wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1 | /************************************************************************** |
| 2 | Inter Pro 1000 for ppcboot/das-u-boot |
| 3 | Drivers are port from Intel's Linux driver e1000-4.3.15 |
| 4 | and from Etherboot pro 1000 driver by mrakes at vivato dot net |
| 5 | tested on both gig copper and gig fiber boards |
| 6 | ***************************************************************************/ |
| 7 | /******************************************************************************* |
| 8 | |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 9 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 10 | Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved. |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 11 | |
| 12 | This program is free software; you can redistribute it and/or modify it |
| 13 | under the terms of the GNU General Public License as published by the Free |
| 14 | Software Foundation; either version 2 of the License, or (at your option) |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 15 | any later version. |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 16 | |
| 17 | This program is distributed in the hope that it will be useful, but WITHOUT |
| 18 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 19 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 20 | more details. |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 21 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 22 | You should have received a copy of the GNU General Public License along with |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 23 | this program; if not, write to the Free Software Foundation, Inc., 59 |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 24 | Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 25 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 26 | The full GNU General Public License is included in this distribution in the |
| 27 | file called LICENSE. |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 28 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 29 | Contact Information: |
| 30 | Linux NICS <linux.nics@intel.com> |
| 31 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| 32 | |
| 33 | *******************************************************************************/ |
| 34 | /* |
| 35 | * Copyright (C) Archway Digital Solutions. |
| 36 | * |
| 37 | * written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org> |
| 38 | * 2/9/2002 |
| 39 | * |
| 40 | * Copyright (C) Linux Networx. |
| 41 | * Massive upgrade to work with the new intel gigabit NICs. |
| 42 | * <ebiederman at lnxi dot com> |
| 43 | */ |
| 44 | |
| 45 | #include "e1000.h" |
| 46 | |
Jon Loeliger | d5be43d | 2007-06-11 19:02:10 -0500 | [diff] [blame] | 47 | #if ((CONFIG_COMMANDS & CFG_CMD_NET) || defined(CONFIG_CMD_NET)) \ |
| 48 | && defined(CONFIG_NET_MULTI) && defined(CONFIG_E1000) |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 49 | |
| 50 | #define TOUT_LOOP 100000 |
| 51 | |
| 52 | #undef virt_to_bus |
| 53 | #define virt_to_bus(x) ((unsigned long)x) |
| 54 | #define bus_to_phys(devno, a) pci_mem_to_phys(devno, a) |
| 55 | #define mdelay(n) udelay((n)*1000) |
| 56 | |
| 57 | #define E1000_DEFAULT_PBA 0x00000030 |
| 58 | |
| 59 | /* NIC specific static variables go here */ |
| 60 | |
| 61 | static char tx_pool[128 + 16]; |
| 62 | static char rx_pool[128 + 16]; |
| 63 | static char packet[2096]; |
| 64 | |
| 65 | static struct e1000_tx_desc *tx_base; |
| 66 | static struct e1000_rx_desc *rx_base; |
| 67 | |
| 68 | static int tx_tail; |
| 69 | static int rx_tail, rx_last; |
| 70 | |
| 71 | static struct pci_device_id supported[] = { |
| 72 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542}, |
| 73 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER}, |
| 74 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER}, |
| 75 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER}, |
| 76 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER}, |
| 77 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER}, |
| 78 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM}, |
| 79 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM}, |
| 80 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER}, |
| 81 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER}, |
| 82 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER}, |
| 83 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER}, |
| 84 | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM}, |
| 85 | }; |
| 86 | |
| 87 | /* Function forward declarations */ |
| 88 | static int e1000_setup_link(struct eth_device *nic); |
| 89 | static int e1000_setup_fiber_link(struct eth_device *nic); |
| 90 | static int e1000_setup_copper_link(struct eth_device *nic); |
| 91 | static int e1000_phy_setup_autoneg(struct e1000_hw *hw); |
| 92 | static void e1000_config_collision_dist(struct e1000_hw *hw); |
| 93 | static int e1000_config_mac_to_phy(struct e1000_hw *hw); |
| 94 | static int e1000_config_fc_after_link_up(struct e1000_hw *hw); |
| 95 | static int e1000_check_for_link(struct eth_device *nic); |
| 96 | static int e1000_wait_autoneg(struct e1000_hw *hw); |
| 97 | static void e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed, |
| 98 | uint16_t * duplex); |
| 99 | static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, |
| 100 | uint16_t * phy_data); |
| 101 | static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, |
| 102 | uint16_t phy_data); |
| 103 | static void e1000_phy_hw_reset(struct e1000_hw *hw); |
| 104 | static int e1000_phy_reset(struct e1000_hw *hw); |
| 105 | static int e1000_detect_gig_phy(struct e1000_hw *hw); |
| 106 | |
| 107 | #define E1000_WRITE_REG(a, reg, value) (writel((value), ((a)->hw_addr + E1000_##reg))) |
| 108 | #define E1000_READ_REG(a, reg) (readl((a)->hw_addr + E1000_##reg)) |
| 109 | #define E1000_WRITE_REG_ARRAY(a, reg, offset, value) (\ |
| 110 | writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2)))) |
| 111 | #define E1000_READ_REG_ARRAY(a, reg, offset) ( \ |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 112 | readl((a)->hw_addr + E1000_##reg + ((offset) << 2))) |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 113 | #define E1000_WRITE_FLUSH(a) {uint32_t x; x = E1000_READ_REG(a, STATUS);} |
| 114 | |
Wolfgang Denk | 7521af1 | 2005-10-09 01:04:33 +0200 | [diff] [blame] | 115 | #ifndef CONFIG_AP1000 /* remove for warnings */ |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 116 | /****************************************************************************** |
| 117 | * Raises the EEPROM's clock input. |
| 118 | * |
| 119 | * hw - Struct containing variables accessed by shared code |
| 120 | * eecd - EECD's current value |
| 121 | *****************************************************************************/ |
| 122 | static void |
| 123 | e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd) |
| 124 | { |
| 125 | /* Raise the clock input to the EEPROM (by setting the SK bit), and then |
| 126 | * wait 50 microseconds. |
| 127 | */ |
| 128 | *eecd = *eecd | E1000_EECD_SK; |
| 129 | E1000_WRITE_REG(hw, EECD, *eecd); |
| 130 | E1000_WRITE_FLUSH(hw); |
| 131 | udelay(50); |
| 132 | } |
| 133 | |
| 134 | /****************************************************************************** |
| 135 | * Lowers the EEPROM's clock input. |
| 136 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 137 | * hw - Struct containing variables accessed by shared code |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 138 | * eecd - EECD's current value |
| 139 | *****************************************************************************/ |
| 140 | static void |
| 141 | e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd) |
| 142 | { |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 143 | /* Lower the clock input to the EEPROM (by clearing the SK bit), and then |
| 144 | * wait 50 microseconds. |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 145 | */ |
| 146 | *eecd = *eecd & ~E1000_EECD_SK; |
| 147 | E1000_WRITE_REG(hw, EECD, *eecd); |
| 148 | E1000_WRITE_FLUSH(hw); |
| 149 | udelay(50); |
| 150 | } |
| 151 | |
| 152 | /****************************************************************************** |
| 153 | * Shift data bits out to the EEPROM. |
| 154 | * |
| 155 | * hw - Struct containing variables accessed by shared code |
| 156 | * data - data to send to the EEPROM |
| 157 | * count - number of bits to shift out |
| 158 | *****************************************************************************/ |
| 159 | static void |
| 160 | e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count) |
| 161 | { |
| 162 | uint32_t eecd; |
| 163 | uint32_t mask; |
| 164 | |
| 165 | /* We need to shift "count" bits out to the EEPROM. So, value in the |
| 166 | * "data" parameter will be shifted out to the EEPROM one bit at a time. |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 167 | * In order to do this, "data" must be broken down into bits. |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 168 | */ |
| 169 | mask = 0x01 << (count - 1); |
| 170 | eecd = E1000_READ_REG(hw, EECD); |
| 171 | eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); |
| 172 | do { |
| 173 | /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", |
| 174 | * and then raising and then lowering the clock (the SK bit controls |
| 175 | * the clock input to the EEPROM). A "0" is shifted out to the EEPROM |
| 176 | * by setting "DI" to "0" and then raising and then lowering the clock. |
| 177 | */ |
| 178 | eecd &= ~E1000_EECD_DI; |
| 179 | |
| 180 | if (data & mask) |
| 181 | eecd |= E1000_EECD_DI; |
| 182 | |
| 183 | E1000_WRITE_REG(hw, EECD, eecd); |
| 184 | E1000_WRITE_FLUSH(hw); |
| 185 | |
| 186 | udelay(50); |
| 187 | |
| 188 | e1000_raise_ee_clk(hw, &eecd); |
| 189 | e1000_lower_ee_clk(hw, &eecd); |
| 190 | |
| 191 | mask = mask >> 1; |
| 192 | |
| 193 | } while (mask); |
| 194 | |
| 195 | /* We leave the "DI" bit set to "0" when we leave this routine. */ |
