blob: 09e8233d81a3e62d5a78622d3abaaf043a65a04f [file] [log] [blame]
wdenkaffae2b2002-08-17 09:36:01 +00001/*
2 * ECC algorithm for M-systems disk on chip. We use the excellent Reed
3 * Solmon code of Phil Karn (karn@ka9q.ampr.org) available under the
4 * GNU GPL License. The rest is simply to convert the disk on chip
5 * syndrom into a standard syndom.
6 *
7 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
8 * Copyright (C) 2000 Netgem S.A.
9 *
10 * $Id: docecc.c,v 1.4 2001/10/02 15:05:13 dwmw2 Exp $
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 */
26
27#include <config.h>
28#include <common.h>
29#include <malloc.h>
30
31#include <linux/mtd/doc2000.h>
32
33#undef ECC_DEBUG
34#undef PSYCHO_DEBUG
35
36#if (CONFIG_COMMANDS & CFG_CMD_DOC)
37
38#define min(x,y) ((x)<(y)?(x):(y))
39
40/* need to undef it (from asm/termbits.h) */
41#undef B0
42
43#define MM 10 /* Symbol size in bits */
44#define KK (1023-4) /* Number of data symbols per block */
45#define B0 510 /* First root of generator polynomial, alpha form */
46#define PRIM 1 /* power of alpha used to generate roots of generator poly */
47#define NN ((1 << MM) - 1)
48
49typedef unsigned short dtype;
50
51/* 1+x^3+x^10 */
52static const int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 };
53
54/* This defines the type used to store an element of the Galois Field
55 * used by the code. Make sure this is something larger than a char if
56 * if anything larger than GF(256) is used.
57 *
58 * Note: unsigned char will work up to GF(256) but int seems to run
59 * faster on the Pentium.
60 */
61typedef int gf;
62
63/* No legal value in index form represents zero, so
64 * we need a special value for this purpose
65 */
66#define A0 (NN)
67
68/* Compute x % NN, where NN is 2**MM - 1,
69 * without a slow divide
70 */
71static inline gf
72modnn(int x)
73{
74 while (x >= NN) {
75 x -= NN;
76 x = (x >> MM) + (x & NN);
77 }
78 return x;
79}
80
81#define CLEAR(a,n) {\
82int ci;\
83for(ci=(n)-1;ci >=0;ci--)\
84(a)[ci] = 0;\
85}
86
87#define COPY(a,b,n) {\
88int ci;\
89for(ci=(n)-1;ci >=0;ci--)\
90(a)[ci] = (b)[ci];\
91}
92
93#define COPYDOWN(a,b,n) {\
94int ci;\
95for(ci=(n)-1;ci >=0;ci--)\
96(a)[ci] = (b)[ci];\
97}
98
99#define Ldec 1
100
101/* generate GF(2**m) from the irreducible polynomial p(X) in Pp[0]..Pp[m]
102 lookup tables: index->polynomial form alpha_to[] contains j=alpha**i;
103 polynomial form -> index form index_of[j=alpha**i] = i
104 alpha=2 is the primitive element of GF(2**m)
105 HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows:
106 Let @ represent the primitive element commonly called "alpha" that
107 is the root of the primitive polynomial p(x). Then in GF(2^m), for any
108 0 <= i <= 2^m-2,
109 @^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
110 where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation
111 of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for
112 example the polynomial representation of @^5 would be given by the binary
113 representation of the integer "alpha_to[5]".
114 Similarily, index_of[] can be used as follows:
115 As above, let @ represent the primitive element of GF(2^m) that is
116 the root of the primitive polynomial p(x). In order to find the power
117 of @ (alpha) that has the polynomial representation
118 a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
119 we consider the integer "i" whose binary representation with a(0) being LSB
120 and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry
121 "index_of[i]". Now, @^index_of[i] is that element whose polynomial
122 representation is (a(0),a(1),a(2),...,a(m-1)).
123 NOTE:
124 The element alpha_to[2^m-1] = 0 always signifying that the
125 representation of "@^infinity" = 0 is (0,0,0,...,0).
126 Similarily, the element index_of[0] = A0 always signifying
127 that the power of alpha which has the polynomial representation
128 (0,0,...,0) is "infinity".
