Steve Rae | b4e4bbe | 2014-09-03 10:05:51 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (c) 2009, Google Inc. |
| 3 | * All rights reserved. |
| 4 | * |
| 5 | * Copyright (c) 2009-2014, The Linux Foundation. All rights reserved. |
| 6 | * |
| 7 | * Redistribution and use in source and binary forms, with or without |
| 8 | * modification, are permitted provided that the following conditions are met: |
| 9 | * * Redistributions of source code must retain the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer. |
| 11 | * * Redistributions in binary form must reproduce the above copyright |
| 12 | * notice, this list of conditions and the following disclaimer in the |
| 13 | * documentation and/or other materials provided with the distribution. |
| 14 | * * Neither the name of The Linux Foundation nor |
| 15 | * the names of its contributors may be used to endorse or promote |
| 16 | * products derived from this software without specific prior written |
| 17 | * permission. |
| 18 | * |
| 19 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 20 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 21 | * IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| 22 | * NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| 23 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 24 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 25 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; |
| 26 | * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
| 27 | * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR |
| 28 | * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF |
| 29 | * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 30 | * |
| 31 | */ |
| 32 | |
| 33 | #include <app.h> |
| 34 | #include <debug.h> |
| 35 | #include <arch/arm.h> |
| 36 | #include <string.h> |
| 37 | #include <stdlib.h> |
| 38 | #include <limits.h> |
| 39 | #include <kernel/thread.h> |
| 40 | #include <arch/ops.h> |
| 41 | |
| 42 | #include <dev/flash.h> |
| 43 | #include <lib/ptable.h> |
| 44 | #include <dev/keys.h> |
| 45 | #include <dev/fbcon.h> |
| 46 | #include <baseband.h> |
| 47 | #include <target.h> |
| 48 | #include <mmc.h> |
| 49 | #include <partition_parser.h> |
| 50 | #include <platform.h> |
| 51 | #include <crypto_hash.h> |
| 52 | #include <malloc.h> |
| 53 | #include <boot_stats.h> |
| 54 | #include <sha.h> |
| 55 | #include <platform/iomap.h> |
| 56 | #include <boot_device.h> |
| 57 | |
| 58 | #if DEVICE_TREE |
| 59 | #include <libfdt.h> |
| 60 | #include <dev_tree.h> |
| 61 | #endif |
| 62 | |
| 63 | #include "image_verify.h" |
| 64 | #include "recovery.h" |
| 65 | #include "bootimg.h" |
| 66 | #include "fastboot.h" |
| 67 | #include "sparse_format.h" |
| 68 | #include "mmc.h" |
| 69 | #include "devinfo.h" |
| 70 | #include "board.h" |
| 71 | #include "scm.h" |
| 72 | |
| 73 | extern bool target_use_signed_kernel(void); |
| 74 | extern void platform_uninit(void); |
| 75 | extern void target_uninit(void); |
| 76 | extern int get_target_boot_params(const char *cmdline, const char *part, |
| 77 | char *buf, int buflen); |
| 78 | |
| 79 | void write_device_info_mmc(device_info *dev); |
| 80 | void write_device_info_flash(device_info *dev); |
| 81 | |
| 82 | #define EXPAND(NAME) #NAME |
| 83 | #define TARGET(NAME) EXPAND(NAME) |
| 84 | |
| 85 | #ifdef MEMBASE |
| 86 | #define EMMC_BOOT_IMG_HEADER_ADDR (0xFF000+(MEMBASE)) |
| 87 | #else |
| 88 | #define EMMC_BOOT_IMG_HEADER_ADDR 0xFF000 |
| 89 | #endif |
| 90 | |
| 91 | #ifndef MEMSIZE |
| 92 | #define MEMSIZE 1024*1024 |
| 93 | #endif |
| 94 | |
| 95 | #define MAX_TAGS_SIZE 1024 |
| 96 | |
| 97 | #define RECOVERY_MODE 0x77665502 |
| 98 | #define FASTBOOT_MODE 0x77665500 |
| 99 | |
| 100 | /* make 4096 as default size to ensure EFS,EXT4's erasing */ |
| 101 | #define DEFAULT_ERASE_SIZE 4096 |
| 102 | #define MAX_PANEL_BUF_SIZE 128 |
| 103 | |
| 104 | #define UBI_MAGIC "UBI#" |
| 105 | #define DISPLAY_DEFAULT_PREFIX "mdss_mdp" |
| 106 | #define UBI_MAGIC_SIZE 0x04 |
| 107 | #define BOOT_DEV_MAX_LEN 64 |
| 108 | |
| 109 | #define IS_ARM64(ptr) (ptr->magic_64 == KERNEL64_HDR_MAGIC) ? true : false |
| 110 | |
| 111 | #define ADD_OF(a, b) (UINT_MAX - b > a) ? (a + b) : UINT_MAX |
| 112 | |
| 113 | #if UFS_SUPPORT |
| 114 | static const char *emmc_cmdline = " androidboot.bootdevice="; |
| 115 | #else |
| 116 | static const char *emmc_cmdline = " androidboot.emmc=true"; |
| 117 | #endif |
| 118 | static const char *usb_sn_cmdline = " androidboot.serialno="; |
| 119 | static const char *androidboot_mode = " androidboot.mode="; |
| 120 | static const char *loglevel = " quiet"; |
| 121 | static const char *battchg_pause = " androidboot.mode=charger"; |
| 122 | static const char *auth_kernel = " androidboot.authorized_kernel=true"; |
| 123 | static const char *secondary_gpt_enable = " gpt"; |
| 124 | |
| 125 | static const char *baseband_apq = " androidboot.baseband=apq"; |
| 126 | static const char *baseband_msm = " androidboot.baseband=msm"; |
| 127 | static const char *baseband_csfb = " androidboot.baseband=csfb"; |
| 128 | static const char *baseband_svlte2a = " androidboot.baseband=svlte2a"; |
| 129 | static const char *baseband_mdm = " androidboot.baseband=mdm"; |
| 130 | static const char *baseband_mdm2 = " androidboot.baseband=mdm2"; |
| 131 | static const char *baseband_sglte = " androidboot.baseband=sglte"; |
| 132 | static const char *baseband_dsda = " androidboot.baseband=dsda"; |
| 133 | static const char *baseband_dsda2 = " androidboot.baseband=dsda2"; |
| 134 | static const char *baseband_sglte2 = " androidboot.baseband=sglte2"; |
| 135 | static const char *warmboot_cmdline = " qpnp-power-on.warm_boot=1"; |
| 136 | |
| 137 | static unsigned page_size = 0; |
| 138 | static unsigned page_mask = 0; |
| 139 | static char ffbm_mode_string[FFBM_MODE_BUF_SIZE]; |
| 140 | static bool boot_into_ffbm; |
| 141 | static char target_boot_params[64]; |
| 142 | |
| 143 | /* Assuming unauthorized kernel image by default */ |
| 144 | static int auth_kernel_img = 0; |
| 145 | |
| 146 | static device_info device = {DEVICE_MAGIC, 0, 0, 0, 0}; |
| 147 | |
| 148 | struct atag_ptbl_entry |
| 149 | { |
| 150 | char name[16]; |
| 151 | unsigned offset; |
| 152 | unsigned size; |
| 153 | unsigned flags; |
| 154 | }; |
| 155 | |
| 156 | /* |
| 157 | * Partition info, required to be published |
| 158 | * for fastboot |
| 159 | */ |
| 160 | struct getvar_partition_info { |
| 161 | const char part_name[MAX_GPT_NAME_SIZE]; /* Partition name */ |
| 162 | char getvar_size[MAX_GET_VAR_NAME_SIZE]; /* fastboot get var name for size */ |
| 163 | char getvar_type[MAX_GET_VAR_NAME_SIZE]; /* fastboot get var name for type */ |
| 164 | char size_response[MAX_RSP_SIZE]; /* fastboot response for size */ |
| 165 | char type_response[MAX_RSP_SIZE]; /* fastboot response for type */ |
| 166 | }; |
| 167 | |
| 168 | /* |
| 169 | * Right now, we are publishing the info for only |
| 170 | * three partitions |
| 171 | */ |
| 172 | struct getvar_partition_info part_info[] = |
| 173 | { |
| 174 | { "system" , "partition-size:", "partition-type:", "", "ext4" }, |
| 175 | { "userdata", "partition-size:", "partition-type:", "", "ext4" }, |
| 176 | { "cache" , "partition-size:", "partition-type:", "", "ext4" }, |
| 177 | }; |
| 178 | |
| 179 | char max_download_size[MAX_RSP_SIZE]; |
| 180 | char charger_screen_enabled[MAX_RSP_SIZE]; |
| 181 | char sn_buf[13]; |
| 182 | char display_panel_buf[MAX_PANEL_BUF_SIZE]; |
| 183 | char panel_display_mode[MAX_RSP_SIZE]; |
| 184 | |
| 185 | extern int emmc_recovery_init(void); |
| 186 | |
| 187 | #if NO_KEYPAD_DRIVER |
| 188 | extern int fastboot_trigger(void); |
| 189 | #endif |
| 190 | |
| 191 | static void update_ker_tags_rdisk_addr(struct boot_img_hdr *hdr, bool is_arm64) |
| 192 | { |
| 193 | /* overwrite the destination of specified for the project */ |
| 194 | #ifdef ABOOT_IGNORE_BOOT_HEADER_ADDRS |
| 195 | if (is_arm64) |
| 196 | hdr->kernel_addr = ABOOT_FORCE_KERNEL64_ADDR; |
| 197 | else |
| 198 | hdr->kernel_addr = ABOOT_FORCE_KERNEL_ADDR; |
| 199 | hdr->ramdisk_addr = ABOOT_FORCE_RAMDISK_ADDR; |
| 200 | hdr->tags_addr = ABOOT_FORCE_TAGS_ADDR; |
| 201 | #endif |
| 202 | } |
| 203 | |
| 204 | static void ptentry_to_tag(unsigned **ptr, struct ptentry *ptn) |
| 205 | { |
| 206 | struct atag_ptbl_entry atag_ptn; |
| 207 | |
| 208 | memcpy(atag_ptn.name, ptn->name, 16); |
| 209 | atag_ptn.name[15] = '\0'; |
| 210 | atag_ptn.offset = ptn->start; |
| 211 | atag_ptn.size = ptn->length; |
| 212 | atag_ptn.flags = ptn->flags; |
| 213 | memcpy(*ptr, &atag_ptn, sizeof(struct atag_ptbl_entry)); |
| 214 | *ptr += sizeof(struct atag_ptbl_entry) / sizeof(unsigned); |
| 215 | } |
| 216 | |
| 217 | unsigned char *update_cmdline(const char * cmdline) |
| 218 | { |
| 219 | int cmdline_len = 0; |
| 220 | int have_cmdline = 0; |
| 221 | unsigned char *cmdline_final = NULL; |
| 222 | int pause_at_bootup = 0; |
| 223 | bool warm_boot = false; |
| 224 | bool gpt_exists = partition_gpt_exists(); |
| 225 | int have_target_boot_params = 0; |
| 226 | char *boot_dev_buf = NULL; |
| 227 | |
| 228 | if (cmdline && cmdline[0]) { |
| 229 | cmdline_len = strlen(cmdline); |
| 230 | have_cmdline = 1; |
| 231 | } |
| 232 | if (target_is_emmc_boot()) { |
| 233 | cmdline_len += strlen(emmc_cmdline); |
| 234 | #if UFS_SUPPORT |
| 235 | boot_dev_buf = (char *) malloc(sizeof(char) * BOOT_DEV_MAX_LEN); |
| 236 | ASSERT(boot_dev_buf); |
| 237 | platform_boot_dev_cmdline(boot_dev_buf); |
| 238 | cmdline_len += strlen(boot_dev_buf); |
| 239 | #endif |
| 240 | } |
| 241 | |
| 242 | cmdline_len += strlen(usb_sn_cmdline); |
| 243 | cmdline_len += strlen(sn_buf); |
| 244 | |
| 245 | if (boot_into_recovery && gpt_exists) |
| 246 | cmdline_len += strlen(secondary_gpt_enable); |
| 247 | |
| 248 | if (boot_into_ffbm) { |
| 249 | cmdline_len += strlen(androidboot_mode); |
| 250 | cmdline_len += strlen(ffbm_mode_string); |
| 251 | /* reduce kernel console messages to speed-up boot */ |
| 252 | cmdline_len += strlen(loglevel); |
| 253 | } else if (device.charger_screen_enabled && |
| 254 | target_pause_for_battery_charge()) { |
| 255 | pause_at_bootup = 1; |
| 256 | cmdline_len += strlen(battchg_pause); |
| 257 | } |
| 258 | |
| 259 | if(target_use_signed_kernel() && auth_kernel_img) { |
| 260 | cmdline_len += strlen(auth_kernel); |
| 261 | } |
| 262 | |
| 263 | if (get_target_boot_params(cmdline, boot_into_recovery ? "recoveryfs" : |
| 264 | "system", |
| 265 | target_boot_params, |
| 266 | sizeof(target_boot_params)) == 0) { |
| 267 | have_target_boot_params = 1; |
| 268 | cmdline_len += strlen(target_boot_params); |
| 269 | } |
| 270 | |
| 271 | /* Determine correct androidboot.baseband to use */ |
| 272 | switch(target_baseband()) |
| 273 | { |
| 274 | case BASEBAND_APQ: |
| 275 | cmdline_len += strlen(baseband_apq); |
| 276 | break; |
| 277 | |
| 278 | case BASEBAND_MSM: |
| 279 | cmdline_len += strlen(baseband_msm); |
| 280 | break; |
| 281 | |
| 282 | case BASEBAND_CSFB: |
| 283 | cmdline_len += strlen(baseband_csfb); |
| 284 | break; |
| 285 | |
| 286 | case BASEBAND_SVLTE2A: |
| 287 | cmdline_len += strlen(baseband_svlte2a); |
| 288 | break; |
| 289 | |
| 290 | case BASEBAND_MDM: |
| 291 | cmdline_len += strlen(baseband_mdm); |
| 292 | break; |
| 293 | |
| 294 | case BASEBAND_MDM2: |
| 295 | cmdline_len += strlen(baseband_mdm2); |
| 296 | break; |
| 297 | |
| 298 | case BASEBAND_SGLTE: |
| 299 | cmdline_len += strlen(baseband_sglte); |
| 300 | break; |
