| /* |
| * Copyright (c) 2012 The Chromium OS Authors. |
| * |
| * (C) Copyright 2011 |
| * Joe Hershberger, National Instruments, joe.hershberger@ni.com |
| * |
| * (C) Copyright 2000 |
| * Wolfgang Denk, DENX Software Engineering, wd@denx.de. |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| */ |
| |
| #include <common.h> |
| #include <command.h> |
| #include <malloc.h> |
| #include <hw_sha.h> |
| #include <hash.h> |
| #include <u-boot/sha1.h> |
| #include <u-boot/sha256.h> |
| #include <asm/io.h> |
| #include <asm/errno.h> |
| |
| #ifdef CONFIG_SHA1 |
| static int hash_init_sha1(struct hash_algo *algo, void **ctxp) |
| { |
| sha1_context *ctx = malloc(sizeof(sha1_context)); |
| sha1_starts(ctx); |
| *ctxp = ctx; |
| return 0; |
| } |
| |
| static int hash_update_sha1(struct hash_algo *algo, void *ctx, const void *buf, |
| unsigned int size, int is_last) |
| { |
| sha1_update((sha1_context *)ctx, buf, size); |
| return 0; |
| } |
| |
| static int hash_finish_sha1(struct hash_algo *algo, void *ctx, void *dest_buf, |
| int size) |
| { |
| if (size < algo->digest_size) |
| return -1; |
| |
| sha1_finish((sha1_context *)ctx, dest_buf); |
| free(ctx); |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_SHA256 |
| static int hash_init_sha256(struct hash_algo *algo, void **ctxp) |
| { |
| sha256_context *ctx = malloc(sizeof(sha256_context)); |
| sha256_starts(ctx); |
| *ctxp = ctx; |
| return 0; |
| } |
| |
| static int hash_update_sha256(struct hash_algo *algo, void *ctx, |
| const void *buf, unsigned int size, int is_last) |
| { |
| sha256_update((sha256_context *)ctx, buf, size); |
| return 0; |
| } |
| |
| static int hash_finish_sha256(struct hash_algo *algo, void *ctx, void |
| *dest_buf, int size) |
| { |
| if (size < algo->digest_size) |
| return -1; |
| |
| sha256_finish((sha256_context *)ctx, dest_buf); |
| free(ctx); |
| return 0; |
| } |
| #endif |
| |
| static int hash_init_crc32(struct hash_algo *algo, void **ctxp) |
| { |
| uint32_t *ctx = malloc(sizeof(uint32_t)); |
| *ctx = 0; |
| *ctxp = ctx; |
| return 0; |
| } |
| |
| static int hash_update_crc32(struct hash_algo *algo, void *ctx, |
| const void *buf, unsigned int size, int is_last) |
| { |
| *((uint32_t *)ctx) = crc32(*((uint32_t *)ctx), buf, size); |
| return 0; |
| } |
| |
| static int hash_finish_crc32(struct hash_algo *algo, void *ctx, void *dest_buf, |
| int size) |
| { |
| if (size < algo->digest_size) |
| return -1; |
| |
| *((uint32_t *)dest_buf) = *((uint32_t *)ctx); |
| free(ctx); |
| return 0; |
| } |
| |
| /* |
| * These are the hash algorithms we support. Chips which support accelerated |
| * crypto could perhaps add named version of these algorithms here. Note that |
| * algorithm names must be in lower case. |
| */ |
| static struct hash_algo hash_algo[] = { |
| /* |
| * CONFIG_SHA_HW_ACCEL is defined if hardware acceleration is |
| * available. |
| */ |
| #ifdef CONFIG_SHA_HW_ACCEL |
| { |
| "sha1", |
| SHA1_SUM_LEN, |
| hw_sha1, |
| CHUNKSZ_SHA1, |
| }, { |
| "sha256", |
| SHA256_SUM_LEN, |
| hw_sha256, |
| CHUNKSZ_SHA256, |
| }, |
| #endif |
| #ifdef CONFIG_SHA1 |
| { |
| "sha1", |
| SHA1_SUM_LEN, |
| sha1_csum_wd, |
| CHUNKSZ_SHA1, |
| hash_init_sha1, |
| hash_update_sha1, |
| hash_finish_sha1, |
| }, |
| #endif |
| #ifdef CONFIG_SHA256 |
| { |
| "sha256", |
| SHA256_SUM_LEN, |
| sha256_csum_wd, |
| CHUNKSZ_SHA256, |
| hash_init_sha256, |
| hash_update_sha256, |
| hash_finish_sha256, |
| }, |
| #endif |
| { |
| "crc32", |
| 4, |
| crc32_wd_buf, |
| CHUNKSZ_CRC32, |
| hash_init_crc32, |
| hash_update_crc32, |
| hash_finish_crc32, |
| }, |
| }; |
| |
| #if defined(CONFIG_SHA256) || defined(CONFIG_CMD_SHA1SUM) |
| #define MULTI_HASH |
| #endif |
| |