129
130*/
131
132static void
133generate_gf(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1])
134{
135 register int i, mask;
136
137 mask = 1;
138 Alpha_to[MM] = 0;
139 for (i = 0; i < MM; i++) {
140 Alpha_to[i] = mask;
141 Index_of[Alpha_to[i]] = i;
142 /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */
143 if (Pp[i] != 0)
144 Alpha_to[MM] ^= mask; /* Bit-wise EXOR operation */
145 mask <<= 1; /* single left-shift */
146 }
147 Index_of[Alpha_to[MM]] = MM;
148 /*
149 * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by
150 * poly-repr of @^i shifted left one-bit and accounting for any @^MM
151 * term that may occur when poly-repr of @^i is shifted.
152 */
153 mask >>= 1;
154 for (i = MM + 1; i < NN; i++) {
155 if (Alpha_to[i - 1] >= mask)
156 Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1);
157 else
158 Alpha_to[i] = Alpha_to[i - 1] << 1;
159 Index_of[Alpha_to[i]] = i;
160 }
161 Index_of[0] = A0;
162 Alpha_to[NN] = 0;
163}
164
165/*
166 * Performs ERRORS+ERASURES decoding of RS codes. bb[] is the content
167 * of the feedback shift register after having processed the data and
168 * the ECC.
169 *
170 * Return number of symbols corrected, or -1 if codeword is illegal
171 * or uncorrectable. If eras_pos is non-null, the detected error locations
172 * are written back. NOTE! This array must be at least NN-KK elements long.
173 * The corrected data are written in eras_val[]. They must be xor with the data
174 * to retrieve the correct data : data[erase_pos[i]] ^= erase_val[i] .
175 *
176 * First "no_eras" erasures are declared by the calling program. Then, the
177 * maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2).
178 * If the number of channel errors is not greater than "t_after_eras" the
179 * transmitted codeword will be recovered. Details of algorithm can be found
180 * in R. Blahut's "Theory ... of Error-Correcting Codes".
181
182 * Warning: the eras_pos[] array must not contain duplicate entries; decoder failure
183 * will result. The decoder *could* check for this condition, but it would involve
184 * extra time on every decoding operation.
185 * */
186static int
187eras_dec_rs(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1],
188 gf bb[NN - KK + 1], gf eras_val[NN-KK], int eras_pos[NN-KK],
189 int no_eras)
190{
191 int deg_lambda, el, deg_omega;
192 int i, j, r,k;
193 gf u,q,tmp,num1,num2,den,discr_r;
194 gf lambda[NN-KK + 1], s[NN-KK + 1]; /* Err+Eras Locator poly
195 * and syndrome poly */
196 gf b[NN-KK + 1], t[NN-KK + 1], omega[NN-KK + 1];
197 gf root[NN-KK], reg[NN-KK + 1], loc[NN-KK];
198 int syn_error, count;
199
200 syn_error = 0;
201 for(i=0;i<NN-KK;i++)
202 syn_error |= bb[i];
203
204 if (!syn_error) {
205 /* if remainder is zero, data[] is a codeword and there are no
206 * errors to correct. So return data[] unmodified
207 */
208 count = 0;
209 goto finish;
210 }
211
212 for(i=1;i<=NN-KK;i++){
213 s[i] = bb[0];
214 }
215 for(j=1;j<NN-KK;j++){
216 if(bb[j] == 0)
217 continue;
218 tmp = Index_of[bb[j]];
219
220 for(i=1;i<=NN-KK;i++)
221 s[i] ^= Alpha_to[modnn(tmp + (B0+i-1)*PRIM*j)];
222 }
223
224 /* undo the feedback register implicit multiplication and convert
225 syndromes to index form */
226
227 for(i=1;i<=NN-KK;i++) {
228 tmp = Index_of[s[i]];
229 if (tmp != A0)
230 tmp = modnn(tmp + 2 * KK * (B0+i-1)*PRIM);
231 s[i] = tmp;
232 }
233
234 CLEAR(&lambda[1],NN-KK);
235 lambda[0] = 1;
236
237 if (no_eras > 0) {
238 /* Init lambda to be the erasure locator polynomial */
239 lambda[1] = Alpha_to[modnn(PRIM * eras_pos[0])];