| 196 | eecd &= ~E1000_EECD_DI; |
| 197 | E1000_WRITE_REG(hw, EECD, eecd); |
| 198 | } |
| 199 | |
| 200 | /****************************************************************************** |
| 201 | * Shift data bits in from the EEPROM |
| 202 | * |
| 203 | * hw - Struct containing variables accessed by shared code |
| 204 | *****************************************************************************/ |
| 205 | static uint16_t |
| 206 | e1000_shift_in_ee_bits(struct e1000_hw *hw) |
| 207 | { |
| 208 | uint32_t eecd; |
| 209 | uint32_t i; |
| 210 | uint16_t data; |
| 211 | |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 212 | /* In order to read a register from the EEPROM, we need to shift 16 bits |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 213 | * in from the EEPROM. Bits are "shifted in" by raising the clock input to |
| 214 | * the EEPROM (setting the SK bit), and then reading the value of the "DO" |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 215 | * bit. During this "shifting in" process the "DI" bit should always be |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 216 | * clear.. |
| 217 | */ |
| 218 | |
| 219 | eecd = E1000_READ_REG(hw, EECD); |
| 220 | |
| 221 | eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); |
| 222 | data = 0; |
| 223 | |
| 224 | for (i = 0; i < 16; i++) { |
| 225 | data = data << 1; |
| 226 | e1000_raise_ee_clk(hw, &eecd); |
| 227 | |
| 228 | eecd = E1000_READ_REG(hw, EECD); |
| 229 | |
| 230 | eecd &= ~(E1000_EECD_DI); |
| 231 | if (eecd & E1000_EECD_DO) |
| 232 | data |= 1; |
| 233 | |
| 234 | e1000_lower_ee_clk(hw, &eecd); |
| 235 | } |
| 236 | |
| 237 | return data; |
| 238 | } |
| 239 | |
| 240 | /****************************************************************************** |
| 241 | * Prepares EEPROM for access |
| 242 | * |
| 243 | * hw - Struct containing variables accessed by shared code |
| 244 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 245 | * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 246 | * function should be called before issuing a command to the EEPROM. |
| 247 | *****************************************************************************/ |
| 248 | static void |
| 249 | e1000_setup_eeprom(struct e1000_hw *hw) |
| 250 | { |
| 251 | uint32_t eecd; |
| 252 | |
| 253 | eecd = E1000_READ_REG(hw, EECD); |
| 254 | |
| 255 | /* Clear SK and DI */ |
| 256 | eecd &= ~(E1000_EECD_SK | E1000_EECD_DI); |
| 257 | E1000_WRITE_REG(hw, EECD, eecd); |
| 258 | |
| 259 | /* Set CS */ |
| 260 | eecd |= E1000_EECD_CS; |
| 261 | E1000_WRITE_REG(hw, EECD, eecd); |
| 262 | } |
| 263 | |
| 264 | /****************************************************************************** |
| 265 | * Returns EEPROM to a "standby" state |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 266 | * |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 267 | * hw - Struct containing variables accessed by shared code |
| 268 | *****************************************************************************/ |
| 269 | static void |
| 270 | e1000_standby_eeprom(struct e1000_hw *hw) |
| 271 | { |
| 272 | uint32_t eecd; |
| 273 | |
| 274 | eecd = E1000_READ_REG(hw, EECD); |
| 275 | |
| 276 | /* Deselct EEPROM */ |
| 277 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); |
| 278 | E1000_WRITE_REG(hw, EECD, eecd); |
| 279 | E1000_WRITE_FLUSH(hw); |
| 280 | udelay(50); |
| 281 | |
| 282 | /* Clock high */ |
| 283 | eecd |= E1000_EECD_SK; |
| 284 | E1000_WRITE_REG(hw, EECD, eecd); |
| 285 | E1000_WRITE_FLUSH(hw); |
| 286 | udelay(50); |
| 287 | |
| 288 | /* Select EEPROM */ |
| 289 | eecd |= E1000_EECD_CS; |
| 290 | E1000_WRITE_REG(hw, EECD, eecd); |
| 291 | E1000_WRITE_FLUSH(hw); |
| 292 | udelay(50); |
| 293 | |
| 294 | /* Clock low */ |
| 295 | eecd &= ~E1000_EECD_SK; |
| 296 | E1000_WRITE_REG(hw, EECD, eecd); |
| 297 | E1000_WRITE_FLUSH(hw); |
| 298 | udelay(50); |
| 299 | } |
| 300 | |
| 301 | /****************************************************************************** |
| 302 | * Reads a 16 bit word from the EEPROM. |
| 303 | * |
| 304 | * hw - Struct containing variables accessed by shared code |
| 305 | * offset - offset of word in the EEPROM to read |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 306 | * data - word read from the EEPROM |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 307 | *****************************************************************************/ |
| 308 | static int |
| 309 | e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset, uint16_t * data) |
| 310 | { |
| 311 | uint32_t eecd; |
| 312 | uint32_t i = 0; |
| 313 | int large_eeprom = FALSE; |
| 314 | |
| 315 | /* Request EEPROM Access */ |
| 316 | if (hw->mac_type > e1000_82544) { |
| 317 | eecd = E1000_READ_REG(hw, EECD); |
| 318 | if (eecd & E1000_EECD_SIZE) |
| 319 | large_eeprom = TRUE; |
| 320 | eecd |= E1000_EECD_REQ; |
| 321 | E1000_WRITE_REG(hw, EECD, eecd); |
| 322 | eecd = E1000_READ_REG(hw, EECD); |
| 323 | while ((!(eecd & E1000_EECD_GNT)) && (i < 100)) { |
| 324 | i++; |
| 325 | udelay(10); |
| 326 | eecd = E1000_READ_REG(hw, EECD); |
| 327 | } |
| 328 | if (!(eecd & E1000_EECD_GNT)) { |
| 329 | eecd &= ~E1000_EECD_REQ; |
| 330 | E1000_WRITE_REG(hw, EECD, eecd); |
| 331 | DEBUGOUT("Could not acquire EEPROM grant\n"); |
| 332 | return -E1000_ERR_EEPROM; |
| 333 | } |
| 334 | } |
| 335 | |
| 336 | /* Prepare the EEPROM for reading */ |
| 337 | e1000_setup_eeprom(hw); |
| 338 | |
| 339 | /* Send the READ command (opcode + addr) */ |
| 340 | e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE, 3); |
| 341 | e1000_shift_out_ee_bits(hw, offset, (large_eeprom) ? 8 : 6); |
| 342 | |
| 343 | /* Read the data */ |
| 344 | *data = e1000_shift_in_ee_bits(hw); |
| 345 | |
| 346 | /* End this read operation */ |
| 347 | e1000_standby_eeprom(hw); |
| 348 | |
| 349 | /* Stop requesting EEPROM access */ |
| 350 | if (hw->mac_type > e1000_82544) { |
| 351 | eecd = E1000_READ_REG(hw, EECD); |
| 352 | eecd &= ~E1000_EECD_REQ; |
| 353 | E1000_WRITE_REG(hw, EECD, eecd); |
| 354 | } |
| 355 | |
| 356 | return 0; |
| 357 | } |
| 358 | |
| 359 | #if 0 |
| 360 | static void |
| 361 | e1000_eeprom_cleanup(struct e1000_hw *hw) |
| 362 | { |
| 363 | uint32_t eecd; |
| 364 | |
| 365 | eecd = E1000_READ_REG(hw, EECD); |
| 366 | eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); |
| 367 | E1000_WRITE_REG(hw, EECD, eecd); |
| 368 | e1000_raise_ee_clk(hw, &eecd); |
| 369 | e1000_lower_ee_clk(hw, &eecd); |
| 370 | } |
| 371 | |
| 372 | static uint16_t |
| 373 | e1000_wait_eeprom_done(struct e1000_hw *hw) |
| 374 | { |
| 375 | uint32_t eecd; |
| 376 | uint32_t i; |
| 377 | |
| 378 | e1000_standby_eeprom(hw); |
| 379 | for (i = 0; i < 200; i++) { |
| 380 | eecd = E1000_READ_REG(hw, EECD); |
| 381 | if (eecd & E1000_EECD_DO) |
| 382 | return (TRUE); |
| 383 | udelay(5); |
| 384 | } |
| 385 | return (FALSE); |
| 386 | } |
| 387 | |
| 388 | static int |
| 389 | e1000_write_eeprom(struct e1000_hw *hw, uint16_t Reg, uint16_t Data) |
| 390 | { |
| 391 | uint32_t eecd; |
| 392 | int large_eeprom = FALSE; |
| 393 | int i = 0; |
| 394 | |
| 395 | /* Request EEPROM Access */ |
| 396 | if (hw->mac_type > e1000_82544) { |
| 397 | eecd = E1000_READ_REG(hw, EECD); |
| 398 | if (eecd & E1000_EECD_SIZE) |
| 399 | large_eeprom = TRUE; |
| 400 | eecd |= E1000_EECD_REQ; |
| 401 | E1000_WRITE_REG(hw, EECD, eecd); |
| 402 | eecd = E1000_READ_REG(hw, EECD); |
| 403 | while ((!(eecd & E1000_EECD_GNT)) && (i < 100)) { |
| 404 | i++; |
| 405 | udelay(5); |
| 406 | eecd = E1000_READ_REG(hw, EECD); |
| 407 | } |
| 408 | if (!(eecd & E1000_EECD_GNT)) { |
| 409 | eecd &= ~E1000_EECD_REQ; |
| 410 | E1000_WRITE_REG(hw, EECD, eecd); |
| 411 | DEBUGOUT("Could not acquire EEPROM grant\n"); |
| 412 | return FALSE; |
| 413 | } |
| 414 | } |
| 415 | e1000_setup_eeprom(hw); |
| 416 | e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE, 5); |
| 417 | e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 6 : 4); |
| 418 | e1000_standby_eeprom(hw); |
| 419 | e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE, 3); |
| 420 | e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 8 : 6); |
| 421 | e1000_shift_out_ee_bits(hw, Data, 16); |
| 422 | if (!e1000_wait_eeprom_done(hw)) { |
| 423 | return FALSE; |
| 424 | } |
| 425 | e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE, 5); |
| 426 | e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 6 : 4); |
| 427 | e1000_eeprom_cleanup(hw); |
| 428 | |
| 429 | /* Stop requesting EEPROM access */ |
| 430 | if (hw->mac_type > e1000_82544) { |
| 431 | eecd = E1000_READ_REG(hw, EECD); |
| 432 | eecd &= ~E1000_EECD_REQ; |
| 433 | E1000_WRITE_REG(hw, EECD, eecd); |
| 434 | } |
| 435 | i = 0; |
| 436 | eecd = E1000_READ_REG(hw, EECD); |
| 437 | while (((eecd & E1000_EECD_GNT)) && (i < 500)) { |
| 438 | i++; |
| 439 | udelay(10); |
| 440 | eecd = E1000_READ_REG(hw, EECD); |
| 441 | } |
| 442 | if ((eecd & E1000_EECD_GNT)) { |
| 443 | DEBUGOUT("Could not release EEPROM grant\n"); |
| 444 | } |
| 445 | return TRUE; |
| 446 | } |
| 447 | #endif |
| 448 | |
| 449 | /****************************************************************************** |
| 450 | * Verifies that the EEPROM has a valid checksum |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 451 | * |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 452 | * hw - Struct containing variables accessed by shared code |
| 453 | * |
| 454 | * Reads the first 64 16 bit words of the EEPROM and sums the values read. |
| 455 | * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is |
| 456 | * valid. |
| 457 | *****************************************************************************/ |
| 458 | static int |
| 459 | e1000_validate_eeprom_checksum(struct eth_device *nic) |
| 460 | { |
| 461 | struct e1000_hw *hw = nic->priv; |
| 462 | uint16_t checksum = 0; |
| 463 | uint16_t i, eeprom_data; |
| 464 | |
| 465 | DEBUGFUNC(); |
| 466 | |
| 467 | for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { |
| 468 | if (e1000_read_eeprom(hw, i, &eeprom_data) < 0) { |
| 469 | DEBUGOUT("EEPROM Read Error\n"); |
| 470 | return -E1000_ERR_EEPROM; |
| 471 | } |
| 472 | checksum += eeprom_data; |
| 473 | } |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 474 | |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 475 | if (checksum == (uint16_t) EEPROM_SUM) { |
| 476 | return 0; |
| 477 | } else { |
| 478 | DEBUGOUT("EEPROM Checksum Invalid\n"); |
| 479 | return -E1000_ERR_EEPROM; |
| 480 | } |
| 481 | } |
Wolfgang Denk | 7521af1 | 2005-10-09 01:04:33 +0200 | [diff] [blame] | 482 | #endif /* #ifndef CONFIG_AP1000 */ |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 483 | |
| 484 | /****************************************************************************** |
| 485 | * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the |
| 486 | * second function of dual function devices |
| 487 | * |
| 488 | * nic - Struct containing variables accessed by shared code |
| 489 | *****************************************************************************/ |
| 490 | static int |
| 491 | e1000_read_mac_addr(struct eth_device *nic) |
| 492 | { |
Wolfgang Denk | 7521af1 | 2005-10-09 01:04:33 +0200 | [diff] [blame] | 493 | #ifndef CONFIG_AP1000 |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 494 | struct e1000_hw *hw = nic->priv; |
| 495 | uint16_t offset; |
| 496 | uint16_t eeprom_data; |
| 497 | int i; |
| 498 | |
| 499 | DEBUGFUNC(); |
| 500 | |
| 501 | for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { |
| 502 | offset = i >> 1; |
| 503 | if (e1000_read_eeprom(hw, offset, &eeprom_data) < 0) { |
| 504 | DEBUGOUT("EEPROM Read Error\n"); |
| 505 | return -E1000_ERR_EEPROM; |
| 506 | } |
| 507 | nic->enetaddr[i] = eeprom_data & 0xff; |
| 508 | nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff; |
| 509 | } |
| 510 | if ((hw->mac_type == e1000_82546) && |
| 511 | (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { |
| 512 | /* Invert the last bit if this is the second device */ |
| 513 | nic->enetaddr[5] += 1; |
| 514 | } |
Wolfgang Denk | 7521af1 | 2005-10-09 01:04:33 +0200 | [diff] [blame] | 515 | #else |
| 516 | /* |
| 517 | * The AP1000's e1000 has no eeprom; the MAC address is stored in the |
| 518 | * environment variables. Currently this does not support the addition |
| 519 | * of a PMC e1000 card, which is certainly a possibility, so this should |
| 520 | * be updated to properly use the env variable only for the onboard e1000 |
| 521 | */ |
| 522 | |
| 523 | int ii; |
| 524 | char *s, *e; |
| 525 | |
| 526 | DEBUGFUNC(); |
| 527 | |
| 528 | s = getenv ("ethaddr"); |
| 529 | if (s == NULL){ |
| 530 | return -E1000_ERR_EEPROM; |
| 531 | } |
| 532 | else{ |
| 533 | for(ii = 0; ii < 6; ii++) { |
| 534 | nic->enetaddr[ii] = s ? simple_strtoul (s, &e, 16) : 0; |
| 535 | if (s){ |
| 536 | s = (*e) ? e + 1 : e; |
| 537 | } |
| 538 | } |
| 539 | } |
| 540 | #endif |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 541 | return 0; |
| 542 | } |
| 543 | |
| 544 | /****************************************************************************** |
| 545 | * Initializes receive address filters. |
| 546 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 547 | * hw - Struct containing variables accessed by shared code |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 548 | * |
| 549 | * Places the MAC address in receive address register 0 and clears the rest |
| 550 | * of the receive addresss registers. Clears the multicast table. Assumes |
| 551 | * the receiver is in reset when the routine is called. |
| 552 | *****************************************************************************/ |
| 553 | static void |
| 554 | e1000_init_rx_addrs(struct eth_device *nic) |
| 555 | { |
| 556 | struct e1000_hw *hw = nic->priv; |
| 557 | uint32_t i; |
| 558 | uint32_t addr_low; |
| 559 | uint32_t addr_high; |
| 560 | |
| 561 | DEBUGFUNC(); |
| 562 | |
| 563 | /* Setup the receive address. */ |
| 564 | DEBUGOUT("Programming MAC Address into RAR[0]\n"); |
| 565 | addr_low = (nic->enetaddr[0] | |
| 566 | (nic->enetaddr[1] << 8) | |
| 567 | (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24)); |
| 568 | |
| 569 | addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV); |
| 570 | |
| 571 | E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low); |
| 572 | E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high); |
| 573 | |
| 574 | /* Zero out the other 15 receive addresses. */ |
| 575 | DEBUGOUT("Clearing RAR[1-15]\n"); |
| 576 | for (i = 1; i < E1000_RAR_ENTRIES; i++) { |
| 577 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); |
| 578 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); |
| 579 | } |
| 580 | } |
| 581 | |
| 582 | /****************************************************************************** |
| 583 | * Clears the VLAN filer table |
| 584 | * |
| 585 | * hw - Struct containing variables accessed by shared code |
| 586 | *****************************************************************************/ |
| 587 | static void |
| 588 | e1000_clear_vfta(struct e1000_hw *hw) |
| 589 | { |
| 590 | uint32_t offset; |
| 591 | |
| 592 | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) |
| 593 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0); |
| 594 | } |
| 595 | |
| 596 | /****************************************************************************** |
| 597 | * Set the mac type member in the hw struct. |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 598 | * |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 599 | * hw - Struct containing variables accessed by shared code |
| 600 | *****************************************************************************/ |
| 601 | static int |
| 602 | e1000_set_mac_type(struct e1000_hw *hw) |
| 603 | { |
| 604 | DEBUGFUNC(); |
| 605 | |
| 606 | switch (hw->device_id) { |
| 607 | case E1000_DEV_ID_82542: |
| 608 | switch (hw->revision_id) { |
| 609 | case E1000_82542_2_0_REV_ID: |
| 610 | hw->mac_type = e1000_82542_rev2_0; |
| 611 | break; |
| 612 | case E1000_82542_2_1_REV_ID: |
| 613 | hw->mac_type = e1000_82542_rev2_1; |
| 614 | break; |
| 615 | default: |
| 616 | /* Invalid 82542 revision ID */ |
| 617 | return -E1000_ERR_MAC_TYPE; |
| 618 | } |
| 619 | break; |
| 620 | case E1000_DEV_ID_82543GC_FIBER: |
| 621 | case E1000_DEV_ID_82543GC_COPPER: |
| 622 | hw->mac_type = e1000_82543; |
| 623 | break; |
| 624 | case E1000_DEV_ID_82544EI_COPPER: |
| 625 | case E1000_DEV_ID_82544EI_FIBER: |
| 626 | case E1000_DEV_ID_82544GC_COPPER: |
| 627 | case E1000_DEV_ID_82544GC_LOM: |
| 628 | hw->mac_type = e1000_82544; |
| 629 | break; |
| 630 | case E1000_DEV_ID_82540EM: |
| 631 | case E1000_DEV_ID_82540EM_LOM: |
| 632 | hw->mac_type = e1000_82540; |
| 633 | break; |
| 634 | case E1000_DEV_ID_82545EM_COPPER: |
| 635 | case E1000_DEV_ID_82545EM_FIBER: |
| 636 | hw->mac_type = e1000_82545; |
| 637 | break; |
| 638 | case E1000_DEV_ID_82546EB_COPPER: |
| 639 | case E1000_DEV_ID_82546EB_FIBER: |
| 640 | hw->mac_type = e1000_82546; |
| 641 | break; |
| 642 | default: |
| 643 | /* Should never have loaded on this device */ |
| 644 | return -E1000_ERR_MAC_TYPE; |
| 645 | } |
| 646 | return E1000_SUCCESS; |
| 647 | } |
| 648 | |
| 649 | /****************************************************************************** |
| 650 | * Reset the transmit and receive units; mask and clear all interrupts. |
| 651 | * |
| 652 | * hw - Struct containing variables accessed by shared code |
| 653 | *****************************************************************************/ |
| 654 | void |
| 655 | e1000_reset_hw(struct e1000_hw *hw) |
| 656 | { |
| 657 | uint32_t ctrl; |
| 658 | uint32_t ctrl_ext; |
| 659 | uint32_t icr; |
| 660 | uint32_t manc; |
| 661 | |
| 662 | DEBUGFUNC(); |
| 663 | |
| 664 | /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ |
| 665 | if (hw->mac_type == e1000_82542_rev2_0) { |
| 666 | DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); |
| 667 | pci_write_config_word(hw->pdev, PCI_COMMAND, |
| 668 | hw-> |
| 669 | pci_cmd_word & ~PCI_COMMAND_INVALIDATE); |
| 670 | } |
| 671 | |
| 672 | /* Clear interrupt mask to stop board from generating interrupts */ |
| 673 | DEBUGOUT("Masking off all interrupts\n"); |
| 674 | E1000_WRITE_REG(hw, IMC, 0xffffffff); |
| 675 | |
| 676 | /* Disable the Transmit and Receive units. Then delay to allow |
| 677 | * any pending transactions to complete before we hit the MAC with |
| 678 | * the global reset. |
| 679 | */ |
| 680 | E1000_WRITE_REG(hw, RCTL, 0); |
| 681 | E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP); |
| 682 | E1000_WRITE_FLUSH(hw); |
| 683 | |
| 684 | /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ |
| 685 | hw->tbi_compatibility_on = FALSE; |
| 686 | |
| 687 | /* Delay to allow any outstanding PCI transactions to complete before |
| 688 | * resetting the device |
| 689 | */ |
| 690 | mdelay(10); |
| 691 | |
| 692 | /* Issue a global reset to the MAC. This will reset the chip's |
| 693 | * transmit, receive, DMA, and link units. It will not effect |
| 694 | * the current PCI configuration. The global reset bit is self- |
| 695 | * clearing, and should clear within a microsecond. |
| 696 | */ |
| 697 | DEBUGOUT("Issuing a global reset to MAC\n"); |
| 698 | ctrl = E1000_READ_REG(hw, CTRL); |
| 699 | |
| 700 | #if 0 |
| 701 | if (hw->mac_type > e1000_82543) |
| 702 | E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); |
| 703 | else |
| 704 | #endif |
| 705 | E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); |
| 706 | |
| 707 | /* Force a reload from the EEPROM if necessary */ |
| 708 | if (hw->mac_type < e1000_82540) { |
| 709 | /* Wait for reset to complete */ |
| 710 | udelay(10); |
| 711 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); |
| 712 | ctrl_ext |= E1000_CTRL_EXT_EE_RST; |
| 713 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| 714 | E1000_WRITE_FLUSH(hw); |
| 715 | /* Wait for EEPROM reload */ |
| 716 | mdelay(2); |
| 717 | } else { |
| 718 | /* Wait for EEPROM reload (it happens automatically) */ |
