| sfe_ipv6_remove_connection(si, c); |
| } |
| |
| spin_unlock_bh(&si->lock); |
| |
| if (c) { |
| sfe_ipv6_flush_connection(si, c); |
| goto another_round; |
| } |
| } |
| |
| /* |
| * sfe_ipv6_periodic_sync() |
| */ |
| static void sfe_ipv6_periodic_sync(unsigned long arg) |
| { |
| struct sfe_ipv6 *si = (struct sfe_ipv6 *)arg; |
| uint64_t now_jiffies; |
| int quota; |
| sfe_sync_rule_callback_t sync_rule_callback; |
| |
| now_jiffies = get_jiffies_64(); |
| |
| rcu_read_lock(); |
| sync_rule_callback = rcu_dereference(si->sync_rule_callback); |
| if (!sync_rule_callback) { |
| rcu_read_unlock(); |
| goto done; |
| } |
| |
| spin_lock_bh(&si->lock); |
| sfe_ipv6_update_summary_stats(si); |
| |
| /* |
| * Get an estimate of the number of connections to parse in this sync. |
| */ |
| quota = (si->num_connections + 63) / 64; |
| |
| /* |
| * Walk the "active" list and sync the connection state. |
| */ |
| while (quota--) { |
| struct sfe_ipv6_connection_match *cm; |
| struct sfe_ipv6_connection_match *counter_cm; |
| struct sfe_ipv6_connection *c; |
| struct sfe_connection_sync sis; |
| |
| cm = si->active_head; |
| if (!cm) { |
| break; |
| } |
| |
| /* |
| * There's a possibility that our counter match is in the active list too. |
| * If it is then remove it. |
| */ |
| counter_cm = cm->counter_match; |
| if (counter_cm->active) { |
| counter_cm->active = false; |
| |
| /* |
| * We must have a connection preceding this counter match |
| * because that's the one that got us to this point, so we don't have |
| * to worry about removing the head of the list. |
| */ |
| counter_cm->active_prev->active_next = counter_cm->active_next; |
| |
| if (likely(counter_cm->active_next)) { |
| counter_cm->active_next->active_prev = counter_cm->active_prev; |
| } else { |
| si->active_tail = counter_cm->active_prev; |
| } |
| |
| counter_cm->active_next = NULL; |
| counter_cm->active_prev = NULL; |
| } |
| |
| /* |
| * Now remove the head of the active scan list. |
| */ |
| cm->active = false; |
| si->active_head = cm->active_next; |
| if (likely(cm->active_next)) { |
| cm->active_next->active_prev = NULL; |
| } else { |
| si->active_tail = NULL; |
| } |
| cm->active_next = NULL; |
| |
| /* |
| * Sync the connection state. |
| */ |
| c = cm->connection; |
| sfe_ipv6_gen_sync_connection(si, c, &sis, now_jiffies); |
| |
| /* |
| * We don't want to be holding the lock when we sync! |
| */ |
| spin_unlock_bh(&si->lock); |
| sync_rule_callback(&sis); |
| spin_lock_bh(&si->lock); |
| } |
| |
| spin_unlock_bh(&si->lock); |
| rcu_read_unlock(); |
| |
| done: |
| mod_timer(&si->timer, jiffies + ((HZ + 99) / 100)); |
| } |
| |
| /* |
| * sfe_ipv6_debug_dev_read_start() |
| * Generate part of the XML output. |
| */ |
| static bool sfe_ipv6_debug_dev_read_start(struct sfe_ipv6 *si, char *buffer, char *msg, size_t *length, |
| int *total_read, struct sfe_ipv6_debug_xml_write_state *ws) |
| { |
| int bytes_read; |
| |
| si->debug_read_seq++; |
| |
| bytes_read = snprintf(msg, CHAR_DEV_MSG_SIZE, "<sfe_ipv6>\n"); |
| if (copy_to_user(buffer + *total_read, msg, CHAR_DEV_MSG_SIZE)) { |
| return false; |
| } |
| |
| *length -= bytes_read; |
| *total_read += bytes_read; |
| |
| ws->state++; |
| return true; |
| } |
| |
| /* |
| * sfe_ipv6_debug_dev_read_connections_start() |