| 301 | |
| 302 | case BASEBAND_SGLTE2: |
| 303 | cmdline_len += strlen(baseband_sglte2); |
| 304 | break; |
| 305 | |
| 306 | case BASEBAND_DSDA: |
| 307 | cmdline_len += strlen(baseband_dsda); |
| 308 | break; |
| 309 | |
| 310 | case BASEBAND_DSDA2: |
| 311 | cmdline_len += strlen(baseband_dsda2); |
| 312 | break; |
| 313 | } |
| 314 | |
| 315 | if (cmdline) { |
| 316 | if ((strstr(cmdline, DISPLAY_DEFAULT_PREFIX) == NULL) && |
| 317 | target_display_panel_node(device.display_panel, |
| 318 | display_panel_buf, MAX_PANEL_BUF_SIZE) && |
| 319 | strlen(display_panel_buf)) { |
| 320 | cmdline_len += strlen(display_panel_buf); |
| 321 | } |
| 322 | } |
| 323 | |
| 324 | if (target_warm_boot()) { |
| 325 | warm_boot = true; |
| 326 | cmdline_len += strlen(warmboot_cmdline); |
| 327 | } |
| 328 | |
| 329 | if (cmdline_len > 0) { |
| 330 | const char *src; |
| 331 | unsigned char *dst = (unsigned char*) malloc((cmdline_len + 4) & (~3)); |
| 332 | ASSERT(dst != NULL); |
| 333 | |
| 334 | /* Save start ptr for debug print */ |
| 335 | cmdline_final = dst; |
| 336 | if (have_cmdline) { |
| 337 | src = cmdline; |
| 338 | while ((*dst++ = *src++)); |
| 339 | } |
| 340 | if (target_is_emmc_boot()) { |
| 341 | src = emmc_cmdline; |
| 342 | if (have_cmdline) --dst; |
| 343 | have_cmdline = 1; |
| 344 | while ((*dst++ = *src++)); |
| 345 | #if UFS_SUPPORT |
| 346 | src = boot_dev_buf; |
| 347 | if (have_cmdline) --dst; |
| 348 | while ((*dst++ = *src++)); |
| 349 | #endif |
| 350 | } |
| 351 | |
| 352 | src = usb_sn_cmdline; |
| 353 | if (have_cmdline) --dst; |
| 354 | have_cmdline = 1; |
| 355 | while ((*dst++ = *src++)); |
| 356 | src = sn_buf; |
| 357 | if (have_cmdline) --dst; |
| 358 | have_cmdline = 1; |
| 359 | while ((*dst++ = *src++)); |
| 360 | if (warm_boot) { |
| 361 | if (have_cmdline) --dst; |
| 362 | src = warmboot_cmdline; |
| 363 | while ((*dst++ = *src++)); |
| 364 | } |
| 365 | |
| 366 | if (boot_into_recovery && gpt_exists) { |
| 367 | src = secondary_gpt_enable; |
| 368 | if (have_cmdline) --dst; |
| 369 | while ((*dst++ = *src++)); |
| 370 | } |
| 371 | |
| 372 | if (boot_into_ffbm) { |
| 373 | src = androidboot_mode; |
| 374 | if (have_cmdline) --dst; |
| 375 | while ((*dst++ = *src++)); |
| 376 | src = ffbm_mode_string; |
| 377 | if (have_cmdline) --dst; |
| 378 | while ((*dst++ = *src++)); |
| 379 | src = loglevel; |
| 380 | if (have_cmdline) --dst; |
| 381 | while ((*dst++ = *src++)); |
| 382 | } else if (pause_at_bootup) { |
| 383 | src = battchg_pause; |
| 384 | if (have_cmdline) --dst; |
| 385 | while ((*dst++ = *src++)); |
| 386 | } |
| 387 | |
| 388 | if(target_use_signed_kernel() && auth_kernel_img) { |
| 389 | src = auth_kernel; |
| 390 | if (have_cmdline) --dst; |
| 391 | while ((*dst++ = *src++)); |
| 392 | } |
| 393 | |
| 394 | switch(target_baseband()) |
| 395 | { |
| 396 | case BASEBAND_APQ: |
| 397 | src = baseband_apq; |
| 398 | if (have_cmdline) --dst; |
| 399 | while ((*dst++ = *src++)); |
| 400 | break; |
| 401 | |
| 402 | case BASEBAND_MSM: |
| 403 | src = baseband_msm; |
| 404 | if (have_cmdline) --dst; |
| 405 | while ((*dst++ = *src++)); |
| 406 | break; |
| 407 | |
| 408 | case BASEBAND_CSFB: |
| 409 | src = baseband_csfb; |
| 410 | if (have_cmdline) --dst; |
| 411 | while ((*dst++ = *src++)); |
| 412 | break; |
| 413 | |
| 414 | case BASEBAND_SVLTE2A: |
| 415 | src = baseband_svlte2a; |
| 416 | if (have_cmdline) --dst; |
| 417 | while ((*dst++ = *src++)); |
| 418 | break; |
| 419 | |
| 420 | case BASEBAND_MDM: |
| 421 | src = baseband_mdm; |
| 422 | if (have_cmdline) --dst; |
| 423 | while ((*dst++ = *src++)); |
| 424 | break; |
| 425 | |
| 426 | case BASEBAND_MDM2: |
| 427 | src = baseband_mdm2; |
| 428 | if (have_cmdline) --dst; |
| 429 | while ((*dst++ = *src++)); |
| 430 | break; |
| 431 | |
| 432 | case BASEBAND_SGLTE: |
| 433 | src = baseband_sglte; |
| 434 | if (have_cmdline) --dst; |
| 435 | while ((*dst++ = *src++)); |
| 436 | break; |
| 437 | |
| 438 | case BASEBAND_SGLTE2: |
| 439 | src = baseband_sglte2; |
| 440 | if (have_cmdline) --dst; |
| 441 | while ((*dst++ = *src++)); |
| 442 | break; |
| 443 | |
| 444 | case BASEBAND_DSDA: |
| 445 | src = baseband_dsda; |
| 446 | if (have_cmdline) --dst; |
| 447 | while ((*dst++ = *src++)); |
| 448 | break; |
| 449 | |
| 450 | case BASEBAND_DSDA2: |
| 451 | src = baseband_dsda2; |
| 452 | if (have_cmdline) --dst; |
| 453 | while ((*dst++ = *src++)); |
| 454 | break; |
| 455 | } |
| 456 | |
| 457 | if (strlen(display_panel_buf)) { |
| 458 | src = display_panel_buf; |
| 459 | if (have_cmdline) --dst; |
| 460 | while ((*dst++ = *src++)); |
| 461 | } |
| 462 | |
| 463 | if (have_target_boot_params) { |
| 464 | if (have_cmdline) --dst; |
| 465 | src = target_boot_params; |
| 466 | while ((*dst++ = *src++)); |
| 467 | } |
| 468 | } |
| 469 | |
| 470 | |
| 471 | if (boot_dev_buf) |
| 472 | free(boot_dev_buf); |
| 473 | |
| 474 | dprintf(INFO, "cmdline: %s\n", cmdline_final); |
| 475 | return cmdline_final; |
| 476 | } |
| 477 | |
| 478 | unsigned *atag_core(unsigned *ptr) |
| 479 | { |
| 480 | /* CORE */ |
| 481 | *ptr++ = 2; |
| 482 | *ptr++ = 0x54410001; |
| 483 | |
| 484 | return ptr; |
| 485 | |
| 486 | } |
| 487 | |
| 488 | unsigned *atag_ramdisk(unsigned *ptr, void *ramdisk, |
| 489 | unsigned ramdisk_size) |
| 490 | { |
| 491 | if (ramdisk_size) { |
| 492 | *ptr++ = 4; |
| 493 | *ptr++ = 0x54420005; |
| 494 | *ptr++ = (unsigned)ramdisk; |
| 495 | *ptr++ = ramdisk_size; |
| 496 | } |
| 497 | |
| 498 | return ptr; |
| 499 | } |
| 500 | |
| 501 | unsigned *atag_ptable(unsigned **ptr_addr) |
| 502 | { |
| 503 | int i; |
| 504 | struct ptable *ptable; |
| 505 | |
| 506 | if ((ptable = flash_get_ptable()) && (ptable->count != 0)) { |
| 507 | *(*ptr_addr)++ = 2 + (ptable->count * (sizeof(struct atag_ptbl_entry) / |
| 508 | sizeof(unsigned))); |
| 509 | *(*ptr_addr)++ = 0x4d534d70; |
| 510 | for (i = 0; i < ptable->count; ++i) |
| 511 | ptentry_to_tag(ptr_addr, ptable_get(ptable, i)); |
| 512 | } |
| 513 | |
| 514 | return (*ptr_addr); |
| 515 | } |
| 516 | |
| 517 | unsigned *atag_cmdline(unsigned *ptr, const char *cmdline) |
| 518 | { |
| 519 | int cmdline_length = 0; |
| 520 | int n; |
| 521 | char *dest; |
| 522 | |
| 523 | cmdline_length = strlen((const char*)cmdline); |
| 524 | n = (cmdline_length + 4) & (~3); |
| 525 | |
| 526 | *ptr++ = (n / 4) + 2; |
| 527 | *ptr++ = 0x54410009; |
| 528 | dest = (char *) ptr; |
| 529 | while ((*dest++ = *cmdline++)); |
| 530 | ptr += (n / 4); |
| 531 | |
| 532 | return ptr; |
| 533 | } |
| 534 | |
| 535 | unsigned *atag_end(unsigned *ptr) |
| 536 | { |
| 537 | /* END */ |
| 538 | *ptr++ = 0; |
| 539 | *ptr++ = 0; |
| 540 | |
| 541 | return ptr; |
| 542 | } |
| 543 | |
| 544 | void generate_atags(unsigned *ptr, const char *cmdline, |
| 545 | void *ramdisk, unsigned ramdisk_size) |
| 546 | { |
| 547 | |
| 548 | ptr = atag_core(ptr); |
| 549 | ptr = atag_ramdisk(ptr, ramdisk, ramdisk_size); |
| 550 | ptr = target_atag_mem(ptr); |
| 551 | |
| 552 | /* Skip NAND partition ATAGS for eMMC boot */ |
| 553 | if (!target_is_emmc_boot()){ |
| 554 | ptr = atag_ptable(&ptr); |
| 555 | } |
| 556 | |
| 557 | ptr = atag_cmdline(ptr, cmdline); |
| 558 | ptr = atag_end(ptr); |
| 559 | } |
| 560 | |
| 561 | typedef void entry_func_ptr(unsigned, unsigned, unsigned*); |
| 562 | void boot_linux(void *kernel, unsigned *tags, |
| 563 | const char *cmdline, unsigned machtype, |
| 564 | void *ramdisk, unsigned ramdisk_size) |
| 565 | { |
| 566 | unsigned char *final_cmdline; |
| 567 | #if DEVICE_TREE |
| 568 | int ret = 0; |
| 569 | #endif |
| 570 | |
| 571 | void (*entry)(unsigned, unsigned, unsigned*) = (entry_func_ptr*)(PA((addr_t)kernel)); |
| 572 | uint32_t tags_phys = PA((addr_t)tags); |
| 573 | struct kernel64_hdr *kptr = (struct kernel64_hdr*)kernel; |
| 574 | |
| 575 | ramdisk = PA(ramdisk); |
| 576 | |
| 577 | final_cmdline = update_cmdline((const char*)cmdline); |
| 578 | |
| 579 | #if DEVICE_TREE |
| 580 | dprintf(INFO, "Updating device tree: start\n"); |
| 581 | |
| 582 | /* Update the Device Tree */ |
| 583 | ret = update_device_tree((void *)tags, final_cmdline, ramdisk, ramdisk_size); |
| 584 | if(ret) |
| 585 | { |
| 586 | dprintf(CRITICAL, "ERROR: Updating Device Tree Failed \n"); |
| 587 | ASSERT(0); |
| 588 | } |
| 589 | dprintf(INFO, "Updating device tree: done\n"); |
| 590 | #else |
| 591 | /* Generating the Atags */ |
| 592 | generate_atags(tags, final_cmdline, ramdisk, ramdisk_size); |
| 593 | #endif |
| 594 | |
| 595 | /* Perform target specific cleanup */ |
| 596 | target_uninit(); |
| 597 | |
| 598 | /* Turn off splash screen if enabled */ |
| 599 | #if DISPLAY_SPLASH_SCREEN |
| 600 | target_display_shutdown(); |
| 601 | #endif |
| 602 | |
| 603 | |
| 604 | dprintf(INFO, "booting linux @ %p, ramdisk @ %p (%d), tags/device tree @ %p\n", |
| 605 | entry, ramdisk, ramdisk_size, tags_phys); |
| 606 | |
| 607 | enter_critical_section(); |
| 608 | |
| 609 | /* do any platform specific cleanup before kernel entry */ |
| 610 | platform_uninit(); |
| 611 | |
| 612 | arch_disable_cache(UCACHE); |
| 613 | |
| 614 | #if ARM_WITH_MMU |
| 615 | arch_disable_mmu(); |
| 616 | #endif |
| 617 | bs_set_timestamp(BS_KERNEL_ENTRY); |
| 618 | |
| 619 | if (IS_ARM64(kptr)) |
| 620 | /* Jump to a 64bit kernel */ |
| 621 | scm_elexec_call((paddr_t)kernel, tags_phys); |
| 622 | else |
| 623 | /* Jump to a 32bit kernel */ |
| 624 | entry(0, machtype, (unsigned*)tags_phys); |
| 625 | } |
| 626 | |
| 627 | /* Function to check if the memory address range falls within the aboot |
| 628 | * boundaries. |
| 629 | * start: Start of the memory region |
| 630 | * size: Size of the memory region |
| 631 | */ |
| 632 | int check_aboot_addr_range_overlap(uint32_t start, uint32_t size) |
| 633 | { |
| 634 | /* Check for boundary conditions. */ |
| 635 | if ((UINT_MAX - start) < size) |
| 636 | return -1; |
| 637 | |
| 638 | /* Check for memory overlap. */ |
| 639 | if ((start < MEMBASE) && ((start + size) <= MEMBASE)) |
| 640 | return 0; |
| 641 | else if (start >= (MEMBASE + MEMSIZE)) |
| 642 | return 0; |
| 643 | else |
| 644 | return -1; |
| 645 | } |
| 646 | |
| 647 | #define ROUND_TO_PAGE(x,y) (((x) + (y)) & (~(y))) |
| 648 | |
| 649 | BUF_DMA_ALIGN(buf, BOOT_IMG_MAX_PAGE_SIZE); //Equal to max-supported pagesize |
| 650 | #if DEVICE_TREE |
| 651 | BUF_DMA_ALIGN(dt_buf, BOOT_IMG_MAX_PAGE_SIZE); |
| 652 | #endif |
| 653 | |
| 654 | static void verify_signed_bootimg(uint32_t bootimg_addr, uint32_t bootimg_size) |
| 655 | { |
| 656 | int ret; |
| 657 | #if IMAGE_VERIF_ALGO_SHA1 |
| 658 | uint32_t auth_algo = CRYPTO_AUTH_ALG_SHA1; |
| 659 | #else |
| 660 | uint32_t auth_algo = CRYPTO_AUTH_ALG_SHA256; |
| 661 | #endif |
| 662 | |
| 663 | /* Assume device is rooted at this time. */ |
| 664 | device.is_tampered = 1; |
| 665 | |
| 666 | dprintf(INFO, "Authenticating boot image (%d): start\n", bootimg_size); |
| 667 | |
| 668 | ret = image_verify((unsigned char *)bootimg_addr, |
| 669 | (unsigned char *)(bootimg_addr + bootimg_size), |
| 670 | bootimg_size, |
| 671 | auth_algo); |
| 672 | |
| 673 | dprintf(INFO, "Authenticating boot image: done return value = %d\n", ret); |
| 674 | |
| 675 | if (ret) |
| 676 | { |
| 677 | /* Authorized kernel */ |
| 678 | device.is_tampered = 0; |
| 679 | auth_kernel_img = 1; |
| 680 | } |
| 681 | |
| 682 | #if USE_PCOM_SECBOOT |
| 683 | set_tamper_flag(device.is_tampered); |
| 684 | #endif |
| 685 | |
| 686 | if(device.is_tampered) |
