blob: 9261507571f57d7fa64043a44bf5b3a3bae77866 [file] [log] [blame]
wdenk217c9da2002-10-25 20:35:49 +00001#if 0 /* Moved to malloc.h */
2/* ---------- To make a malloc.h, start cutting here ------------ */
3
4/*
5 A version of malloc/free/realloc written by Doug Lea and released to the
6 public domain. Send questions/comments/complaints/performance data
7 to dl@cs.oswego.edu
8
9* VERSION 2.6.6 Sun Mar 5 19:10:03 2000 Doug Lea (dl at gee)
10
11 Note: There may be an updated version of this malloc obtainable at
12 ftp://g.oswego.edu/pub/misc/malloc.c
13 Check before installing!
14
15* Why use this malloc?
16
17 This is not the fastest, most space-conserving, most portable, or
18 most tunable malloc ever written. However it is among the fastest
19 while also being among the most space-conserving, portable and tunable.
20 Consistent balance across these factors results in a good general-purpose
21 allocator. For a high-level description, see
22 http://g.oswego.edu/dl/html/malloc.html
23
24* Synopsis of public routines
25
26 (Much fuller descriptions are contained in the program documentation below.)
27
28 malloc(size_t n);
29 Return a pointer to a newly allocated chunk of at least n bytes, or null
30 if no space is available.
31 free(Void_t* p);
32 Release the chunk of memory pointed to by p, or no effect if p is null.
33 realloc(Void_t* p, size_t n);
34 Return a pointer to a chunk of size n that contains the same data
35 as does chunk p up to the minimum of (n, p's size) bytes, or null
36 if no space is available. The returned pointer may or may not be
37 the same as p. If p is null, equivalent to malloc. Unless the
38 #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a
39 size argument of zero (re)allocates a minimum-sized chunk.
40 memalign(size_t alignment, size_t n);
41 Return a pointer to a newly allocated chunk of n bytes, aligned
42 in accord with the alignment argument, which must be a power of
43 two.
44 valloc(size_t n);
45 Equivalent to memalign(pagesize, n), where pagesize is the page
46 size of the system (or as near to this as can be figured out from
47 all the includes/defines below.)
48 pvalloc(size_t n);
49 Equivalent to valloc(minimum-page-that-holds(n)), that is,
50 round up n to nearest pagesize.
51 calloc(size_t unit, size_t quantity);
52 Returns a pointer to quantity * unit bytes, with all locations
53 set to zero.
54 cfree(Void_t* p);
55 Equivalent to free(p).
56 malloc_trim(size_t pad);
57 Release all but pad bytes of freed top-most memory back
58 to the system. Return 1 if successful, else 0.
59 malloc_usable_size(Void_t* p);
60 Report the number usable allocated bytes associated with allocated
61 chunk p. This may or may not report more bytes than were requested,
62 due to alignment and minimum size constraints.
63 malloc_stats();
64 Prints brief summary statistics.
65 mallinfo()
66 Returns (by copy) a struct containing various summary statistics.
67 mallopt(int parameter_number, int parameter_value)
68 Changes one of the tunable parameters described below. Returns
69 1 if successful in changing the parameter, else 0.
70
71* Vital statistics:
72
73 Alignment: 8-byte
74 8 byte alignment is currently hardwired into the design. This
75 seems to suffice for all current machines and C compilers.
76
77 Assumed pointer representation: 4 or 8 bytes
78 Code for 8-byte pointers is untested by me but has worked
79 reliably by Wolfram Gloger, who contributed most of the
80 changes supporting this.
81
82 Assumed size_t representation: 4 or 8 bytes
83 Note that size_t is allowed to be 4 bytes even if pointers are 8.
84
85 Minimum overhead per allocated chunk: 4 or 8 bytes
86 Each malloced chunk has a hidden overhead of 4 bytes holding size
87 and status information.
88
89 Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead)
90 8-byte ptrs: 24/32 bytes (including, 4/8 overhead)
91
92 When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
93 ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
94 needed; 4 (8) for a trailing size field
95 and 8 (16) bytes for free list pointers. Thus, the minimum
96 allocatable size is 16/24/32 bytes.
97
98 Even a request for zero bytes (i.e., malloc(0)) returns a
99 pointer to something of the minimum allocatable size.
100
101 Maximum allocated size: 4-byte size_t: 2^31 - 8 bytes
102 8-byte size_t: 2^63 - 16 bytes
103
104 It is assumed that (possibly signed) size_t bit values suffice to
105 represent chunk sizes. `Possibly signed' is due to the fact
106 that `size_t' may be defined on a system as either a signed or
107 an unsigned type. To be conservative, values that would appear
108 as negative numbers are avoided.
109 Requests for sizes with a negative sign bit when the request
110 size is treaded as a long will return null.
111
112 Maximum overhead wastage per allocated chunk: normally 15 bytes
113
114 Alignnment demands, plus the minimum allocatable size restriction
115 make the normal worst-case wastage 15 bytes (i.e., up to 15
116 more bytes will be allocated than were requested in malloc), with
117 two exceptions:
118 1. Because requests for zero bytes allocate non-zero space,
119 the worst case wastage for a request of zero bytes is 24 bytes.
120 2. For requests >= mmap_threshold that are serviced via
121 mmap(), the worst case wastage is 8 bytes plus the remainder
122 from a system page (the minimal mmap unit); typically 4096 bytes.
123
124* Limitations
125
126 Here are some features that are NOT currently supported
127
128 * No user-definable hooks for callbacks and the like.
129 * No automated mechanism for fully checking that all accesses
130 to malloced memory stay within their bounds.
131 * No support for compaction.
132
133* Synopsis of compile-time options:
134
135 People have reported using previous versions of this malloc on all
136 versions of Unix, sometimes by tweaking some of the defines
137 below. It has been tested most extensively on Solaris and
138 Linux. It is also reported to work on WIN32 platforms.
139 People have also reported adapting this malloc for use in
140 stand-alone embedded systems.
141
142 The implementation is in straight, hand-tuned ANSI C. Among other
143 consequences, it uses a lot of macros. Because of this, to be at
144 all usable, this code should be compiled using an optimizing compiler
145 (for example gcc -O2) that can simplify expressions and control
146 paths.
147
148 __STD_C (default: derived from C compiler defines)
149 Nonzero if using ANSI-standard C compiler, a C++ compiler, or
150 a C compiler sufficiently close to ANSI to get away with it.
151 DEBUG (default: NOT defined)
152 Define to enable debugging. Adds fairly extensive assertion-based
153 checking to help track down memory errors, but noticeably slows down
154 execution.
155 REALLOC_ZERO_BYTES_FREES (default: NOT defined)
156 Define this if you think that realloc(p, 0) should be equivalent
157 to free(p). Otherwise, since malloc returns a unique pointer for
158 malloc(0), so does realloc(p, 0).
159 HAVE_MEMCPY (default: defined)
160 Define if you are not otherwise using ANSI STD C, but still
161 have memcpy and memset in your C library and want to use them.
162 Otherwise, simple internal versions are supplied.
163 USE_MEMCPY (default: 1 if HAVE_MEMCPY is defined, 0 otherwise)
164 Define as 1 if you want the C library versions of memset and
165 memcpy called in realloc and calloc (otherwise macro versions are used).
166 At least on some platforms, the simple macro versions usually
167 outperform libc versions.
168 HAVE_MMAP (default: defined as 1)
169 Define to non-zero to optionally make malloc() use mmap() to
170 allocate very large blocks.
171 HAVE_MREMAP (default: defined as 0 unless Linux libc set)
172 Define to non-zero to optionally make realloc() use mremap() to
173 reallocate very large blocks.
174 malloc_getpagesize (default: derived from system #includes)
175 Either a constant or routine call returning the system page size.
176 HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined)
177 Optionally define if you are on a system with a /usr/include/malloc.h
178 that declares struct mallinfo. It is not at all necessary to
179 define this even if you do, but will ensure consistency.
180 INTERNAL_SIZE_T (default: size_t)
181 Define to a 32-bit type (probably `unsigned int') if you are on a
182 64-bit machine, yet do not want or need to allow malloc requests of
183 greater than 2^31 to be handled. This saves space, especially for
184 very small chunks.
185 INTERNAL_LINUX_C_LIB (default: NOT defined)
186 Defined only when compiled as part of Linux libc.
187 Also note that there is some odd internal name-mangling via defines
188 (for example, internally, `malloc' is named `mALLOc') needed
189 when compiling in this case. These look funny but don't otherwise
190 affect anything.
191 WIN32 (default: undefined)
192 Define this on MS win (95, nt) platforms to compile in sbrk emulation.
193 LACKS_UNISTD_H (default: undefined if not WIN32)
194 Define this if your system does not have a <unistd.h>.
195 LACKS_SYS_PARAM_H (default: undefined if not WIN32)
196 Define this if your system does not have a <sys/param.h>.
197 MORECORE (default: sbrk)
198 The name of the routine to call to obtain more memory from the system.
199 MORECORE_FAILURE (default: -1)
200 The value returned upon failure of MORECORE.
201 MORECORE_CLEARS (default 1)
202 True (1) if the routine mapped to MORECORE zeroes out memory (which
203 holds for sbrk).
204 DEFAULT_TRIM_THRESHOLD
205 DEFAULT_TOP_PAD
206 DEFAULT_MMAP_THRESHOLD
207 DEFAULT_MMAP_MAX
208 Default values of tunable parameters (described in detail below)
209 controlling interaction with host system routines (sbrk, mmap, etc).
210 These values may also be changed dynamically via mallopt(). The
211 preset defaults are those that give best performance for typical
212 programs/systems.
213 USE_DL_PREFIX (default: undefined)
214 Prefix all public routines with the string 'dl'. Useful to
215 quickly avoid procedure declaration conflicts and linker symbol
216 conflicts with existing memory allocation routines.
217
218
219*/
220
221
222
223
224/* Preliminaries */
225
226#ifndef __STD_C
227#ifdef __STDC__
228#define __STD_C 1
229#else
230#if __cplusplus
231#define __STD_C 1
232#else
233#define __STD_C 0
234#endif /*__cplusplus*/
235#endif /*__STDC__*/
236#endif /*__STD_C*/
237
238#ifndef Void_t
239#if (__STD_C || defined(WIN32))
240#define Void_t void
241#else
242#define Void_t char
243#endif
244#endif /*Void_t*/
245
246#if __STD_C
247#include <stddef.h> /* for size_t */
248#else
249#include <sys/types.h>
250#endif
251
252#ifdef __cplusplus
253extern "C" {
254#endif
255
256#include <stdio.h> /* needed for malloc_stats */
257
258
259/*
260 Compile-time options
261*/
262
263
264/*
265 Debugging:
266
267 Because freed chunks may be overwritten with link fields, this
268 malloc will often die when freed memory is overwritten by user
269 programs. This can be very effective (albeit in an annoying way)
270 in helping track down dangling pointers.
271
272 If you compile with -DDEBUG, a number of assertion checks are
273 enabled that will catch more memory errors. You probably won't be
274 able to make much sense of the actual assertion errors, but they
275 should help you locate incorrectly overwritten memory. The
276 checking is fairly extensive, and will slow down execution
277 noticeably. Calling malloc_stats or mallinfo with DEBUG set will
278 attempt to check every non-mmapped allocated and free chunk in the
279 course of computing the summmaries. (By nature, mmapped regions
280 cannot be checked very much automatically.)
281
282 Setting DEBUG may also be helpful if you are trying to modify
283 this code. The assertions in the check routines spell out in more
284 detail the assumptions and invariants underlying the algorithms.
285
286*/
287
288#ifdef DEBUG
289#include <assert.h>
290#else
291#define assert(x) ((void)0)
292#endif
293
294
295/*
296 INTERNAL_SIZE_T is the word-size used for internal bookkeeping
297 of chunk sizes. On a 64-bit machine, you can reduce malloc
298 overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int'
299 at the expense of not being able to handle requests greater than
300 2^31. This limitation is hardly ever a concern; you are encouraged
301 to set this. However, the default version is the same as size_t.
302*/
303
304#ifndef INTERNAL_SIZE_T
305#define INTERNAL_SIZE_T size_t
306#endif
307
308/*
309 REALLOC_ZERO_BYTES_FREES should be set if a call to
310 realloc with zero bytes should be the same as a call to free.
311 Some people think it should. Otherwise, since this malloc
312 returns a unique pointer for malloc(0), so does realloc(p, 0).
313*/
314
315
316/* #define REALLOC_ZERO_BYTES_FREES */
317
318
319/*
320 WIN32 causes an emulation of sbrk to be compiled in
321 mmap-based options are not currently supported in WIN32.
322*/
323
324/* #define WIN32 */
325#ifdef WIN32
326#define MORECORE wsbrk
327#define HAVE_MMAP 0
328
329#define LACKS_UNISTD_H
330#define LACKS_SYS_PARAM_H
331
332/*
333 Include 'windows.h' to get the necessary declarations for the
334 Microsoft Visual C++ data structures and routines used in the 'sbrk'
335 emulation.
336
337 Define WIN32_LEAN_AND_MEAN so that only the essential Microsoft
338 Visual C++ header files are included.
339*/
340#define WIN32_LEAN_AND_MEAN
341#include <windows.h>
342#endif
343
344
345/*
346 HAVE_MEMCPY should be defined if you are not otherwise using
347 ANSI STD C, but still have memcpy and memset in your C library
348 and want to use them in calloc and realloc. Otherwise simple
349 macro versions are defined here.