| * Generate part of the XML output. |
| */ |
| static bool sfe_ipv6_debug_dev_read_connections_start(struct sfe_ipv6 *si, char *buffer, char *msg, size_t *length, |
| int *total_read, struct sfe_ipv6_debug_xml_write_state *ws) |
| { |
| int bytes_read; |
| |
| bytes_read = snprintf(msg, CHAR_DEV_MSG_SIZE, "\t<connections>\n"); |
| if (copy_to_user(buffer + *total_read, msg, CHAR_DEV_MSG_SIZE)) { |
| return false; |
| } |
| |
| *length -= bytes_read; |
| *total_read += bytes_read; |
| |
| ws->state++; |
| return true; |
| } |
| |
| /* |
| * sfe_ipv6_debug_dev_read_connections_connection() |
| * Generate part of the XML output. |
| */ |
| static bool sfe_ipv6_debug_dev_read_connections_connection(struct sfe_ipv6 *si, char *buffer, char *msg, size_t *length, |
| int *total_read, struct sfe_ipv6_debug_xml_write_state *ws) |
| { |
| struct sfe_ipv6_connection *c; |
| struct sfe_ipv6_connection_match *original_cm; |
| struct sfe_ipv6_connection_match *reply_cm; |
| int bytes_read; |
| int protocol; |
| struct net_device *src_dev; |
| struct sfe_ipv6_addr src_ip; |
| struct sfe_ipv6_addr src_ip_xlate; |
| __be16 src_port; |
| __be16 src_port_xlate; |
| uint64_t src_rx_packets; |
| uint64_t src_rx_bytes; |
| struct net_device *dest_dev; |
| struct sfe_ipv6_addr dest_ip; |
| struct sfe_ipv6_addr dest_ip_xlate; |
| __be16 dest_port; |
| __be16 dest_port_xlate; |
| uint64_t dest_rx_packets; |
| uint64_t dest_rx_bytes; |
| uint64_t last_sync_jiffies; |
| uint32_t mark; |
| #ifdef CONFIG_NF_FLOW_COOKIE |
| int src_flow_cookie, dst_flow_cookie; |
| #endif |
| |
| spin_lock_bh(&si->lock); |
| |
| for (c = si->all_connections_head; c; c = c->all_connections_next) { |
| if (c->debug_read_seq < si->debug_read_seq) { |
| c->debug_read_seq = si->debug_read_seq; |
| break; |
| } |
| } |
| |
| /* |
| * If there were no connections then move to the next state. |
| */ |
| if (!c) { |
| spin_unlock_bh(&si->lock); |
| ws->state++; |
| return true; |
| } |
| |
| original_cm = c->original_match; |
| reply_cm = c->reply_match; |
| |
| protocol = c->protocol; |
| src_dev = c->original_dev; |
| src_ip = c->src_ip[0]; |
| src_ip_xlate = c->src_ip_xlate[0]; |
| src_port = c->src_port; |
| src_port_xlate = c->src_port_xlate; |
| |
| sfe_ipv6_connection_match_update_summary_stats(original_cm); |
| sfe_ipv6_connection_match_update_summary_stats(reply_cm); |
| |
| src_rx_packets = original_cm->rx_packet_count64; |
| src_rx_bytes = original_cm->rx_byte_count64; |
| dest_dev = c->reply_dev; |
| dest_ip = c->dest_ip[0]; |
| dest_ip_xlate = c->dest_ip_xlate[0]; |
| dest_port = c->dest_port; |
| dest_port_xlate = c->dest_port_xlate; |
| dest_rx_packets = reply_cm->rx_packet_count64; |
| dest_rx_bytes = reply_cm->rx_byte_count64; |
| last_sync_jiffies = get_jiffies_64() - c->last_sync_jiffies; |
| mark = c->mark; |
| #ifdef CONFIG_NF_FLOW_COOKIE |
| src_flow_cookie = original_cm->flow_cookie; |
| dst_flow_cookie = reply_cm->flow_cookie; |
| #endif |
| spin_unlock_bh(&si->lock); |
| |
| bytes_read = snprintf(msg, CHAR_DEV_MSG_SIZE, "\t\t<connection " |
| "protocol=\"%u\" " |
| "src_dev=\"%s\" " |
| "src_ip=\"%pI6\" src_ip_xlate=\"%pI6\" " |
| "src_port=\"%u\" src_port_xlate=\"%u\" " |
| "src_rx_pkts=\"%llu\" src_rx_bytes=\"%llu\" " |
| "dest_dev=\"%s\" " |
| "dest_ip=\"%pI6\" dest_ip_xlate=\"%pI6\" " |