| 687 | { |
| 688 | write_device_info_mmc(&device); |
| 689 | #ifdef TZ_TAMPER_FUSE |
| 690 | set_tamper_fuse_cmd(); |
| 691 | #endif |
| 692 | #ifdef ASSERT_ON_TAMPER |
| 693 | dprintf(CRITICAL, "Device is tampered. Asserting..\n"); |
| 694 | ASSERT(0); |
| 695 | #endif |
| 696 | } |
| 697 | } |
| 698 | |
| 699 | static bool check_format_bit() |
| 700 | { |
| 701 | bool ret = false; |
| 702 | int index; |
| 703 | uint64_t offset; |
| 704 | struct boot_selection_info *in = NULL; |
| 705 | char *buf = NULL; |
| 706 | |
| 707 | index = partition_get_index("bootselect"); |
| 708 | if (index == INVALID_PTN) |
| 709 | { |
| 710 | dprintf(INFO, "Unable to locate /bootselect partition\n"); |
| 711 | return ret; |
| 712 | } |
| 713 | offset = partition_get_offset(index); |
| 714 | if(!offset) |
| 715 | { |
| 716 | dprintf(INFO, "partition /bootselect doesn't exist\n"); |
| 717 | return ret; |
| 718 | } |
| 719 | buf = (char *) memalign(CACHE_LINE, ROUNDUP(page_size, CACHE_LINE)); |
| 720 | ASSERT(buf); |
| 721 | if (mmc_read(offset, (unsigned int *)buf, page_size)) |
| 722 | { |
| 723 | dprintf(INFO, "mmc read failure /bootselect %d\n", page_size); |
| 724 | free(buf); |
| 725 | return ret; |
| 726 | } |
| 727 | in = (struct boot_selection_info *) buf; |
| 728 | if ((in->signature == BOOTSELECT_SIGNATURE) && |
| 729 | (in->version == BOOTSELECT_VERSION)) { |
| 730 | if ((in->state_info & BOOTSELECT_FORMAT) && |
| 731 | !(in->state_info & BOOTSELECT_FACTORY)) |
| 732 | ret = true; |
| 733 | } else { |
| 734 | dprintf(CRITICAL, "Signature: 0x%08x or version: 0x%08x mismatched of /bootselect\n", |
| 735 | in->signature, in->version); |
| 736 | ASSERT(0); |
| 737 | } |
| 738 | free(buf); |
| 739 | return ret; |
| 740 | } |
| 741 | |
| 742 | int boot_linux_from_mmc(void) |
| 743 | { |
| 744 | struct boot_img_hdr *hdr = (void*) buf; |
| 745 | struct boot_img_hdr *uhdr; |
| 746 | unsigned offset = 0; |
| 747 | int rcode; |
| 748 | unsigned long long ptn = 0; |
| 749 | int index = INVALID_PTN; |
| 750 | |
| 751 | unsigned char *image_addr = 0; |
| 752 | unsigned kernel_actual; |
| 753 | unsigned ramdisk_actual; |
| 754 | unsigned imagesize_actual; |
| 755 | unsigned second_actual = 0; |
| 756 | |
| 757 | #if DEVICE_TREE |
| 758 | struct dt_table *table; |
| 759 | struct dt_entry dt_entry; |
| 760 | unsigned dt_table_offset; |
| 761 | uint32_t dt_actual; |
| 762 | uint32_t dt_hdr_size; |
| 763 | #endif |
| 764 | BUF_DMA_ALIGN(kbuf, BOOT_IMG_MAX_PAGE_SIZE); |
| 765 | struct kernel64_hdr *kptr = (void*) kbuf; |
| 766 | |
| 767 | if (check_format_bit()) |
| 768 | boot_into_recovery = 1; |
| 769 | |
| 770 | if (!boot_into_recovery) { |
| 771 | memset(ffbm_mode_string, '\0', sizeof(ffbm_mode_string)); |
| 772 | rcode = get_ffbm(ffbm_mode_string, sizeof(ffbm_mode_string)); |
| 773 | if (rcode <= 0) { |
| 774 | boot_into_ffbm = false; |
| 775 | if (rcode < 0) |
| 776 | dprintf(CRITICAL,"failed to get ffbm cookie"); |
| 777 | } else |
| 778 | boot_into_ffbm = true; |
| 779 | } else |
| 780 | boot_into_ffbm = false; |
| 781 | uhdr = (struct boot_img_hdr *)EMMC_BOOT_IMG_HEADER_ADDR; |
| 782 | if (!memcmp(uhdr->magic, BOOT_MAGIC, BOOT_MAGIC_SIZE)) { |
| 783 | dprintf(INFO, "Unified boot method!\n"); |
| 784 | hdr = uhdr; |
| 785 | goto unified_boot; |
| 786 | } |
| 787 | if (!boot_into_recovery) { |
| 788 | index = partition_get_index("boot"); |
| 789 | ptn = partition_get_offset(index); |
| 790 | if(ptn == 0) { |
| 791 | dprintf(CRITICAL, "ERROR: No boot partition found\n"); |
| 792 | return -1; |
| 793 | } |
| 794 | } |
| 795 | else { |
| 796 | index = partition_get_index("recovery"); |
| 797 | ptn = partition_get_offset(index); |
| 798 | if(ptn == 0) { |
| 799 | dprintf(CRITICAL, "ERROR: No recovery partition found\n"); |
| 800 | return -1; |
| 801 | } |
| 802 | } |
| 803 | |
| 804 | if (mmc_read(ptn + offset, (unsigned int *) buf, page_size)) { |
| 805 | dprintf(CRITICAL, "ERROR: Cannot read boot image header\n"); |
| 806 | return -1; |
| 807 | } |
| 808 | |
| 809 | if (memcmp(hdr->magic, BOOT_MAGIC, BOOT_MAGIC_SIZE)) { |
| 810 | dprintf(CRITICAL, "ERROR: Invalid boot image header\n"); |
| 811 | return -1; |
| 812 | } |
| 813 | |
| 814 | if (hdr->page_size && (hdr->page_size != page_size)) { |
| 815 | |
| 816 | if (hdr->page_size > BOOT_IMG_MAX_PAGE_SIZE) { |
| 817 | dprintf(CRITICAL, "ERROR: Invalid page size\n"); |
| 818 | return -1; |
| 819 | } |
| 820 | page_size = hdr->page_size; |
| 821 | page_mask = page_size - 1; |
| 822 | } |
| 823 | |
| 824 | /* Read the next page to get kernel Image header |
| 825 | * which lives in the second page for arm64 targets. |
| 826 | */ |
| 827 | |
| 828 | if (mmc_read(ptn + page_size, (unsigned int *) kbuf, page_size)) { |
| 829 | dprintf(CRITICAL, "ERROR: Cannot read boot image header\n"); |
| 830 | return -1; |
| 831 | } |
| 832 | |
| 833 | /* |
| 834 | * Update the kernel/ramdisk/tags address if the boot image header |
| 835 | * has default values, these default values come from mkbootimg when |
| 836 | * the boot image is flashed using fastboot flash:raw |
| 837 | */ |
| 838 | update_ker_tags_rdisk_addr(hdr, IS_ARM64(kptr)); |
| 839 | |
| 840 | /* Get virtual addresses since the hdr saves physical addresses. */ |
| 841 | hdr->kernel_addr = VA((addr_t)(hdr->kernel_addr)); |
| 842 | hdr->ramdisk_addr = VA((addr_t)(hdr->ramdisk_addr)); |
| 843 | hdr->tags_addr = VA((addr_t)(hdr->tags_addr)); |
| 844 | |
| 845 | kernel_actual = ROUND_TO_PAGE(hdr->kernel_size, page_mask); |
| 846 | ramdisk_actual = ROUND_TO_PAGE(hdr->ramdisk_size, page_mask); |
| 847 | |
| 848 | /* Check if the addresses in the header are valid. */ |
| 849 | if (check_aboot_addr_range_overlap(hdr->kernel_addr, kernel_actual) || |
| 850 | check_aboot_addr_range_overlap(hdr->ramdisk_addr, ramdisk_actual)) |
| 851 | { |
| 852 | dprintf(CRITICAL, "kernel/ramdisk addresses overlap with aboot addresses.\n"); |
| 853 | return -1; |
| 854 | } |
| 855 | |
| 856 | #ifndef DEVICE_TREE |
| 857 | if (check_aboot_addr_range_overlap(hdr->tags_addr, MAX_TAGS_SIZE)) |
| 858 | { |
| 859 | dprintf(CRITICAL, "Tags addresses overlap with aboot addresses.\n"); |
| 860 | return -1; |
| 861 | } |
| 862 | #endif |
| 863 | |
| 864 | /* Authenticate Kernel */ |
| 865 | dprintf(INFO, "use_signed_kernel=%d, is_unlocked=%d, is_tampered=%d.\n", |
| 866 | (int) target_use_signed_kernel(), |
| 867 | device.is_unlocked, |
| 868 | device.is_tampered); |
| 869 | |
| 870 | if(target_use_signed_kernel() && (!device.is_unlocked)) |
| 871 | { |
| 872 | offset = 0; |
| 873 | |
| 874 | image_addr = (unsigned char *)target_get_scratch_address(); |
| 875 | |
| 876 | #if DEVICE_TREE |
| 877 | dt_actual = ROUND_TO_PAGE(hdr->dt_size, page_mask); |
| 878 | imagesize_actual = (page_size + kernel_actual + ramdisk_actual + dt_actual); |
| 879 | |
| 880 | if (check_aboot_addr_range_overlap(hdr->tags_addr, dt_actual)) |
| 881 | { |
| 882 | dprintf(CRITICAL, "Device tree addresses overlap with aboot addresses.\n"); |
| 883 | return -1; |
| 884 | } |
| 885 | #else |
| 886 | imagesize_actual = (page_size + kernel_actual + ramdisk_actual); |
| 887 | |
| 888 | #endif |
| 889 | |
| 890 | dprintf(INFO, "Loading boot image (%d): start\n", imagesize_actual); |
| 891 | bs_set_timestamp(BS_KERNEL_LOAD_START); |
| 892 | |
| 893 | if (check_aboot_addr_range_overlap(image_addr, imagesize_actual)) |
| 894 | { |
| 895 | dprintf(CRITICAL, "Boot image buffer address overlaps with aboot addresses.\n"); |
| 896 | return -1; |
| 897 | } |
| 898 | |
| 899 | /* Read image without signature */ |
| 900 | if (mmc_read(ptn + offset, (void *)image_addr, imagesize_actual)) |
| 901 | { |
| 902 | dprintf(CRITICAL, "ERROR: Cannot read boot image\n"); |
| 903 | return -1; |
| 904 | } |
| 905 | |
| 906 | dprintf(INFO, "Loading boot image (%d): done\n", imagesize_actual); |
| 907 | bs_set_timestamp(BS_KERNEL_LOAD_DONE); |
| 908 | |
| 909 | offset = imagesize_actual; |
| 910 | |
| 911 | if (check_aboot_addr_range_overlap(image_addr + offset, page_size)) |
| 912 | { |
| 913 | dprintf(CRITICAL, "Signature read buffer address overlaps with aboot addresses.\n"); |
| 914 | return -1; |
| 915 | } |
| 916 | |
| 917 | /* Read signature */ |
| 918 | if(mmc_read(ptn + offset, (void *)(image_addr + offset), page_size)) |
| 919 | { |
| 920 | dprintf(CRITICAL, "ERROR: Cannot read boot image signature\n"); |
| 921 | return -1; |
| 922 | } |
| 923 | |
| 924 | verify_signed_bootimg(image_addr, imagesize_actual); |
| 925 | |
| 926 | /* Move kernel, ramdisk and device tree to correct address */ |
| 927 | memmove((void*) hdr->kernel_addr, (char *)(image_addr + page_size), hdr->kernel_size); |
| 928 | memmove((void*) hdr->ramdisk_addr, (char *)(image_addr + page_size + kernel_actual), hdr->ramdisk_size); |
| 929 | |
| 930 | #if DEVICE_TREE |
| 931 | if(hdr->dt_size) { |
| 932 | dt_table_offset = ((uint32_t)image_addr + page_size + kernel_actual + ramdisk_actual + second_actual); |
| 933 | table = (struct dt_table*) dt_table_offset; |
| 934 | |
| 935 | if (dev_tree_validate(table, hdr->page_size, &dt_hdr_size) != 0) { |
| 936 | dprintf(CRITICAL, "ERROR: Cannot validate Device Tree Table \n"); |
| 937 | return -1; |
| 938 | } |
| 939 | |
| 940 | /* Find index of device tree within device tree table */ |
| 941 | if(dev_tree_get_entry_info(table, &dt_entry) != 0){ |
| 942 | dprintf(CRITICAL, "ERROR: Device Tree Blob cannot be found\n"); |
| 943 | return -1; |
| 944 | } |
| 945 | |
| 946 | /* Validate and Read device device tree in the "tags_add */ |
| 947 | if (check_aboot_addr_range_overlap(hdr->tags_addr, dt_entry.size)) |
| 948 | { |
| 949 | dprintf(CRITICAL, "Device tree addresses overlap with aboot addresses.\n"); |
| 950 | return -1; |
| 951 | } |
| 952 | |
| 953 | memmove((void *)hdr->tags_addr, (char *)dt_table_offset + dt_entry.offset, dt_entry.size); |
| 954 | } else { |
| 955 | /* |
| 956 | * If appended dev tree is found, update the atags with |
| 957 | * memory address to the DTB appended location on RAM. |
| 958 | * Else update with the atags address in the kernel header |
| 959 | */ |
| 960 | void *dtb; |
| 961 | dtb = dev_tree_appended((void*) hdr->kernel_addr, |
| 962 | hdr->kernel_size, |
| 963 | (void *)hdr->tags_addr); |
| 964 | if (!dtb) { |
| 965 | dprintf(CRITICAL, "ERROR: Appended Device Tree Blob not found\n"); |
| 966 | return -1; |
| 967 | } |
| 968 | } |
| 969 | #endif |
| 970 | } |
| 971 | else |
| 972 | { |
| 973 | second_actual = ROUND_TO_PAGE(hdr->second_size, page_mask); |
| 974 | |
| 975 | dprintf(INFO, "Loading boot image (%d): start\n", |
| 976 | kernel_actual + ramdisk_actual); |
| 977 | bs_set_timestamp(BS_KERNEL_LOAD_START); |
| 978 | |
| 979 | offset = page_size; |
| 980 | |
| 981 | /* Load kernel */ |
| 982 | if (mmc_read(ptn + offset, (void *)hdr->kernel_addr, kernel_actual)) { |
| 983 | dprintf(CRITICAL, "ERROR: Cannot read kernel image\n"); |
| 984 | return -1; |
| 985 | } |
| 986 | offset += kernel_actual; |
| 987 | |
| 988 | /* Load ramdisk */ |
| 989 | if(ramdisk_actual != 0) |
| 990 | { |
| 991 | if (mmc_read(ptn + offset, (void *)hdr->ramdisk_addr, ramdisk_actual)) { |
| 992 | dprintf(CRITICAL, "ERROR: Cannot read ramdisk image\n"); |
| 993 | return -1; |
| 994 | } |
| 995 | } |
| 996 | offset += ramdisk_actual; |
| 997 | |
| 998 | dprintf(INFO, "Loading boot image (%d): done\n", |
| 999 | kernel_actual + ramdisk_actual); |
| 1000 | bs_set_timestamp(BS_KERNEL_LOAD_DONE); |
| 1001 | |
| 1002 | if(hdr->second_size != 0) { |
| 1003 | offset += second_actual; |