350
351 USE_MEMCPY should be defined as 1 if you actually want to
352 have memset and memcpy called. People report that the macro
353 versions are often enough faster than libc versions on many
354 systems that it is better to use them.
355
356*/
357
358#define HAVE_MEMCPY
359
360#ifndef USE_MEMCPY
361#ifdef HAVE_MEMCPY
362#define USE_MEMCPY 1
363#else
364#define USE_MEMCPY 0
365#endif
366#endif
367
368#if (__STD_C || defined(HAVE_MEMCPY))
369
370#if __STD_C
371void* memset(void*, int, size_t);
372void* memcpy(void*, const void*, size_t);
373#else
374#ifdef WIN32
375// On Win32 platforms, 'memset()' and 'memcpy()' are already declared in
376// 'windows.h'
377#else
378Void_t* memset();
379Void_t* memcpy();
380#endif
381#endif
382#endif
383
384#if USE_MEMCPY
385
386/* The following macros are only invoked with (2n+1)-multiples of
387 INTERNAL_SIZE_T units, with a positive integer n. This is exploited
388 for fast inline execution when n is small. */
389
390#define MALLOC_ZERO(charp, nbytes) \
391do { \
392 INTERNAL_SIZE_T mzsz = (nbytes); \
393 if(mzsz <= 9*sizeof(mzsz)) { \
394 INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp); \
395 if(mzsz >= 5*sizeof(mzsz)) { *mz++ = 0; \
396 *mz++ = 0; \
397 if(mzsz >= 7*sizeof(mzsz)) { *mz++ = 0; \
398 *mz++ = 0; \
399 if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0; \
400 *mz++ = 0; }}} \
401 *mz++ = 0; \
402 *mz++ = 0; \
403 *mz = 0; \
404 } else memset((charp), 0, mzsz); \
405} while(0)
406
407#define MALLOC_COPY(dest,src,nbytes) \
408do { \
409 INTERNAL_SIZE_T mcsz = (nbytes); \
410 if(mcsz <= 9*sizeof(mcsz)) { \
411 INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src); \
412 INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest); \
413 if(mcsz >= 5*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
414 *mcdst++ = *mcsrc++; \
415 if(mcsz >= 7*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
416 *mcdst++ = *mcsrc++; \
417 if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
418 *mcdst++ = *mcsrc++; }}} \
419 *mcdst++ = *mcsrc++; \
420 *mcdst++ = *mcsrc++; \
421 *mcdst = *mcsrc ; \
422 } else memcpy(dest, src, mcsz); \
423} while(0)
424
425#else /* !USE_MEMCPY */
426
427/* Use Duff's device for good zeroing/copying performance. */
428
429#define MALLOC_ZERO(charp, nbytes) \
430do { \
431 INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp); \
432 long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \
433 if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
434 switch (mctmp) { \
435 case 0: for(;;) { *mzp++ = 0; \
436 case 7: *mzp++ = 0; \
437 case 6: *mzp++ = 0; \
438 case 5: *mzp++ = 0; \
439 case 4: *mzp++ = 0; \
440 case 3: *mzp++ = 0; \
441 case 2: *mzp++ = 0; \
442 case 1: *mzp++ = 0; if(mcn <= 0) break; mcn--; } \
443 } \
444} while(0)
445
446#define MALLOC_COPY(dest,src,nbytes) \
447do { \
448 INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src; \
449 INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest; \
450 long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \
451 if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
452 switch (mctmp) { \
453 case 0: for(;;) { *mcdst++ = *mcsrc++; \
454 case 7: *mcdst++ = *mcsrc++; \
455 case 6: *mcdst++ = *mcsrc++; \
456 case 5: *mcdst++ = *mcsrc++; \
457 case 4: *mcdst++ = *mcsrc++; \
458 case 3: *mcdst++ = *mcsrc++; \
459 case 2: *mcdst++ = *mcsrc++; \
460 case 1: *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; } \
461 } \
462} while(0)
463
464#endif
465
466
467/*
468 Define HAVE_MMAP to optionally make malloc() use mmap() to
469 allocate very large blocks. These will be returned to the
470 operating system immediately after a free().
471*/
472
473#ifndef HAVE_MMAP
474#define HAVE_MMAP 1
475#endif
476
477/*
478 Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
479 large blocks. This is currently only possible on Linux with
480 kernel versions newer than 1.3.77.
481*/
482
483#ifndef HAVE_MREMAP
484#ifdef INTERNAL_LINUX_C_LIB
485#define HAVE_MREMAP 1
486#else
487#define HAVE_MREMAP 0
488#endif
489#endif
490
491#if HAVE_MMAP
492
493#include <unistd.h>
494#include <fcntl.h>
495#include <sys/mman.h>
496
497#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
498#define MAP_ANONYMOUS MAP_ANON
499#endif
500
501#endif /* HAVE_MMAP */
502
503/*
504 Access to system page size. To the extent possible, this malloc
505 manages memory from the system in page-size units.
506
507 The following mechanics for getpagesize were adapted from
508 bsd/gnu getpagesize.h
509*/
510
511#ifndef LACKS_UNISTD_H
512# include <unistd.h>
513#endif
514
515#ifndef malloc_getpagesize
516# ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
517# ifndef _SC_PAGE_SIZE
518# define _SC_PAGE_SIZE _SC_PAGESIZE
519# endif
520# endif
521# ifdef _SC_PAGE_SIZE
522# define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
523# else
524# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
525 extern size_t getpagesize();
526# define malloc_getpagesize getpagesize()
527# else
528# ifdef WIN32
529# define malloc_getpagesize (4096) /* TBD: Use 'GetSystemInfo' instead */
530# else
531# ifndef LACKS_SYS_PARAM_H
532# include <sys/param.h>
533# endif
534# ifdef EXEC_PAGESIZE
535# define malloc_getpagesize EXEC_PAGESIZE
536# else
537# ifdef NBPG
538# ifndef CLSIZE
539# define malloc_getpagesize NBPG
540# else
541# define malloc_getpagesize (NBPG * CLSIZE)
542# endif
543# else
544# ifdef NBPC
545# define malloc_getpagesize NBPC
546# else
547# ifdef PAGESIZE
548# define malloc_getpagesize PAGESIZE
549# else
550# define malloc_getpagesize (4096) /* just guess */
551# endif
552# endif
553# endif
554# endif
555# endif
556# endif
557# endif
558#endif
559
560
561
562/*
563
564 This version of malloc supports the standard SVID/XPG mallinfo
565 routine that returns a struct containing the same kind of
566 information you can get from malloc_stats. It should work on
567 any SVID/XPG compliant system that has a /usr/include/malloc.h
568 defining struct mallinfo. (If you'd like to install such a thing
569 yourself, cut out the preliminary declarations as described above
570 and below and save them in a malloc.h file. But there's no
571 compelling reason to bother to do this.)
572
573 The main declaration needed is the mallinfo struct that is returned
574 (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a
575 bunch of fields, most of which are not even meaningful in this
576 version of malloc. Some of these fields are are instead filled by
577 mallinfo() with other numbers that might possibly be of interest.
578
579 HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
580 /usr/include/malloc.h file that includes a declaration of struct
581 mallinfo. If so, it is included; else an SVID2/XPG2 compliant
582 version is declared below. These must be precisely the same for
583 mallinfo() to work.
584
585*/
586
587/* #define HAVE_USR_INCLUDE_MALLOC_H */
588
589#if HAVE_USR_INCLUDE_MALLOC_H
590#include "/usr/include/malloc.h"
591#else
592
593/* SVID2/XPG mallinfo structure */
594
595struct mallinfo {
596 int arena; /* total space allocated from system */
597 int ordblks; /* number of non-inuse chunks */
598 int smblks; /* unused -- always zero */
599 int hblks; /* number of mmapped regions */
600 int hblkhd; /* total space in mmapped regions */
601 int usmblks; /* unused -- always zero */
602 int fsmblks; /* unused -- always zero */
603 int uordblks; /* total allocated space */
604 int fordblks; /* total non-inuse space */
605 int keepcost; /* top-most, releasable (via malloc_trim) space */
606};
607
608/* SVID2/XPG mallopt options */
609
610#define M_MXFAST 1 /* UNUSED in this malloc */
611#define M_NLBLKS 2 /* UNUSED in this malloc */
612#define M_GRAIN 3 /* UNUSED in this malloc */
613#define M_KEEP 4 /* UNUSED in this malloc */
614
615#endif
616
617/* mallopt options that actually do something */
618
619#define M_TRIM_THRESHOLD -1
620#define M_TOP_PAD -2
621#define M_MMAP_THRESHOLD -3
622#define M_MMAP_MAX -4
623
624
625
626#ifndef DEFAULT_TRIM_THRESHOLD
627#define DEFAULT_TRIM_THRESHOLD (128 * 1024)
628#endif
629
630/*
631 M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
632 to keep before releasing via malloc_trim in free().
633
634 Automatic trimming is mainly useful in long-lived programs.
635 Because trimming via sbrk can be slow on some systems, and can
636 sometimes be wasteful (in cases where programs immediately
637 afterward allocate more large chunks) the value should be high
638 enough so that your overall system performance would improve by
639 releasing.
640
641 The trim threshold and the mmap control parameters (see below)
642 can be traded off with one another. Trimming and mmapping are
643 two different ways of releasing unused memory back to the
644 system. Between these two, it is often possible to keep
645 system-level demands of a long-lived program down to a bare
646 minimum. For example, in one test suite of sessions measuring
647 the XF86 X server on Linux, using a trim threshold of 128K and a
648 mmap threshold of 192K led to near-minimal long term resource
649 consumption.
650
651 If you are using this malloc in a long-lived program, it should
652 pay to experiment with these values. As a rough guide, you
653 might set to a value close to the average size of a process
654 (program) running on your system. Releasing this much memory
655 would allow such a process to run in memory. Generally, it's
656 worth it to tune for trimming rather tham memory mapping when a
657 program undergoes phases where several large chunks are
658 allocated and released in ways that can reuse each other's
659 storage, perhaps mixed with phases where there are no such
660 chunks at all. And in well-behaved long-lived programs,
661 controlling release of large blocks via trimming versus mapping
662 is usually faster.
663
664 However, in most programs, these parameters serve mainly as
665 protection against the system-level effects of carrying around
666 massive amounts of unneeded memory. Since frequent calls to
667 sbrk, mmap, and munmap otherwise degrade performance, the default
668 parameters are set to relatively high values that serve only as
669 safeguards.
670
671 The default trim value is high enough to cause trimming only in
672 fairly extreme (by current memory consumption standards) cases.
673 It must be greater than page size to have any useful effect. To
674 disable trimming completely, you can set to (unsigned long)(-1);
675
676
677*/
678
679
680#ifndef DEFAULT_TOP_PAD
681#define DEFAULT_TOP_PAD (0)
682#endif
683
684/*
685 M_TOP_PAD is the amount of extra `padding' space to allocate or
686 retain whenever sbrk is called. It is used in two ways internally:
687
688 * When sbrk is called to extend the top of the arena to satisfy
689 a new malloc request, this much padding is added to the sbrk
690 request.
691
692 * When malloc_trim is called automatically from free(),
693 it is used as the `pad' argument.
694
695 In both cases, the actual amount of padding is rounded
696 so that the end of the arena is always a system page boundary.
697
698 The main reason for using padding is to avoid calling sbrk so
699 often. Having even a small pad greatly reduces the likelihood
700 that nearly every malloc request during program start-up (or
701 after trimming) will invoke sbrk, which needlessly wastes
702 time.
703
704 Automatic rounding-up to page-size units is normally sufficient
705 to avoid measurable overhead, so the default is 0. However, in
706 systems where sbrk is relatively slow, it can pay to increase
707 this value, at the expense of carrying around more memory than
708 the program needs.
709
710*/
711
712
713#ifndef DEFAULT_MMAP_THRESHOLD
714#define DEFAULT_MMAP_THRESHOLD (128 * 1024)
715#endif
716
717/*
718
719 M_MMAP_THRESHOLD is the request size threshold for using mmap()
720 to service a request. Requests of at least this size that cannot
721 be allocated using already-existing space will be serviced via mmap.
722 (If enough normal freed space already exists it is used instead.)
723
724 Using mmap segregates relatively large chunks of memory so that
725 they can be individually obtained and released from the host
726 system. A request serviced through mmap is never reused by any
727 other request (at least not directly; the system may just so
728 happen to remap successive requests to the same locations).
729
730 Segregating space in this way has the benefit that mmapped space
731 can ALWAYS be individually released back to the system, which
732 helps keep the system level memory demands of a long-lived
733 program low. Mapped memory can never become `locked' between
734 other chunks, as can happen with normally allocated chunks, which
735 menas that even trimming via malloc_trim would not release them.
736
737 However, it has the disadvantages that:
738
739 1. The space cannot be reclaimed, consolidated, and then
740 used to service later requests, as happens with normal chunks.
741 2. It can lead to more wastage because of mmap page alignment
742 requirements
743 3. It causes malloc performance to be more dependent on host
744 system memory management support routines which may vary in
745 implementation quality and may impose arbitrary
746 limitations. Generally, servicing a request via normal
747 malloc steps is faster than going through a system's mmap.
748
749 All together, these considerations should lead you to use mmap
750 only for relatively large requests.