| "dest_port=\"%u\" dest_port_xlate=\"%u\" " |
| "dest_rx_pkts=\"%llu\" dest_rx_bytes=\"%llu\" " |
| #ifdef CONFIG_NF_FLOW_COOKIE |
| "src_flow_cookie=\"%d\" dst_flow_cookie=\"%d\" " |
| #endif |
| "last_sync=\"%llu\" " |
| "mark=\"%08x\" />\n", |
| protocol, |
| src_dev->name, |
| &src_ip, &src_ip_xlate, |
| ntohs(src_port), ntohs(src_port_xlate), |
| src_rx_packets, src_rx_bytes, |
| dest_dev->name, |
| &dest_ip, &dest_ip_xlate, |
| ntohs(dest_port), ntohs(dest_port_xlate), |
| dest_rx_packets, dest_rx_bytes, |
| #ifdef CONFIG_NF_FLOW_COOKIE |
| src_flow_cookie, dst_flow_cookie, |
| #endif |
| last_sync_jiffies, mark); |
| |
| if (copy_to_user(buffer + *total_read, msg, CHAR_DEV_MSG_SIZE)) { |
| return false; |
| } |
| |
| *length -= bytes_read; |
| *total_read += bytes_read; |
| |
| return true; |
| } |
| |
| /* |
| * sfe_ipv6_debug_dev_read_connections_end() |
| * Generate part of the XML output. |
| */ |
| static bool sfe_ipv6_debug_dev_read_connections_end(struct sfe_ipv6 *si, char *buffer, char *msg, size_t *length, |
| int *total_read, struct sfe_ipv6_debug_xml_write_state *ws) |
| { |
| int bytes_read; |
| |
| bytes_read = snprintf(msg, CHAR_DEV_MSG_SIZE, "\t</connections>\n"); |
| if (copy_to_user(buffer + *total_read, msg, CHAR_DEV_MSG_SIZE)) { |
| return false; |
| } |
| |
| *length -= bytes_read; |
| *total_read += bytes_read; |
| |
| ws->state++; |
| return true; |
| } |
| |
| /* |
| * sfe_ipv6_debug_dev_read_exceptions_start() |
| * Generate part of the XML output. |
| */ |
| static bool sfe_ipv6_debug_dev_read_exceptions_start(struct sfe_ipv6 *si, char *buffer, char *msg, size_t *length, |
| int *total_read, struct sfe_ipv6_debug_xml_write_state *ws) |
| { |
| int bytes_read; |
| |
| bytes_read = snprintf(msg, CHAR_DEV_MSG_SIZE, "\t<exceptions>\n"); |
| if (copy_to_user(buffer + *total_read, msg, CHAR_DEV_MSG_SIZE)) { |
| return false; |
| } |
| |
| *length -= bytes_read; |
| *total_read += bytes_read; |
| |
| ws->state++; |
| return true; |
| } |
| |
| /* |
| * sfe_ipv6_debug_dev_read_exceptions_exception() |
| * Generate part of the XML output. |
| */ |
| static bool sfe_ipv6_debug_dev_read_exceptions_exception(struct sfe_ipv6 *si, char *buffer, char *msg, size_t *length, |
| int *total_read, struct sfe_ipv6_debug_xml_write_state *ws) |
| { |
| uint64_t ct; |
| |
| spin_lock_bh(&si->lock); |
| ct = si->exception_events64[ws->iter_exception]; |
| spin_unlock_bh(&si->lock); |
| |
| if (ct) { |
| int bytes_read; |
| |
| bytes_read = snprintf(msg, CHAR_DEV_MSG_SIZE, |
| "\t\t<exception name=\"%s\" count=\"%llu\" />\n", |
| sfe_ipv6_exception_events_string[ws->iter_exception], |
| ct); |
| if (copy_to_user(buffer + *total_read, msg, CHAR_DEV_MSG_SIZE)) { |
| return false; |
| } |
| |
| *length -= bytes_read; |
| *total_read += bytes_read; |
| } |
| |
| ws->iter_exception++; |
| if (ws->iter_exception >= SFE_IPV6_EXCEPTION_EVENT_LAST) { |
| ws->iter_exception = 0; |
| ws->state++; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * sfe_ipv6_debug_dev_read_exceptions_end() |
| * Generate part of the XML output. |
| */ |
| static bool sfe_ipv6_debug_dev_read_exceptions_end(struct sfe_ipv6 *si, char *buffer, char *msg, size_t *length, |
| int *total_read, struct sfe_ipv6_debug_xml_write_state *ws) |
| { |
| int bytes_read; |
| |