| 719 | mdelay(4); |
| 720 | /* Dissable HW ARPs on ASF enabled adapters */ |
| 721 | manc = E1000_READ_REG(hw, MANC); |
| 722 | manc &= ~(E1000_MANC_ARP_EN); |
| 723 | E1000_WRITE_REG(hw, MANC, manc); |
| 724 | } |
| 725 | |
| 726 | /* Clear interrupt mask to stop board from generating interrupts */ |
| 727 | DEBUGOUT("Masking off all interrupts\n"); |
| 728 | E1000_WRITE_REG(hw, IMC, 0xffffffff); |
| 729 | |
| 730 | /* Clear any pending interrupt events. */ |
| 731 | icr = E1000_READ_REG(hw, ICR); |
| 732 | |
| 733 | /* If MWI was previously enabled, reenable it. */ |
| 734 | if (hw->mac_type == e1000_82542_rev2_0) { |
| 735 | pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word); |
| 736 | } |
| 737 | } |
| 738 | |
| 739 | /****************************************************************************** |
| 740 | * Performs basic configuration of the adapter. |
| 741 | * |
| 742 | * hw - Struct containing variables accessed by shared code |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 743 | * |
| 744 | * Assumes that the controller has previously been reset and is in a |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 745 | * post-reset uninitialized state. Initializes the receive address registers, |
| 746 | * multicast table, and VLAN filter table. Calls routines to setup link |
| 747 | * configuration and flow control settings. Clears all on-chip counters. Leaves |
| 748 | * the transmit and receive units disabled and uninitialized. |
| 749 | *****************************************************************************/ |
| 750 | static int |
| 751 | e1000_init_hw(struct eth_device *nic) |
| 752 | { |
| 753 | struct e1000_hw *hw = nic->priv; |
| 754 | uint32_t ctrl, status; |
| 755 | uint32_t i; |
| 756 | int32_t ret_val; |
| 757 | uint16_t pcix_cmd_word; |
| 758 | uint16_t pcix_stat_hi_word; |
| 759 | uint16_t cmd_mmrbc; |
| 760 | uint16_t stat_mmrbc; |
| 761 | e1000_bus_type bus_type = e1000_bus_type_unknown; |
| 762 | |
| 763 | DEBUGFUNC(); |
| 764 | #if 0 |
| 765 | /* Initialize Identification LED */ |
| 766 | ret_val = e1000_id_led_init(hw); |
| 767 | if (ret_val < 0) { |
| 768 | DEBUGOUT("Error Initializing Identification LED\n"); |
| 769 | return ret_val; |
| 770 | } |
| 771 | #endif |
| 772 | /* Set the Media Type and exit with error if it is not valid. */ |
| 773 | if (hw->mac_type != e1000_82543) { |
| 774 | /* tbi_compatibility is only valid on 82543 */ |
| 775 | hw->tbi_compatibility_en = FALSE; |
| 776 | } |
| 777 | |
| 778 | if (hw->mac_type >= e1000_82543) { |
| 779 | status = E1000_READ_REG(hw, STATUS); |
| 780 | if (status & E1000_STATUS_TBIMODE) { |
| 781 | hw->media_type = e1000_media_type_fiber; |
| 782 | /* tbi_compatibility not valid on fiber */ |
| 783 | hw->tbi_compatibility_en = FALSE; |
| 784 | } else { |
| 785 | hw->media_type = e1000_media_type_copper; |
| 786 | } |
| 787 | } else { |
| 788 | /* This is an 82542 (fiber only) */ |
| 789 | hw->media_type = e1000_media_type_fiber; |
| 790 | } |
| 791 | |
| 792 | /* Disabling VLAN filtering. */ |
| 793 | DEBUGOUT("Initializing the IEEE VLAN\n"); |
| 794 | E1000_WRITE_REG(hw, VET, 0); |
| 795 | |
| 796 | e1000_clear_vfta(hw); |
| 797 | |
| 798 | /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ |
| 799 | if (hw->mac_type == e1000_82542_rev2_0) { |
| 800 | DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); |
| 801 | pci_write_config_word(hw->pdev, PCI_COMMAND, |
| 802 | hw-> |
| 803 | pci_cmd_word & ~PCI_COMMAND_INVALIDATE); |
| 804 | E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST); |
| 805 | E1000_WRITE_FLUSH(hw); |
| 806 | mdelay(5); |
| 807 | } |
| 808 | |
| 809 | /* Setup the receive address. This involves initializing all of the Receive |
| 810 | * Address Registers (RARs 0 - 15). |
| 811 | */ |
| 812 | e1000_init_rx_addrs(nic); |
| 813 | |
| 814 | /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ |
| 815 | if (hw->mac_type == e1000_82542_rev2_0) { |
| 816 | E1000_WRITE_REG(hw, RCTL, 0); |
| 817 | E1000_WRITE_FLUSH(hw); |
| 818 | mdelay(1); |
| 819 | pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word); |
| 820 | } |
| 821 | |
| 822 | /* Zero out the Multicast HASH table */ |
| 823 | DEBUGOUT("Zeroing the MTA\n"); |
| 824 | for (i = 0; i < E1000_MC_TBL_SIZE; i++) |
| 825 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); |
| 826 | |
| 827 | #if 0 |
| 828 | /* Set the PCI priority bit correctly in the CTRL register. This |
| 829 | * determines if the adapter gives priority to receives, or if it |
| 830 | * gives equal priority to transmits and receives. |
| 831 | */ |
| 832 | if (hw->dma_fairness) { |
| 833 | ctrl = E1000_READ_REG(hw, CTRL); |
| 834 | E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR); |
| 835 | } |
| 836 | #endif |
| 837 | if (hw->mac_type >= e1000_82543) { |
| 838 | status = E1000_READ_REG(hw, STATUS); |
| 839 | bus_type = (status & E1000_STATUS_PCIX_MODE) ? |
| 840 | e1000_bus_type_pcix : e1000_bus_type_pci; |
| 841 | } |
| 842 | /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ |
| 843 | if (bus_type == e1000_bus_type_pcix) { |
| 844 | pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER, |
| 845 | &pcix_cmd_word); |
| 846 | pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI, |
| 847 | &pcix_stat_hi_word); |
| 848 | cmd_mmrbc = |
| 849 | (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >> |
| 850 | PCIX_COMMAND_MMRBC_SHIFT; |
| 851 | stat_mmrbc = |
| 852 | (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >> |
| 853 | PCIX_STATUS_HI_MMRBC_SHIFT; |
| 854 | if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) |
| 855 | stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K; |
| 856 | if (cmd_mmrbc > stat_mmrbc) { |
| 857 | pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK; |
| 858 | pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT; |
| 859 | pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER, |
| 860 | pcix_cmd_word); |
| 861 | } |
| 862 | } |
| 863 | |
| 864 | /* Call a subroutine to configure the link and setup flow control. */ |
| 865 | ret_val = e1000_setup_link(nic); |
| 866 | |
| 867 | /* Set the transmit descriptor write-back policy */ |
| 868 | if (hw->mac_type > e1000_82544) { |
| 869 | ctrl = E1000_READ_REG(hw, TXDCTL); |
| 870 | ctrl = |
| 871 | (ctrl & ~E1000_TXDCTL_WTHRESH) | |
| 872 | E1000_TXDCTL_FULL_TX_DESC_WB; |
| 873 | E1000_WRITE_REG(hw, TXDCTL, ctrl); |
| 874 | } |
| 875 | #if 0 |
| 876 | /* Clear all of the statistics registers (clear on read). It is |
| 877 | * important that we do this after we have tried to establish link |
| 878 | * because the symbol error count will increment wildly if there |
| 879 | * is no link. |
| 880 | */ |
| 881 | e1000_clear_hw_cntrs(hw); |
| 882 | #endif |
| 883 | |
| 884 | return ret_val; |
| 885 | } |
| 886 | |
| 887 | /****************************************************************************** |
| 888 | * Configures flow control and link settings. |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 889 | * |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 890 | * hw - Struct containing variables accessed by shared code |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 891 | * |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 892 | * Determines which flow control settings to use. Calls the apropriate media- |
| 893 | * specific link configuration function. Configures the flow control settings. |
| 894 | * Assuming the adapter has a valid link partner, a valid link should be |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 895 | * established. Assumes the hardware has previously been reset and the |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 896 | * transmitter and receiver are not enabled. |
| 897 | *****************************************************************************/ |
| 898 | static int |
| 899 | e1000_setup_link(struct eth_device *nic) |
| 900 | { |
| 901 | struct e1000_hw *hw = nic->priv; |
| 902 | uint32_t ctrl_ext; |
| 903 | int32_t ret_val; |
| 904 | uint16_t eeprom_data; |
| 905 | |
| 906 | DEBUGFUNC(); |
| 907 | |
Wolfgang Denk | 7521af1 | 2005-10-09 01:04:33 +0200 | [diff] [blame] | 908 | #ifndef CONFIG_AP1000 |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 909 | /* Read and store word 0x0F of the EEPROM. This word contains bits |
| 910 | * that determine the hardware's default PAUSE (flow control) mode, |
| 911 | * a bit that determines whether the HW defaults to enabling or |
| 912 | * disabling auto-negotiation, and the direction of the |
| 913 | * SW defined pins. If there is no SW over-ride of the flow |
| 914 | * control setting, then the variable hw->fc will |
| 915 | * be initialized based on a value in the EEPROM. |
| 916 | */ |
| 917 | if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, &eeprom_data) < 0) { |
| 918 | DEBUGOUT("EEPROM Read Error\n"); |
| 919 | return -E1000_ERR_EEPROM; |
| 920 | } |
Wolfgang Denk | 7521af1 | 2005-10-09 01:04:33 +0200 | [diff] [blame] | 921 | #else |
| 922 | /* we have to hardcode the proper value for our hardware. */ |
| 923 | /* this value is for the 82540EM pci card used for prototyping, and it works. */ |
| 924 | eeprom_data = 0xb220; |
| 925 | #endif |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 926 | |
| 927 | if (hw->fc == e1000_fc_default) { |
| 928 | if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) |
| 929 | hw->fc = e1000_fc_none; |
| 930 | else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == |
| 931 | EEPROM_WORD0F_ASM_DIR) |
| 932 | hw->fc = e1000_fc_tx_pause; |
| 933 | else |
| 934 | hw->fc = e1000_fc_full; |
| 935 | } |
| 936 | |
| 937 | /* We want to save off the original Flow Control configuration just |
| 938 | * in case we get disconnected and then reconnected into a different |
| 939 | * hub or switch with different Flow Control capabilities. |
| 940 | */ |
| 941 | if (hw->mac_type == e1000_82542_rev2_0) |
| 942 | hw->fc &= (~e1000_fc_tx_pause); |
| 943 | |
| 944 | if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) |
| 945 | hw->fc &= (~e1000_fc_rx_pause); |