751
752
753*/
754
755
756
757#ifndef DEFAULT_MMAP_MAX
758#if HAVE_MMAP
759#define DEFAULT_MMAP_MAX (64)
760#else
761#define DEFAULT_MMAP_MAX (0)
762#endif
763#endif
764
765/*
766 M_MMAP_MAX is the maximum number of requests to simultaneously
767 service using mmap. This parameter exists because:
768
769 1. Some systems have a limited number of internal tables for
770 use by mmap.
771 2. In most systems, overreliance on mmap can degrade overall
772 performance.
773 3. If a program allocates many large regions, it is probably
774 better off using normal sbrk-based allocation routines that
775 can reclaim and reallocate normal heap memory. Using a
776 small value allows transition into this mode after the
777 first few allocations.
778
779 Setting to 0 disables all use of mmap. If HAVE_MMAP is not set,
780 the default value is 0, and attempts to set it to non-zero values
781 in mallopt will fail.
782*/
783
784
785
786
787/*
788 USE_DL_PREFIX will prefix all public routines with the string 'dl'.
789 Useful to quickly avoid procedure declaration conflicts and linker
790 symbol conflicts with existing memory allocation routines.
791
792*/
793
794/* #define USE_DL_PREFIX */
795
796
797
798
799/*
800
801 Special defines for linux libc
802
803 Except when compiled using these special defines for Linux libc
804 using weak aliases, this malloc is NOT designed to work in
805 multithreaded applications. No semaphores or other concurrency
806 control are provided to ensure that multiple malloc or free calls
807 don't run at the same time, which could be disasterous. A single
808 semaphore could be used across malloc, realloc, and free (which is
809 essentially the effect of the linux weak alias approach). It would
810 be hard to obtain finer granularity.
811
812*/
813
814
815#ifdef INTERNAL_LINUX_C_LIB
816
817#if __STD_C
818
819Void_t * __default_morecore_init (ptrdiff_t);
820Void_t *(*__morecore)(ptrdiff_t) = __default_morecore_init;
821
822#else
823
824Void_t * __default_morecore_init ();
825Void_t *(*__morecore)() = __default_morecore_init;
826
827#endif
828
829#define MORECORE (*__morecore)
830#define MORECORE_FAILURE 0
831#define MORECORE_CLEARS 1
832
833#else /* INTERNAL_LINUX_C_LIB */
834
835#if __STD_C
836extern Void_t* sbrk(ptrdiff_t);
837#else
838extern Void_t* sbrk();
839#endif
840
841#ifndef MORECORE
842#define MORECORE sbrk
843#endif
844
845#ifndef MORECORE_FAILURE
846#define MORECORE_FAILURE -1
847#endif
848
849#ifndef MORECORE_CLEARS
850#define MORECORE_CLEARS 1
851#endif
852
853#endif /* INTERNAL_LINUX_C_LIB */
854
855#if defined(INTERNAL_LINUX_C_LIB) && defined(__ELF__)
856
857#define cALLOc __libc_calloc
858#define fREe __libc_free
859#define mALLOc __libc_malloc
860#define mEMALIGn __libc_memalign
861#define rEALLOc __libc_realloc
862#define vALLOc __libc_valloc
863#define pvALLOc __libc_pvalloc
864#define mALLINFo __libc_mallinfo
865#define mALLOPt __libc_mallopt
866
867#pragma weak calloc = __libc_calloc
868#pragma weak free = __libc_free
869#pragma weak cfree = __libc_free
870#pragma weak malloc = __libc_malloc
871#pragma weak memalign = __libc_memalign
872#pragma weak realloc = __libc_realloc
873#pragma weak valloc = __libc_valloc
874#pragma weak pvalloc = __libc_pvalloc
875#pragma weak mallinfo = __libc_mallinfo
876#pragma weak mallopt = __libc_mallopt
877
878#else
879
880#ifdef USE_DL_PREFIX
881#define cALLOc dlcalloc
882#define fREe dlfree
883#define mALLOc dlmalloc
884#define mEMALIGn dlmemalign
885#define rEALLOc dlrealloc
886#define vALLOc dlvalloc
887#define pvALLOc dlpvalloc
888#define mALLINFo dlmallinfo
889#define mALLOPt dlmallopt
890#else /* USE_DL_PREFIX */
891#define cALLOc calloc
892#define fREe free
893#define mALLOc malloc
894#define mEMALIGn memalign
895#define rEALLOc realloc
896#define vALLOc valloc
897#define pvALLOc pvalloc
898#define mALLINFo mallinfo
899#define mALLOPt mallopt
900#endif /* USE_DL_PREFIX */
901
902#endif
903
904/* Public routines */
905
906#if __STD_C
907
908Void_t* mALLOc(size_t);
909void fREe(Void_t*);
910Void_t* rEALLOc(Void_t*, size_t);
911Void_t* mEMALIGn(size_t, size_t);
912Void_t* vALLOc(size_t);
913Void_t* pvALLOc(size_t);
914Void_t* cALLOc(size_t, size_t);
915void cfree(Void_t*);
916int malloc_trim(size_t);
917size_t malloc_usable_size(Void_t*);
918void malloc_stats();
919int mALLOPt(int, int);
920struct mallinfo mALLINFo(void);
921#else
922Void_t* mALLOc();
923void fREe();
924Void_t* rEALLOc();
925Void_t* mEMALIGn();
926Void_t* vALLOc();
927Void_t* pvALLOc();
928Void_t* cALLOc();
929void cfree();
930int malloc_trim();
931size_t malloc_usable_size();
932void malloc_stats();
933int mALLOPt();
934struct mallinfo mALLINFo();
935#endif
936
937
938#ifdef __cplusplus
939}; /* end of extern "C" */
940#endif
941
942/* ---------- To make a malloc.h, end cutting here ------------ */
943#else /* Moved to malloc.h */
944
945#include <malloc.h>
946#if 0
947#if __STD_C
948static void malloc_update_mallinfo (void);
949void malloc_stats (void);
950#else
951static void malloc_update_mallinfo ();
952void malloc_stats();
953#endif
954#endif /* 0 */
955
956#endif /* 0 */ /* Moved to malloc.h */
957#include <common.h>
958
959/*
960 Emulation of sbrk for WIN32
961 All code within the ifdef WIN32 is untested by me.
962
963 Thanks to Martin Fong and others for supplying this.
964*/
965
966
967#ifdef WIN32
968
969#define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \
970~(malloc_getpagesize-1))
971#define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1))
972
973/* resrve 64MB to insure large contiguous space */
974#define RESERVED_SIZE (1024*1024*64)
975#define NEXT_SIZE (2048*1024)
976#define TOP_MEMORY ((unsigned long)2*1024*1024*1024)
977
978struct GmListElement;
979typedef struct GmListElement GmListElement;
980
981struct GmListElement
982{
983 GmListElement* next;
984 void* base;
985};
986
987static GmListElement* head = 0;
988static unsigned int gNextAddress = 0;
989static unsigned int gAddressBase = 0;
990static unsigned int gAllocatedSize = 0;
991
992static
993GmListElement* makeGmListElement (void* bas)
994{
995 GmListElement* this;
996 this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement));
997 assert (this);
998 if (this)
999 {
1000 this->base = bas;
1001 this->next = head;
1002 head = this;
1003 }
1004 return this;
1005}
1006
1007void gcleanup ()
1008{
1009 BOOL rval;
1010 assert ( (head == NULL) || (head->base == (void*)gAddressBase));
1011 if (gAddressBase && (gNextAddress - gAddressBase))
1012 {
1013 rval = VirtualFree ((void*)gAddressBase,
1014 gNextAddress - gAddressBase,
1015 MEM_DECOMMIT);
1016 assert (rval);
1017 }
1018 while (head)
1019 {
1020 GmListElement* next = head->next;
1021 rval = VirtualFree (head->base, 0, MEM_RELEASE);
1022 assert (rval);
1023 LocalFree (head);
1024 head = next;
1025 }
1026}
1027
1028static
1029void* findRegion (void* start_address, unsigned long size)
1030{
1031 MEMORY_BASIC_INFORMATION info;
1032 if (size >= TOP_MEMORY) return NULL;
1033
1034 while ((unsigned long)start_address + size < TOP_MEMORY)
1035 {
1036 VirtualQuery (start_address, &info, sizeof (info));
1037 if ((info.State == MEM_FREE) && (info.RegionSize >= size))
1038 return start_address;
1039 else
1040 {
1041 // Requested region is not available so see if the
1042 // next region is available. Set 'start_address'
1043 // to the next region and call 'VirtualQuery()'
1044 // again.
1045
1046 start_address = (char*)info.BaseAddress + info.RegionSize;
1047
1048 // Make sure we start looking for the next region
1049 // on the *next* 64K boundary. Otherwise, even if
1050 // the new region is free according to
1051 // 'VirtualQuery()', the subsequent call to
1052 // 'VirtualAlloc()' (which follows the call to
1053 // this routine in 'wsbrk()') will round *down*
1054 // the requested address to a 64K boundary which
1055 // we already know is an address in the
1056 // unavailable region. Thus, the subsequent call
1057 // to 'VirtualAlloc()' will fail and bring us back
1058 // here, causing us to go into an infinite loop.
1059
1060 start_address =
1061 (void *) AlignPage64K((unsigned long) start_address);
1062 }
1063 }
1064 return NULL;
1065
1066}
1067
1068
1069void* wsbrk (long size)
1070{
1071 void* tmp;
1072 if (size > 0)
1073 {
1074 if (gAddressBase == 0)
1075 {
1076 gAllocatedSize = max (RESERVED_SIZE, AlignPage (size));
1077 gNextAddress = gAddressBase =
1078 (unsigned int)VirtualAlloc (NULL, gAllocatedSize,
1079 MEM_RESERVE, PAGE_NOACCESS);
1080 } else if (AlignPage (gNextAddress + size) > (gAddressBase +
1081gAllocatedSize))
1082 {
1083 long new_size = max (NEXT_SIZE, AlignPage (size));
1084 void* new_address = (void*)(gAddressBase+gAllocatedSize);
1085 do
1086 {
1087 new_address = findRegion (new_address, new_size);
1088
1089 if (new_address == 0)
1090 return (void*)-1;
1091
1092 gAddressBase = gNextAddress =
1093 (unsigned int)VirtualAlloc (new_address, new_size,
1094 MEM_RESERVE, PAGE_NOACCESS);
1095 // repeat in case of race condition
1096 // The region that we found has been snagged
1097 // by another thread
1098 }
1099 while (gAddressBase == 0);
1100
1101 assert (new_address == (void*)gAddressBase);
1102
1103 gAllocatedSize = new_size;
1104
1105 if (!makeGmListElement ((void*)gAddressBase))
1106 return (void*)-1;
1107 }
1108 if ((size + gNextAddress) > AlignPage (gNextAddress))
1109 {
1110 void* res;
1111 res = VirtualAlloc ((void*)AlignPage (gNextAddress),
1112 (size + gNextAddress -
1113 AlignPage (gNextAddress)),
1114 MEM_COMMIT, PAGE_READWRITE);
1115 if (res == 0)
1116 return (void*)-1;
1117 }
1118 tmp = (void*)gNextAddress;
1119 gNextAddress = (unsigned int)tmp + size;
1120 return tmp;
1121 }
1122 else if (size < 0)
1123 {
1124 unsigned int alignedGoal = AlignPage (gNextAddress + size);
1125 /* Trim by releasing the virtual memory */
1126 if (alignedGoal >= gAddressBase)
1127 {
1128 VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal,
1129 MEM_DECOMMIT);
1130 gNextAddress = gNextAddress + size;
1131 return (void*)gNextAddress;
1132 }
1133 else
1134 {
1135 VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase,
1136 MEM_DECOMMIT);
1137 gNextAddress = gAddressBase;
1138 return (void*)-1;
1139 }
1140 }
1141 else
1142 {
1143 return (void*)gNextAddress;
1144 }
1145}
1146
1147#endif
1148
1149
1150
1151/*
1152 Type declarations
1153*/
1154
1155
1156struct malloc_chunk
1157{
1158 INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
1159 INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */
1160 struct malloc_chunk* fd; /* double links -- used only if free. */
1161 struct malloc_chunk* bk;
1162};
1163
1164typedef struct malloc_chunk* mchunkptr;
1165
1166/*
1167
1168 malloc_chunk details:
1169
1170 (The following includes lightly edited explanations by Colin Plumb.)
1171
1172 Chunks of memory are maintained using a `boundary tag' method as
1173 described in e.g., Knuth or Standish. (See the paper by Paul
1174 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
1175 survey of such techniques.) Sizes of free chunks are stored both
1176 in the front of each chunk and at the end. This makes
1177 consolidating fragmented chunks into bigger chunks very fast. The
1178 size fields also hold bits representing whether chunks are free or
1179 in use.
1180
1181 An allocated chunk looks like this:
1182
1183
1184 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1185 | Size of previous chunk, if allocated | |
1186 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1187 | Size of chunk, in bytes |P|
1188 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1189 | User data starts here... .
1190 . .
1191 . (malloc_usable_space() bytes) .
1192 . |
1193nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1194 | Size of chunk |
1195 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1196
1197
1198 Where "chunk" is the front of the chunk for the purpose of most of
1199 the malloc code, but "mem" is the pointer that is returned to the
1200 user. "Nextchunk" is the beginning of the next contiguous chunk.