| bytes_read = snprintf(msg, CHAR_DEV_MSG_SIZE, "\t</exceptions>\n"); |
| if (copy_to_user(buffer + *total_read, msg, CHAR_DEV_MSG_SIZE)) { |
| return false; |
| } |
| |
| *length -= bytes_read; |
| *total_read += bytes_read; |
| |
| ws->state++; |
| return true; |
| } |
| |
| /* |
| * sfe_ipv6_debug_dev_read_stats() |
| * Generate part of the XML output. |
| */ |
| static bool sfe_ipv6_debug_dev_read_stats(struct sfe_ipv6 *si, char *buffer, char *msg, size_t *length, |
| int *total_read, struct sfe_ipv6_debug_xml_write_state *ws) |
| { |
| int bytes_read; |
| unsigned int num_connections; |
| uint64_t packets_forwarded; |
| uint64_t packets_not_forwarded; |
| uint64_t connection_create_requests; |
| uint64_t connection_create_collisions; |
| uint64_t connection_destroy_requests; |
| uint64_t connection_destroy_misses; |
| uint64_t connection_flushes; |
| uint64_t connection_match_hash_hits; |
| uint64_t connection_match_hash_reorders; |
| |
| spin_lock_bh(&si->lock); |
| sfe_ipv6_update_summary_stats(si); |
| |
| num_connections = si->num_connections; |
| packets_forwarded = si->packets_forwarded64; |
| packets_not_forwarded = si->packets_not_forwarded64; |
| connection_create_requests = si->connection_create_requests64; |
| connection_create_collisions = si->connection_create_collisions64; |
| connection_destroy_requests = si->connection_destroy_requests64; |
| connection_destroy_misses = si->connection_destroy_misses64; |
| connection_flushes = si->connection_flushes64; |
| connection_match_hash_hits = si->connection_match_hash_hits64; |
| connection_match_hash_reorders = si->connection_match_hash_reorders64; |
| spin_unlock_bh(&si->lock); |
| |
| bytes_read = snprintf(msg, CHAR_DEV_MSG_SIZE, "\t<stats " |
| "num_connections=\"%u\" " |
| "pkts_forwarded=\"%llu\" pkts_not_forwarded=\"%llu\" " |
| "create_requests=\"%llu\" create_collisions=\"%llu\" " |
| "destroy_requests=\"%llu\" destroy_misses=\"%llu\" " |
| "flushes=\"%llu\" " |
| "hash_hits=\"%llu\" hash_reorders=\"%llu\" />\n", |
| num_connections, |
| packets_forwarded, |
| packets_not_forwarded, |
| connection_create_requests, |
| connection_create_collisions, |
| connection_destroy_requests, |
| connection_destroy_misses, |
| connection_flushes, |
| connection_match_hash_hits, |
| connection_match_hash_reorders); |
| if (copy_to_user(buffer + *total_read, msg, CHAR_DEV_MSG_SIZE)) { |
| return false; |
| } |
| |
| *length -= bytes_read; |
| *total_read += bytes_read; |
| |
| ws->state++; |
| return true; |
| } |
| |
| /* |
| * sfe_ipv6_debug_dev_read_end() |
| * Generate part of the XML output. |
| */ |
| static bool sfe_ipv6_debug_dev_read_end(struct sfe_ipv6 *si, char *buffer, char *msg, size_t *length, |
| int *total_read, struct sfe_ipv6_debug_xml_write_state *ws) |
| { |
| int bytes_read; |
| |
| bytes_read = snprintf(msg, CHAR_DEV_MSG_SIZE, "</sfe_ipv6>\n"); |
| if (copy_to_user(buffer + *total_read, msg, CHAR_DEV_MSG_SIZE)) { |
| return false; |
| } |
| |
| *length -= bytes_read; |
| *total_read += bytes_read; |
| |
| ws->state++; |
| return true; |
| } |
| |
| /* |
| * Array of write functions that write various XML elements that correspond to |
| * our XML output state machine. |
| */ |
| static sfe_ipv6_debug_xml_write_method_t sfe_ipv6_debug_xml_write_methods[SFE_IPV6_DEBUG_XML_STATE_DONE] = { |