| 1004 | /* Second image loading not implemented. */ |
| 1005 | ASSERT(0); |
| 1006 | } |
| 1007 | |
| 1008 | #if DEVICE_TREE |
| 1009 | if(hdr->dt_size != 0) { |
| 1010 | /* Read the first page of device tree table into buffer */ |
| 1011 | if(mmc_read(ptn + offset,(unsigned int *) dt_buf, page_size)) { |
| 1012 | dprintf(CRITICAL, "ERROR: Cannot read the Device Tree Table\n"); |
| 1013 | return -1; |
| 1014 | } |
| 1015 | table = (struct dt_table*) dt_buf; |
| 1016 | |
| 1017 | if (dev_tree_validate(table, hdr->page_size, &dt_hdr_size) != 0) { |
| 1018 | dprintf(CRITICAL, "ERROR: Cannot validate Device Tree Table \n"); |
| 1019 | return -1; |
| 1020 | } |
| 1021 | |
| 1022 | table = (struct dt_table*) memalign(CACHE_LINE, dt_hdr_size); |
| 1023 | if (!table) |
| 1024 | return -1; |
| 1025 | |
| 1026 | /* Read the entire device tree table into buffer */ |
| 1027 | if(mmc_read(ptn + offset,(unsigned int *) table, dt_hdr_size)) { |
| 1028 | dprintf(CRITICAL, "ERROR: Cannot read the Device Tree Table\n"); |
| 1029 | return -1; |
| 1030 | } |
| 1031 | |
| 1032 | /* Find index of device tree within device tree table */ |
| 1033 | if(dev_tree_get_entry_info(table, &dt_entry) != 0){ |
| 1034 | dprintf(CRITICAL, "ERROR: Getting device tree address failed\n"); |
| 1035 | return -1; |
| 1036 | } |
| 1037 | |
| 1038 | /* Validate and Read device device tree in the "tags_add */ |
| 1039 | if (check_aboot_addr_range_overlap(hdr->tags_addr, dt_entry.size)) |
| 1040 | { |
| 1041 | dprintf(CRITICAL, "Device tree addresses overlap with aboot addresses.\n"); |
| 1042 | return -1; |
| 1043 | } |
| 1044 | |
| 1045 | if(mmc_read(ptn + offset + dt_entry.offset, |
| 1046 | (void *)hdr->tags_addr, dt_entry.size)) { |
| 1047 | dprintf(CRITICAL, "ERROR: Cannot read device tree\n"); |
| 1048 | return -1; |
| 1049 | } |
| 1050 | #ifdef TZ_SAVE_KERNEL_HASH |
| 1051 | aboot_save_boot_hash_mmc(hdr->kernel_addr, kernel_actual, |
| 1052 | hdr->ramdisk_addr, ramdisk_actual, |
| 1053 | ptn, offset, hdr->dt_size); |
| 1054 | #endif /* TZ_SAVE_KERNEL_HASH */ |
| 1055 | |
| 1056 | } else { |
| 1057 | |
| 1058 | /* Validate the tags_addr */ |
| 1059 | if (check_aboot_addr_range_overlap(hdr->tags_addr, kernel_actual)) |
| 1060 | { |
| 1061 | dprintf(CRITICAL, "Device tree addresses overlap with aboot addresses.\n"); |
| 1062 | return -1; |
| 1063 | } |
| 1064 | /* |
| 1065 | * If appended dev tree is found, update the atags with |
| 1066 | * memory address to the DTB appended location on RAM. |
| 1067 | * Else update with the atags address in the kernel header |
| 1068 | */ |
| 1069 | void *dtb; |
| 1070 | dtb = dev_tree_appended((void*) hdr->kernel_addr, |
| 1071 | kernel_actual, |
| 1072 | (void *)hdr->tags_addr); |
| 1073 | if (!dtb) { |
| 1074 | dprintf(CRITICAL, "ERROR: Appended Device Tree Blob not found\n"); |
| 1075 | return -1; |
| 1076 | } |
| 1077 | } |
| 1078 | #endif |
| 1079 | } |
| 1080 | |
| 1081 | if (boot_into_recovery && !device.is_unlocked && !device.is_tampered) |
| 1082 | target_load_ssd_keystore(); |
| 1083 | |
| 1084 | unified_boot: |
| 1085 | |
| 1086 | boot_linux((void *)hdr->kernel_addr, (void *)hdr->tags_addr, |
| 1087 | (const char *)hdr->cmdline, board_machtype(), |
| 1088 | (void *)hdr->ramdisk_addr, hdr->ramdisk_size); |
| 1089 | |
| 1090 | return 0; |
| 1091 | } |
| 1092 | |
| 1093 | int boot_linux_from_flash(void) |
| 1094 | { |
| 1095 | struct boot_img_hdr *hdr = (void*) buf; |
| 1096 | struct ptentry *ptn; |
| 1097 | struct ptable *ptable; |
| 1098 | unsigned offset = 0; |
| 1099 | |
| 1100 | unsigned char *image_addr = 0; |
| 1101 | unsigned kernel_actual; |
| 1102 | unsigned ramdisk_actual; |
| 1103 | unsigned imagesize_actual; |
| 1104 | unsigned second_actual; |
| 1105 | |
| 1106 | #if DEVICE_TREE |
| 1107 | struct dt_table *table; |
| 1108 | struct dt_entry dt_entry; |
| 1109 | uint32_t dt_actual; |
| 1110 | uint32_t dt_hdr_size; |
| 1111 | #endif |
| 1112 | |
| 1113 | if (target_is_emmc_boot()) { |
| 1114 | hdr = (struct boot_img_hdr *)EMMC_BOOT_IMG_HEADER_ADDR; |
| 1115 | if (memcmp(hdr->magic, BOOT_MAGIC, BOOT_MAGIC_SIZE)) { |
| 1116 | dprintf(CRITICAL, "ERROR: Invalid boot image header\n"); |
| 1117 | return -1; |
| 1118 | } |
| 1119 | goto continue_boot; |
| 1120 | } |
| 1121 | |
| 1122 | ptable = flash_get_ptable(); |
| 1123 | if (ptable == NULL) { |
| 1124 | dprintf(CRITICAL, "ERROR: Partition table not found\n"); |
| 1125 | return -1; |
| 1126 | } |
| 1127 | |
| 1128 | if(!boot_into_recovery) |
| 1129 | { |
| 1130 | ptn = ptable_find(ptable, "boot"); |
| 1131 | |
| 1132 | if (ptn == NULL) { |
| 1133 | dprintf(CRITICAL, "ERROR: No boot partition found\n"); |
| 1134 | return -1; |
| 1135 | } |
| 1136 | } |
| 1137 | else |
| 1138 | { |
| 1139 | ptn = ptable_find(ptable, "recovery"); |
| 1140 | if (ptn == NULL) { |
| 1141 | dprintf(CRITICAL, "ERROR: No recovery partition found\n"); |
| 1142 | return -1; |
| 1143 | } |
| 1144 | } |
| 1145 | |
| 1146 | if (flash_read(ptn, offset, buf, page_size)) { |
| 1147 | dprintf(CRITICAL, "ERROR: Cannot read boot image header\n"); |
| 1148 | return -1; |
| 1149 | } |
| 1150 | |
| 1151 | if (memcmp(hdr->magic, BOOT_MAGIC, BOOT_MAGIC_SIZE)) { |
| 1152 | dprintf(CRITICAL, "ERROR: Invalid boot image header\n"); |
| 1153 | return -1; |
| 1154 | } |
| 1155 | |
| 1156 | if (hdr->page_size != page_size) { |
| 1157 | dprintf(CRITICAL, "ERROR: Invalid boot image pagesize. Device pagesize: %d, Image pagesize: %d\n",page_size,hdr->page_size); |
| 1158 | return -1; |
| 1159 | } |
| 1160 | |
| 1161 | /* |
| 1162 | * Update the kernel/ramdisk/tags address if the boot image header |
| 1163 | * has default values, these default values come from mkbootimg when |
| 1164 | * the boot image is flashed using fastboot flash:raw |
| 1165 | */ |
| 1166 | update_ker_tags_rdisk_addr(hdr, false); |
| 1167 | |
| 1168 | /* Get virtual addresses since the hdr saves physical addresses. */ |
| 1169 | hdr->kernel_addr = VA((addr_t)(hdr->kernel_addr)); |
| 1170 | hdr->ramdisk_addr = VA((addr_t)(hdr->ramdisk_addr)); |
| 1171 | hdr->tags_addr = VA((addr_t)(hdr->tags_addr)); |
| 1172 | |
| 1173 | kernel_actual = ROUND_TO_PAGE(hdr->kernel_size, page_mask); |
| 1174 | ramdisk_actual = ROUND_TO_PAGE(hdr->ramdisk_size, page_mask); |
| 1175 | |
| 1176 | /* Check if the addresses in the header are valid. */ |
| 1177 | if (check_aboot_addr_range_overlap(hdr->kernel_addr, kernel_actual) || |
| 1178 | check_aboot_addr_range_overlap(hdr->ramdisk_addr, ramdisk_actual)) |
| 1179 | { |
| 1180 | dprintf(CRITICAL, "kernel/ramdisk addresses overlap with aboot addresses.\n"); |
| 1181 | return -1; |
| 1182 | } |
| 1183 | |
| 1184 | #ifndef DEVICE_TREE |
| 1185 | if (check_aboot_addr_range_overlap(hdr->tags_addr, MAX_TAGS_SIZE)) |
| 1186 | { |
| 1187 | dprintf(CRITICAL, "Tags addresses overlap with aboot addresses.\n"); |
| 1188 | return -1; |
| 1189 | } |
| 1190 | #endif |
| 1191 | |
| 1192 | /* Authenticate Kernel */ |
| 1193 | if(target_use_signed_kernel() && (!device.is_unlocked)) |
| 1194 | { |
| 1195 | image_addr = (unsigned char *)target_get_scratch_address(); |
| 1196 | offset = 0; |
| 1197 | |
| 1198 | #if DEVICE_TREE |
| 1199 | dt_actual = ROUND_TO_PAGE(hdr->dt_size, page_mask); |
| 1200 | imagesize_actual = (page_size + kernel_actual + ramdisk_actual + dt_actual); |
| 1201 | |
| 1202 | if (check_aboot_addr_range_overlap(hdr->tags_addr, hdr->dt_size)) |
| 1203 | { |
| 1204 | dprintf(CRITICAL, "Device tree addresses overlap with aboot addresses.\n"); |
| 1205 | return -1; |
| 1206 | } |
| 1207 | #else |
| 1208 | imagesize_actual = (page_size + kernel_actual + ramdisk_actual); |
| 1209 | #endif |
| 1210 | |
| 1211 | dprintf(INFO, "Loading boot image (%d): start\n", imagesize_actual); |
| 1212 | bs_set_timestamp(BS_KERNEL_LOAD_START); |
| 1213 | |
| 1214 | /* Read image without signature */ |
| 1215 | if (flash_read(ptn, offset, (void *)image_addr, imagesize_actual)) |
| 1216 | { |
| 1217 | dprintf(CRITICAL, "ERROR: Cannot read boot image\n"); |
| 1218 | return -1; |
| 1219 | } |
| 1220 | |
| 1221 | dprintf(INFO, "Loading boot image (%d): done\n", imagesize_actual); |
| 1222 | bs_set_timestamp(BS_KERNEL_LOAD_DONE); |
| 1223 | |
| 1224 | offset = imagesize_actual; |
| 1225 | /* Read signature */ |
| 1226 | if (flash_read(ptn, offset, (void *)(image_addr + offset), page_size)) |
| 1227 | { |
| 1228 | dprintf(CRITICAL, "ERROR: Cannot read boot image signature\n"); |
| 1229 | return -1; |
| 1230 | } |
| 1231 | |
| 1232 | verify_signed_bootimg(image_addr, imagesize_actual); |
| 1233 | |
| 1234 | /* Move kernel and ramdisk to correct address */ |
| 1235 | memmove((void*) hdr->kernel_addr, (char *)(image_addr + page_size), hdr->kernel_size); |
| 1236 | memmove((void*) hdr->ramdisk_addr, (char *)(image_addr + page_size + kernel_actual), hdr->ramdisk_size); |
| 1237 | #if DEVICE_TREE |
| 1238 | /* Validate and Read device device tree in the "tags_add */ |
| 1239 | if (check_aboot_addr_range_overlap(hdr->tags_addr, dt_entry.size)) |
| 1240 | { |
| 1241 | dprintf(CRITICAL, "Device tree addresses overlap with aboot addresses.\n"); |
| 1242 | return -1; |
| 1243 | } |
| 1244 | |
| 1245 | memmove((void*) hdr->tags_addr, (char *)(image_addr + page_size + kernel_actual + ramdisk_actual), hdr->dt_size); |
| 1246 | #endif |
| 1247 | |
| 1248 | /* Make sure everything from scratch address is read before next step!*/ |
| 1249 | if(device.is_tampered) |
| 1250 | { |
| 1251 | write_device_info_flash(&device); |
| 1252 | } |
| 1253 | #if USE_PCOM_SECBOOT |
| 1254 | set_tamper_flag(device.is_tampered); |
| 1255 | #endif |
| 1256 | } |
| 1257 | else |
| 1258 | { |
| 1259 | offset = page_size; |
| 1260 | |
| 1261 | kernel_actual = ROUND_TO_PAGE(hdr->kernel_size, page_mask); |
| 1262 | ramdisk_actual = ROUND_TO_PAGE(hdr->ramdisk_size, page_mask); |
| 1263 | second_actual = ROUND_TO_PAGE(hdr->second_size, page_mask); |
| 1264 | |
| 1265 | dprintf(INFO, "Loading boot image (%d): start\n", |
| 1266 | kernel_actual + ramdisk_actual); |
| 1267 | bs_set_timestamp(BS_KERNEL_LOAD_START); |
| 1268 | |
| 1269 | if (flash_read(ptn, offset, (void *)hdr->kernel_addr, kernel_actual)) { |
| 1270 | dprintf(CRITICAL, "ERROR: Cannot read kernel image\n"); |
| 1271 | return -1; |
| 1272 | } |
| 1273 | offset += kernel_actual; |
| 1274 | |
| 1275 | if (flash_read(ptn, offset, (void *)hdr->ramdisk_addr, ramdisk_actual)) { |
| 1276 | dprintf(CRITICAL, "ERROR: Cannot read ramdisk image\n"); |
| 1277 | return -1; |
| 1278 | } |
| 1279 | offset += ramdisk_actual; |
| 1280 | |
| 1281 | dprintf(INFO, "Loading boot image (%d): done\n", |
| 1282 | kernel_actual + ramdisk_actual); |
| 1283 | bs_set_timestamp(BS_KERNEL_LOAD_DONE); |
| 1284 | |
| 1285 | if(hdr->second_size != 0) { |
| 1286 | offset += second_actual; |
| 1287 | /* Second image loading not implemented. */ |
| 1288 | ASSERT(0); |
| 1289 | } |
| 1290 | |
| 1291 | #if DEVICE_TREE |
| 1292 | if(hdr->dt_size != 0) { |
| 1293 | |
| 1294 | /* Read the device tree table into buffer */ |
| 1295 | if(flash_read(ptn, offset, (void *) dt_buf, page_size)) { |
| 1296 | dprintf(CRITICAL, "ERROR: Cannot read the Device Tree Table\n"); |
| 1297 | return -1; |
| 1298 | } |
| 1299 | |
| 1300 | table = (struct dt_table*) dt_buf; |
| 1301 | |
| 1302 | if (dev_tree_validate(table, hdr->page_size, &dt_hdr_size) != 0) { |
| 1303 | dprintf(CRITICAL, "ERROR: Cannot validate Device Tree Table \n"); |
| 1304 | return -1; |
| 1305 | } |
| 1306 | |