240 for (i = 1; i < no_eras; i++) {
241 u = modnn(PRIM*eras_pos[i]);
242 for (j = i+1; j > 0; j--) {
243 tmp = Index_of[lambda[j - 1]];
244 if(tmp != A0)
245 lambda[j] ^= Alpha_to[modnn(u + tmp)];
246 }
247 }
248#ifdef ECC_DEBUG
249 /* Test code that verifies the erasure locator polynomial just constructed
250 Needed only for decoder debugging. */
251
252 /* find roots of the erasure location polynomial */
253 for(i=1;i<=no_eras;i++)
254 reg[i] = Index_of[lambda[i]];
255 count = 0;
256 for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) {
257 q = 1;
258 for (j = 1; j <= no_eras; j++)
259 if (reg[j] != A0) {
260 reg[j] = modnn(reg[j] + j);
261 q ^= Alpha_to[reg[j]];
262 }
263 if (q != 0)
264 continue;
265 /* store root and error location number indices */
266 root[count] = i;
267 loc[count] = k;
268 count++;
269 }
270 if (count != no_eras) {
271 printf("\n lambda(x) is WRONG\n");
272 count = -1;
273 goto finish;
274 }
275#ifdef PSYCHO_DEBUG
276 printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
277 for (i = 0; i < count; i++)
278 printf("%d ", loc[i]);
279 printf("\n");
280#endif
281#endif
282 }
283 for(i=0;i<NN-KK+1;i++)
284 b[i] = Index_of[lambda[i]];
285
286 /*
287 * Begin Berlekamp-Massey algorithm to determine error+erasure
288 * locator polynomial
289 */
290 r = no_eras;
291 el = no_eras;
292 while (++r <= NN-KK) { /* r is the step number */
293 /* Compute discrepancy at the r-th step in poly-form */
294 discr_r = 0;
295 for (i = 0; i < r; i++){
296 if ((lambda[i] != 0) && (s[r - i] != A0)) {
297 discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])];
298 }
299 }
300 discr_r = Index_of[discr_r]; /* Index form */
301 if (discr_r == A0) {
302 /* 2 lines below: B(x) <-- x*B(x) */
303 COPYDOWN(&b[1],b,NN-KK);
304 b[0] = A0;
305 } else {
306 /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
307 t[0] = lambda[0];
308 for (i = 0 ; i < NN-KK; i++) {
309 if(b[i] != A0)
310 t[i+1] = lambda[i+1] ^ Alpha_to[modnn(discr_r + b[i])];
311 else
312 t[i+1] = lambda[i+1];
313 }
314 if (2 * el <= r + no_eras - 1) {
315 el = r + no_eras - el;
316 /*
317 * 2 lines below: B(x) <-- inv(discr_r) *
318 * lambda(x)
319 */
320 for (i = 0; i <= NN-KK; i++)
321 b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN);
322 } else {
323 /* 2 lines below: B(x) <-- x*B(x) */
324 COPYDOWN(&b[1],b,NN-KK);
325 b[0] = A0;
326 }
327 COPY(lambda,t,NN-KK+1);
328 }
329 }
330
331 /* Convert lambda to index form and compute deg(lambda(x)) */
332 deg_lambda = 0;
333 for(i=0;i<NN-KK+1;i++){
334 lambda[i] = Index_of[lambda[i]];
335 if(lambda[i] != A0)
336 deg_lambda = i;
337 }
338 /*
339 * Find roots of the error+erasure locator polynomial by Chien
340 * Search
341 */
342 COPY(&reg[1],&lambda[1],NN-KK);
343 count = 0; /* Number of roots of lambda(x) */
344 for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) {
345 q = 1;
346 for (j = deg_lambda; j > 0; j--){
347 if (reg[j] != A0) {
348 reg[j] = modnn(reg[j] + j);
349 q ^= Alpha_to[reg[j]];
350 }
351 }
352 if (q != 0)
353 continue;
354 /* store root (index-form) and error location number */
355 root[count] = i;
356 loc[count] = k;
357 /* If we've already found max possible roots,
358 * abort the search to save time
359 */
360 if(++count == deg_lambda)
361 break;
362 }
363 if (deg_lambda != count) {
364 /*
365 * deg(lambda) unequal to number of roots => uncorrectable
366 * error detected
367 */
368 count = -1;
369 goto finish;
370 }
371 /*
372 * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
373 * x**(NN-KK)). in index form. Also find deg(omega).