1201
1202 Chunks always begin on even word boundries, so the mem portion
1203 (which is returned to the user) is also on an even word boundary, and
1204 thus double-word aligned.
1205
1206 Free chunks are stored in circular doubly-linked lists, and look like this:
1207
1208 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1209 | Size of previous chunk |
1210 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1211 `head:' | Size of chunk, in bytes |P|
1212 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1213 | Forward pointer to next chunk in list |
1214 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1215 | Back pointer to previous chunk in list |
1216 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1217 | Unused space (may be 0 bytes long) .
1218 . .
1219 . |
1220nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1221 `foot:' | Size of chunk, in bytes |
1222 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1223
1224 The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1225 chunk size (which is always a multiple of two words), is an in-use
1226 bit for the *previous* chunk. If that bit is *clear*, then the
1227 word before the current chunk size contains the previous chunk
1228 size, and can be used to find the front of the previous chunk.
1229 (The very first chunk allocated always has this bit set,
1230 preventing access to non-existent (or non-owned) memory.)
1231
1232 Note that the `foot' of the current chunk is actually represented
1233 as the prev_size of the NEXT chunk. (This makes it easier to
1234 deal with alignments etc).
1235
1236 The two exceptions to all this are
1237
1238 1. The special chunk `top', which doesn't bother using the
1239 trailing size field since there is no
1240 next contiguous chunk that would have to index off it. (After
1241 initialization, `top' is forced to always exist. If it would
1242 become less than MINSIZE bytes long, it is replenished via
1243 malloc_extend_top.)
1244
1245 2. Chunks allocated via mmap, which have the second-lowest-order
1246 bit (IS_MMAPPED) set in their size fields. Because they are
1247 never merged or traversed from any other chunk, they have no
1248 foot size or inuse information.
1249
1250 Available chunks are kept in any of several places (all declared below):
1251
1252 * `av': An array of chunks serving as bin headers for consolidated
1253 chunks. Each bin is doubly linked. The bins are approximately
1254 proportionally (log) spaced. There are a lot of these bins
1255 (128). This may look excessive, but works very well in
1256 practice. All procedures maintain the invariant that no
1257 consolidated chunk physically borders another one. Chunks in
1258 bins are kept in size order, with ties going to the
1259 approximately least recently used chunk.
1260
1261 The chunks in each bin are maintained in decreasing sorted order by
1262 size. This is irrelevant for the small bins, which all contain
1263 the same-sized chunks, but facilitates best-fit allocation for
1264 larger chunks. (These lists are just sequential. Keeping them in
1265 order almost never requires enough traversal to warrant using
1266 fancier ordered data structures.) Chunks of the same size are
1267 linked with the most recently freed at the front, and allocations
1268 are taken from the back. This results in LRU or FIFO allocation
1269 order, which tends to give each chunk an equal opportunity to be
1270 consolidated with adjacent freed chunks, resulting in larger free
1271 chunks and less fragmentation.
1272
1273 * `top': The top-most available chunk (i.e., the one bordering the
1274 end of available memory) is treated specially. It is never
1275 included in any bin, is used only if no other chunk is
1276 available, and is released back to the system if it is very
1277 large (see M_TRIM_THRESHOLD).
1278
1279 * `last_remainder': A bin holding only the remainder of the
1280 most recently split (non-top) chunk. This bin is checked
1281 before other non-fitting chunks, so as to provide better
1282 locality for runs of sequentially allocated chunks.
1283
1284 * Implicitly, through the host system's memory mapping tables.
1285 If supported, requests greater than a threshold are usually
1286 serviced via calls to mmap, and then later released via munmap.
1287
1288*/
1289
1290
1291
1292
1293
1294
1295/* sizes, alignments */
1296
1297#define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
1298#define MALLOC_ALIGNMENT (SIZE_SZ + SIZE_SZ)
1299#define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
1300#define MINSIZE (sizeof(struct malloc_chunk))
1301
1302/* conversion from malloc headers to user pointers, and back */
1303
1304#define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ))
1305#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
1306
1307/* pad request bytes into a usable size */
1308
1309#define request2size(req) \
1310 (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
1311 (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
1312 (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
1313
1314/* Check if m has acceptable alignment */
1315
1316#define aligned_OK(m) (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
1317
1318
1319
1320
1321/*
1322 Physical chunk operations
1323*/
1324
1325
1326/* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
1327
1328#define PREV_INUSE 0x1
1329
1330/* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
1331
1332#define IS_MMAPPED 0x2
1333
1334/* Bits to mask off when extracting size */
1335
1336#define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
1337
1338
1339/* Ptr to next physical malloc_chunk. */
1340
1341#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
1342
1343/* Ptr to previous physical malloc_chunk */
1344
1345#define prev_chunk(p)\
1346 ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
1347
1348
1349/* Treat space at ptr + offset as a chunk */
1350
1351#define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
1352
1353
1354
1355
1356/*
1357 Dealing with use bits
1358*/
1359
1360/* extract p's inuse bit */
1361
1362#define inuse(p)\
1363((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
1364
1365/* extract inuse bit of previous chunk */
1366
1367#define prev_inuse(p) ((p)->size & PREV_INUSE)
1368
1369/* check for mmap()'ed chunk */
1370
1371#define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
1372
1373/* set/clear chunk as in use without otherwise disturbing */
1374
1375#define set_inuse(p)\
1376((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
1377
1378#define clear_inuse(p)\
1379((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
1380
1381/* check/set/clear inuse bits in known places */
1382
1383#define inuse_bit_at_offset(p, s)\
1384 (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
1385
1386#define set_inuse_bit_at_offset(p, s)\
1387 (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
1388
1389#define clear_inuse_bit_at_offset(p, s)\
1390 (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
1391
1392
1393
1394
1395/*
1396 Dealing with size fields
1397*/
1398
1399/* Get size, ignoring use bits */
1400
1401#define chunksize(p) ((p)->size & ~(SIZE_BITS))
1402
1403/* Set size at head, without disturbing its use bit */
1404
1405#define set_head_size(p, s) ((p)->size = (((p)->size & PREV_INUSE) | (s)))
1406
1407/* Set size/use ignoring previous bits in header */
1408
1409#define set_head(p, s) ((p)->size = (s))
1410
1411/* Set size at footer (only when chunk is not in use) */
1412
1413#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
1414
1415
1416
1417
1418
1419/*
1420 Bins
1421
1422 The bins, `av_' are an array of pairs of pointers serving as the
1423 heads of (initially empty) doubly-linked lists of chunks, laid out
1424 in a way so that each pair can be treated as if it were in a
1425 malloc_chunk. (This way, the fd/bk offsets for linking bin heads
1426 and chunks are the same).
1427
1428 Bins for sizes < 512 bytes contain chunks of all the same size, spaced
1429 8 bytes apart. Larger bins are approximately logarithmically
1430 spaced. (See the table below.) The `av_' array is never mentioned
1431 directly in the code, but instead via bin access macros.
1432
1433 Bin layout:
1434
1435 64 bins of size 8
1436 32 bins of size 64
1437 16 bins of size 512
1438 8 bins of size 4096
1439 4 bins of size 32768
1440 2 bins of size 262144
1441 1 bin of size what's left
1442
1443 There is actually a little bit of slop in the numbers in bin_index
1444 for the sake of speed. This makes no difference elsewhere.
1445
1446 The special chunks `top' and `last_remainder' get their own bins,
1447 (this is implemented via yet more trickery with the av_ array),
1448 although `top' is never properly linked to its bin since it is
1449 always handled specially.
1450
1451*/
1452
1453#define NAV 128 /* number of bins */
1454
1455typedef struct malloc_chunk* mbinptr;
1456
1457/* access macros */
1458
1459#define bin_at(i) ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
1460#define next_bin(b) ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
1461#define prev_bin(b) ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
1462
1463/*
1464 The first 2 bins are never indexed. The corresponding av_ cells are instead
1465 used for bookkeeping. This is not to save space, but to simplify
1466 indexing, maintain locality, and avoid some initialization tests.
1467*/
1468
1469#define top (bin_at(0)->fd) /* The topmost chunk */
1470#define last_remainder (bin_at(1)) /* remainder from last split */
1471
1472
1473/*
1474 Because top initially points to its own bin with initial
1475 zero size, thus forcing extension on the first malloc request,
1476 we avoid having any special code in malloc to check whether
1477 it even exists yet. But we still need to in malloc_extend_top.
1478*/
1479
1480#define initial_top ((mchunkptr)(bin_at(0)))
1481
1482/* Helper macro to initialize bins */
1483
1484#define IAV(i) bin_at(i), bin_at(i)
1485
1486static mbinptr av_[NAV * 2 + 2] = {
1487 0, 0,
1488 IAV(0), IAV(1), IAV(2), IAV(3), IAV(4), IAV(5), IAV(6), IAV(7),
1489 IAV(8), IAV(9), IAV(10), IAV(11), IAV(12), IAV(13), IAV(14), IAV(15),
1490 IAV(16), IAV(17), IAV(18), IAV(19), IAV(20), IAV(21), IAV(22), IAV(23),
1491 IAV(24), IAV(25), IAV(26), IAV(27), IAV(28), IAV(29), IAV(30), IAV(31),
1492 IAV(32), IAV(33), IAV(34), IAV(35), IAV(36), IAV(37), IAV(38), IAV(39),
1493 IAV(40), IAV(41), IAV(42), IAV(43), IAV(44), IAV(45), IAV(46), IAV(47),
1494 IAV(48), IAV(49), IAV(50), IAV(51), IAV(52), IAV(53), IAV(54), IAV(55),
1495 IAV(56), IAV(57), IAV(58), IAV(59), IAV(60), IAV(61), IAV(62), IAV(63),
1496 IAV(64), IAV(65), IAV(66), IAV(67), IAV(68), IAV(69), IAV(70), IAV(71),
1497 IAV(72), IAV(73), IAV(74), IAV(75), IAV(76), IAV(77), IAV(78), IAV(79),
1498 IAV(80), IAV(81), IAV(82), IAV(83), IAV(84), IAV(85), IAV(86), IAV(87),
1499 IAV(88), IAV(89), IAV(90), IAV(91), IAV(92), IAV(93), IAV(94), IAV(95),
1500 IAV(96), IAV(97), IAV(98), IAV(99), IAV(100), IAV(101), IAV(102), IAV(103),
1501 IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
1502 IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
1503 IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
1504};
1505
1506void malloc_bin_reloc (void)
1507{
1508 DECLARE_GLOBAL_DATA_PTR;
1509
1510 unsigned long *p = (unsigned long *)(&av_[2]);
1511 int i;
1512 for (i=2; i<(sizeof(av_)/sizeof(mbinptr)); ++i) {
1513 *p++ += gd->reloc_off;
1514 }
1515}
1516
1517
1518/* field-extraction macros */
1519
1520#define first(b) ((b)->fd)
1521#define last(b) ((b)->bk)
1522
1523/*
1524 Indexing into bins
1525*/
1526
1527#define bin_index(sz) \
1528(((((unsigned long)(sz)) >> 9) == 0) ? (((unsigned long)(sz)) >> 3): \
1529 ((((unsigned long)(sz)) >> 9) <= 4) ? 56 + (((unsigned long)(sz)) >> 6): \
1530 ((((unsigned long)(sz)) >> 9) <= 20) ? 91 + (((unsigned long)(sz)) >> 9): \
1531 ((((unsigned long)(sz)) >> 9) <= 84) ? 110 + (((unsigned long)(sz)) >> 12): \
1532 ((((unsigned long)(sz)) >> 9) <= 340) ? 119 + (((unsigned long)(sz)) >> 15): \
1533 ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
1534 126)
1535/*
1536 bins for chunks < 512 are all spaced 8 bytes apart, and hold
1537 identically sized chunks. This is exploited in malloc.
1538*/
1539
1540#define MAX_SMALLBIN 63
1541#define MAX_SMALLBIN_SIZE 512
1542#define SMALLBIN_WIDTH 8
1543
1544#define smallbin_index(sz) (((unsigned long)(sz)) >> 3)
1545
1546/*
1547 Requests are `small' if both the corresponding and the next bin are small
1548*/
1549
1550#define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
1551
1552
1553
1554/*
1555 To help compensate for the large number of bins, a one-level index
1556 structure is used for bin-by-bin searching. `binblocks' is a
1557 one-word bitvector recording whether groups of BINBLOCKWIDTH bins
1558 have any (possibly) non-empty bins, so they can be skipped over
1559 all at once during during traversals. The bits are NOT always
1560 cleared as soon as all bins in a block are empty, but instead only
1561 when all are noticed to be empty during traversal in malloc.