| 1307 | table = (struct dt_table*) memalign(CACHE_LINE, dt_hdr_size); |
| 1308 | if (!table) |
| 1309 | return -1; |
| 1310 | |
| 1311 | /* Read the entire device tree table into buffer */ |
| 1312 | if(flash_read(ptn, offset, (void *)table, dt_hdr_size)) { |
| 1313 | dprintf(CRITICAL, "ERROR: Cannot read the Device Tree Table\n"); |
| 1314 | return -1; |
| 1315 | } |
| 1316 | |
| 1317 | |
| 1318 | /* Find index of device tree within device tree table */ |
| 1319 | if(dev_tree_get_entry_info(table, &dt_entry) != 0){ |
| 1320 | dprintf(CRITICAL, "ERROR: Getting device tree address failed\n"); |
| 1321 | return -1; |
| 1322 | } |
| 1323 | |
| 1324 | /* Validate and Read device device tree in the "tags_add */ |
| 1325 | if (check_aboot_addr_range_overlap(hdr->tags_addr, dt_entry.size)) |
| 1326 | { |
| 1327 | dprintf(CRITICAL, "Device tree addresses overlap with aboot addresses.\n"); |
| 1328 | return -1; |
| 1329 | } |
| 1330 | |
| 1331 | /* Read device device tree in the "tags_add */ |
| 1332 | if(flash_read(ptn, offset + dt_entry.offset, |
| 1333 | (void *)hdr->tags_addr, dt_entry.size)) { |
| 1334 | dprintf(CRITICAL, "ERROR: Cannot read device tree\n"); |
| 1335 | return -1; |
| 1336 | } |
| 1337 | } |
| 1338 | #endif |
| 1339 | |
| 1340 | } |
| 1341 | continue_boot: |
| 1342 | |
| 1343 | /* TODO: create/pass atags to kernel */ |
| 1344 | |
| 1345 | boot_linux((void *)hdr->kernel_addr, (void *)hdr->tags_addr, |
| 1346 | (const char *)hdr->cmdline, board_machtype(), |
| 1347 | (void *)hdr->ramdisk_addr, hdr->ramdisk_size); |
| 1348 | |
| 1349 | return 0; |
| 1350 | } |
| 1351 | |
| 1352 | BUF_DMA_ALIGN(info_buf, BOOT_IMG_MAX_PAGE_SIZE); |
| 1353 | void write_device_info_mmc(device_info *dev) |
| 1354 | { |
| 1355 | struct device_info *info = (void*) info_buf; |
| 1356 | unsigned long long ptn = 0; |
| 1357 | unsigned long long size; |
| 1358 | int index = INVALID_PTN; |
| 1359 | uint32_t blocksize; |
| 1360 | uint8_t lun = 0; |
| 1361 | |
| 1362 | index = partition_get_index("aboot"); |
| 1363 | ptn = partition_get_offset(index); |
| 1364 | if(ptn == 0) |
| 1365 | { |
| 1366 | return; |
| 1367 | } |
| 1368 | |
| 1369 | lun = partition_get_lun(index); |
| 1370 | mmc_set_lun(lun); |
| 1371 | |
| 1372 | size = partition_get_size(index); |
| 1373 | |
| 1374 | memcpy(info, dev, sizeof(device_info)); |
| 1375 | |
| 1376 | blocksize = mmc_get_device_blocksize(); |
| 1377 | |
| 1378 | if(mmc_write((ptn + size - blocksize), blocksize, (void *)info_buf)) |
| 1379 | { |
| 1380 | dprintf(CRITICAL, "ERROR: Cannot write device info\n"); |
| 1381 | return; |
| 1382 | } |
| 1383 | } |
| 1384 | |
| 1385 | void read_device_info_mmc(device_info *dev) |
| 1386 | { |
| 1387 | struct device_info *info = (void*) info_buf; |
| 1388 | unsigned long long ptn = 0; |
| 1389 | unsigned long long size; |
| 1390 | int index = INVALID_PTN; |
| 1391 | uint32_t blocksize; |
| 1392 | |
| 1393 | index = partition_get_index("aboot"); |
| 1394 | ptn = partition_get_offset(index); |
| 1395 | if(ptn == 0) |
| 1396 | { |
| 1397 | return; |
| 1398 | } |
| 1399 | |
| 1400 | size = partition_get_size(index); |
| 1401 | |
| 1402 | blocksize = mmc_get_device_blocksize(); |
| 1403 | |
| 1404 | if(mmc_read((ptn + size - blocksize), (void *)info_buf, blocksize)) |
| 1405 | { |
| 1406 | dprintf(CRITICAL, "ERROR: Cannot read device info\n"); |
| 1407 | return; |
| 1408 | } |
| 1409 | |
| 1410 | if (memcmp(info->magic, DEVICE_MAGIC, DEVICE_MAGIC_SIZE)) |
| 1411 | { |
| 1412 | memcpy(info->magic, DEVICE_MAGIC, DEVICE_MAGIC_SIZE); |
| 1413 | info->is_unlocked = 0; |
| 1414 | info->is_tampered = 0; |
| 1415 | info->charger_screen_enabled = 0; |
| 1416 | |
| 1417 | write_device_info_mmc(info); |
| 1418 | } |
| 1419 | memcpy(dev, info, sizeof(device_info)); |
| 1420 | } |
| 1421 | |
| 1422 | void write_device_info_flash(device_info *dev) |
| 1423 | { |
| 1424 | struct device_info *info = (void *) info_buf; |
| 1425 | struct ptentry *ptn; |
| 1426 | struct ptable *ptable; |
| 1427 | |
| 1428 | ptable = flash_get_ptable(); |
| 1429 | if (ptable == NULL) |
| 1430 | { |
| 1431 | dprintf(CRITICAL, "ERROR: Partition table not found\n"); |
| 1432 | return; |
| 1433 | } |
| 1434 | |
| 1435 | ptn = ptable_find(ptable, "devinfo"); |
| 1436 | if (ptn == NULL) |
| 1437 | { |
| 1438 | dprintf(CRITICAL, "ERROR: No boot partition found\n"); |
| 1439 | return; |
| 1440 | } |
| 1441 | |
| 1442 | memcpy(info, dev, sizeof(device_info)); |
| 1443 | |
| 1444 | if (flash_write(ptn, 0, (void *)info_buf, page_size)) |
| 1445 | { |
| 1446 | dprintf(CRITICAL, "ERROR: Cannot write device info\n"); |
| 1447 | return; |
| 1448 | } |
| 1449 | } |
| 1450 | |
| 1451 | void read_device_info_flash(device_info *dev) |
| 1452 | { |
| 1453 | struct device_info *info = (void*) info_buf; |
| 1454 | struct ptentry *ptn; |
| 1455 | struct ptable *ptable; |
| 1456 | |
| 1457 | ptable = flash_get_ptable(); |
| 1458 | if (ptable == NULL) |
| 1459 | { |
| 1460 | dprintf(CRITICAL, "ERROR: Partition table not found\n"); |
| 1461 | return; |
| 1462 | } |
| 1463 | |
| 1464 | ptn = ptable_find(ptable, "devinfo"); |
| 1465 | if (ptn == NULL) |
| 1466 | { |
| 1467 | dprintf(CRITICAL, "ERROR: No boot partition found\n"); |
| 1468 | return; |
| 1469 | } |
| 1470 | |
| 1471 | if (flash_read(ptn, 0, (void *)info_buf, page_size)) |
| 1472 | { |
| 1473 | dprintf(CRITICAL, "ERROR: Cannot write device info\n"); |
| 1474 | return; |
| 1475 | } |
| 1476 | |
| 1477 | if (memcmp(info->magic, DEVICE_MAGIC, DEVICE_MAGIC_SIZE)) |
| 1478 | { |
| 1479 | memcpy(info->magic, DEVICE_MAGIC, DEVICE_MAGIC_SIZE); |
| 1480 | info->is_unlocked = 0; |
| 1481 | info->is_tampered = 0; |
| 1482 | write_device_info_flash(info); |
| 1483 | } |
| 1484 | memcpy(dev, info, sizeof(device_info)); |
| 1485 | } |
| 1486 | |
| 1487 | void write_device_info(device_info *dev) |
| 1488 | { |
| 1489 | if(target_is_emmc_boot()) |
| 1490 | { |
| 1491 | write_device_info_mmc(dev); |
| 1492 | } |
| 1493 | else |
| 1494 | { |
| 1495 | write_device_info_flash(dev); |
| 1496 | } |
| 1497 | } |
| 1498 | |
| 1499 | void read_device_info(device_info *dev) |
| 1500 | { |
| 1501 | if(target_is_emmc_boot()) |
| 1502 | { |
| 1503 | read_device_info_mmc(dev); |
| 1504 | } |
| 1505 | else |
| 1506 | { |
| 1507 | read_device_info_flash(dev); |
| 1508 | } |
| 1509 | } |
| 1510 | |
| 1511 | void reset_device_info() |
| 1512 | { |
| 1513 | dprintf(ALWAYS, "reset_device_info called."); |
| 1514 | device.is_tampered = 0; |
| 1515 | write_device_info(&device); |
| 1516 | } |
| 1517 | |
| 1518 | void set_device_root() |
| 1519 | { |
| 1520 | dprintf(ALWAYS, "set_device_root called."); |
| 1521 | device.is_tampered = 1; |
| 1522 | write_device_info(&device); |
| 1523 | } |
| 1524 | |
| 1525 | #if DEVICE_TREE |
| 1526 | int copy_dtb(uint8_t *boot_image_start) |
| 1527 | { |
| 1528 | uint32 dt_image_offset = 0; |
| 1529 | uint32_t n; |
| 1530 | struct dt_table *table; |
| 1531 | struct dt_entry dt_entry; |
| 1532 | uint32_t dt_hdr_size; |
| 1533 | |
| 1534 | struct boot_img_hdr *hdr = (struct boot_img_hdr *) (boot_image_start); |
| 1535 | |
| 1536 | if(hdr->dt_size != 0) { |
| 1537 | |
| 1538 | /* add kernel offset */ |
| 1539 | dt_image_offset += page_size; |
| 1540 | n = ROUND_TO_PAGE(hdr->kernel_size, page_mask); |
| 1541 | dt_image_offset += n; |
| 1542 | |
| 1543 | /* add ramdisk offset */ |
| 1544 | n = ROUND_TO_PAGE(hdr->ramdisk_size, page_mask); |
| 1545 | dt_image_offset += n; |
| 1546 | |
| 1547 | /* add second offset */ |
| 1548 | if(hdr->second_size != 0) { |
| 1549 | n = ROUND_TO_PAGE(hdr->second_size, page_mask); |
| 1550 | dt_image_offset += n; |
| 1551 | } |
| 1552 | |
| 1553 | /* offset now point to start of dt.img */ |
| 1554 | table = (struct dt_table*)(boot_image_start + dt_image_offset); |
| 1555 | |
| 1556 | if (dev_tree_validate(table, hdr->page_size, &dt_hdr_size) != 0) { |
| 1557 | dprintf(CRITICAL, "ERROR: Cannot validate Device Tree Table \n"); |
| 1558 | return -1; |
| 1559 | } |
| 1560 | /* Find index of device tree within device tree table */ |
| 1561 | if(dev_tree_get_entry_info(table, &dt_entry) != 0){ |
| 1562 | dprintf(CRITICAL, "ERROR: Getting device tree address failed\n"); |
| 1563 | return -1; |
| 1564 | } |
| 1565 | |
| 1566 | /* Validate and Read device device tree in the "tags_add */ |
| 1567 | if (check_aboot_addr_range_overlap(hdr->tags_addr, dt_entry.size)) |
| 1568 | { |
| 1569 | dprintf(CRITICAL, "Device tree addresses overlap with aboot addresses.\n"); |
| 1570 | return -1; |
| 1571 | } |
| 1572 | |
| 1573 | /* Read device device tree in the "tags_add */ |
| 1574 | memmove((void*) hdr->tags_addr, |
| 1575 | boot_image_start + dt_image_offset + dt_entry.offset, |
| 1576 | dt_entry.size); |
| 1577 | } else |
| 1578 | return -1; |
| 1579 | |
| 1580 | /* Everything looks fine. Return success. */ |
| 1581 | return 0; |
| 1582 | } |
| 1583 | #endif |
| 1584 | |
| 1585 | void cmd_boot(const char *arg, void *data, unsigned sz) |
| 1586 | { |
| 1587 | unsigned kernel_actual; |
| 1588 | unsigned ramdisk_actual; |
| 1589 | uint32_t image_actual; |
| 1590 | uint32_t dt_actual = 0; |
| 1591 | uint32_t sig_actual = SIGNATURE_SIZE; |
| 1592 | struct boot_img_hdr *hdr; |
| 1593 | struct kernel64_hdr *kptr; |
| 1594 | char *ptr = ((char*) data); |
| 1595 | int ret = 0; |
| 1596 | uint8_t dtb_copied = 0; |
| 1597 | |
| 1598 | if (sz < sizeof(hdr)) { |
| 1599 | fastboot_fail("invalid bootimage header"); |
| 1600 | return; |
| 1601 | } |
| 1602 | |
| 1603 | hdr = (struct boot_img_hdr *)data; |
| 1604 | |
| 1605 | /* ensure commandline is terminated */ |
| 1606 | hdr->cmdline[BOOT_ARGS_SIZE-1] = 0; |
| 1607 | |
| 1608 | if(target_is_emmc_boot() && hdr->page_size) { |
| 1609 | page_size = hdr->page_size; |
| 1610 | page_mask = page_size - 1; |
| 1611 | } |
| 1612 | |
| 1613 | kernel_actual = ROUND_TO_PAGE(hdr->kernel_size, page_mask); |
| 1614 | ramdisk_actual = ROUND_TO_PAGE(hdr->ramdisk_size, page_mask); |
| 1615 | #if DEVICE_TREE |
| 1616 | dt_actual = ROUND_TO_PAGE(hdr->dt_size, page_mask); |
| 1617 | #endif |
| 1618 | |
| 1619 | image_actual = ADD_OF(page_size, kernel_actual); |
| 1620 | image_actual = ADD_OF(image_actual, ramdisk_actual); |
| 1621 | image_actual = ADD_OF(image_actual, dt_actual); |
| 1622 | |
| 1623 | if (target_use_signed_kernel() && (!device.is_unlocked)) |
| 1624 | image_actual = ADD_OF(image_actual, sig_actual); |
| 1625 | |
| 1626 | /* sz should have atleast raw boot image */ |
| 1627 | if (image_actual > sz) { |
| 1628 | fastboot_fail("bootimage: incomplete or not signed"); |
| 1629 | return; |
| 1630 | } |
| 1631 | |
| 1632 | /* Verify the boot image |
| 1633 | * device & page_size are initialized in aboot_init |
| 1634 | */ |
| 1635 | if (target_use_signed_kernel() && (!device.is_unlocked)) |
| 1636 | /* Pass size excluding signature size, otherwise we would try to |
| 1637 | * access signature beyond its length |
| 1638 | */ |
| 1639 | verify_signed_bootimg((uint32_t)data, (image_actual - sig_actual)); |
| 1640 | |
| 1641 | /* |
| 1642 | * Update the kernel/ramdisk/tags address if the boot image header |
| 1643 | * has default values, these default values come from mkbootimg when |
| 1644 | * the boot image is flashed using fastboot flash:raw |
| 1645 | */ |
| 1646 | kptr = (struct kernel64_hdr*)((char*) data + page_size); |
| 1647 | update_ker_tags_rdisk_addr(hdr, IS_ARM64(kptr)); |
| 1648 | |
| 1649 | /* Get virtual addresses since the hdr saves physical addresses. */ |