| sfe_ipv6_debug_dev_read_start, |
| sfe_ipv6_debug_dev_read_connections_start, |
| sfe_ipv6_debug_dev_read_connections_connection, |
| sfe_ipv6_debug_dev_read_connections_end, |
| sfe_ipv6_debug_dev_read_exceptions_start, |
| sfe_ipv6_debug_dev_read_exceptions_exception, |
| sfe_ipv6_debug_dev_read_exceptions_end, |
| sfe_ipv6_debug_dev_read_stats, |
| sfe_ipv6_debug_dev_read_end, |
| }; |
| |
| /* |
| * sfe_ipv6_debug_dev_read() |
| * Send info to userspace upon read request from user |
| */ |
| static ssize_t sfe_ipv6_debug_dev_read(struct file *filp, char *buffer, size_t length, loff_t *offset) |
| { |
| char msg[CHAR_DEV_MSG_SIZE]; |
| int total_read = 0; |
| struct sfe_ipv6_debug_xml_write_state *ws; |
| struct sfe_ipv6 *si = &__si6; |
| |
| ws = (struct sfe_ipv6_debug_xml_write_state *)filp->private_data; |
| while ((ws->state != SFE_IPV6_DEBUG_XML_STATE_DONE) && (length > CHAR_DEV_MSG_SIZE)) { |
| if ((sfe_ipv6_debug_xml_write_methods[ws->state])(si, buffer, msg, &length, &total_read, ws)) { |
| continue; |
| } |
| } |
| |
| return total_read; |
| } |
| |
| /* |
| * sfe_ipv6_debug_dev_write() |
| * Write to char device resets some stats |
| */ |
| static ssize_t sfe_ipv6_debug_dev_write(struct file *filp, const char *buffer, size_t length, loff_t *offset) |
| { |
| struct sfe_ipv6 *si = &__si6; |
| |
| spin_lock_bh(&si->lock); |
| sfe_ipv6_update_summary_stats(si); |
| |
| si->packets_forwarded64 = 0; |
| si->packets_not_forwarded64 = 0; |
| si->connection_create_requests64 = 0; |
| si->connection_create_collisions64 = 0; |
| si->connection_destroy_requests64 = 0; |
| si->connection_destroy_misses64 = 0; |
| si->connection_flushes64 = 0; |
| si->connection_match_hash_hits64 = 0; |
| si->connection_match_hash_reorders64 = 0; |
| spin_unlock_bh(&si->lock); |
| |
| return length; |
| } |
| |
| /* |
| * sfe_ipv6_debug_dev_open() |
| */ |
| static int sfe_ipv6_debug_dev_open(struct inode *inode, struct file *file) |
| { |
| struct sfe_ipv6_debug_xml_write_state *ws; |
| |
| ws = (struct sfe_ipv6_debug_xml_write_state *)file->private_data; |
| if (ws) { |
| return 0; |
| } |
| |
| ws = kzalloc(sizeof(struct sfe_ipv6_debug_xml_write_state), GFP_KERNEL); |
| if (!ws) { |
| return -ENOMEM; |
| } |
| |
| ws->state = SFE_IPV6_DEBUG_XML_STATE_START; |
| file->private_data = ws; |
| |
| return 0; |
| } |
| |
| /* |
| * sfe_ipv6_debug_dev_release() |
| */ |
| static int sfe_ipv6_debug_dev_release(struct inode *inode, struct file *file) |
| { |
| struct sfe_ipv6_debug_xml_write_state *ws; |
| |
| ws = (struct sfe_ipv6_debug_xml_write_state *)file->private_data; |
| if (ws) { |
| /* |
| * We've finished with our output so free the write state. |
| */ |
| kfree(ws); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * File operations used in the debug char device |
| */ |
| static struct file_operations sfe_ipv6_debug_dev_fops = { |
| .read = sfe_ipv6_debug_dev_read, |
| .write = sfe_ipv6_debug_dev_write, |
| .open = sfe_ipv6_debug_dev_open, |
| .release = sfe_ipv6_debug_dev_release |
| }; |
| |
| #ifdef CONFIG_NF_FLOW_COOKIE |
| /* |
| * sfe_ipv6_register_flow_cookie_cb |
| * register a function in SFE to let SFE use this function to configure flow cookie for a flow |
| * |
| * Hardware driver which support flow cookie should register a callback function in SFE. Then SFE |