| #if defined(CONFIG_HASH_VERIFY) || defined(CONFIG_CMD_HASH) |
| #define MULTI_HASH |
| #endif |
| |
| /* Try to minimize code size for boards that don't want much hashing */ |
| #ifdef MULTI_HASH |
| #define multi_hash() 1 |
| #else |
| #define multi_hash() 0 |
| #endif |
| |
| /** |
| * store_result: Store the resulting sum to an address or variable |
| * |
| * @algo: Hash algorithm being used |
| * @sum: Hash digest (algo->digest_size bytes) |
| * @dest: Destination, interpreted as a hex address if it starts |
| * with * (or allow_env_vars is 0) or otherwise as an |
| * environment variable. |
| * @allow_env_vars: non-zero to permit storing the result to an |
| * variable environment |
| */ |
| static void store_result(struct hash_algo *algo, const uint8_t *sum, |
| const char *dest, int allow_env_vars) |
| { |
| unsigned int i; |
| int env_var = 0; |
| |
| /* |
| * If environment variables are allowed, then we assume that 'dest' |
| * is an environment variable, unless it starts with *, in which |
| * case we assume it is an address. If not allowed, it is always an |
| * address. This is to support the crc32 command. |
| */ |
| if (allow_env_vars) { |
| if (*dest == '*') |
| dest++; |
| else |
| env_var = 1; |
| } |
| |
| if (env_var) { |
| char str_output[HASH_MAX_DIGEST_SIZE * 2 + 1]; |
| char *str_ptr = str_output; |
| |
| for (i = 0; i < algo->digest_size; i++) { |
| sprintf(str_ptr, "%02x", sum[i]); |
| str_ptr += 2; |
| } |
| *str_ptr = '\0'; |
| setenv(dest, str_output); |
| } else { |
| ulong addr; |
| void *buf; |
| |
| addr = simple_strtoul(dest, NULL, 16); |
| buf = map_sysmem(addr, algo->digest_size); |
| memcpy(buf, sum, algo->digest_size); |
| unmap_sysmem(buf); |
| } |
| } |
| |
| /** |
| * parse_verify_sum: Parse a hash verification parameter |
| * |
| * @algo: Hash algorithm being used |
| * @verify_str: Argument to parse. If it starts with * then it is |
| * interpreted as a hex address containing the hash. |
| * If the length is exactly the right number of hex digits |
| * for the digest size, then we assume it is a hex digest. |
| * Otherwise we assume it is an environment variable, and |
| * look up its value (it must contain a hex digest). |
| * @vsum: Returns binary digest value (algo->digest_size bytes) |
| * @allow_env_vars: non-zero to permit storing the result to an environment |
| * variable. If 0 then verify_str is assumed to be an |
| * address, and the * prefix is not expected. |
| * @return 0 if ok, non-zero on error |
| */ |
| static int parse_verify_sum(struct hash_algo *algo, char *verify_str, |
| uint8_t *vsum, int allow_env_vars) |
| { |
| int env_var = 0; |
| |
| /* See comment above in store_result() */ |
| if (allow_env_vars) { |
| if (*verify_str == '*') |
| verify_str++; |
| else |
| env_var = 1; |
| } |
| |
| if (!env_var) { |
| ulong addr; |
| void *buf; |
| |
| addr = simple_strtoul(verify_str, NULL, 16); |
| buf = map_sysmem(addr, algo->digest_size); |
| memcpy(vsum, buf, algo->digest_size); |
| } else { |
| unsigned int i; |
| char *vsum_str; |
| int digits = algo->digest_size * 2; |
| |
| /* |
| * As with the original code from sha1sum.c, we assume that a |
| * string which matches the digest size exactly is a hex |
| * string and not an environment variable. |
| */ |
| if (strlen(verify_str) == digits) |
| vsum_str = verify_str; |
| else { |
| vsum_str = getenv(verify_str); |
| if (vsum_str == NULL || strlen(vsum_str) != digits) { |
| printf("Expected %d hex digits in env var\n", |
| digits); |
| return 1; |
| } |
| } |
| |
| for (i = 0; i < algo->digest_size; i++) { |
| char *nullp = vsum_str + (i + 1) * 2; |
| char end = *nullp; |
| |
| *nullp = '\0'; |
| vsum[i] = simple_strtoul(vsum_str + (i * 2), NULL, 16); |