| 946 | |
| 947 | hw->original_fc = hw->fc; |
| 948 | |
| 949 | DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc); |
| 950 | |
| 951 | /* Take the 4 bits from EEPROM word 0x0F that determine the initial |
| 952 | * polarity value for the SW controlled pins, and setup the |
| 953 | * Extended Device Control reg with that info. |
| 954 | * This is needed because one of the SW controlled pins is used for |
| 955 | * signal detection. So this should be done before e1000_setup_pcs_link() |
| 956 | * or e1000_phy_setup() is called. |
| 957 | */ |
| 958 | if (hw->mac_type == e1000_82543) { |
| 959 | ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << |
| 960 | SWDPIO__EXT_SHIFT); |
| 961 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| 962 | } |
| 963 | |
| 964 | /* Call the necessary subroutine to configure the link. */ |
| 965 | ret_val = (hw->media_type == e1000_media_type_fiber) ? |
| 966 | e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic); |
| 967 | if (ret_val < 0) { |
| 968 | return ret_val; |
| 969 | } |
| 970 | |
| 971 | /* Initialize the flow control address, type, and PAUSE timer |
| 972 | * registers to their default values. This is done even if flow |
| 973 | * control is disabled, because it does not hurt anything to |
| 974 | * initialize these registers. |
| 975 | */ |
| 976 | DEBUGOUT |
| 977 | ("Initializing the Flow Control address, type and timer regs\n"); |
| 978 | |
| 979 | E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); |
| 980 | E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); |
| 981 | E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); |
| 982 | E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); |
| 983 | |
| 984 | /* Set the flow control receive threshold registers. Normally, |
| 985 | * these registers will be set to a default threshold that may be |
| 986 | * adjusted later by the driver's runtime code. However, if the |
| 987 | * ability to transmit pause frames in not enabled, then these |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 988 | * registers will be set to 0. |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 989 | */ |
| 990 | if (!(hw->fc & e1000_fc_tx_pause)) { |
| 991 | E1000_WRITE_REG(hw, FCRTL, 0); |
| 992 | E1000_WRITE_REG(hw, FCRTH, 0); |
| 993 | } else { |
| 994 | /* We need to set up the Receive Threshold high and low water marks |
| 995 | * as well as (optionally) enabling the transmission of XON frames. |
| 996 | */ |
| 997 | if (hw->fc_send_xon) { |
| 998 | E1000_WRITE_REG(hw, FCRTL, |
| 999 | (hw->fc_low_water | E1000_FCRTL_XONE)); |
| 1000 | E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); |
| 1001 | } else { |
| 1002 | E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water); |
| 1003 | E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); |
| 1004 | } |
| 1005 | } |
| 1006 | return ret_val; |
| 1007 | } |
| 1008 | |
| 1009 | /****************************************************************************** |
| 1010 | * Sets up link for a fiber based adapter |
| 1011 | * |
| 1012 | * hw - Struct containing variables accessed by shared code |
| 1013 | * |
| 1014 | * Manipulates Physical Coding Sublayer functions in order to configure |
| 1015 | * link. Assumes the hardware has been previously reset and the transmitter |
| 1016 | * and receiver are not enabled. |
| 1017 | *****************************************************************************/ |
| 1018 | static int |
| 1019 | e1000_setup_fiber_link(struct eth_device *nic) |
| 1020 | { |
| 1021 | struct e1000_hw *hw = nic->priv; |
| 1022 | uint32_t ctrl; |
| 1023 | uint32_t status; |
| 1024 | uint32_t txcw = 0; |
| 1025 | uint32_t i; |
| 1026 | uint32_t signal; |
| 1027 | int32_t ret_val; |
| 1028 | |
| 1029 | DEBUGFUNC(); |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 1030 | /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be |
| 1031 | * set when the optics detect a signal. On older adapters, it will be |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1032 | * cleared when there is a signal |
| 1033 | */ |
| 1034 | ctrl = E1000_READ_REG(hw, CTRL); |
| 1035 | if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS)) |
| 1036 | signal = E1000_CTRL_SWDPIN1; |
| 1037 | else |
| 1038 | signal = 0; |
| 1039 | |
| 1040 | printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal, |
| 1041 | ctrl); |
| 1042 | /* Take the link out of reset */ |
| 1043 | ctrl &= ~(E1000_CTRL_LRST); |
| 1044 | |
| 1045 | e1000_config_collision_dist(hw); |
| 1046 | |
| 1047 | /* Check for a software override of the flow control settings, and setup |
| 1048 | * the device accordingly. If auto-negotiation is enabled, then software |
| 1049 | * will have to set the "PAUSE" bits to the correct value in the Tranmsit |
| 1050 | * Config Word Register (TXCW) and re-start auto-negotiation. However, if |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 1051 | * auto-negotiation is disabled, then software will have to manually |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1052 | * configure the two flow control enable bits in the CTRL register. |
| 1053 | * |
| 1054 | * The possible values of the "fc" parameter are: |
| 1055 | * 0: Flow control is completely disabled |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 1056 | * 1: Rx flow control is enabled (we can receive pause frames, but |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1057 | * not send pause frames). |
| 1058 | * 2: Tx flow control is enabled (we can send pause frames but we do |
| 1059 | * not support receiving pause frames). |
| 1060 | * 3: Both Rx and TX flow control (symmetric) are enabled. |
| 1061 | */ |
| 1062 | switch (hw->fc) { |
| 1063 | case e1000_fc_none: |
| 1064 | /* Flow control is completely disabled by a software over-ride. */ |
| 1065 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); |
| 1066 | break; |
| 1067 | case e1000_fc_rx_pause: |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 1068 | /* RX Flow control is enabled and TX Flow control is disabled by a |
| 1069 | * software over-ride. Since there really isn't a way to advertise |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1070 | * that we are capable of RX Pause ONLY, we will advertise that we |
| 1071 | * support both symmetric and asymmetric RX PAUSE. Later, we will |
| 1072 | * disable the adapter's ability to send PAUSE frames. |
| 1073 | */ |
| 1074 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); |
| 1075 | break; |
| 1076 | case e1000_fc_tx_pause: |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 1077 | /* TX Flow control is enabled, and RX Flow control is disabled, by a |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1078 | * software over-ride. |
| 1079 | */ |
| 1080 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); |
| 1081 | break; |
| 1082 | case e1000_fc_full: |
| 1083 | /* Flow control (both RX and TX) is enabled by a software over-ride. */ |
| 1084 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); |
| 1085 | break; |
| 1086 | default: |
| 1087 | DEBUGOUT("Flow control param set incorrectly\n"); |
| 1088 | return -E1000_ERR_CONFIG; |
| 1089 | break; |
| 1090 | } |
| 1091 | |
| 1092 | /* Since auto-negotiation is enabled, take the link out of reset (the link |
| 1093 | * will be in reset, because we previously reset the chip). This will |
| 1094 | * restart auto-negotiation. If auto-neogtiation is successful then the |
| 1095 | * link-up status bit will be set and the flow control enable bits (RFCE |
| 1096 | * and TFCE) will be set according to their negotiated value. |
| 1097 | */ |
| 1098 | DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw); |
| 1099 | |
| 1100 | E1000_WRITE_REG(hw, TXCW, txcw); |
| 1101 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 1102 | E1000_WRITE_FLUSH(hw); |
| 1103 | |
| 1104 | hw->txcw = txcw; |
| 1105 | mdelay(1); |
| 1106 | |
| 1107 | /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 1108 | * indication in the Device Status Register. Time-out if a link isn't |
| 1109 | * seen in 500 milliseconds seconds (Auto-negotiation should complete in |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1110 | * less than 500 milliseconds even if the other end is doing it in SW). |
| 1111 | */ |
| 1112 | if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) { |
| 1113 | DEBUGOUT("Looking for Link\n"); |
| 1114 | for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { |
| 1115 | mdelay(10); |
| 1116 | status = E1000_READ_REG(hw, STATUS); |
| 1117 | if (status & E1000_STATUS_LU) |
| 1118 | break; |
| 1119 | } |
| 1120 | if (i == (LINK_UP_TIMEOUT / 10)) { |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 1121 | /* AutoNeg failed to achieve a link, so we'll call |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1122 | * e1000_check_for_link. This routine will force the link up if we |
| 1123 | * detect a signal. This will allow us to communicate with |
| 1124 | * non-autonegotiating link partners. |
| 1125 | */ |
| 1126 | DEBUGOUT("Never got a valid link from auto-neg!!!\n"); |
| 1127 | hw->autoneg_failed = 1; |
| 1128 | ret_val = e1000_check_for_link(nic); |
| 1129 | if (ret_val < 0) { |
| 1130 | DEBUGOUT("Error while checking for link\n"); |
| 1131 | return ret_val; |
| 1132 | } |
| 1133 | hw->autoneg_failed = 0; |
| 1134 | } else { |
| 1135 | hw->autoneg_failed = 0; |
| 1136 | DEBUGOUT("Valid Link Found\n"); |
| 1137 | } |
| 1138 | } else { |
| 1139 | DEBUGOUT("No Signal Detected\n"); |
| 1140 | return -E1000_ERR_NOLINK; |
| 1141 | } |
| 1142 | return 0; |
| 1143 | } |
| 1144 | |
| 1145 | /****************************************************************************** |
| 1146 | * Detects which PHY is present and the speed and duplex |
| 1147 | * |
| 1148 | * hw - Struct containing variables accessed by shared code |
| 1149 | ******************************************************************************/ |
| 1150 | static int |
| 1151 | e1000_setup_copper_link(struct eth_device *nic) |
| 1152 | { |
| 1153 | struct e1000_hw *hw = nic->priv; |