| * can use this function to configure flow cookie for a flow. |
| * return: 0, success; !=0, fail |
| */ |
| int sfe_ipv6_register_flow_cookie_cb(sfe_ipv6_flow_cookie_set_func_t cb) |
| { |
| struct sfe_ipv6 *si = &__si6; |
| |
| BUG_ON(!cb); |
| |
| if (si->flow_cookie_set_func) { |
| return -1; |
| } |
| |
| rcu_assign_pointer(si->flow_cookie_set_func, cb); |
| return 0; |
| } |
| |
| /* |
| * sfe_ipv6_unregister_flow_cookie_cb |
| * unregister function which is used to configure flow cookie for a flow |
| * |
| * return: 0, success; !=0, fail |
| */ |
| int sfe_ipv6_unregister_flow_cookie_cb(sfe_ipv6_flow_cookie_set_func_t cb) |
| { |
| struct sfe_ipv6 *si = &__si6; |
| |
| RCU_INIT_POINTER(si->flow_cookie_set_func, NULL); |
| return 0; |
| } |
| #endif /*CONFIG_NF_FLOW_COOKIE*/ |
| |
| /* |
| * sfe_ipv6_init() |
| */ |
| static int __init sfe_ipv6_init(void) |
| { |
| struct sfe_ipv6 *si = &__si6; |
| int result = -1; |
| |
| DEBUG_INFO("SFE IPv6 init\n"); |
| |
| /* |
| * Create sys/sfe_ipv6 |
| */ |
| si->sys_sfe_ipv6 = kobject_create_and_add("sfe_ipv6", NULL); |
| if (!si->sys_sfe_ipv6) { |
| DEBUG_ERROR("failed to register sfe_ipv6\n"); |
| goto exit1; |
| } |
| |
| /* |
| * Create files, one for each parameter supported by this module. |
| */ |
| result = sysfs_create_file(si->sys_sfe_ipv6, &sfe_ipv6_debug_dev_attr.attr); |
| if (result) { |
| DEBUG_ERROR("failed to register debug dev file: %d\n", result); |
| goto exit2; |
| } |
| |
| /* |
| * Register our debug char device. |
| */ |
| result = register_chrdev(0, "sfe_ipv6", &sfe_ipv6_debug_dev_fops); |
| if (result < 0) { |
| DEBUG_ERROR("Failed to register chrdev: %d\n", result); |
| goto exit3; |
| } |
| |
| si->debug_dev = result; |
| |
| /* |
| * Create a timer to handle periodic statistics. |
| */ |
| setup_timer(&si->timer, sfe_ipv6_periodic_sync, (unsigned long)si); |
| mod_timer(&si->timer, jiffies + ((HZ + 99) / 100)); |
| |
| spin_lock_init(&si->lock); |
| |
| return 0; |
| |
| exit3: |
| sysfs_remove_file(si->sys_sfe_ipv6, &sfe_ipv6_debug_dev_attr.attr); |
| |
| exit2: |
| kobject_put(si->sys_sfe_ipv6); |
| |
| exit1: |
| return result; |
| } |
| |
| /* |
| * sfe_ipv6_exit() |
| */ |
| static void __exit sfe_ipv6_exit(void) |
| { |
| struct sfe_ipv6 *si = &__si6; |
| |
| DEBUG_INFO("SFE IPv6 exit\n"); |
| |
| /* |
| * Destroy all connections. |
| */ |
| sfe_ipv6_destroy_all_rules_for_dev(NULL); |
| |
| del_timer_sync(&si->timer); |
| |
| unregister_chrdev(si->debug_dev, "sfe_ipv6"); |
| |
| sysfs_remove_file(si->sys_sfe_ipv6, &sfe_ipv6_debug_dev_attr.attr); |
| |
| kobject_put(si->sys_sfe_ipv6); |
| |
| } |
| |
| module_init(sfe_ipv6_init) |
| module_exit(sfe_ipv6_exit) |
| |
| EXPORT_SYMBOL(sfe_ipv6_recv); |
| EXPORT_SYMBOL(sfe_ipv6_create_rule); |
| EXPORT_SYMBOL(sfe_ipv6_destroy_rule); |
| EXPORT_SYMBOL(sfe_ipv6_destroy_all_rules_for_dev); |
| EXPORT_SYMBOL(sfe_ipv6_register_sync_rule_callback); |
| EXPORT_SYMBOL(sfe_ipv6_mark_rule); |
| EXPORT_SYMBOL(sfe_ipv6_update_rule); |
| #ifdef CONFIG_NF_FLOW_COOKIE |
| EXPORT_SYMBOL(sfe_ipv6_register_flow_cookie_cb); |
| EXPORT_SYMBOL(sfe_ipv6_unregister_flow_cookie_cb); |
| #endif |
| |
| MODULE_AUTHOR("Qualcomm Atheros Inc."); |
| MODULE_DESCRIPTION("Shortcut Forwarding Engine - IPv6 support"); |
| MODULE_LICENSE("Dual BSD/GPL"); |
| |