1562*/
1563
1564#define BINBLOCKWIDTH 4 /* bins per block */
1565
1566#define binblocks (bin_at(0)->size) /* bitvector of nonempty blocks */
1567
1568/* bin<->block macros */
1569
1570#define idx2binblock(ix) ((unsigned)1 << (ix / BINBLOCKWIDTH))
1571#define mark_binblock(ii) (binblocks |= idx2binblock(ii))
1572#define clear_binblock(ii) (binblocks &= ~(idx2binblock(ii)))
1573
1574
1575
1576
1577
1578/* Other static bookkeeping data */
1579
1580/* variables holding tunable values */
1581
1582static unsigned long trim_threshold = DEFAULT_TRIM_THRESHOLD;
1583static unsigned long top_pad = DEFAULT_TOP_PAD;
1584static unsigned int n_mmaps_max = DEFAULT_MMAP_MAX;
1585static unsigned long mmap_threshold = DEFAULT_MMAP_THRESHOLD;
1586
1587/* The first value returned from sbrk */
1588static char* sbrk_base = (char*)(-1);
1589
1590/* The maximum memory obtained from system via sbrk */
1591static unsigned long max_sbrked_mem = 0;
1592
1593/* The maximum via either sbrk or mmap */
1594static unsigned long max_total_mem = 0;
1595
1596/* internal working copy of mallinfo */
1597static struct mallinfo current_mallinfo = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
1598
1599/* The total memory obtained from system via sbrk */
1600#define sbrked_mem (current_mallinfo.arena)
1601
1602/* Tracking mmaps */
1603
1604#if 0
1605static unsigned int n_mmaps = 0;
1606#endif /* 0 */
1607static unsigned long mmapped_mem = 0;
1608#if HAVE_MMAP
1609static unsigned int max_n_mmaps = 0;
1610static unsigned long max_mmapped_mem = 0;
1611#endif
1612
1613
1614
1615/*
1616 Debugging support
1617*/
1618
1619#ifdef DEBUG
1620
1621
1622/*
1623 These routines make a number of assertions about the states
1624 of data structures that should be true at all times. If any
1625 are not true, it's very likely that a user program has somehow
1626 trashed memory. (It's also possible that there is a coding error
1627 in malloc. In which case, please report it!)
1628*/
1629
1630#if __STD_C
1631static void do_check_chunk(mchunkptr p)
1632#else
1633static void do_check_chunk(p) mchunkptr p;
1634#endif
1635{
1636#if 0 /* causes warnings because assert() is off */
1637 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1638#endif /* 0 */
1639
1640 /* No checkable chunk is mmapped */
1641 assert(!chunk_is_mmapped(p));
1642
1643 /* Check for legal address ... */
1644 assert((char*)p >= sbrk_base);
1645 if (p != top)
1646 assert((char*)p + sz <= (char*)top);
1647 else
1648 assert((char*)p + sz <= sbrk_base + sbrked_mem);
1649
1650}
1651
1652
1653#if __STD_C
1654static void do_check_free_chunk(mchunkptr p)
1655#else
1656static void do_check_free_chunk(p) mchunkptr p;
1657#endif
1658{
1659 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1660#if 0 /* causes warnings because assert() is off */
1661 mchunkptr next = chunk_at_offset(p, sz);
1662#endif /* 0 */
1663
1664 do_check_chunk(p);
1665
1666 /* Check whether it claims to be free ... */
1667 assert(!inuse(p));
1668
1669 /* Unless a special marker, must have OK fields */
1670 if ((long)sz >= (long)MINSIZE)
1671 {
1672 assert((sz & MALLOC_ALIGN_MASK) == 0);
1673 assert(aligned_OK(chunk2mem(p)));
1674 /* ... matching footer field */
1675 assert(next->prev_size == sz);
1676 /* ... and is fully consolidated */
1677 assert(prev_inuse(p));
1678 assert (next == top || inuse(next));
1679
1680 /* ... and has minimally sane links */
1681 assert(p->fd->bk == p);
1682 assert(p->bk->fd == p);
1683 }
1684 else /* markers are always of size SIZE_SZ */
1685 assert(sz == SIZE_SZ);
1686}
1687
1688#if __STD_C
1689static void do_check_inuse_chunk(mchunkptr p)
1690#else
1691static void do_check_inuse_chunk(p) mchunkptr p;
1692#endif
1693{
1694 mchunkptr next = next_chunk(p);
1695 do_check_chunk(p);
1696
1697 /* Check whether it claims to be in use ... */
1698 assert(inuse(p));
1699
1700 /* ... and is surrounded by OK chunks.
1701 Since more things can be checked with free chunks than inuse ones,
1702 if an inuse chunk borders them and debug is on, it's worth doing them.
1703 */
1704 if (!prev_inuse(p))
1705 {
1706 mchunkptr prv = prev_chunk(p);
1707 assert(next_chunk(prv) == p);
1708 do_check_free_chunk(prv);
1709 }
1710 if (next == top)
1711 {
1712 assert(prev_inuse(next));
1713 assert(chunksize(next) >= MINSIZE);
1714 }
1715 else if (!inuse(next))
1716 do_check_free_chunk(next);
1717
1718}
1719
1720#if __STD_C
1721static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
1722#else
1723static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
1724#endif
1725{
1726#if 0 /* causes warnings because assert() is off */
1727 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1728 long room = sz - s;
1729#endif /* 0 */
1730
1731 do_check_inuse_chunk(p);
1732
1733 /* Legal size ... */
1734 assert((long)sz >= (long)MINSIZE);
1735 assert((sz & MALLOC_ALIGN_MASK) == 0);
1736 assert(room >= 0);
1737 assert(room < (long)MINSIZE);
1738
1739 /* ... and alignment */
1740 assert(aligned_OK(chunk2mem(p)));
1741
1742
1743 /* ... and was allocated at front of an available chunk */
1744 assert(prev_inuse(p));
1745
1746}
1747
1748
1749#define check_free_chunk(P) do_check_free_chunk(P)
1750#define check_inuse_chunk(P) do_check_inuse_chunk(P)
1751#define check_chunk(P) do_check_chunk(P)
1752#define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
1753#else
1754#define check_free_chunk(P)
1755#define check_inuse_chunk(P)
1756#define check_chunk(P)
1757#define check_malloced_chunk(P,N)
1758#endif
1759
1760
1761
1762/*
1763 Macro-based internal utilities
1764*/
1765
1766
1767/*
1768 Linking chunks in bin lists.
1769 Call these only with variables, not arbitrary expressions, as arguments.
1770*/
1771
1772/*
1773 Place chunk p of size s in its bin, in size order,
1774 putting it ahead of others of same size.
1775*/
1776
1777
1778#define frontlink(P, S, IDX, BK, FD) \
1779{ \
1780 if (S < MAX_SMALLBIN_SIZE) \
1781 { \
1782 IDX = smallbin_index(S); \
1783 mark_binblock(IDX); \
1784 BK = bin_at(IDX); \
1785 FD = BK->fd; \
1786 P->bk = BK; \
1787 P->fd = FD; \
1788 FD->bk = BK->fd = P; \
1789 } \
1790 else \
1791 { \
1792 IDX = bin_index(S); \
1793 BK = bin_at(IDX); \
1794 FD = BK->fd; \
1795 if (FD == BK) mark_binblock(IDX); \
1796 else \
1797 { \
1798 while (FD != BK && S < chunksize(FD)) FD = FD->fd; \
1799 BK = FD->bk; \
1800 } \
1801 P->bk = BK; \
1802 P->fd = FD; \
1803 FD->bk = BK->fd = P; \
1804 } \
1805}
1806
1807
1808/* take a chunk off a list */
1809
1810#define unlink(P, BK, FD) \
1811{ \
1812 BK = P->bk; \
1813 FD = P->fd; \
1814 FD->bk = BK; \
1815 BK->fd = FD; \
1816} \
1817
1818/* Place p as the last remainder */
1819
1820#define link_last_remainder(P) \
1821{ \
1822 last_remainder->fd = last_remainder->bk = P; \
1823 P->fd = P->bk = last_remainder; \
1824}
1825
1826/* Clear the last_remainder bin */
1827
1828#define clear_last_remainder \
1829 (last_remainder->fd = last_remainder->bk = last_remainder)
1830
1831
1832
1833
1834
1835
1836/* Routines dealing with mmap(). */
1837
1838#if HAVE_MMAP
1839
1840#if __STD_C
1841static mchunkptr mmap_chunk(size_t size)
1842#else
1843static mchunkptr mmap_chunk(size) size_t size;
1844#endif
1845{
1846 size_t page_mask = malloc_getpagesize - 1;
1847 mchunkptr p;
1848
1849#ifndef MAP_ANONYMOUS
1850 static int fd = -1;
1851#endif
1852
1853 if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
1854
1855 /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
1856 * there is no following chunk whose prev_size field could be used.
1857 */
1858 size = (size + SIZE_SZ + page_mask) & ~page_mask;
1859
1860#ifdef MAP_ANONYMOUS
1861 p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE,
1862 MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
1863#else /* !MAP_ANONYMOUS */
1864 if (fd < 0)
1865 {
1866 fd = open("/dev/zero", O_RDWR);
1867 if(fd < 0) return 0;
1868 }
1869 p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
1870#endif
1871
1872 if(p == (mchunkptr)-1) return 0;
1873
1874 n_mmaps++;
1875 if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
1876
1877 /* We demand that eight bytes into a page must be 8-byte aligned. */
1878 assert(aligned_OK(chunk2mem(p)));
1879
1880 /* The offset to the start of the mmapped region is stored
1881 * in the prev_size field of the chunk; normally it is zero,
1882 * but that can be changed in memalign().
1883 */
1884 p->prev_size = 0;
1885 set_head(p, size|IS_MMAPPED);
1886
1887 mmapped_mem += size;
1888 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1889 max_mmapped_mem = mmapped_mem;
1890 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1891 max_total_mem = mmapped_mem + sbrked_mem;
1892 return p;
1893}
1894
1895#if __STD_C
1896static void munmap_chunk(mchunkptr p)
1897#else
1898static void munmap_chunk(p) mchunkptr p;
1899#endif
1900{
1901 INTERNAL_SIZE_T size = chunksize(p);
1902 int ret;
1903
1904 assert (chunk_is_mmapped(p));
1905 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1906 assert((n_mmaps > 0));
1907 assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
1908
1909 n_mmaps--;
1910 mmapped_mem -= (size + p->prev_size);
1911
1912 ret = munmap((char *)p - p->prev_size, size + p->prev_size);
1913
1914 /* munmap returns non-zero on failure */
1915 assert(ret == 0);
1916}
1917
1918#if HAVE_MREMAP
1919
1920#if __STD_C
1921static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
1922#else
1923static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
1924#endif
1925{
1926 size_t page_mask = malloc_getpagesize - 1;
1927 INTERNAL_SIZE_T offset = p->prev_size;
1928 INTERNAL_SIZE_T size = chunksize(p);
1929 char *cp;
1930
1931 assert (chunk_is_mmapped(p));
1932 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1933 assert((n_mmaps > 0));
1934 assert(((size + offset) & (malloc_getpagesize-1)) == 0);
1935
1936 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
1937 new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
1938
1939 cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1);
1940
1941 if (cp == (char *)-1) return 0;
1942
1943 p = (mchunkptr)(cp + offset);
1944
1945 assert(aligned_OK(chunk2mem(p)));
1946
1947 assert((p->prev_size == offset));
1948 set_head(p, (new_size - offset)|IS_MMAPPED);
1949
1950 mmapped_mem -= size + offset;
1951 mmapped_mem += new_size;
1952 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1953 max_mmapped_mem = mmapped_mem;
1954 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1955 max_total_mem = mmapped_mem + sbrked_mem;
1956 return p;
1957}
1958
1959#endif /* HAVE_MREMAP */
1960
1961#endif /* HAVE_MMAP */
1962
1963
1964
1965
1966/*
1967 Extend the top-most chunk by obtaining memory from system.
1968 Main interface to sbrk (but see also malloc_trim).
1969*/
1970
1971#if __STD_C
1972static void malloc_extend_top(INTERNAL_SIZE_T nb)
1973#else
1974static void malloc_extend_top(nb) INTERNAL_SIZE_T nb;
1975#endif
1976{
1977 char* brk; /* return value from sbrk */
1978 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
1979 INTERNAL_SIZE_T correction; /* bytes for 2nd sbrk call */
1980 char* new_brk; /* return of 2nd sbrk call */
1981 INTERNAL_SIZE_T top_size; /* new size of top chunk */
1982
1983 mchunkptr old_top = top; /* Record state of old top */
1984 INTERNAL_SIZE_T old_top_size = chunksize(old_top);
1985 char* old_end = (char*)(chunk_at_offset(old_top, old_top_size));
1986
1987 /* Pad request with top_pad plus minimal overhead */
1988
1989 INTERNAL_SIZE_T sbrk_size = nb + top_pad + MINSIZE;
1990 unsigned long pagesz = malloc_getpagesize;
1991
1992 /* If not the first time through, round to preserve page boundary */
1993 /* Otherwise, we need to correct to a page size below anyway. */
1994 /* (We also correct below if an intervening foreign sbrk call.) */
1995
1996 if (sbrk_base != (char*)(-1))
1997 sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
1998
1999 brk = (char*)(MORECORE (sbrk_size));
2000
2001 /* Fail if sbrk failed or if a foreign sbrk call killed our space */
2002 if (brk == (char*)(MORECORE_FAILURE) ||
2003 (brk < old_end && old_top != initial_top))
2004 return;
2005
2006 sbrked_mem += sbrk_size;
2007
2008 if (brk == old_end) /* can just add bytes to current top */
2009 {
2010 top_size = sbrk_size + old_top_size;
2011 set_head(top, top_size | PREV_INUSE);
2012 }
2013 else
2014 {
2015 if (sbrk_base == (char*)(-1)) /* First time through. Record base */
2016 sbrk_base = brk;
2017 else /* Someone else called sbrk(). Count those bytes as sbrked_mem. */
2018 sbrked_mem += brk - (char*)old_end;
2019
2020 /* Guarantee alignment of first new chunk made from this space */
2021 front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
2022 if (front_misalign > 0)
2023 {
2024 correction = (MALLOC_ALIGNMENT) - front_misalign;
2025 brk += correction;
2026 }
2027 else
2028 correction = 0;
2029
2030 /* Guarantee the next brk will be at a page boundary */
2031
2032 correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) &
2033 ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size));
2034
2035 /* Allocate correction */
2036 new_brk = (char*)(MORECORE (correction));
2037 if (new_brk == (char*)(MORECORE_FAILURE)) return;
2038
2039 sbrked_mem += correction;
2040
2041 top = (mchunkptr)brk;
2042 top_size = new_brk - brk + correction;
2043 set_head(top, top_size | PREV_INUSE);
2044
2045 if (old_top != initial_top)
2046 {
2047
2048 /* There must have been an intervening foreign sbrk call. */
2049 /* A double fencepost is necessary to prevent consolidation */
2050
2051 /* If not enough space to do this, then user did something very wrong */
2052 if (old_top_size < MINSIZE)
2053 {
2054 set_head(top, PREV_INUSE); /* will force null return from malloc */
2055 return;
2056 }
2057
2058 /* Also keep size a multiple of MALLOC_ALIGNMENT */
2059 old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
2060 set_head_size(old_top, old_top_size);
2061 chunk_at_offset(old_top, old_top_size )->size =
2062 SIZE_SZ|PREV_INUSE;
2063 chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size =
2064 SIZE_SZ|PREV_INUSE;
2065 /* If possible, release the rest. */
2066 if (old_top_size >= MINSIZE)
2067 fREe(chunk2mem(old_top));
2068 }
2069 }
2070
2071 if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
2072 max_sbrked_mem = sbrked_mem;
2073 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
2074 max_total_mem = mmapped_mem + sbrked_mem;
2075
2076 /* We always land on a page boundary */
2077 assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0);