| 1650 | hdr->kernel_addr = VA(hdr->kernel_addr); |
| 1651 | hdr->ramdisk_addr = VA(hdr->ramdisk_addr); |
| 1652 | hdr->tags_addr = VA(hdr->tags_addr); |
| 1653 | |
| 1654 | /* Check if the addresses in the header are valid. */ |
| 1655 | if (check_aboot_addr_range_overlap(hdr->kernel_addr, kernel_actual) || |
| 1656 | check_aboot_addr_range_overlap(hdr->ramdisk_addr, ramdisk_actual)) |
| 1657 | { |
| 1658 | dprintf(CRITICAL, "kernel/ramdisk addresses overlap with aboot addresses.\n"); |
| 1659 | return; |
| 1660 | } |
| 1661 | |
| 1662 | #if DEVICE_TREE |
| 1663 | /* find correct dtb and copy it to right location */ |
| 1664 | ret = copy_dtb(data); |
| 1665 | |
| 1666 | dtb_copied = !ret ? 1 : 0; |
| 1667 | #else |
| 1668 | if (check_aboot_addr_range_overlap(hdr->tags_addr, MAX_TAGS_SIZE)) |
| 1669 | { |
| 1670 | dprintf(CRITICAL, "Tags addresses overlap with aboot addresses.\n"); |
| 1671 | return; |
| 1672 | } |
| 1673 | #endif |
| 1674 | |
| 1675 | /* Load ramdisk & kernel */ |
| 1676 | memmove((void*) hdr->ramdisk_addr, ptr + page_size + kernel_actual, hdr->ramdisk_size); |
| 1677 | memmove((void*) hdr->kernel_addr, ptr + page_size, hdr->kernel_size); |
| 1678 | |
| 1679 | #if DEVICE_TREE |
| 1680 | /* |
| 1681 | * If dtb is not found look for appended DTB in the kernel. |
| 1682 | * If appended dev tree is found, update the atags with |
| 1683 | * memory address to the DTB appended location on RAM. |
| 1684 | * Else update with the atags address in the kernel header |
| 1685 | */ |
| 1686 | if (!dtb_copied) { |
| 1687 | void *dtb; |
| 1688 | dtb = dev_tree_appended((void *)hdr->kernel_addr, hdr->kernel_size, |
| 1689 | (void *)hdr->tags_addr); |
| 1690 | if (!dtb) { |
| 1691 | fastboot_fail("dtb not found"); |
| 1692 | return; |
| 1693 | } |
| 1694 | } |
| 1695 | #endif |
| 1696 | |
| 1697 | #ifndef DEVICE_TREE |
| 1698 | if (check_aboot_addr_range_overlap(hdr->tags_addr, MAX_TAGS_SIZE)) |
| 1699 | { |
| 1700 | dprintf(CRITICAL, "Tags addresses overlap with aboot addresses.\n"); |
| 1701 | return; |
| 1702 | } |
| 1703 | #endif |
| 1704 | |
| 1705 | fastboot_okay(""); |
| 1706 | fastboot_stop(); |
| 1707 | |
| 1708 | boot_linux((void*) hdr->kernel_addr, (void*) hdr->tags_addr, |
| 1709 | (const char*) hdr->cmdline, board_machtype(), |
| 1710 | (void*) hdr->ramdisk_addr, hdr->ramdisk_size); |
| 1711 | } |
| 1712 | |
| 1713 | void cmd_erase(const char *arg, void *data, unsigned sz) |
| 1714 | { |
| 1715 | struct ptentry *ptn; |
| 1716 | struct ptable *ptable; |
| 1717 | |
| 1718 | ptable = flash_get_ptable(); |
| 1719 | if (ptable == NULL) { |
| 1720 | fastboot_fail("partition table doesn't exist"); |
| 1721 | return; |
| 1722 | } |
| 1723 | |
| 1724 | ptn = ptable_find(ptable, arg); |
| 1725 | if (ptn == NULL) { |
| 1726 | fastboot_fail("unknown partition name"); |
| 1727 | return; |
| 1728 | } |
| 1729 | |
| 1730 | if (flash_erase(ptn)) { |
| 1731 | fastboot_fail("failed to erase partition"); |
| 1732 | return; |
| 1733 | } |
| 1734 | fastboot_okay(""); |
| 1735 | } |
| 1736 | |
| 1737 | |
| 1738 | void cmd_erase_mmc(const char *arg, void *data, unsigned sz) |
| 1739 | { |
| 1740 | BUF_DMA_ALIGN(out, DEFAULT_ERASE_SIZE); |
| 1741 | unsigned long long ptn = 0; |
| 1742 | unsigned long long size = 0; |
| 1743 | int index = INVALID_PTN; |
| 1744 | uint8_t lun = 0; |
| 1745 | |
| 1746 | index = partition_get_index(arg); |
| 1747 | ptn = partition_get_offset(index); |
| 1748 | size = partition_get_size(index); |
| 1749 | |
| 1750 | if(ptn == 0) { |
| 1751 | fastboot_fail("Partition table doesn't exist\n"); |
| 1752 | return; |
| 1753 | } |
| 1754 | |
| 1755 | lun = partition_get_lun(index); |
| 1756 | mmc_set_lun(lun); |
| 1757 | |
| 1758 | #if MMC_SDHCI_SUPPORT |
| 1759 | if (mmc_erase_card(ptn, size)) { |
| 1760 | fastboot_fail("failed to erase partition\n"); |
| 1761 | return; |
| 1762 | } |
| 1763 | #else |
| 1764 | size = partition_get_size(index); |
| 1765 | if (size > DEFAULT_ERASE_SIZE) |
| 1766 | size = DEFAULT_ERASE_SIZE; |
| 1767 | |
| 1768 | /* Simple inefficient version of erase. Just writing |
| 1769 | 0 in first several blocks */ |
| 1770 | if (mmc_write(ptn , size, (unsigned int *)out)) { |
| 1771 | fastboot_fail("failed to erase partition"); |
| 1772 | return; |
| 1773 | } |
| 1774 | #endif |
| 1775 | fastboot_okay(""); |
| 1776 | } |
| 1777 | |
| 1778 | |
| 1779 | void cmd_flash_mmc_img(const char *arg, void *data, unsigned sz) |
| 1780 | { |
| 1781 | unsigned long long ptn = 0; |
| 1782 | unsigned long long size = 0; |
| 1783 | int index = INVALID_PTN; |
| 1784 | char *token = NULL; |
| 1785 | char *pname = NULL; |
| 1786 | uint8_t lun = 0; |
| 1787 | bool lun_set = false; |
| 1788 | |
| 1789 | token = strtok(arg, ":"); |
| 1790 | pname = token; |
| 1791 | token = strtok(NULL, ":"); |
| 1792 | if(token) |
| 1793 | { |
| 1794 | lun = atoi(token); |
| 1795 | mmc_set_lun(lun); |
| 1796 | lun_set = true; |
| 1797 | } |
| 1798 | |
| 1799 | if (pname) |
| 1800 | { |
| 1801 | if (!strcmp(pname, "partition")) |
| 1802 | { |
| 1803 | dprintf(INFO, "Attempt to write partition image.\n"); |
| 1804 | if (write_partition(sz, (unsigned char *) data)) { |
| 1805 | fastboot_fail("failed to write partition"); |
| 1806 | return; |
| 1807 | } |
| 1808 | } |
| 1809 | else |
| 1810 | { |
| 1811 | index = partition_get_index(pname); |
| 1812 | ptn = partition_get_offset(index); |
| 1813 | if(ptn == 0) { |
| 1814 | fastboot_fail("partition table doesn't exist"); |
| 1815 | return; |
| 1816 | } |
| 1817 | |
| 1818 | if (!strcmp(pname, "boot") || !strcmp(pname, "recovery")) { |
| 1819 | if (memcmp((void *)data, BOOT_MAGIC, BOOT_MAGIC_SIZE)) { |
| 1820 | fastboot_fail("image is not a boot image"); |
| 1821 | return; |
| 1822 | } |
| 1823 | } |
| 1824 | |
| 1825 | if(!lun_set) |
| 1826 | { |
| 1827 | lun = partition_get_lun(index); |
| 1828 | mmc_set_lun(lun); |
| 1829 | } |
| 1830 | |
| 1831 | size = partition_get_size(index); |
| 1832 | if (ROUND_TO_PAGE(sz,511) > size) { |
| 1833 | fastboot_fail("size too large"); |
| 1834 | return; |
| 1835 | } |
| 1836 | else if (mmc_write(ptn , sz, (unsigned int *)data)) { |
| 1837 | fastboot_fail("flash write failure"); |
| 1838 | return; |
| 1839 | } |
| 1840 | } |
| 1841 | } |
| 1842 | fastboot_okay(""); |
| 1843 | return; |
| 1844 | } |
| 1845 | |
| 1846 | void cmd_flash_mmc_sparse_img(const char *arg, void *data, unsigned sz) |
| 1847 | { |
| 1848 | unsigned int chunk; |
| 1849 | unsigned int chunk_data_sz; |
| 1850 | uint32_t *fill_buf = NULL; |
| 1851 | uint32_t fill_val; |
| 1852 | uint32_t chunk_blk_cnt = 0; |
| 1853 | sparse_header_t *sparse_header; |
| 1854 | chunk_header_t *chunk_header; |
| 1855 | uint32_t total_blocks = 0; |
| 1856 | unsigned long long ptn = 0; |
| 1857 | unsigned long long size = 0; |
| 1858 | int index = INVALID_PTN; |
| 1859 | int i; |
| 1860 | uint8_t lun = 0; |
| 1861 | |
| 1862 | index = partition_get_index(arg); |
| 1863 | ptn = partition_get_offset(index); |
| 1864 | if(ptn == 0) { |
| 1865 | fastboot_fail("partition table doesn't exist"); |
| 1866 | return; |
| 1867 | } |
| 1868 | |
| 1869 | size = partition_get_size(index); |
| 1870 | if (ROUND_TO_PAGE(sz,511) > size) { |
| 1871 | fastboot_fail("size too large"); |
| 1872 | return; |
| 1873 | } |
| 1874 | |
| 1875 | lun = partition_get_lun(index); |
| 1876 | mmc_set_lun(lun); |
| 1877 | |
| 1878 | /* Read and skip over sparse image header */ |
| 1879 | sparse_header = (sparse_header_t *) data; |
| 1880 | if ((sparse_header->total_blks * sparse_header->blk_sz) > size) { |
| 1881 | fastboot_fail("size too large"); |
| 1882 | return; |
| 1883 | } |
| 1884 | |
| 1885 | data += sparse_header->file_hdr_sz; |
| 1886 | if(sparse_header->file_hdr_sz > sizeof(sparse_header_t)) |
| 1887 | { |
| 1888 | /* Skip the remaining bytes in a header that is longer than |
| 1889 | * we expected. |
| 1890 | */ |
| 1891 | data += (sparse_header->file_hdr_sz - sizeof(sparse_header_t)); |
| 1892 | } |
| 1893 | |
| 1894 | dprintf (SPEW, "=== Sparse Image Header ===\n"); |
| 1895 | dprintf (SPEW, "magic: 0x%x\n", sparse_header->magic); |
| 1896 | dprintf (SPEW, "major_version: 0x%x\n", sparse_header->major_version); |
| 1897 | dprintf (SPEW, "minor_version: 0x%x\n", sparse_header->minor_version); |
| 1898 | dprintf (SPEW, "file_hdr_sz: %d\n", sparse_header->file_hdr_sz); |
| 1899 | dprintf (SPEW, "chunk_hdr_sz: %d\n", sparse_header->chunk_hdr_sz); |
| 1900 | dprintf (SPEW, "blk_sz: %d\n", sparse_header->blk_sz); |
| 1901 | dprintf (SPEW, "total_blks: %d\n", sparse_header->total_blks); |
| 1902 | dprintf (SPEW, "total_chunks: %d\n", sparse_header->total_chunks); |
| 1903 | |
| 1904 | /* Start processing chunks */ |
| 1905 | for (chunk=0; chunk<sparse_header->total_chunks; chunk++) |
| 1906 | { |
| 1907 | /* Read and skip over chunk header */ |
| 1908 | chunk_header = (chunk_header_t *) data; |
| 1909 | data += sizeof(chunk_header_t); |
| 1910 | |
| 1911 | dprintf (SPEW, "=== Chunk Header ===\n"); |
| 1912 | dprintf (SPEW, "chunk_type: 0x%x\n", chunk_header->chunk_type); |
| 1913 | dprintf (SPEW, "chunk_data_sz: 0x%x\n", chunk_header->chunk_sz); |
| 1914 | dprintf (SPEW, "total_size: 0x%x\n", chunk_header->total_sz); |
| 1915 | |
| 1916 | if(sparse_header->chunk_hdr_sz > sizeof(chunk_header_t)) |
| 1917 | { |
| 1918 | /* Skip the remaining bytes in a header that is longer than |
| 1919 | * we expected. |
| 1920 | */ |
| 1921 | data += (sparse_header->chunk_hdr_sz - sizeof(chunk_header_t)); |
| 1922 | } |
| 1923 | |
| 1924 | chunk_data_sz = sparse_header->blk_sz * chunk_header->chunk_sz; |
| 1925 | switch (chunk_header->chunk_type) |
| 1926 | { |
| 1927 | case CHUNK_TYPE_RAW: |
| 1928 | if(chunk_header->total_sz != (sparse_header->chunk_hdr_sz + |
| 1929 | chunk_data_sz)) |
| 1930 | { |
| 1931 | fastboot_fail("Bogus chunk size for chunk type Raw"); |
| 1932 | return; |
| 1933 | } |
| 1934 | |
| 1935 | if(mmc_write(ptn + ((uint64_t)total_blocks*sparse_header->blk_sz), |
| 1936 | chunk_data_sz, |
| 1937 | (unsigned int*)data)) |
| 1938 | { |
| 1939 | fastboot_fail("flash write failure"); |
| 1940 | return; |
| 1941 | } |
| 1942 | total_blocks += chunk_header->chunk_sz; |
| 1943 | data += chunk_data_sz; |
| 1944 | break; |
| 1945 | |
| 1946 | case CHUNK_TYPE_FILL: |
| 1947 | if(chunk_header->total_sz != (sparse_header->chunk_hdr_sz + |
| 1948 | sizeof(uint32_t))) |
| 1949 | { |
| 1950 | fastboot_fail("Bogus chunk size for chunk type FILL"); |
| 1951 | return; |
| 1952 | } |
| 1953 | |
| 1954 | fill_buf = (uint32_t *)memalign(CACHE_LINE, ROUNDUP(sparse_header->blk_sz, CACHE_LINE)); |
| 1955 | if (!fill_buf) |
| 1956 | { |
| 1957 | fastboot_fail("Malloc failed for: CHUNK_TYPE_FILL"); |
| 1958 | return; |
| 1959 | } |
| 1960 | |
| 1961 | fill_val = *(uint32_t *)data; |
| 1962 | data = (char *) data + sizeof(uint32_t); |
| 1963 | chunk_blk_cnt = chunk_data_sz / sparse_header->blk_sz; |
| 1964 | |
| 1965 | for (i = 0; i < (sparse_header->blk_sz / sizeof(fill_val)); i++) |
| 1966 | { |
| 1967 | fill_buf[i] = fill_val; |
| 1968 | } |
| 1969 | |
| 1970 | for (i = 0; i < chunk_blk_cnt; i++) |
| 1971 | { |
| 1972 | if(mmc_write(ptn + ((uint64_t)total_blocks*sparse_header->blk_sz), |
| 1973 | sparse_header->blk_sz, |
| 1974 | fill_buf)) |
| 1975 | { |
| 1976 | fastboot_fail("flash write failure"); |
| 1977 | free(fill_buf); |
| 1978 | return; |
| 1979 | } |
| 1980 | |
| 1981 | total_blocks++; |
| 1982 | } |
| 1983 | |
| 1984 | free(fill_buf); |
| 1985 | break; |
| 1986 | |
| 1987 | case CHUNK_TYPE_DONT_CARE: |