| 1154 | uint32_t ctrl; |
| 1155 | int32_t ret_val; |
| 1156 | uint16_t i; |
| 1157 | uint16_t phy_data; |
| 1158 | |
| 1159 | DEBUGFUNC(); |
| 1160 | |
| 1161 | ctrl = E1000_READ_REG(hw, CTRL); |
| 1162 | /* With 82543, we need to force speed and duplex on the MAC equal to what |
| 1163 | * the PHY speed and duplex configuration is. In addition, we need to |
| 1164 | * perform a hardware reset on the PHY to take it out of reset. |
| 1165 | */ |
| 1166 | if (hw->mac_type > e1000_82543) { |
| 1167 | ctrl |= E1000_CTRL_SLU; |
| 1168 | ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
| 1169 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 1170 | } else { |
| 1171 | ctrl |= |
| 1172 | (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); |
| 1173 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 1174 | e1000_phy_hw_reset(hw); |
| 1175 | } |
| 1176 | |
| 1177 | /* Make sure we have a valid PHY */ |
| 1178 | ret_val = e1000_detect_gig_phy(hw); |
| 1179 | if (ret_val < 0) { |
| 1180 | DEBUGOUT("Error, did not detect valid phy.\n"); |
| 1181 | return ret_val; |
| 1182 | } |
| 1183 | DEBUGOUT("Phy ID = %x \n", hw->phy_id); |
| 1184 | |
| 1185 | /* Enable CRS on TX. This must be set for half-duplex operation. */ |
| 1186 | if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0) { |
| 1187 | DEBUGOUT("PHY Read Error\n"); |
| 1188 | return -E1000_ERR_PHY; |
| 1189 | } |
| 1190 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; |
| 1191 | |
| 1192 | #if 0 |
| 1193 | /* Options: |
| 1194 | * MDI/MDI-X = 0 (default) |
| 1195 | * 0 - Auto for all speeds |
| 1196 | * 1 - MDI mode |
| 1197 | * 2 - MDI-X mode |
| 1198 | * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) |
| 1199 | */ |
| 1200 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; |
| 1201 | switch (hw->mdix) { |
| 1202 | case 1: |
| 1203 | phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; |
| 1204 | break; |
| 1205 | case 2: |
| 1206 | phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; |
| 1207 | break; |
| 1208 | case 3: |
| 1209 | phy_data |= M88E1000_PSCR_AUTO_X_1000T; |
| 1210 | break; |
| 1211 | case 0: |
| 1212 | default: |
| 1213 | phy_data |= M88E1000_PSCR_AUTO_X_MODE; |
| 1214 | break; |
| 1215 | } |
| 1216 | #else |
| 1217 | phy_data |= M88E1000_PSCR_AUTO_X_MODE; |
| 1218 | #endif |
| 1219 | |
| 1220 | #if 0 |
| 1221 | /* Options: |
| 1222 | * disable_polarity_correction = 0 (default) |
| 1223 | * Automatic Correction for Reversed Cable Polarity |
| 1224 | * 0 - Disabled |
| 1225 | * 1 - Enabled |
| 1226 | */ |
| 1227 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; |
| 1228 | if (hw->disable_polarity_correction == 1) |
| 1229 | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; |
| 1230 | #else |
| 1231 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; |
| 1232 | #endif |
| 1233 | if (e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data) < 0) { |
| 1234 | DEBUGOUT("PHY Write Error\n"); |
| 1235 | return -E1000_ERR_PHY; |
| 1236 | } |
| 1237 | |
| 1238 | /* Force TX_CLK in the Extended PHY Specific Control Register |
| 1239 | * to 25MHz clock. |
| 1240 | */ |
| 1241 | if (e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data) < 0) { |
| 1242 | DEBUGOUT("PHY Read Error\n"); |
| 1243 | return -E1000_ERR_PHY; |
| 1244 | } |
| 1245 | phy_data |= M88E1000_EPSCR_TX_CLK_25; |
| 1246 | /* Configure Master and Slave downshift values */ |
| 1247 | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | |
| 1248 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); |
| 1249 | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | |
| 1250 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); |
| 1251 | if (e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data) < 0) { |
| 1252 | DEBUGOUT("PHY Write Error\n"); |
| 1253 | return -E1000_ERR_PHY; |
| 1254 | } |
| 1255 | |
| 1256 | /* SW Reset the PHY so all changes take effect */ |
| 1257 | ret_val = e1000_phy_reset(hw); |
| 1258 | if (ret_val < 0) { |
| 1259 | DEBUGOUT("Error Resetting the PHY\n"); |
| 1260 | return ret_val; |
| 1261 | } |
| 1262 | |
| 1263 | /* Options: |
| 1264 | * autoneg = 1 (default) |
| 1265 | * PHY will advertise value(s) parsed from |
| 1266 | * autoneg_advertised and fc |
| 1267 | * autoneg = 0 |
| 1268 | * PHY will be set to 10H, 10F, 100H, or 100F |
| 1269 | * depending on value parsed from forced_speed_duplex. |
| 1270 | */ |
| 1271 | |
| 1272 | /* Is autoneg enabled? This is enabled by default or by software override. |
| 1273 | * If so, call e1000_phy_setup_autoneg routine to parse the |
| 1274 | * autoneg_advertised and fc options. If autoneg is NOT enabled, then the |
| 1275 | * user should have provided a speed/duplex override. If so, then call |
| 1276 | * e1000_phy_force_speed_duplex to parse and set this up. |
| 1277 | */ |
| 1278 | /* Perform some bounds checking on the hw->autoneg_advertised |
| 1279 | * parameter. If this variable is zero, then set it to the default. |
| 1280 | */ |
| 1281 | hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; |
| 1282 | |
| 1283 | /* If autoneg_advertised is zero, we assume it was not defaulted |
| 1284 | * by the calling code so we set to advertise full capability. |
| 1285 | */ |
| 1286 | if (hw->autoneg_advertised == 0) |
| 1287 | hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
| 1288 | |
| 1289 | DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); |
| 1290 | ret_val = e1000_phy_setup_autoneg(hw); |
| 1291 | if (ret_val < 0) { |
| 1292 | DEBUGOUT("Error Setting up Auto-Negotiation\n"); |
| 1293 | return ret_val; |
| 1294 | } |
| 1295 | DEBUGOUT("Restarting Auto-Neg\n"); |
| 1296 | |
| 1297 | /* Restart auto-negotiation by setting the Auto Neg Enable bit and |
| 1298 | * the Auto Neg Restart bit in the PHY control register. |
| 1299 | */ |
| 1300 | if (e1000_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) { |
| 1301 | DEBUGOUT("PHY Read Error\n"); |
| 1302 | return -E1000_ERR_PHY; |
| 1303 | } |
| 1304 | phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); |
| 1305 | if (e1000_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) { |
| 1306 | DEBUGOUT("PHY Write Error\n"); |
| 1307 | return -E1000_ERR_PHY; |
| 1308 | } |
| 1309 | #if 0 |
| 1310 | /* Does the user want to wait for Auto-Neg to complete here, or |
| 1311 | * check at a later time (for example, callback routine). |
| 1312 | */ |
| 1313 | if (hw->wait_autoneg_complete) { |
| 1314 | ret_val = e1000_wait_autoneg(hw); |
| 1315 | if (ret_val < 0) { |
| 1316 | DEBUGOUT |
| 1317 | ("Error while waiting for autoneg to complete\n"); |
| 1318 | return ret_val; |
| 1319 | } |
| 1320 | } |
| 1321 | #else |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 1322 | /* If we do not wait for autonegtation to complete I |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1323 | * do not see a valid link status. |
| 1324 | */ |
| 1325 | ret_val = e1000_wait_autoneg(hw); |
| 1326 | if (ret_val < 0) { |
| 1327 | DEBUGOUT("Error while waiting for autoneg to complete\n"); |
| 1328 | return ret_val; |
| 1329 | } |
| 1330 | #endif |
| 1331 | |
| 1332 | /* Check link status. Wait up to 100 microseconds for link to become |
| 1333 | * valid. |
| 1334 | */ |
| 1335 | for (i = 0; i < 10; i++) { |
| 1336 | if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { |
| 1337 | DEBUGOUT("PHY Read Error\n"); |
| 1338 | return -E1000_ERR_PHY; |
| 1339 | } |
| 1340 | if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { |
| 1341 | DEBUGOUT("PHY Read Error\n"); |
| 1342 | return -E1000_ERR_PHY; |
| 1343 | } |
| 1344 | if (phy_data & MII_SR_LINK_STATUS) { |
| 1345 | /* We have link, so we need to finish the config process: |
| 1346 | * 1) Set up the MAC to the current PHY speed/duplex |
| 1347 | * if we are on 82543. If we |
| 1348 | * are on newer silicon, we only need to configure |
| 1349 | * collision distance in the Transmit Control Register. |
| 1350 | * 2) Set up flow control on the MAC to that established with |
| 1351 | * the link partner. |
| 1352 | */ |
| 1353 | if (hw->mac_type >= e1000_82544) { |
| 1354 | e1000_config_collision_dist(hw); |
| 1355 | } else { |
| 1356 | ret_val = e1000_config_mac_to_phy(hw); |
| 1357 | if (ret_val < 0) { |
| 1358 | DEBUGOUT |
| 1359 | ("Error configuring MAC to PHY settings\n"); |
| 1360 | return ret_val; |
| 1361 | } |
| 1362 | } |
| 1363 | ret_val = e1000_config_fc_after_link_up(hw); |
| 1364 | if (ret_val < 0) { |
| 1365 | DEBUGOUT("Error Configuring Flow Control\n"); |
| 1366 | return ret_val; |
| 1367 | } |
| 1368 | DEBUGOUT("Valid link established!!!\n"); |
| 1369 | return 0; |
| 1370 | } |
| 1371 | udelay(10); |
| 1372 | } |
| 1373 | |
| 1374 | DEBUGOUT("Unable to establish link!!!\n"); |
| 1375 | return -E1000_ERR_NOLINK; |
| 1376 | } |
| 1377 | |
| 1378 | /****************************************************************************** |
| 1379 | * Configures PHY autoneg and flow control advertisement settings |
| 1380 | * |
| 1381 | * hw - Struct containing variables accessed by shared code |
| 1382 | ******************************************************************************/ |
| 1383 | static int |
| 1384 | e1000_phy_setup_autoneg(struct e1000_hw *hw) |
| 1385 | { |
| 1386 | uint16_t mii_autoneg_adv_reg; |
| 1387 | uint16_t mii_1000t_ctrl_reg; |
| 1388 | |
| 1389 | DEBUGFUNC(); |
| 1390 | |
| 1391 | /* Read the MII Auto-Neg Advertisement Register (Address 4). */ |
| 1392 | if (e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg) < 0) { |
| 1393 | DEBUGOUT("PHY Read Error\n"); |
| 1394 | return -E1000_ERR_PHY; |
| 1395 | } |
| 1396 | |
| 1397 | /* Read the MII 1000Base-T Control Register (Address 9). */ |
| 1398 | if (e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg) < 0) { |
| 1399 | DEBUGOUT("PHY Read Error\n"); |
| 1400 | return -E1000_ERR_PHY; |
| 1401 | } |
| 1402 | |
| 1403 | /* Need to parse both autoneg_advertised and fc and set up |
| 1404 | * the appropriate PHY registers. First we will parse for |
| 1405 | * autoneg_advertised software override. Since we can advertise |