2078}
2079
2080
2081
2082
2083/* Main public routines */
2084
2085
2086/*
2087 Malloc Algorthim:
2088
2089 The requested size is first converted into a usable form, `nb'.
2090 This currently means to add 4 bytes overhead plus possibly more to
2091 obtain 8-byte alignment and/or to obtain a size of at least
2092 MINSIZE (currently 16 bytes), the smallest allocatable size.
2093 (All fits are considered `exact' if they are within MINSIZE bytes.)
2094
2095 From there, the first successful of the following steps is taken:
2096
2097 1. The bin corresponding to the request size is scanned, and if
2098 a chunk of exactly the right size is found, it is taken.
2099
2100 2. The most recently remaindered chunk is used if it is big
2101 enough. This is a form of (roving) first fit, used only in
2102 the absence of exact fits. Runs of consecutive requests use
2103 the remainder of the chunk used for the previous such request
2104 whenever possible. This limited use of a first-fit style
2105 allocation strategy tends to give contiguous chunks
2106 coextensive lifetimes, which improves locality and can reduce
2107 fragmentation in the long run.
2108
2109 3. Other bins are scanned in increasing size order, using a
2110 chunk big enough to fulfill the request, and splitting off
2111 any remainder. This search is strictly by best-fit; i.e.,
2112 the smallest (with ties going to approximately the least
2113 recently used) chunk that fits is selected.
2114
2115 4. If large enough, the chunk bordering the end of memory
2116 (`top') is split off. (This use of `top' is in accord with
2117 the best-fit search rule. In effect, `top' is treated as
2118 larger (and thus less well fitting) than any other available
2119 chunk since it can be extended to be as large as necessary
2120 (up to system limitations).
2121
2122 5. If the request size meets the mmap threshold and the
2123 system supports mmap, and there are few enough currently
2124 allocated mmapped regions, and a call to mmap succeeds,
2125 the request is allocated via direct memory mapping.
2126
2127 6. Otherwise, the top of memory is extended by
2128 obtaining more space from the system (normally using sbrk,
2129 but definable to anything else via the MORECORE macro).
2130 Memory is gathered from the system (in system page-sized
2131 units) in a way that allows chunks obtained across different
2132 sbrk calls to be consolidated, but does not require
2133 contiguous memory. Thus, it should be safe to intersperse
2134 mallocs with other sbrk calls.
2135
2136
2137 All allocations are made from the the `lowest' part of any found
2138 chunk. (The implementation invariant is that prev_inuse is
2139 always true of any allocated chunk; i.e., that each allocated
2140 chunk borders either a previously allocated and still in-use chunk,
2141 or the base of its memory arena.)
2142
2143*/
2144
2145#if __STD_C
2146Void_t* mALLOc(size_t bytes)
2147#else
2148Void_t* mALLOc(bytes) size_t bytes;
2149#endif
2150{
2151 mchunkptr victim; /* inspected/selected chunk */
2152 INTERNAL_SIZE_T victim_size; /* its size */
2153 int idx; /* index for bin traversal */
2154 mbinptr bin; /* associated bin */
2155 mchunkptr remainder; /* remainder from a split */
2156 long remainder_size; /* its size */
2157 int remainder_index; /* its bin index */
2158 unsigned long block; /* block traverser bit */
2159 int startidx; /* first bin of a traversed block */
2160 mchunkptr fwd; /* misc temp for linking */
2161 mchunkptr bck; /* misc temp for linking */
2162 mbinptr q; /* misc temp */
2163
2164 INTERNAL_SIZE_T nb;
2165
2166 if ((long)bytes < 0) return 0;
2167
2168 nb = request2size(bytes); /* padded request size; */
2169
2170 /* Check for exact match in a bin */
2171
2172 if (is_small_request(nb)) /* Faster version for small requests */
2173 {
2174 idx = smallbin_index(nb);
2175
2176 /* No traversal or size check necessary for small bins. */
2177
2178 q = bin_at(idx);
2179 victim = last(q);
2180
2181 /* Also scan the next one, since it would have a remainder < MINSIZE */
2182 if (victim == q)
2183 {
2184 q = next_bin(q);
2185 victim = last(q);
2186 }
2187 if (victim != q)
2188 {
2189 victim_size = chunksize(victim);
2190 unlink(victim, bck, fwd);
2191 set_inuse_bit_at_offset(victim, victim_size);
2192 check_malloced_chunk(victim, nb);
2193 return chunk2mem(victim);
2194 }
2195
2196 idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
2197
2198 }
2199 else
2200 {
2201 idx = bin_index(nb);
2202 bin = bin_at(idx);
2203
2204 for (victim = last(bin); victim != bin; victim = victim->bk)
2205 {
2206 victim_size = chunksize(victim);
2207 remainder_size = victim_size - nb;
2208
2209 if (remainder_size >= (long)MINSIZE) /* too big */
2210 {
2211 --idx; /* adjust to rescan below after checking last remainder */
2212 break;
2213 }
2214
2215 else if (remainder_size >= 0) /* exact fit */
2216 {
2217 unlink(victim, bck, fwd);
2218 set_inuse_bit_at_offset(victim, victim_size);
2219 check_malloced_chunk(victim, nb);
2220 return chunk2mem(victim);
2221 }
2222 }
2223
2224 ++idx;
2225
2226 }
2227
2228 /* Try to use the last split-off remainder */
2229
2230 if ( (victim = last_remainder->fd) != last_remainder)
2231 {
2232 victim_size = chunksize(victim);
2233 remainder_size = victim_size - nb;
2234
2235 if (remainder_size >= (long)MINSIZE) /* re-split */
2236 {
2237 remainder = chunk_at_offset(victim, nb);
2238 set_head(victim, nb | PREV_INUSE);
2239 link_last_remainder(remainder);
2240 set_head(remainder, remainder_size | PREV_INUSE);
2241 set_foot(remainder, remainder_size);
2242 check_malloced_chunk(victim, nb);
2243 return chunk2mem(victim);
2244 }
2245
2246 clear_last_remainder;
2247
2248 if (remainder_size >= 0) /* exhaust */
2249 {
2250 set_inuse_bit_at_offset(victim, victim_size);
2251 check_malloced_chunk(victim, nb);
2252 return chunk2mem(victim);
2253 }
2254
2255 /* Else place in bin */
2256
2257 frontlink(victim, victim_size, remainder_index, bck, fwd);
2258 }
2259
2260 /*
2261 If there are any possibly nonempty big-enough blocks,
2262 search for best fitting chunk by scanning bins in blockwidth units.
2263 */
2264
2265 if ( (block = idx2binblock(idx)) <= binblocks)
2266 {
2267
2268 /* Get to the first marked block */
2269
2270 if ( (block & binblocks) == 0)
2271 {
2272 /* force to an even block boundary */
2273 idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
2274 block <<= 1;
2275 while ((block & binblocks) == 0)
2276 {
2277 idx += BINBLOCKWIDTH;
2278 block <<= 1;
2279 }
2280 }
2281
2282 /* For each possibly nonempty block ... */
2283 for (;;)
2284 {
2285 startidx = idx; /* (track incomplete blocks) */
2286 q = bin = bin_at(idx);
2287
2288 /* For each bin in this block ... */
2289 do
2290 {
2291 /* Find and use first big enough chunk ... */
2292
2293 for (victim = last(bin); victim != bin; victim = victim->bk)
2294 {
2295 victim_size = chunksize(victim);
2296 remainder_size = victim_size - nb;
2297
2298 if (remainder_size >= (long)MINSIZE) /* split */
2299 {
2300 remainder = chunk_at_offset(victim, nb);
2301 set_head(victim, nb | PREV_INUSE);
2302 unlink(victim, bck, fwd);
2303 link_last_remainder(remainder);
2304 set_head(remainder, remainder_size | PREV_INUSE);
2305 set_foot(remainder, remainder_size);
2306 check_malloced_chunk(victim, nb);
2307 return chunk2mem(victim);
2308 }
2309
2310 else if (remainder_size >= 0) /* take */
2311 {
2312 set_inuse_bit_at_offset(victim, victim_size);
2313 unlink(victim, bck, fwd);
2314 check_malloced_chunk(victim, nb);
2315 return chunk2mem(victim);
2316 }
2317
2318 }
2319
2320 bin = next_bin(bin);
2321
2322 } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
2323
2324 /* Clear out the block bit. */
2325
2326 do /* Possibly backtrack to try to clear a partial block */
2327 {
2328 if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
2329 {
2330 binblocks &= ~block;
2331 break;
2332 }
2333 --startidx;
2334 q = prev_bin(q);
2335 } while (first(q) == q);
2336
2337 /* Get to the next possibly nonempty block */
2338
2339 if ( (block <<= 1) <= binblocks && (block != 0) )
2340 {
2341 while ((block & binblocks) == 0)
2342 {
2343 idx += BINBLOCKWIDTH;
2344 block <<= 1;
2345 }
2346 }
2347 else
2348 break;
2349 }
2350 }
2351
2352
2353 /* Try to use top chunk */
2354
2355 /* Require that there be a remainder, ensuring top always exists */
2356 if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
2357 {
2358
2359#if HAVE_MMAP
2360 /* If big and would otherwise need to extend, try to use mmap instead */
2361 if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
2362 (victim = mmap_chunk(nb)) != 0)
2363 return chunk2mem(victim);
2364#endif
2365
2366 /* Try to extend */
2367 malloc_extend_top(nb);
2368 if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
2369 return 0; /* propagate failure */
2370 }
2371
2372 victim = top;
2373 set_head(victim, nb | PREV_INUSE);
2374 top = chunk_at_offset(victim, nb);
2375 set_head(top, remainder_size | PREV_INUSE);
2376 check_malloced_chunk(victim, nb);
2377 return chunk2mem(victim);
2378
2379}
2380
2381
2382
2383
2384/*
2385
2386 free() algorithm :
2387
2388 cases:
2389
2390 1. free(0) has no effect.
2391
2392 2. If the chunk was allocated via mmap, it is release via munmap().
2393
2394 3. If a returned chunk borders the current high end of memory,
2395 it is consolidated into the top, and if the total unused
2396 topmost memory exceeds the trim threshold, malloc_trim is
2397 called.
2398
2399 4. Other chunks are consolidated as they arrive, and
2400 placed in corresponding bins. (This includes the case of
2401 consolidating with the current `last_remainder').