| 1988 | total_blocks += chunk_header->chunk_sz; |
| 1989 | break; |
| 1990 | |
| 1991 | case CHUNK_TYPE_CRC: |
| 1992 | if(chunk_header->total_sz != sparse_header->chunk_hdr_sz) |
| 1993 | { |
| 1994 | fastboot_fail("Bogus chunk size for chunk type Dont Care"); |
| 1995 | return; |
| 1996 | } |
| 1997 | total_blocks += chunk_header->chunk_sz; |
| 1998 | data += chunk_data_sz; |
| 1999 | break; |
| 2000 | |
| 2001 | default: |
| 2002 | dprintf(CRITICAL, "Unkown chunk type: %x\n",chunk_header->chunk_type); |
| 2003 | fastboot_fail("Unknown chunk type"); |
| 2004 | return; |
| 2005 | } |
| 2006 | } |
| 2007 | |
| 2008 | dprintf(INFO, "Wrote %d blocks, expected to write %d blocks\n", |
| 2009 | total_blocks, sparse_header->total_blks); |
| 2010 | |
| 2011 | if(total_blocks != sparse_header->total_blks) |
| 2012 | { |
| 2013 | fastboot_fail("sparse image write failure"); |
| 2014 | } |
| 2015 | |
| 2016 | fastboot_okay(""); |
| 2017 | return; |
| 2018 | } |
| 2019 | |
| 2020 | void cmd_flash_mmc(const char *arg, void *data, unsigned sz) |
| 2021 | { |
| 2022 | sparse_header_t *sparse_header; |
| 2023 | /* 8 Byte Magic + 2048 Byte xml + Encrypted Data */ |
| 2024 | unsigned int *magic_number = (unsigned int *) data; |
| 2025 | |
| 2026 | #ifdef SSD_ENABLE |
| 2027 | int ret=0; |
| 2028 | uint32 major_version=0; |
| 2029 | uint32 minor_version=0; |
| 2030 | |
| 2031 | ret = scm_svc_version(&major_version,&minor_version); |
| 2032 | if(!ret) |
| 2033 | { |
| 2034 | if(major_version >= 2) |
| 2035 | { |
| 2036 | if( !strcmp(arg, "ssd") || !strcmp(arg, "tqs") ) |
| 2037 | { |
| 2038 | ret = encrypt_scm((uint32 **) &data, &sz); |
| 2039 | if (ret != 0) { |
| 2040 | dprintf(CRITICAL, "ERROR: Encryption Failure\n"); |
| 2041 | return; |
| 2042 | } |
| 2043 | |
| 2044 | /* Protect only for SSD */ |
| 2045 | if (!strcmp(arg, "ssd")) { |
| 2046 | ret = scm_protect_keystore((uint32 *) data, sz); |
| 2047 | if (ret != 0) { |
| 2048 | dprintf(CRITICAL, "ERROR: scm_protect_keystore Failed\n"); |
| 2049 | return; |
| 2050 | } |
| 2051 | } |
| 2052 | } |
| 2053 | else |
| 2054 | { |
| 2055 | ret = decrypt_scm_v2((uint32 **) &data, &sz); |
| 2056 | if(ret != 0) |
| 2057 | { |
| 2058 | dprintf(CRITICAL,"ERROR: Decryption Failure\n"); |
| 2059 | return; |
| 2060 | } |
| 2061 | } |
| 2062 | } |
| 2063 | else |
| 2064 | { |
| 2065 | if (magic_number[0] == DECRYPT_MAGIC_0 && |
| 2066 | magic_number[1] == DECRYPT_MAGIC_1) |
| 2067 | { |
| 2068 | ret = decrypt_scm((uint32 **) &data, &sz); |
| 2069 | if (ret != 0) { |
| 2070 | dprintf(CRITICAL, "ERROR: Invalid secure image\n"); |
| 2071 | return; |
| 2072 | } |
| 2073 | } |
| 2074 | else if (magic_number[0] == ENCRYPT_MAGIC_0 && |
| 2075 | magic_number[1] == ENCRYPT_MAGIC_1) |
| 2076 | { |
| 2077 | ret = encrypt_scm((uint32 **) &data, &sz); |
| 2078 | if (ret != 0) { |
| 2079 | dprintf(CRITICAL, "ERROR: Encryption Failure\n"); |
| 2080 | return; |
| 2081 | } |
| 2082 | } |
| 2083 | } |
| 2084 | } |
| 2085 | else |
| 2086 | { |
| 2087 | dprintf(CRITICAL,"INVALID SVC Version\n"); |
| 2088 | return; |
| 2089 | } |
| 2090 | #endif /* SSD_ENABLE */ |
| 2091 | |
| 2092 | sparse_header = (sparse_header_t *) data; |
| 2093 | if (sparse_header->magic != SPARSE_HEADER_MAGIC) |
| 2094 | cmd_flash_mmc_img(arg, data, sz); |
| 2095 | else |
| 2096 | cmd_flash_mmc_sparse_img(arg, data, sz); |
| 2097 | return; |
| 2098 | } |
| 2099 | |
| 2100 | void cmd_flash(const char *arg, void *data, unsigned sz) |
| 2101 | { |
| 2102 | struct ptentry *ptn; |
| 2103 | struct ptable *ptable; |
| 2104 | unsigned extra = 0; |
| 2105 | |
| 2106 | ptable = flash_get_ptable(); |
| 2107 | if (ptable == NULL) { |
| 2108 | fastboot_fail("partition table doesn't exist"); |
| 2109 | return; |
| 2110 | } |
| 2111 | |
| 2112 | ptn = ptable_find(ptable, arg); |
| 2113 | if (ptn == NULL) { |
| 2114 | fastboot_fail("unknown partition name"); |
| 2115 | return; |
| 2116 | } |
| 2117 | |
| 2118 | if (!strcmp(ptn->name, "boot") || !strcmp(ptn->name, "recovery")) { |
| 2119 | if (memcmp((void *)data, BOOT_MAGIC, BOOT_MAGIC_SIZE)) { |
| 2120 | fastboot_fail("image is not a boot image"); |
| 2121 | return; |
| 2122 | } |
| 2123 | } |
| 2124 | |
| 2125 | if (!strcmp(ptn->name, "system") |
| 2126 | || !strcmp(ptn->name, "userdata") |
| 2127 | || !strcmp(ptn->name, "persist") |
| 2128 | || !strcmp(ptn->name, "recoveryfs") |
| 2129 | || !strcmp(ptn->name, "modem")) |
| 2130 | { |
| 2131 | if (memcmp((void *)data, UBI_MAGIC, UBI_MAGIC_SIZE)) |
| 2132 | extra = 1; |
| 2133 | else |
| 2134 | extra = 0; |
| 2135 | } |
| 2136 | else |
| 2137 | sz = ROUND_TO_PAGE(sz, page_mask); |
| 2138 | |
| 2139 | dprintf(INFO, "writing %d bytes to '%s'\n", sz, ptn->name); |
| 2140 | if (flash_write(ptn, extra, data, sz)) { |
| 2141 | fastboot_fail("flash write failure"); |
| 2142 | return; |
| 2143 | } |
| 2144 | dprintf(INFO, "partition '%s' updated\n", ptn->name); |
| 2145 | fastboot_okay(""); |
| 2146 | } |
| 2147 | |
| 2148 | void cmd_continue(const char *arg, void *data, unsigned sz) |
| 2149 | { |
| 2150 | fastboot_okay(""); |
| 2151 | fastboot_stop(); |
| 2152 | if (target_is_emmc_boot()) |
| 2153 | { |
| 2154 | boot_linux_from_mmc(); |
| 2155 | } |
| 2156 | else |
| 2157 | { |
| 2158 | boot_linux_from_flash(); |
| 2159 | } |
| 2160 | } |
| 2161 | |
| 2162 | void cmd_reboot(const char *arg, void *data, unsigned sz) |
| 2163 | { |
| 2164 | dprintf(INFO, "rebooting the device\n"); |
| 2165 | fastboot_okay(""); |
| 2166 | reboot_device(0); |
| 2167 | } |
| 2168 | |
| 2169 | void cmd_reboot_bootloader(const char *arg, void *data, unsigned sz) |
| 2170 | { |
| 2171 | dprintf(INFO, "rebooting the device\n"); |
| 2172 | fastboot_okay(""); |
| 2173 | reboot_device(FASTBOOT_MODE); |
| 2174 | } |
| 2175 | |
| 2176 | void cmd_oem_enable_charger_screen(const char *arg, void *data, unsigned size) |
| 2177 | { |
| 2178 | dprintf(INFO, "Enabling charger screen check\n"); |
| 2179 | device.charger_screen_enabled = 1; |
| 2180 | write_device_info(&device); |
| 2181 | fastboot_okay(""); |
| 2182 | } |
| 2183 | |
| 2184 | void cmd_oem_disable_charger_screen(const char *arg, void *data, unsigned size) |
| 2185 | { |
| 2186 | dprintf(INFO, "Disabling charger screen check\n"); |
| 2187 | device.charger_screen_enabled = 0; |
| 2188 | write_device_info(&device); |
| 2189 | fastboot_okay(""); |
| 2190 | } |
| 2191 | |
| 2192 | void cmd_oem_select_display_panel(const char *arg, void *data, unsigned size) |
| 2193 | { |
| 2194 | dprintf(INFO, "Selecting display panel %s\n", arg); |
| 2195 | if (arg) |
| 2196 | strlcpy(device.display_panel, arg, |
| 2197 | sizeof(device.display_panel)); |
| 2198 | write_device_info(&device); |
| 2199 | fastboot_okay(""); |
| 2200 | } |
| 2201 | |
| 2202 | void cmd_oem_unlock(const char *arg, void *data, unsigned sz) |
| 2203 | { |
| 2204 | if(!device.is_unlocked) |
| 2205 | { |
| 2206 | device.is_unlocked = 1; |
| 2207 | write_device_info(&device); |
| 2208 | } |
| 2209 | fastboot_okay(""); |
| 2210 | } |
| 2211 | |
| 2212 | void cmd_oem_devinfo(const char *arg, void *data, unsigned sz) |
| 2213 | { |
| 2214 | char response[128]; |
| 2215 | snprintf(response, sizeof(response), "\tDevice tampered: %s", (device.is_tampered ? "true" : "false")); |
| 2216 | fastboot_info(response); |
| 2217 | snprintf(response, sizeof(response), "\tDevice unlocked: %s", (device.is_unlocked ? "true" : "false")); |
| 2218 | fastboot_info(response); |
| 2219 | snprintf(response, sizeof(response), "\tCharger screen enabled: %s", (device.charger_screen_enabled ? "true" : "false")); |
| 2220 | fastboot_info(response); |
| 2221 | snprintf(response, sizeof(response), "\tDisplay panel: %s", (device.display_panel)); |
| 2222 | fastboot_info(response); |
| 2223 | fastboot_okay(""); |
| 2224 | } |
| 2225 | |
| 2226 | void cmd_preflash(const char *arg, void *data, unsigned sz) |
| 2227 | { |
| 2228 | fastboot_okay(""); |
| 2229 | } |
| 2230 | |
| 2231 | static struct fbimage logo_header = {0}; |
| 2232 | struct fbimage* splash_screen_flash(); |
| 2233 | |
| 2234 | int splash_screen_check_header(struct fbimage *logo) |
| 2235 | { |
| 2236 | if (memcmp(logo->header.magic, LOGO_IMG_MAGIC, 8)) |
| 2237 | return -1; |
| 2238 | if (logo->header.width == 0 || logo->header.height == 0) |
| 2239 | return -1; |
| 2240 | return 0; |
| 2241 | } |
| 2242 | |
| 2243 | struct fbimage* splash_screen_flash() |
| 2244 | { |
| 2245 | struct ptentry *ptn; |
| 2246 | struct ptable *ptable; |
| 2247 | struct fbcon_config *fb_display = NULL; |
| 2248 | struct fbimage *logo = &logo_header; |
| 2249 | |
| 2250 | |
| 2251 | ptable = flash_get_ptable(); |
| 2252 | if (ptable == NULL) { |
| 2253 | dprintf(CRITICAL, "ERROR: Partition table not found\n"); |
| 2254 | return NULL; |
| 2255 | } |
| 2256 | ptn = ptable_find(ptable, "splash"); |
| 2257 | if (ptn == NULL) { |
| 2258 | dprintf(CRITICAL, "ERROR: splash Partition not found\n"); |
| 2259 | return NULL; |
| 2260 | } |
| 2261 | |
| 2262 | if (flash_read(ptn, 0,(unsigned int *) logo, sizeof(logo->header))) { |
| 2263 | dprintf(CRITICAL, "ERROR: Cannot read boot image header\n"); |
| 2264 | return NULL; |
| 2265 | } |
| 2266 | |
| 2267 | if (splash_screen_check_header(logo)) { |
| 2268 | dprintf(CRITICAL, "ERROR: Boot image header invalid\n"); |
| 2269 | return NULL; |
| 2270 | } |
| 2271 | |
| 2272 | fb_display = fbcon_display(); |
| 2273 | if (fb_display) { |
| 2274 | uint8_t *base = (uint8_t *) fb_display->base; |
| 2275 | if (logo->header.width != fb_display->width || logo->header.height != fb_display->height) { |
| 2276 | base += LOGO_IMG_OFFSET; |
| 2277 | } |
| 2278 | |
| 2279 | if (flash_read(ptn + sizeof(logo->header), 0, |
| 2280 | base, |
| 2281 | ((((logo->header.width * logo->header.height * fb_display->bpp/8) + 511) >> 9) << 9))) { |
| 2282 | fbcon_clear(); |
| 2283 | dprintf(CRITICAL, "ERROR: Cannot read splash image\n"); |
| 2284 | return NULL; |
| 2285 | } |
| 2286 | logo->image = base; |
| 2287 | } |
| 2288 | |
| 2289 | return logo; |
| 2290 | } |
| 2291 | |
| 2292 | struct fbimage* splash_screen_mmc() |
| 2293 | { |
| 2294 | int index = INVALID_PTN; |
| 2295 | unsigned long long ptn = 0; |
| 2296 | struct fbcon_config *fb_display = NULL; |
| 2297 | struct fbimage *logo = &logo_header; |
| 2298 | |
| 2299 | index = partition_get_index("splash"); |
| 2300 | if (index == 0) { |
| 2301 | dprintf(CRITICAL, "ERROR: splash Partition table not found\n"); |
| 2302 | return NULL; |
| 2303 | } |
| 2304 | |
| 2305 | ptn = partition_get_offset(index); |
| 2306 | if (ptn == 0) { |
| 2307 | dprintf(CRITICAL, "ERROR: splash Partition invalid\n"); |
| 2308 | return NULL; |
| 2309 | } |
| 2310 | |
| 2311 | if (mmc_read(ptn, (unsigned int *) logo, sizeof(logo->header))) { |
| 2312 | dprintf(CRITICAL, "ERROR: Cannot read splash image header\n"); |
| 2313 | return NULL; |
| 2314 | } |
| 2315 | |
| 2316 | if (splash_screen_check_header(logo)) { |
| 2317 | dprintf(CRITICAL, "ERROR: Splash image header invalid\n"); |
| 2318 | return NULL; |
| 2319 | } |
| 2320 | |
| 2321 | fb_display = fbcon_display(); |
| 2322 | if (fb_display) { |
| 2323 | uint8_t *base = (uint8_t *) fb_display->base; |
| 2324 | if (logo->header.width != fb_display->width || logo->header.height != fb_display->height) |
| 2325 | base += LOGO_IMG_OFFSET; |
| 2326 | |
| 2327 | if (mmc_read(ptn + sizeof(logo->header), |
| 2328 | base, |
| 2329 | ((((logo->header.width * logo->header.height * fb_display->bpp/8) + 511) >> 9) << 9))) { |