| *nullp = end; |
| } |
| } |
| return 0; |
| } |
| |
| int hash_lookup_algo(const char *algo_name, struct hash_algo **algop) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(hash_algo); i++) { |
| if (!strcmp(algo_name, hash_algo[i].name)) { |
| *algop = &hash_algo[i]; |
| return 0; |
| } |
| } |
| |
| debug("Unknown hash algorithm '%s'\n", algo_name); |
| return -EPROTONOSUPPORT; |
| } |
| |
| int hash_progressive_lookup_algo(const char *algo_name, |
| struct hash_algo **algop) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(hash_algo); i++) { |
| if (!strcmp(algo_name, hash_algo[i].name)) { |
| if (hash_algo[i].hash_init) { |
| *algop = &hash_algo[i]; |
| return 0; |
| } |
| } |
| } |
| |
| debug("Unknown hash algorithm '%s'\n", algo_name); |
| return -EPROTONOSUPPORT; |
| } |
| |
| void hash_show(struct hash_algo *algo, ulong addr, ulong len, uint8_t *output) |
| { |
| int i; |
| |
| printf("%s for %08lx ... %08lx ==> ", algo->name, addr, addr + len - 1); |
| for (i = 0; i < algo->digest_size; i++) |
| printf("%02x", output[i]); |
| } |
| |
| int hash_block(const char *algo_name, const void *data, unsigned int len, |
| uint8_t *output, int *output_size) |
| { |
| struct hash_algo *algo; |
| int ret; |
| |
| ret = hash_lookup_algo(algo_name, &algo); |
| if (ret) |
| return ret; |
| |
| if (output_size && *output_size < algo->digest_size) { |
| debug("Output buffer size %d too small (need %d bytes)", |
| *output_size, algo->digest_size); |
| return -ENOSPC; |
| } |
| if (output_size) |
| *output_size = algo->digest_size; |
| algo->hash_func_ws(data, len, output, algo->chunk_size); |
| |
| return 0; |
| } |
| |
| int hash_command(const char *algo_name, int flags, cmd_tbl_t *cmdtp, int flag, |
| int argc, char * const argv[]) |
| { |
| ulong addr, len; |
| |
| if ((argc < 2) || ((flags & HASH_FLAG_VERIFY) && (argc < 3))) |
| return CMD_RET_USAGE; |
| |
| addr = simple_strtoul(*argv++, NULL, 16); |
| len = simple_strtoul(*argv++, NULL, 16); |
| |
| if (multi_hash()) { |
| struct hash_algo *algo; |
| uint8_t output[HASH_MAX_DIGEST_SIZE]; |
| uint8_t vsum[HASH_MAX_DIGEST_SIZE]; |
| void *buf; |
| |
| if (hash_lookup_algo(algo_name, &algo)) { |
| printf("Unknown hash algorithm '%s'\n", algo_name); |
| return CMD_RET_USAGE; |
| } |
| argc -= 2; |
| |
| if (algo->digest_size > HASH_MAX_DIGEST_SIZE) { |
| puts("HASH_MAX_DIGEST_SIZE exceeded\n"); |
| return 1; |
| } |
| |
| buf = map_sysmem(addr, len); |
| algo->hash_func_ws(buf, len, output, algo->chunk_size); |
| unmap_sysmem(buf); |
| |
| /* Try to avoid code bloat when verify is not needed */ |
| #ifdef CONFIG_HASH_VERIFY |
| if (flags & HASH_FLAG_VERIFY) { |
| #else |
| if (0) { |
| #endif |
| if (parse_verify_sum(algo, *argv, vsum, |
| flags & HASH_FLAG_ENV)) { |
| printf("ERROR: %s does not contain a valid " |
| "%s sum\n", *argv, algo->name); |
| return 1; |
| } |
| if (memcmp(output, vsum, algo->digest_size) != 0) { |
| int i; |
| |
| hash_show(algo, addr, len, output); |
| printf(" != "); |
| for (i = 0; i < algo->digest_size; i++) |
| printf("%02x", vsum[i]); |
| puts(" ** ERROR **\n"); |
| return 1; |
| } |
| } else { |
| hash_show(algo, addr, len, output); |
| printf("\n"); |
| |
| if (argc) { |
| store_result(algo, output, *argv, |
| flags & HASH_FLAG_ENV); |
| } |
| } |
| |
| /* Horrible code size hack for boards that just want crc32 */ |
| } else { |
| ulong crc; |
| ulong *ptr; |
| |
| crc = crc32_wd(0, (const uchar *)addr, len, CHUNKSZ_CRC32); |
| |
| printf("CRC32 for %08lx ... %08lx ==> %08lx\n", |
| addr, addr + len - 1, crc); |
| |
| if (argc >= 3) { |
| ptr = (ulong *)simple_strtoul(argv[0], NULL, 16); |
| *ptr = crc; |
| } |
| } |
| |
| return 0; |
| } |