2402
2403*/
2404
2405
2406#if __STD_C
2407void fREe(Void_t* mem)
2408#else
2409void fREe(mem) Void_t* mem;
2410#endif
2411{
2412 mchunkptr p; /* chunk corresponding to mem */
2413 INTERNAL_SIZE_T hd; /* its head field */
2414 INTERNAL_SIZE_T sz; /* its size */
2415 int idx; /* its bin index */
2416 mchunkptr next; /* next contiguous chunk */
2417 INTERNAL_SIZE_T nextsz; /* its size */
2418 INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
2419 mchunkptr bck; /* misc temp for linking */
2420 mchunkptr fwd; /* misc temp for linking */
2421 int islr; /* track whether merging with last_remainder */
2422
2423 if (mem == 0) /* free(0) has no effect */
2424 return;
2425
2426 p = mem2chunk(mem);
2427 hd = p->size;
2428
2429#if HAVE_MMAP
2430 if (hd & IS_MMAPPED) /* release mmapped memory. */
2431 {
2432 munmap_chunk(p);
2433 return;
2434 }
2435#endif
2436
2437 check_inuse_chunk(p);
2438
2439 sz = hd & ~PREV_INUSE;
2440 next = chunk_at_offset(p, sz);
2441 nextsz = chunksize(next);
2442
2443 if (next == top) /* merge with top */
2444 {
2445 sz += nextsz;
2446
2447 if (!(hd & PREV_INUSE)) /* consolidate backward */
2448 {
2449 prevsz = p->prev_size;
2450 p = chunk_at_offset(p, -((long) prevsz));
2451 sz += prevsz;
2452 unlink(p, bck, fwd);
2453 }
2454
2455 set_head(p, sz | PREV_INUSE);
2456 top = p;
2457 if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
2458 malloc_trim(top_pad);
2459 return;
2460 }
2461
2462 set_head(next, nextsz); /* clear inuse bit */
2463
2464 islr = 0;
2465
2466 if (!(hd & PREV_INUSE)) /* consolidate backward */
2467 {
2468 prevsz = p->prev_size;
2469 p = chunk_at_offset(p, -((long) prevsz));
2470 sz += prevsz;
2471
2472 if (p->fd == last_remainder) /* keep as last_remainder */
2473 islr = 1;
2474 else
2475 unlink(p, bck, fwd);
2476 }
2477
2478 if (!(inuse_bit_at_offset(next, nextsz))) /* consolidate forward */
2479 {
2480 sz += nextsz;
2481
2482 if (!islr && next->fd == last_remainder) /* re-insert last_remainder */
2483 {
2484 islr = 1;
2485 link_last_remainder(p);
2486 }
2487 else
2488 unlink(next, bck, fwd);
2489 }
2490
2491
2492 set_head(p, sz | PREV_INUSE);
2493 set_foot(p, sz);
2494 if (!islr)
2495 frontlink(p, sz, idx, bck, fwd);
2496}
2497
2498
2499
2500
2501
2502/*
2503
2504 Realloc algorithm:
2505
2506 Chunks that were obtained via mmap cannot be extended or shrunk
2507 unless HAVE_MREMAP is defined, in which case mremap is used.
2508 Otherwise, if their reallocation is for additional space, they are
2509 copied. If for less, they are just left alone.
2510
2511 Otherwise, if the reallocation is for additional space, and the
2512 chunk can be extended, it is, else a malloc-copy-free sequence is
2513 taken. There are several different ways that a chunk could be
2514 extended. All are tried:
2515
2516 * Extending forward into following adjacent free chunk.
2517 * Shifting backwards, joining preceding adjacent space
2518 * Both shifting backwards and extending forward.
2519 * Extending into newly sbrked space
2520
2521 Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
2522 size argument of zero (re)allocates a minimum-sized chunk.
2523
2524 If the reallocation is for less space, and the new request is for
2525 a `small' (<512 bytes) size, then the newly unused space is lopped
2526 off and freed.
2527
2528 The old unix realloc convention of allowing the last-free'd chunk
2529 to be used as an argument to realloc is no longer supported.
2530 I don't know of any programs still relying on this feature,
2531 and allowing it would also allow too many other incorrect
2532 usages of realloc to be sensible.
2533
2534
2535*/
2536
2537
2538#if __STD_C
2539Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
2540#else
2541Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
2542#endif
2543{
2544 INTERNAL_SIZE_T nb; /* padded request size */
2545
2546 mchunkptr oldp; /* chunk corresponding to oldmem */
2547 INTERNAL_SIZE_T oldsize; /* its size */
2548
2549 mchunkptr newp; /* chunk to return */
2550 INTERNAL_SIZE_T newsize; /* its size */
2551 Void_t* newmem; /* corresponding user mem */
2552
2553 mchunkptr next; /* next contiguous chunk after oldp */
2554 INTERNAL_SIZE_T nextsize; /* its size */
2555
2556 mchunkptr prev; /* previous contiguous chunk before oldp */
2557 INTERNAL_SIZE_T prevsize; /* its size */
2558
2559 mchunkptr remainder; /* holds split off extra space from newp */
2560 INTERNAL_SIZE_T remainder_size; /* its size */
2561
2562 mchunkptr bck; /* misc temp for linking */
2563 mchunkptr fwd; /* misc temp for linking */
2564
2565#ifdef REALLOC_ZERO_BYTES_FREES
2566 if (bytes == 0) { fREe(oldmem); return 0; }
2567#endif
2568
2569 if ((long)bytes < 0) return 0;
2570
2571 /* realloc of null is supposed to be same as malloc */
2572 if (oldmem == 0) return mALLOc(bytes);
2573
2574 newp = oldp = mem2chunk(oldmem);
2575 newsize = oldsize = chunksize(oldp);
2576
2577
2578 nb = request2size(bytes);
2579
2580#if HAVE_MMAP
2581 if (chunk_is_mmapped(oldp))
2582 {
2583#if HAVE_MREMAP
2584 newp = mremap_chunk(oldp, nb);
2585 if(newp) return chunk2mem(newp);
2586#endif
2587 /* Note the extra SIZE_SZ overhead. */
2588 if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
2589 /* Must alloc, copy, free. */
2590 newmem = mALLOc(bytes);
2591 if (newmem == 0) return 0; /* propagate failure */
2592 MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
2593 munmap_chunk(oldp);
2594 return newmem;
2595 }
2596#endif
2597
2598 check_inuse_chunk(oldp);
2599
2600 if ((long)(oldsize) < (long)(nb))
2601 {
2602
2603 /* Try expanding forward */
2604
2605 next = chunk_at_offset(oldp, oldsize);
2606 if (next == top || !inuse(next))
2607 {
2608 nextsize = chunksize(next);
2609
2610 /* Forward into top only if a remainder */
2611 if (next == top)
2612 {
2613 if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
2614 {
2615 newsize += nextsize;
2616 top = chunk_at_offset(oldp, nb);
2617 set_head(top, (newsize - nb) | PREV_INUSE);
2618 set_head_size(oldp, nb);
2619 return chunk2mem(oldp);
2620 }
2621 }
2622
2623 /* Forward into next chunk */
2624 else if (((long)(nextsize + newsize) >= (long)(nb)))
2625 {
2626 unlink(next, bck, fwd);
2627 newsize += nextsize;
2628 goto split;
2629 }
2630 }
2631 else
2632 {
2633 next = 0;
2634 nextsize = 0;
2635 }
2636
2637 /* Try shifting backwards. */
2638
2639 if (!prev_inuse(oldp))
2640 {
2641 prev = prev_chunk(oldp);
2642 prevsize = chunksize(prev);
2643
2644 /* try forward + backward first to save a later consolidation */
2645
2646 if (next != 0)
2647 {
2648 /* into top */
2649 if (next == top)
2650 {
2651 if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
2652 {
2653 unlink(prev, bck, fwd);
2654 newp = prev;
2655 newsize += prevsize + nextsize;
2656 newmem = chunk2mem(newp);
2657 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2658 top = chunk_at_offset(newp, nb);
2659 set_head(top, (newsize - nb) | PREV_INUSE);
2660 set_head_size(newp, nb);
2661 return newmem;
2662 }
2663 }
2664
2665 /* into next chunk */
2666 else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
2667 {
2668 unlink(next, bck, fwd);
2669 unlink(prev, bck, fwd);
2670 newp = prev;
2671 newsize += nextsize + prevsize;
2672 newmem = chunk2mem(newp);
2673 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2674 goto split;
2675 }
2676 }
2677
2678 /* backward only */
2679 if (prev != 0 && (long)(prevsize + newsize) >= (long)nb)
2680 {
2681 unlink(prev, bck, fwd);
2682 newp = prev;
2683 newsize += prevsize;
2684 newmem = chunk2mem(newp);
2685 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2686 goto split;
2687 }
2688 }
2689
2690 /* Must allocate */
2691
2692 newmem = mALLOc (bytes);
2693
2694 if (newmem == 0) /* propagate failure */
2695 return 0;
2696
2697 /* Avoid copy if newp is next chunk after oldp. */
2698 /* (This can only happen when new chunk is sbrk'ed.) */
2699
2700 if ( (newp = mem2chunk(newmem)) == next_chunk(oldp))
2701 {
2702 newsize += chunksize(newp);
2703 newp = oldp;
2704 goto split;
2705 }
2706
2707 /* Otherwise copy, free, and exit */
2708 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2709 fREe(oldmem);
2710 return newmem;
2711 }
2712
2713
2714 split: /* split off extra room in old or expanded chunk */
2715
2716 if (newsize - nb >= MINSIZE) /* split off remainder */
2717 {
2718 remainder = chunk_at_offset(newp, nb);
2719 remainder_size = newsize - nb;
2720 set_head_size(newp, nb);
2721 set_head(remainder, remainder_size | PREV_INUSE);
2722 set_inuse_bit_at_offset(remainder, remainder_size);
2723 fREe(chunk2mem(remainder)); /* let free() deal with it */
2724 }
2725 else
2726 {
2727 set_head_size(newp, newsize);
2728 set_inuse_bit_at_offset(newp, newsize);
2729 }
2730
2731 check_inuse_chunk(newp);
2732 return chunk2mem(newp);
2733}
2734
2735
2736
2737
2738/*
2739
2740 memalign algorithm:
2741
2742 memalign requests more than enough space from malloc, finds a spot
2743 within that chunk that meets the alignment request, and then
2744 possibly frees the leading and trailing space.
2745
2746 The alignment argument must be a power of two. This property is not
2747 checked by memalign, so misuse may result in random runtime errors.
2748
2749 8-byte alignment is guaranteed by normal malloc calls, so don't
2750 bother calling memalign with an argument of 8 or less.
2751
2752 Overreliance on memalign is a sure way to fragment space.
2753
2754*/
2755
2756
2757#if __STD_C
2758Void_t* mEMALIGn(size_t alignment, size_t bytes)
2759#else
2760Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
2761#endif
2762{
2763 INTERNAL_SIZE_T nb; /* padded request size */
2764 char* m; /* memory returned by malloc call */
2765 mchunkptr p; /* corresponding chunk */
2766 char* brk; /* alignment point within p */
2767 mchunkptr newp; /* chunk to return */
2768 INTERNAL_SIZE_T newsize; /* its size */
2769 INTERNAL_SIZE_T leadsize; /* leading space befor alignment point */
2770 mchunkptr remainder; /* spare room at end to split off */
2771 long remainder_size; /* its size */
2772
2773 if ((long)bytes < 0) return 0;
2774
2775 /* If need less alignment than we give anyway, just relay to malloc */
2776
2777 if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
2778
2779 /* Otherwise, ensure that it is at least a minimum chunk size */
2780
2781 if (alignment < MINSIZE) alignment = MINSIZE;
2782
2783 /* Call malloc with worst case padding to hit alignment. */
2784
2785 nb = request2size(bytes);
2786 m = (char*)(mALLOc(nb + alignment + MINSIZE));
2787
2788 if (m == 0) return 0; /* propagate failure */
2789
2790 p = mem2chunk(m);
2791
2792 if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
2793 {
2794#if HAVE_MMAP
2795 if(chunk_is_mmapped(p))
2796 return chunk2mem(p); /* nothing more to do */
2797#endif
2798 }
2799 else /* misaligned */
2800 {
2801 /*
2802 Find an aligned spot inside chunk.
2803 Since we need to give back leading space in a chunk of at
2804 least MINSIZE, if the first calculation places us at
2805 a spot with less than MINSIZE leader, we can move to the
2806 next aligned spot -- we've allocated enough total room so that
2807 this is always possible.
2808 */
2809
2810 brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment));
2811 if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment;
2812
2813 newp = (mchunkptr)brk;
2814 leadsize = brk - (char*)(p);
2815 newsize = chunksize(p) - leadsize;
2816
2817#if HAVE_MMAP
2818 if(chunk_is_mmapped(p))
2819 {
2820 newp->prev_size = p->prev_size + leadsize;
2821 set_head(newp, newsize|IS_MMAPPED);
2822 return chunk2mem(newp);
2823 }
2824#endif
2825
2826 /* give back leader, use the rest */
2827
2828 set_head(newp, newsize | PREV_INUSE);
2829 set_inuse_bit_at_offset(newp, newsize);
2830 set_head_size(p, leadsize);
2831 fREe(chunk2mem(p));
2832 p = newp;
2833
2834 assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
2835 }
2836
2837 /* Also give back spare room at the end */
2838
2839 remainder_size = chunksize(p) - nb;
2840
2841 if (remainder_size >= (long)MINSIZE)
2842 {
2843 remainder = chunk_at_offset(p, nb);
2844 set_head(remainder, remainder_size | PREV_INUSE);
2845 set_head_size(p, nb);
2846 fREe(chunk2mem(remainder));
2847 }
2848
2849 check_inuse_chunk(p);
2850 return chunk2mem(p);
2851
2852}
2853
2854
2855
2856
2857/*
2858 valloc just invokes memalign with alignment argument equal
2859 to the page size of the system (or as near to this as can
2860 be figured out from all the includes/defines above.)
2861*/
2862
2863#if __STD_C
2864Void_t* vALLOc(size_t bytes)
2865#else
2866Void_t* vALLOc(bytes) size_t bytes;
2867#endif
2868{
2869 return mEMALIGn (malloc_getpagesize, bytes);
2870}
2871
2872/*
2873 pvalloc just invokes valloc for the nearest pagesize
2874 that will accommodate request
2875*/
2876
2877
2878#if __STD_C
2879Void_t* pvALLOc(size_t bytes)
2880#else
2881Void_t* pvALLOc(bytes) size_t bytes;
2882#endif
2883{
2884 size_t pagesize = malloc_getpagesize;
2885 return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
2886}
2887
2888/*
2889
2890 calloc calls malloc, then zeroes out the allocated chunk.