| 2330 | fbcon_clear(); |
| 2331 | dprintf(CRITICAL, "ERROR: Cannot read splash image\n"); |
| 2332 | return NULL; |
| 2333 | } |
| 2334 | |
| 2335 | logo->image = base; |
| 2336 | } |
| 2337 | |
| 2338 | return logo; |
| 2339 | } |
| 2340 | |
| 2341 | |
| 2342 | struct fbimage* fetch_image_from_partition() |
| 2343 | { |
| 2344 | if (target_is_emmc_boot()) { |
| 2345 | return splash_screen_mmc(); |
| 2346 | } else { |
| 2347 | return splash_screen_flash(); |
| 2348 | } |
| 2349 | } |
| 2350 | |
| 2351 | /* Get the size from partiton name */ |
| 2352 | static void get_partition_size(const char *arg, char *response) |
| 2353 | { |
| 2354 | uint64_t ptn = 0; |
| 2355 | uint64_t size; |
| 2356 | int index = INVALID_PTN; |
| 2357 | |
| 2358 | index = partition_get_index(arg); |
| 2359 | |
| 2360 | if (index == INVALID_PTN) |
| 2361 | { |
| 2362 | dprintf(CRITICAL, "Invalid partition index\n"); |
| 2363 | return; |
| 2364 | } |
| 2365 | |
| 2366 | ptn = partition_get_offset(index); |
| 2367 | |
| 2368 | if(!ptn) |
| 2369 | { |
| 2370 | dprintf(CRITICAL, "Invalid partition name %s\n", arg); |
| 2371 | return; |
| 2372 | } |
| 2373 | |
| 2374 | size = partition_get_size(index); |
| 2375 | |
| 2376 | snprintf(response, MAX_RSP_SIZE, "\t 0x%llx", size); |
| 2377 | return; |
| 2378 | } |
| 2379 | |
| 2380 | /* |
| 2381 | * Publish the partition type & size info |
| 2382 | * fastboot getvar will publish the required information. |
| 2383 | * fastboot getvar partition_size:<partition_name>: partition size in hex |
| 2384 | * fastboot getvar partition_type:<partition_name>: partition type (ext/fat) |
| 2385 | */ |
| 2386 | static void publish_getvar_partition_info(struct getvar_partition_info *info, uint8_t num_parts) |
| 2387 | { |
| 2388 | uint8_t i; |
| 2389 | |
| 2390 | for (i = 0; i < num_parts; i++) { |
| 2391 | get_partition_size(info[i].part_name, info[i].size_response); |
| 2392 | |
| 2393 | if (strlcat(info[i].getvar_size, info[i].part_name, MAX_GET_VAR_NAME_SIZE) >= MAX_GET_VAR_NAME_SIZE) |
| 2394 | { |
| 2395 | dprintf(CRITICAL, "partition size name truncated\n"); |
| 2396 | return; |
| 2397 | } |
| 2398 | if (strlcat(info[i].getvar_type, info[i].part_name, MAX_GET_VAR_NAME_SIZE) >= MAX_GET_VAR_NAME_SIZE) |
| 2399 | { |
| 2400 | dprintf(CRITICAL, "partition type name truncated\n"); |
| 2401 | return; |
| 2402 | } |
| 2403 | |
| 2404 | /* publish partition size & type info */ |
| 2405 | fastboot_publish((const char *) info[i].getvar_size, (const char *) info[i].size_response); |
| 2406 | fastboot_publish((const char *) info[i].getvar_type, (const char *) info[i].type_response); |
| 2407 | } |
| 2408 | } |
| 2409 | |
| 2410 | /* register commands and variables for fastboot */ |
| 2411 | void aboot_fastboot_register_commands(void) |
| 2412 | { |
| 2413 | if (target_is_emmc_boot()) |
| 2414 | { |
| 2415 | fastboot_register("flash:", cmd_flash_mmc); |
| 2416 | fastboot_register("erase:", cmd_erase_mmc); |
| 2417 | } |
| 2418 | else |
| 2419 | { |
| 2420 | fastboot_register("flash:", cmd_flash); |
| 2421 | fastboot_register("erase:", cmd_erase); |
| 2422 | } |
| 2423 | |
| 2424 | fastboot_register("boot", cmd_boot); |
| 2425 | fastboot_register("continue", cmd_continue); |
| 2426 | fastboot_register("reboot", cmd_reboot); |
| 2427 | fastboot_register("reboot-bootloader", cmd_reboot_bootloader); |
| 2428 | fastboot_register("oem unlock", cmd_oem_unlock); |
| 2429 | fastboot_register("oem device-info", cmd_oem_devinfo); |
| 2430 | fastboot_register("preflash", cmd_preflash); |
| 2431 | fastboot_register("oem enable-charger-screen", |
| 2432 | cmd_oem_enable_charger_screen); |
| 2433 | fastboot_register("oem disable-charger-screen", |
| 2434 | cmd_oem_disable_charger_screen); |
| 2435 | fastboot_register("oem select-display-panel", |
| 2436 | cmd_oem_select_display_panel); |
| 2437 | /* publish variables and their values */ |
| 2438 | fastboot_publish("product", TARGET(BOARD)); |
| 2439 | fastboot_publish("kernel", "lk"); |
| 2440 | fastboot_publish("serialno", sn_buf); |
| 2441 | |
| 2442 | /* |
| 2443 | * partition info is supported only for emmc partitions |
| 2444 | * Calling this for NAND prints some error messages which |
| 2445 | * is harmless but misleading. Avoid calling this for NAND |
| 2446 | * devices. |
| 2447 | */ |
| 2448 | if (target_is_emmc_boot()) |
| 2449 | publish_getvar_partition_info(part_info, ARRAY_SIZE(part_info)); |
| 2450 | |
| 2451 | /* Max download size supported */ |
| 2452 | snprintf(max_download_size, MAX_RSP_SIZE, "\t0x%x", |
| 2453 | target_get_max_flash_size()); |
| 2454 | fastboot_publish("max-download-size", (const char *) max_download_size); |
| 2455 | /* Is the charger screen check enabled */ |
| 2456 | snprintf(charger_screen_enabled, MAX_RSP_SIZE, "%d", |
| 2457 | device.charger_screen_enabled); |
| 2458 | fastboot_publish("charger-screen-enabled", |
| 2459 | (const char *) charger_screen_enabled); |
| 2460 | snprintf(panel_display_mode, MAX_RSP_SIZE, "%s", |
| 2461 | device.display_panel); |
| 2462 | fastboot_publish("display-panel", |
| 2463 | (const char *) panel_display_mode); |
| 2464 | } |
| 2465 | |
| 2466 | void aboot_init(const struct app_descriptor *app) |
| 2467 | { |
| 2468 | unsigned reboot_mode = 0; |
| 2469 | bool boot_into_fastboot = false; |
| 2470 | |
| 2471 | /* Setup page size information for nv storage */ |
| 2472 | if (target_is_emmc_boot()) |
| 2473 | { |
| 2474 | page_size = mmc_page_size(); |
| 2475 | page_mask = page_size - 1; |
| 2476 | } |
| 2477 | else |
| 2478 | { |
| 2479 | page_size = flash_page_size(); |
| 2480 | page_mask = page_size - 1; |
| 2481 | } |
| 2482 | |
| 2483 | ASSERT((MEMBASE + MEMSIZE) > MEMBASE); |
| 2484 | |
| 2485 | read_device_info(&device); |
| 2486 | |
| 2487 | /* Display splash screen if enabled */ |
| 2488 | #if DISPLAY_SPLASH_SCREEN |
| 2489 | dprintf(SPEW, "Display Init: Start\n"); |
| 2490 | target_display_init(device.display_panel); |
| 2491 | dprintf(SPEW, "Display Init: Done\n"); |
| 2492 | #endif |
| 2493 | |
| 2494 | |
| 2495 | target_serialno((unsigned char *) sn_buf); |
| 2496 | dprintf(SPEW,"serial number: %s\n",sn_buf); |
| 2497 | |
| 2498 | memset(display_panel_buf, '\0', MAX_PANEL_BUF_SIZE); |
| 2499 | |
| 2500 | /* Check if we should do something other than booting up */ |
| 2501 | if (keys_get_state(KEY_VOLUMEUP) && keys_get_state(KEY_VOLUMEDOWN)) |
| 2502 | { |
| 2503 | dprintf(ALWAYS,"dload mode key sequence detected\n"); |
| 2504 | if (set_download_mode(EMERGENCY_DLOAD)) |
| 2505 | { |
| 2506 | dprintf(CRITICAL,"dload mode not supported by target\n"); |
| 2507 | } |
| 2508 | else |
| 2509 | { |
| 2510 | reboot_device(DLOAD); |
| 2511 | dprintf(CRITICAL,"Failed to reboot into dload mode\n"); |
| 2512 | } |
| 2513 | boot_into_fastboot = true; |
| 2514 | } |
| 2515 | if (!boot_into_fastboot) |
| 2516 | { |
| 2517 | if (keys_get_state(KEY_HOME) || keys_get_state(KEY_VOLUMEUP)) |
| 2518 | boot_into_recovery = 1; |
| 2519 | if (!boot_into_recovery && |
| 2520 | (keys_get_state(KEY_BACK) || keys_get_state(KEY_VOLUMEDOWN))) |
| 2521 | boot_into_fastboot = true; |
| 2522 | } |
| 2523 | #if NO_KEYPAD_DRIVER |
| 2524 | if (fastboot_trigger()) |
| 2525 | boot_into_fastboot = true; |
| 2526 | #endif |
| 2527 | |
| 2528 | reboot_mode = check_reboot_mode(); |
| 2529 | if (reboot_mode == RECOVERY_MODE) { |
| 2530 | boot_into_recovery = 1; |
| 2531 | } else if(reboot_mode == FASTBOOT_MODE) { |
| 2532 | boot_into_fastboot = true; |
| 2533 | } |
| 2534 | |
| 2535 | if (!boot_into_fastboot) |
| 2536 | { |
| 2537 | if (target_is_emmc_boot()) |
| 2538 | { |
| 2539 | if(emmc_recovery_init()) |
| 2540 | dprintf(ALWAYS,"error in emmc_recovery_init\n"); |
| 2541 | if(target_use_signed_kernel()) |
| 2542 | { |
| 2543 | if((device.is_unlocked) || (device.is_tampered)) |
| 2544 | { |
| 2545 | #ifdef TZ_TAMPER_FUSE |
| 2546 | set_tamper_fuse_cmd(); |
| 2547 | #endif |
| 2548 | #if USE_PCOM_SECBOOT |
| 2549 | set_tamper_flag(device.is_tampered); |
| 2550 | #endif |
| 2551 | } |
| 2552 | } |
| 2553 | boot_linux_from_mmc(); |
| 2554 | } |
| 2555 | else |
| 2556 | { |
| 2557 | recovery_init(); |
| 2558 | #if USE_PCOM_SECBOOT |
| 2559 | if((device.is_unlocked) || (device.is_tampered)) |
| 2560 | set_tamper_flag(device.is_tampered); |
| 2561 | #endif |
| 2562 | boot_linux_from_flash(); |
| 2563 | } |
| 2564 | dprintf(CRITICAL, "ERROR: Could not do normal boot. Reverting " |
| 2565 | "to fastboot mode.\n"); |
| 2566 | } |
| 2567 | |
| 2568 | /* We are here means regular boot did not happen. Start fastboot. */ |
| 2569 | |
| 2570 | /* register aboot specific fastboot commands */ |
| 2571 | aboot_fastboot_register_commands(); |
| 2572 | |
| 2573 | /* dump partition table for debug info */ |
| 2574 | partition_dump(); |
| 2575 | |
| 2576 | /* initialize and start fastboot */ |
| 2577 | fastboot_init(target_get_scratch_address(), target_get_max_flash_size()); |
| 2578 | } |
| 2579 | |
| 2580 | uint32_t get_page_size() |
| 2581 | { |
| 2582 | return page_size; |
| 2583 | } |
| 2584 | |
| 2585 | /* |
| 2586 | * Calculated and save hash (SHA256) for non-signed boot image. |
| 2587 | * |
| 2588 | * Hash the same data that is checked on the signed boot image. |
| 2589 | * Kernel and Ramdisk are already read to memory buffers. |
| 2590 | * Need to read the entire device-tree from mmc |
| 2591 | * since non-signed image only read the DT tags of the relevant platform. |
| 2592 | * |
| 2593 | * @param kernel_addr - kernel bufer |
| 2594 | * @param kernel_actual - kernel size in bytes |
| 2595 | * @param ramdisk_addr - ramdisk buffer |
| 2596 | * @param ramdisk_actual - ramdisk size |
| 2597 | * @param ptn - partition |
| 2598 | * @param dt_offset - device tree offset on mmc partition |
| 2599 | * @param dt_size |
| 2600 | * |
| 2601 | * @return int - 0 on success, negative value on failure. |
| 2602 | */ |
| 2603 | int aboot_save_boot_hash_mmc(void *kernel_addr, unsigned kernel_actual, |
| 2604 | void *ramdisk_addr, unsigned ramdisk_actual, |
| 2605 | unsigned long long ptn, |
| 2606 | unsigned dt_offset, unsigned dt_size) |
| 2607 | { |
| 2608 | SHA256_CTX sha256_ctx; |
| 2609 | char digest[32]={0}; |
| 2610 | char *buf = (char *)target_get_scratch_address(); |
| 2611 | unsigned dt_actual = ROUND_TO_PAGE(dt_size, page_mask); |
| 2612 | unsigned imagesize_actual = page_size + kernel_actual + ramdisk_actual + dt_actual; |
| 2613 | |
| 2614 | SHA256_Init(&sha256_ctx); |
| 2615 | |
| 2616 | /* Read Boot Header */ |
| 2617 | if (mmc_read(ptn, buf, page_size)) |
| 2618 | { |
| 2619 | dprintf(CRITICAL, "ERROR: mmc_read() fail.\n"); |
| 2620 | return -1; |
| 2621 | } |
| 2622 | /* Read entire Device Tree */ |
| 2623 | if (mmc_read(ptn + dt_offset, buf+page_size, dt_actual)) |
| 2624 | { |
| 2625 | dprintf(CRITICAL, "ERROR: mmc_read() fail.\n"); |
| 2626 | return -1; |
| 2627 | } |
| 2628 | SHA256_Update(&sha256_ctx, buf, page_size); // Boot Header |
| 2629 | SHA256_Update(&sha256_ctx, kernel_addr, kernel_actual); |
| 2630 | SHA256_Update(&sha256_ctx, ramdisk_addr, ramdisk_actual); |
| 2631 | SHA256_Update(&sha256_ctx, buf+page_size, dt_actual); // Device Tree |
| 2632 | |
| 2633 | SHA256_Final(digest, &sha256_ctx); |
| 2634 | |
| 2635 | save_kernel_hash_cmd(digest); |
| 2636 | dprintf(INFO, "aboot_save_boot_hash_mmc: imagesize_actual size %d bytes.\n", (int) imagesize_actual); |
| 2637 | |
| 2638 | return 0; |
| 2639 | } |
| 2640 | |
| 2641 | APP_START(aboot) |
| 2642 | .init = aboot_init, |
| 2643 | APP_END |