| 1406 | * a plethora of combinations, we need to check each bit |
| 1407 | * individually. |
| 1408 | */ |
| 1409 | |
| 1410 | /* First we clear all the 10/100 mb speed bits in the Auto-Neg |
| 1411 | * Advertisement Register (Address 4) and the 1000 mb speed bits in |
| 1412 | * the 1000Base-T Control Register (Address 9). |
| 1413 | */ |
| 1414 | mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; |
| 1415 | mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; |
| 1416 | |
| 1417 | DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised); |
| 1418 | |
| 1419 | /* Do we want to advertise 10 Mb Half Duplex? */ |
| 1420 | if (hw->autoneg_advertised & ADVERTISE_10_HALF) { |
| 1421 | DEBUGOUT("Advertise 10mb Half duplex\n"); |
| 1422 | mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; |
| 1423 | } |
| 1424 | |
| 1425 | /* Do we want to advertise 10 Mb Full Duplex? */ |
| 1426 | if (hw->autoneg_advertised & ADVERTISE_10_FULL) { |
| 1427 | DEBUGOUT("Advertise 10mb Full duplex\n"); |
| 1428 | mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; |
| 1429 | } |
| 1430 | |
| 1431 | /* Do we want to advertise 100 Mb Half Duplex? */ |
| 1432 | if (hw->autoneg_advertised & ADVERTISE_100_HALF) { |
| 1433 | DEBUGOUT("Advertise 100mb Half duplex\n"); |
| 1434 | mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; |
| 1435 | } |
| 1436 | |
| 1437 | /* Do we want to advertise 100 Mb Full Duplex? */ |
| 1438 | if (hw->autoneg_advertised & ADVERTISE_100_FULL) { |
| 1439 | DEBUGOUT("Advertise 100mb Full duplex\n"); |
| 1440 | mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; |
| 1441 | } |
| 1442 | |
| 1443 | /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ |
| 1444 | if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { |
| 1445 | DEBUGOUT |
| 1446 | ("Advertise 1000mb Half duplex requested, request denied!\n"); |
| 1447 | } |
| 1448 | |
| 1449 | /* Do we want to advertise 1000 Mb Full Duplex? */ |
| 1450 | if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { |
| 1451 | DEBUGOUT("Advertise 1000mb Full duplex\n"); |
| 1452 | mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; |
| 1453 | } |
| 1454 | |
| 1455 | /* Check for a software override of the flow control settings, and |
| 1456 | * setup the PHY advertisement registers accordingly. If |
| 1457 | * auto-negotiation is enabled, then software will have to set the |
| 1458 | * "PAUSE" bits to the correct value in the Auto-Negotiation |
| 1459 | * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. |
| 1460 | * |
| 1461 | * The possible values of the "fc" parameter are: |
| 1462 | * 0: Flow control is completely disabled |
| 1463 | * 1: Rx flow control is enabled (we can receive pause frames |
| 1464 | * but not send pause frames). |
| 1465 | * 2: Tx flow control is enabled (we can send pause frames |
| 1466 | * but we do not support receiving pause frames). |
| 1467 | * 3: Both Rx and TX flow control (symmetric) are enabled. |
| 1468 | * other: No software override. The flow control configuration |
| 1469 | * in the EEPROM is used. |
| 1470 | */ |
| 1471 | switch (hw->fc) { |
| 1472 | case e1000_fc_none: /* 0 */ |
| 1473 | /* Flow control (RX & TX) is completely disabled by a |
| 1474 | * software over-ride. |
| 1475 | */ |
| 1476 | mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
| 1477 | break; |
| 1478 | case e1000_fc_rx_pause: /* 1 */ |
| 1479 | /* RX Flow control is enabled, and TX Flow control is |
| 1480 | * disabled, by a software over-ride. |
| 1481 | */ |
| 1482 | /* Since there really isn't a way to advertise that we are |
| 1483 | * capable of RX Pause ONLY, we will advertise that we |
| 1484 | * support both symmetric and asymmetric RX PAUSE. Later |
| 1485 | * (in e1000_config_fc_after_link_up) we will disable the |
| 1486 | *hw's ability to send PAUSE frames. |
| 1487 | */ |
| 1488 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
| 1489 | break; |
| 1490 | case e1000_fc_tx_pause: /* 2 */ |
| 1491 | /* TX Flow control is enabled, and RX Flow control is |
| 1492 | * disabled, by a software over-ride. |
| 1493 | */ |
| 1494 | mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; |
| 1495 | mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; |
| 1496 | break; |
| 1497 | case e1000_fc_full: /* 3 */ |
| 1498 | /* Flow control (both RX and TX) is enabled by a software |
| 1499 | * over-ride. |
| 1500 | */ |
| 1501 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
| 1502 | break; |
| 1503 | default: |
| 1504 | DEBUGOUT("Flow control param set incorrectly\n"); |
| 1505 | return -E1000_ERR_CONFIG; |
| 1506 | } |
| 1507 | |
| 1508 | if (e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg) < 0) { |
| 1509 | DEBUGOUT("PHY Write Error\n"); |
| 1510 | return -E1000_ERR_PHY; |
| 1511 | } |
| 1512 | |
| 1513 | DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); |
| 1514 | |
| 1515 | if (e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg) < 0) { |
| 1516 | DEBUGOUT("PHY Write Error\n"); |
| 1517 | return -E1000_ERR_PHY; |
| 1518 | } |
| 1519 | return 0; |
| 1520 | } |
| 1521 | |
| 1522 | /****************************************************************************** |
| 1523 | * Sets the collision distance in the Transmit Control register |
| 1524 | * |
| 1525 | * hw - Struct containing variables accessed by shared code |
| 1526 | * |
| 1527 | * Link should have been established previously. Reads the speed and duplex |
| 1528 | * information from the Device Status register. |
| 1529 | ******************************************************************************/ |
| 1530 | static void |
| 1531 | e1000_config_collision_dist(struct e1000_hw *hw) |
| 1532 | { |
| 1533 | uint32_t tctl; |
| 1534 | |
| 1535 | tctl = E1000_READ_REG(hw, TCTL); |
| 1536 | |
| 1537 | tctl &= ~E1000_TCTL_COLD; |
| 1538 | tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; |
| 1539 | |
| 1540 | E1000_WRITE_REG(hw, TCTL, tctl); |
| 1541 | E1000_WRITE_FLUSH(hw); |
| 1542 | } |
| 1543 | |
| 1544 | /****************************************************************************** |
| 1545 | * Sets MAC speed and duplex settings to reflect the those in the PHY |
| 1546 | * |
| 1547 | * hw - Struct containing variables accessed by shared code |
| 1548 | * mii_reg - data to write to the MII control register |
| 1549 | * |
| 1550 | * The contents of the PHY register containing the needed information need to |
| 1551 | * be passed in. |
| 1552 | ******************************************************************************/ |
| 1553 | static int |
| 1554 | e1000_config_mac_to_phy(struct e1000_hw *hw) |
| 1555 | { |
| 1556 | uint32_t ctrl; |
| 1557 | uint16_t phy_data; |
| 1558 | |
| 1559 | DEBUGFUNC(); |
| 1560 | |
| 1561 | /* Read the Device Control Register and set the bits to Force Speed |
| 1562 | * and Duplex. |
| 1563 | */ |
| 1564 | ctrl = E1000_READ_REG(hw, CTRL); |
| 1565 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
| 1566 | ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); |
| 1567 | |
| 1568 | /* Set up duplex in the Device Control and Transmit Control |
| 1569 | * registers depending on negotiated values. |
| 1570 | */ |
| 1571 | if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) { |
| 1572 | DEBUGOUT("PHY Read Error\n"); |
| 1573 | return -E1000_ERR_PHY; |
| 1574 | } |
| 1575 | if (phy_data & M88E1000_PSSR_DPLX) |
| 1576 | ctrl |= E1000_CTRL_FD; |
| 1577 | else |
| 1578 | ctrl &= ~E1000_CTRL_FD; |
| 1579 | |
| 1580 | e1000_config_collision_dist(hw); |
| 1581 | |
| 1582 | /* Set up speed in the Device Control register depending on |
| 1583 | * negotiated values. |
| 1584 | */ |
| 1585 | if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) |
| 1586 | ctrl |= E1000_CTRL_SPD_1000; |
| 1587 | else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) |
| 1588 | ctrl |= E1000_CTRL_SPD_100; |
| 1589 | /* Write the configured values back to the Device Control Reg. */ |
| 1590 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 1591 | return 0; |
| 1592 | } |
| 1593 | |
| 1594 | /****************************************************************************** |
| 1595 | * Forces the MAC's flow control settings. |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 1596 | * |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1597 | * hw - Struct containing variables accessed by shared code |
| 1598 | * |
| 1599 | * Sets the TFCE and RFCE bits in the device control register to reflect |
| 1600 | * the adapter settings. TFCE and RFCE need to be explicitly set by |
| 1601 | * software when a Copper PHY is used because autonegotiation is managed |
| 1602 | * by the PHY rather than the MAC. Software must also configure these |
| 1603 | * bits when link is forced on a fiber connection. |
| 1604 | *****************************************************************************/ |
| 1605 | static int |
| 1606 | e1000_force_mac_fc(struct e1000_hw *hw) |
| 1607 | { |
| 1608 | uint32_t ctrl; |
| 1609 | |
| 1610 | DEBUGFUNC(); |
| 1611 | |
| 1612 | /* Get the current configuration of the Device Control Register */ |
| 1613 | ctrl = E1000_READ_REG(hw, CTRL); |
| 1614 | |
| 1615 | /* Because we didn't get link via the internal auto-negotiation |
| 1616 | * mechanism (we either forced link or we got link via PHY |
| 1617 | * auto-neg), we have to manually enable/disable transmit an |
| 1618 | * receive flow control. |
| 1619 | * |
| 1620 | * The "Case" statement below enables/disable flow control |
| 1621 | * according to the "hw->fc" parameter. |
| 1622 | * |
| 1623 | * The possible values of the "fc" parameter are: |
| 1624 | * 0: Flow control is completely disabled |
| 1625 | * 1: Rx flow control is enabled (we can receive pause |
| 1626 | * frames but not send pause frames). |
| 1627 | * 2: Tx flow control is enabled (we can send pause frames |
| 1628 | * frames but we do not receive pause frames). |
| 1629 | * 3: Both Rx and TX flow control (symmetric) is enabled. |
| 1630 | * other: No other values should be possible at this point. |
| 1631 | */ |
| 1632 | |