2891
2892*/
2893
2894#if __STD_C
2895Void_t* cALLOc(size_t n, size_t elem_size)
2896#else
2897Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size;
2898#endif
2899{
2900 mchunkptr p;
2901 INTERNAL_SIZE_T csz;
2902
2903 INTERNAL_SIZE_T sz = n * elem_size;
2904
2905
2906 /* check if expand_top called, in which case don't need to clear */
2907#if MORECORE_CLEARS
2908 mchunkptr oldtop = top;
2909 INTERNAL_SIZE_T oldtopsize = chunksize(top);
2910#endif
2911 Void_t* mem = mALLOc (sz);
2912
2913 if ((long)n < 0) return 0;
2914
2915 if (mem == 0)
2916 return 0;
2917 else
2918 {
2919 p = mem2chunk(mem);
2920
2921 /* Two optional cases in which clearing not necessary */
2922
2923
2924#if HAVE_MMAP
2925 if (chunk_is_mmapped(p)) return mem;
2926#endif
2927
2928 csz = chunksize(p);
2929
2930#if MORECORE_CLEARS
2931 if (p == oldtop && csz > oldtopsize)
2932 {
2933 /* clear only the bytes from non-freshly-sbrked memory */
2934 csz = oldtopsize;
2935 }
2936#endif
2937
2938 MALLOC_ZERO(mem, csz - SIZE_SZ);
2939 return mem;
2940 }
2941}
2942
2943/*
2944
2945 cfree just calls free. It is needed/defined on some systems
2946 that pair it with calloc, presumably for odd historical reasons.
2947
2948*/
2949
2950#if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__)
2951#if __STD_C
2952void cfree(Void_t *mem)
2953#else
2954void cfree(mem) Void_t *mem;
2955#endif
2956{
2957 fREe(mem);
2958}
2959#endif
2960
2961
2962
2963/*
2964
2965 Malloc_trim gives memory back to the system (via negative
2966 arguments to sbrk) if there is unused memory at the `high' end of
2967 the malloc pool. You can call this after freeing large blocks of
2968 memory to potentially reduce the system-level memory requirements
2969 of a program. However, it cannot guarantee to reduce memory. Under
2970 some allocation patterns, some large free blocks of memory will be
2971 locked between two used chunks, so they cannot be given back to
2972 the system.
2973
2974 The `pad' argument to malloc_trim represents the amount of free
2975 trailing space to leave untrimmed. If this argument is zero,
2976 only the minimum amount of memory to maintain internal data
2977 structures will be left (one page or less). Non-zero arguments
2978 can be supplied to maintain enough trailing space to service
2979 future expected allocations without having to re-obtain memory
2980 from the system.
2981
2982 Malloc_trim returns 1 if it actually released any memory, else 0.
2983
2984*/
2985
2986#if __STD_C
2987int malloc_trim(size_t pad)
2988#else
2989int malloc_trim(pad) size_t pad;
2990#endif
2991{
2992 long top_size; /* Amount of top-most memory */
2993 long extra; /* Amount to release */
2994 char* current_brk; /* address returned by pre-check sbrk call */
2995 char* new_brk; /* address returned by negative sbrk call */
2996
2997 unsigned long pagesz = malloc_getpagesize;
2998
2999 top_size = chunksize(top);
3000 extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
3001
3002 if (extra < (long)pagesz) /* Not enough memory to release */
3003 return 0;
3004
3005 else
3006 {
3007 /* Test to make sure no one else called sbrk */
3008 current_brk = (char*)(MORECORE (0));
3009 if (current_brk != (char*)(top) + top_size)
3010 return 0; /* Apparently we don't own memory; must fail */
3011
3012 else
3013 {
3014 new_brk = (char*)(MORECORE (-extra));
3015
3016 if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */
3017 {
3018 /* Try to figure out what we have */
3019 current_brk = (char*)(MORECORE (0));
3020 top_size = current_brk - (char*)top;
3021 if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
3022 {
3023 sbrked_mem = current_brk - sbrk_base;
3024 set_head(top, top_size | PREV_INUSE);
3025 }
3026 check_chunk(top);
3027 return 0;
3028 }
3029
3030 else
3031 {
3032 /* Success. Adjust top accordingly. */
3033 set_head(top, (top_size - extra) | PREV_INUSE);
3034 sbrked_mem -= extra;
3035 check_chunk(top);
3036 return 1;
3037 }
3038 }
3039 }
3040}
3041
3042
3043
3044/*
3045 malloc_usable_size:
3046
3047 This routine tells you how many bytes you can actually use in an
3048 allocated chunk, which may be more than you requested (although
3049 often not). You can use this many bytes without worrying about
3050 overwriting other allocated objects. Not a particularly great
3051 programming practice, but still sometimes useful.
3052
3053*/
3054
3055#if __STD_C
3056size_t malloc_usable_size(Void_t* mem)
3057#else
3058size_t malloc_usable_size(mem) Void_t* mem;
3059#endif
3060{
3061 mchunkptr p;
3062 if (mem == 0)
3063 return 0;
3064 else
3065 {
3066 p = mem2chunk(mem);
3067 if(!chunk_is_mmapped(p))
3068 {
3069 if (!inuse(p)) return 0;
3070 check_inuse_chunk(p);
3071 return chunksize(p) - SIZE_SZ;
3072 }
3073 return chunksize(p) - 2*SIZE_SZ;
3074 }
3075}
3076
3077
3078
3079
3080/* Utility to update current_mallinfo for malloc_stats and mallinfo() */
3081
3082#if 0
3083static void malloc_update_mallinfo()
3084{
3085 int i;
3086 mbinptr b;
3087 mchunkptr p;
3088#ifdef DEBUG
3089 mchunkptr q;
3090#endif
3091
3092 INTERNAL_SIZE_T avail = chunksize(top);
3093 int navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
3094
3095 for (i = 1; i < NAV; ++i)
3096 {
3097 b = bin_at(i);
3098 for (p = last(b); p != b; p = p->bk)
3099 {
3100#ifdef DEBUG
3101 check_free_chunk(p);
3102 for (q = next_chunk(p);
3103 q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE;
3104 q = next_chunk(q))
3105 check_inuse_chunk(q);
3106#endif
3107 avail += chunksize(p);
3108 navail++;
3109 }
3110 }
3111
3112 current_mallinfo.ordblks = navail;
3113 current_mallinfo.uordblks = sbrked_mem - avail;
3114 current_mallinfo.fordblks = avail;
3115 current_mallinfo.hblks = n_mmaps;
3116 current_mallinfo.hblkhd = mmapped_mem;
3117 current_mallinfo.keepcost = chunksize(top);
3118
3119}
3120#endif /* 0 */
3121
3122
3123
3124/*
3125
3126 malloc_stats:
3127
3128 Prints on the amount of space obtain from the system (both
3129 via sbrk and mmap), the maximum amount (which may be more than
3130 current if malloc_trim and/or munmap got called), the maximum
3131 number of simultaneous mmap regions used, and the current number
3132 of bytes allocated via malloc (or realloc, etc) but not yet
3133 freed. (Note that this is the number of bytes allocated, not the
3134 number requested. It will be larger than the number requested
3135 because of alignment and bookkeeping overhead.)
3136
3137*/
3138
3139#if 0
3140void malloc_stats()
3141{
3142 malloc_update_mallinfo();
3143 printf("max system bytes = %10u\n",
3144 (unsigned int)(max_total_mem));
3145 printf("system bytes = %10u\n",
3146 (unsigned int)(sbrked_mem + mmapped_mem));
3147 printf("in use bytes = %10u\n",
3148 (unsigned int)(current_mallinfo.uordblks + mmapped_mem));
3149#if HAVE_MMAP
3150 printf("max mmap regions = %10u\n",
3151 (unsigned int)max_n_mmaps);
3152#endif
3153}
3154#endif /* 0 */
3155
3156/*
3157 mallinfo returns a copy of updated current mallinfo.
3158*/
3159
3160#if 0
3161struct mallinfo mALLINFo()
3162{
3163 malloc_update_mallinfo();
3164 return current_mallinfo;
3165}
3166#endif /* 0 */
3167
3168
3169
3170
3171/*
3172 mallopt:
3173
3174 mallopt is the general SVID/XPG interface to tunable parameters.
3175 The format is to provide a (parameter-number, parameter-value) pair.
3176 mallopt then sets the corresponding parameter to the argument
3177 value if it can (i.e., so long as the value is meaningful),
3178 and returns 1 if successful else 0.
3179
3180 See descriptions of tunable parameters above.
3181
3182*/
3183
3184#if __STD_C
3185int mALLOPt(int param_number, int value)
3186#else
3187int mALLOPt(param_number, value) int param_number; int value;
3188#endif
3189{
3190 switch(param_number)
3191 {
3192 case M_TRIM_THRESHOLD:
3193 trim_threshold = value; return 1;
3194 case M_TOP_PAD:
3195 top_pad = value; return 1;
3196 case M_MMAP_THRESHOLD:
3197 mmap_threshold = value; return 1;
3198 case M_MMAP_MAX:
3199#if HAVE_MMAP
3200 n_mmaps_max = value; return 1;
3201#else
3202 if (value != 0) return 0; else n_mmaps_max = value; return 1;
3203#endif
3204
3205 default:
3206 return 0;
3207 }
3208}
3209
3210/*
3211
3212History:
3213
3214 V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
3215 * return null for negative arguments
3216 * Added Several WIN32 cleanups from Martin C. Fong <mcfong@yahoo.com>
3217 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
3218 (e.g. WIN32 platforms)
3219 * Cleanup up header file inclusion for WIN32 platforms
3220 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
3221 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
3222 memory allocation routines
3223 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
3224 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
3225 usage of 'assert' in non-WIN32 code
3226 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
3227 avoid infinite loop
3228 * Always call 'fREe()' rather than 'free()'
3229
3230 V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
3231 * Fixed ordering problem with boundary-stamping
3232
3233 V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
3234 * Added pvalloc, as recommended by H.J. Liu
3235 * Added 64bit pointer support mainly from Wolfram Gloger
3236 * Added anonymously donated WIN32 sbrk emulation
3237 * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
3238 * malloc_extend_top: fix mask error that caused wastage after
3239 foreign sbrks
3240 * Add linux mremap support code from HJ Liu
3241
3242 V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
3243 * Integrated most documentation with the code.
3244 * Add support for mmap, with help from
3245 Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
3246 * Use last_remainder in more cases.
3247 * Pack bins using idea from colin@nyx10.cs.du.edu
3248 * Use ordered bins instead of best-fit threshhold
3249 * Eliminate block-local decls to simplify tracing and debugging.
3250 * Support another case of realloc via move into top
3251 * Fix error occuring when initial sbrk_base not word-aligned.
3252 * Rely on page size for units instead of SBRK_UNIT to
3253 avoid surprises about sbrk alignment conventions.
3254 * Add mallinfo, mallopt. Thanks to Raymond Nijssen
3255 (raymond@es.ele.tue.nl) for the suggestion.
3256 * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
3257 * More precautions for cases where other routines call sbrk,
3258 courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
3259 * Added macros etc., allowing use in linux libc from
3260 H.J. Lu (hjl@gnu.ai.mit.edu)
3261 * Inverted this history list
3262
3263 V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
3264 * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
3265 * Removed all preallocation code since under current scheme
3266 the work required to undo bad preallocations exceeds
3267 the work saved in good cases for most test programs.
3268 * No longer use return list or unconsolidated bins since
3269 no scheme using them consistently outperforms those that don't
3270 given above changes.
3271 * Use best fit for very large chunks to prevent some worst-cases.
3272 * Added some support for debugging
3273
3274 V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
3275 * Removed footers when chunks are in use. Thanks to
3276 Paul Wilson (wilson@cs.texas.edu) for the suggestion.
3277
3278 V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
3279 * Added malloc_trim, with help from Wolfram Gloger
3280 (wmglo@Dent.MED.Uni-Muenchen.DE).
3281
3282 V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
3283
3284 V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
3285 * realloc: try to expand in both directions
3286 * malloc: swap order of clean-bin strategy;
3287 * realloc: only conditionally expand backwards
3288 * Try not to scavenge used bins
3289 * Use bin counts as a guide to preallocation
3290 * Occasionally bin return list chunks in first scan
3291 * Add a few optimizations from colin@nyx10.cs.du.edu
3292
3293 V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
3294 * faster bin computation & slightly different binning
3295 * merged all consolidations to one part of malloc proper
3296 (eliminating old malloc_find_space & malloc_clean_bin)
3297 * Scan 2 returns chunks (not just 1)
3298 * Propagate failure in realloc if malloc returns 0
3299 * Add stuff to allow compilation on non-ANSI compilers
3300 from kpv@research.att.com
3301
3302 V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
3303 * removed potential for odd address access in prev_chunk
3304 * removed dependency on getpagesize.h
3305 * misc cosmetics and a bit more internal documentation
3306 * anticosmetics: mangled names in macros to evade debugger strangeness
3307 * tested on sparc, hp-700, dec-mips, rs6000
3308 with gcc & native cc (hp, dec only) allowing
3309 Detlefs & Zorn comparison study (in SIGPLAN Notices.)
3310
3311 Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
3312 * Based loosely on libg++-1.2X malloc. (It retains some of the overall
3313 structure of old version, but most details differ.)
3314
3315*/
3316
3317