374 */
375 deg_omega = 0;
376 for (i = 0; i < NN-KK;i++){
377 tmp = 0;
378 j = (deg_lambda < i) ? deg_lambda : i;
379 for(;j >= 0; j--){
380 if ((s[i + 1 - j] != A0) && (lambda[j] != A0))
381 tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])];
382 }
383 if(tmp != 0)
384 deg_omega = i;
385 omega[i] = Index_of[tmp];
386 }
387 omega[NN-KK] = A0;
388
389 /*
390 * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
391 * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form
392 */
393 for (j = count-1; j >=0; j--) {
394 num1 = 0;
395 for (i = deg_omega; i >= 0; i--) {
396 if (omega[i] != A0)
397 num1 ^= Alpha_to[modnn(omega[i] + i * root[j])];
398 }
399 num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)];
400 den = 0;
401
402 /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
403 for (i = min(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) {
404 if(lambda[i+1] != A0)
405 den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])];
406 }
407 if (den == 0) {
408#ifdef ECC_DEBUG
409 printf("\n ERROR: denominator = 0\n");
410#endif
411 /* Convert to dual- basis */
412 count = -1;
413 goto finish;
414 }
415 /* Apply error to data */
416 if (num1 != 0) {
417 eras_val[j] = Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])];
418 } else {
419 eras_val[j] = 0;
420 }
421 }
422 finish:
423 for(i=0;i<count;i++)
424 eras_pos[i] = loc[i];
425 return count;
426}
427
428/***************************************************************************/
429/* The DOC specific code begins here */
430
431#define SECTOR_SIZE 512
432/* The sector bytes are packed into NB_DATA MM bits words */
433#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / MM)
434
435/*
436 * Correct the errors in 'sector[]' by using 'ecc1[]' which is the
437 * content of the feedback shift register applyied to the sector and
438 * the ECC. Return the number of errors corrected (and correct them in
439 * sector), or -1 if error
440 */
441int doc_decode_ecc(unsigned char sector[SECTOR_SIZE], unsigned char ecc1[6])
442{
443 int parity, i, nb_errors;
444 gf bb[NN - KK + 1];
445 gf error_val[NN-KK];
446 int error_pos[NN-KK], pos, bitpos, index, val;
447 dtype *Alpha_to, *Index_of;
448
449 /* init log and exp tables here to save memory. However, it is slower */
450 Alpha_to = malloc((NN + 1) * sizeof(dtype));
451 if (!Alpha_to)
452 return -1;
453
454 Index_of = malloc((NN + 1) * sizeof(dtype));
455 if (!Index_of) {
456 free(Alpha_to);
457 return -1;
458 }
459
460 generate_gf(Alpha_to, Index_of);
461
462 parity = ecc1[1];
463
464 bb[0] = (ecc1[4] & 0xff) | ((ecc1[5] & 0x03) << 8);
465 bb[1] = ((ecc1[5] & 0xfc) >> 2) | ((ecc1[2] & 0x0f) << 6);
466 bb[2] = ((ecc1[2] & 0xf0) >> 4) | ((ecc1[3] & 0x3f) << 4);
467 bb[3] = ((ecc1[3] & 0xc0) >> 6) | ((ecc1[0] & 0xff) << 2);
468
469 nb_errors = eras_dec_rs(Alpha_to, Index_of, bb,
470 error_val, error_pos, 0);
471 if (nb_errors <= 0)
472 goto the_end;
473
474 /* correct the errors */
475 for(i=0;i<nb_errors;i++) {
476 pos = error_pos[i];
477 if (pos >= NB_DATA && pos < KK) {
478 nb_errors = -1;
479 goto the_end;
480 }
481 if (pos < NB_DATA) {
482 /* extract bit position (MSB first) */
483 pos = 10 * (NB_DATA - 1 - pos) - 6;
484 /* now correct the following 10 bits. At most two bytes
485 can be modified since pos is even */
486 index = (pos >> 3) ^ 1;
487 bitpos = pos & 7;
488 if ((index >= 0 && index < SECTOR_SIZE) ||
489 index == (SECTOR_SIZE + 1)) {
490 val = error_val[i] >> (2 + bitpos);
491 parity ^= val;
492 if (index < SECTOR_SIZE)
493 sector[index] ^= val;
494 }
495 index = ((pos >> 3) + 1) ^ 1;
496 bitpos = (bitpos + 10) & 7;
497 if (bitpos == 0)
498 bitpos = 8;
499 if ((index >= 0 && index < SECTOR_SIZE) ||
500 index == (SECTOR_SIZE + 1)) {
501 val = error_val[i] << (8 - bitpos);
502 parity ^= val;
503 if (index < SECTOR_SIZE)
504 sector[index] ^= val;
505 }
506 }
507 }
508
509 /* use parity to test extra errors */
510 if ((parity & 0xff) != 0)
511 nb_errors = -1;
512
513 the_end:
514 free(Alpha_to);
515 free(Index_of);
516 return nb_errors;
517}
518
519#endif /* (CONFIG_COMMANDS & CFG_CMD_DOC) */