| 1633 | switch (hw->fc) { |
| 1634 | case e1000_fc_none: |
| 1635 | ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); |
| 1636 | break; |
| 1637 | case e1000_fc_rx_pause: |
| 1638 | ctrl &= (~E1000_CTRL_TFCE); |
| 1639 | ctrl |= E1000_CTRL_RFCE; |
| 1640 | break; |
| 1641 | case e1000_fc_tx_pause: |
| 1642 | ctrl &= (~E1000_CTRL_RFCE); |
| 1643 | ctrl |= E1000_CTRL_TFCE; |
| 1644 | break; |
| 1645 | case e1000_fc_full: |
| 1646 | ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); |
| 1647 | break; |
| 1648 | default: |
| 1649 | DEBUGOUT("Flow control param set incorrectly\n"); |
| 1650 | return -E1000_ERR_CONFIG; |
| 1651 | } |
| 1652 | |
| 1653 | /* Disable TX Flow Control for 82542 (rev 2.0) */ |
| 1654 | if (hw->mac_type == e1000_82542_rev2_0) |
| 1655 | ctrl &= (~E1000_CTRL_TFCE); |
| 1656 | |
| 1657 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 1658 | return 0; |
| 1659 | } |
| 1660 | |
| 1661 | /****************************************************************************** |
| 1662 | * Configures flow control settings after link is established |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 1663 | * |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1664 | * hw - Struct containing variables accessed by shared code |
| 1665 | * |
| 1666 | * Should be called immediately after a valid link has been established. |
| 1667 | * Forces MAC flow control settings if link was forced. When in MII/GMII mode |
| 1668 | * and autonegotiation is enabled, the MAC flow control settings will be set |
| 1669 | * based on the flow control negotiated by the PHY. In TBI mode, the TFCE |
| 1670 | * and RFCE bits will be automaticaly set to the negotiated flow control mode. |
| 1671 | *****************************************************************************/ |
| 1672 | static int |
| 1673 | e1000_config_fc_after_link_up(struct e1000_hw *hw) |
| 1674 | { |
| 1675 | int32_t ret_val; |
| 1676 | uint16_t mii_status_reg; |
| 1677 | uint16_t mii_nway_adv_reg; |
| 1678 | uint16_t mii_nway_lp_ability_reg; |
| 1679 | uint16_t speed; |
| 1680 | uint16_t duplex; |
| 1681 | |
| 1682 | DEBUGFUNC(); |
| 1683 | |
| 1684 | /* Check for the case where we have fiber media and auto-neg failed |
| 1685 | * so we had to force link. In this case, we need to force the |
| 1686 | * configuration of the MAC to match the "fc" parameter. |
| 1687 | */ |
| 1688 | if ((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) { |
| 1689 | ret_val = e1000_force_mac_fc(hw); |
| 1690 | if (ret_val < 0) { |
| 1691 | DEBUGOUT("Error forcing flow control settings\n"); |
| 1692 | return ret_val; |
| 1693 | } |
| 1694 | } |
| 1695 | |
| 1696 | /* Check for the case where we have copper media and auto-neg is |
| 1697 | * enabled. In this case, we need to check and see if Auto-Neg |
| 1698 | * has completed, and if so, how the PHY and link partner has |
| 1699 | * flow control configured. |
| 1700 | */ |
| 1701 | if (hw->media_type == e1000_media_type_copper) { |
| 1702 | /* Read the MII Status Register and check to see if AutoNeg |
| 1703 | * has completed. We read this twice because this reg has |
| 1704 | * some "sticky" (latched) bits. |
| 1705 | */ |
| 1706 | if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) { |
| 1707 | DEBUGOUT("PHY Read Error \n"); |
| 1708 | return -E1000_ERR_PHY; |
| 1709 | } |
| 1710 | if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) { |
| 1711 | DEBUGOUT("PHY Read Error \n"); |
| 1712 | return -E1000_ERR_PHY; |
| 1713 | } |
| 1714 | |
| 1715 | if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { |
| 1716 | /* The AutoNeg process has completed, so we now need to |
| 1717 | * read both the Auto Negotiation Advertisement Register |
| 1718 | * (Address 4) and the Auto_Negotiation Base Page Ability |
| 1719 | * Register (Address 5) to determine how flow control was |
| 1720 | * negotiated. |
| 1721 | */ |
| 1722 | if (e1000_read_phy_reg |
| 1723 | (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) { |
| 1724 | DEBUGOUT("PHY Read Error\n"); |
| 1725 | return -E1000_ERR_PHY; |
| 1726 | } |
| 1727 | if (e1000_read_phy_reg |
| 1728 | (hw, PHY_LP_ABILITY, |
| 1729 | &mii_nway_lp_ability_reg) < 0) { |
| 1730 | DEBUGOUT("PHY Read Error\n"); |
| 1731 | return -E1000_ERR_PHY; |
| 1732 | } |
| 1733 | |
| 1734 | /* Two bits in the Auto Negotiation Advertisement Register |
| 1735 | * (Address 4) and two bits in the Auto Negotiation Base |
| 1736 | * Page Ability Register (Address 5) determine flow control |
| 1737 | * for both the PHY and the link partner. The following |
| 1738 | * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, |
| 1739 | * 1999, describes these PAUSE resolution bits and how flow |
| 1740 | * control is determined based upon these settings. |
| 1741 | * NOTE: DC = Don't Care |
| 1742 | * |
| 1743 | * LOCAL DEVICE | LINK PARTNER |
| 1744 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution |
| 1745 | *-------|---------|-------|---------|-------------------- |
| 1746 | * 0 | 0 | DC | DC | e1000_fc_none |
| 1747 | * 0 | 1 | 0 | DC | e1000_fc_none |
| 1748 | * 0 | 1 | 1 | 0 | e1000_fc_none |
| 1749 | * 0 | 1 | 1 | 1 | e1000_fc_tx_pause |
| 1750 | * 1 | 0 | 0 | DC | e1000_fc_none |
| 1751 | * 1 | DC | 1 | DC | e1000_fc_full |
| 1752 | * 1 | 1 | 0 | 0 | e1000_fc_none |
| 1753 | * 1 | 1 | 0 | 1 | e1000_fc_rx_pause |
| 1754 | * |
| 1755 | */ |
| 1756 | /* Are both PAUSE bits set to 1? If so, this implies |
| 1757 | * Symmetric Flow Control is enabled at both ends. The |
| 1758 | * ASM_DIR bits are irrelevant per the spec. |
| 1759 | * |
| 1760 | * For Symmetric Flow Control: |
| 1761 | * |
| 1762 | * LOCAL DEVICE | LINK PARTNER |
| 1763 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
| 1764 | *-------|---------|-------|---------|-------------------- |
| 1765 | * 1 | DC | 1 | DC | e1000_fc_full |
| 1766 | * |
| 1767 | */ |
| 1768 | if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && |
| 1769 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { |
| 1770 | /* Now we need to check if the user selected RX ONLY |
| 1771 | * of pause frames. In this case, we had to advertise |
| 1772 | * FULL flow control because we could not advertise RX |
| 1773 | * ONLY. Hence, we must now check to see if we need to |
| 1774 | * turn OFF the TRANSMISSION of PAUSE frames. |
| 1775 | */ |
| 1776 | if (hw->original_fc == e1000_fc_full) { |
| 1777 | hw->fc = e1000_fc_full; |
| 1778 | DEBUGOUT("Flow Control = FULL.\r\n"); |
| 1779 | } else { |
| 1780 | hw->fc = e1000_fc_rx_pause; |
| 1781 | DEBUGOUT |
| 1782 | ("Flow Control = RX PAUSE frames only.\r\n"); |
| 1783 | } |
| 1784 | } |
| 1785 | /* For receiving PAUSE frames ONLY. |
| 1786 | * |
| 1787 | * LOCAL DEVICE | LINK PARTNER |
| 1788 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
| 1789 | *-------|---------|-------|---------|-------------------- |
| 1790 | * 0 | 1 | 1 | 1 | e1000_fc_tx_pause |
| 1791 | * |
| 1792 | */ |
| 1793 | else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && |
| 1794 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && |
| 1795 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && |
| 1796 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) |
| 1797 | { |
| 1798 | hw->fc = e1000_fc_tx_pause; |
| 1799 | DEBUGOUT |
| 1800 | ("Flow Control = TX PAUSE frames only.\r\n"); |
| 1801 | } |
| 1802 | /* For transmitting PAUSE frames ONLY. |
| 1803 | * |
| 1804 | * LOCAL DEVICE | LINK PARTNER |
| 1805 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
| 1806 | *-------|---------|-------|---------|-------------------- |
| 1807 | * 1 | 1 | 0 | 1 | e1000_fc_rx_pause |
| 1808 | * |
| 1809 | */ |
| 1810 | else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && |
| 1811 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && |
| 1812 | !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && |
| 1813 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) |
| 1814 | { |
| 1815 | hw->fc = e1000_fc_rx_pause; |
| 1816 | DEBUGOUT |
| 1817 | ("Flow Control = RX PAUSE frames only.\r\n"); |
| 1818 | } |
| 1819 | /* Per the IEEE spec, at this point flow control should be |
| 1820 | * disabled. However, we want to consider that we could |
| 1821 | * be connected to a legacy switch that doesn't advertise |
| 1822 | * desired flow control, but can be forced on the link |
| 1823 | * partner. So if we advertised no flow control, that is |
| 1824 | * what we will resolve to. If we advertised some kind of |
| 1825 | * receive capability (Rx Pause Only or Full Flow Control) |
| 1826 | * and the link partner advertised none, we will configure |
| 1827 | * ourselves to enable Rx Flow Control only. We can do |
| 1828 | * this safely for two reasons: If the link partner really |
| 1829 | * didn't want flow control enabled, and we enable Rx, no |
| 1830 | * harm done since we won't be receiving any PAUSE frames |
| 1831 | * anyway. If the intent on the link partner was to have |
| 1832 | * flow control enabled, then by us enabling RX only, we |
| 1833 | * can at least receive pause frames and process them. |
| 1834 | * This is a good idea because in most cases, since we are |
| 1835 | * predominantly a server NIC, more times than not we will |
| 1836 | * be asked to delay transmission of packets than asking |
| 1837 | * our link partner to pause transmission of frames. |
| 1838 | */ |
| 1839 | else if (hw->original_fc == e1000_fc_none || |
| 1840 | hw->original_fc == e1000_fc_tx_pause) { |
| 1841 | hw->fc = e1000_fc_none; |
| 1842 | DEBUGOUT("Flow Control = NONE.\r\n"); |
| 1843 | } else { |
| 1844 | hw->fc = e1000_fc_rx_pause; |
| 1845 | DEBUGOUT |
| 1846 | ("Flow Control = RX PAUSE frames only.\r\n"); |
| 1847 | } |
| 1848 | |
| 1849 | /* Now we need to do one last check... If we auto- |
| 1850 | * negotiated to HALF DUPLEX, flow control should not be |
| 1851 | * enabled per IEEE 802.3 spec. |
| 1852 | */ |
| 1853 | e1000_get_speed_and_duplex(hw, &speed, &duplex); |
| 1854 | |
| 1855 | if (duplex == HALF_DUPLEX) |
| 1856 | hw->fc = e1000_fc_none; |
| 1857 | |
| 1858 | /* Now we call a subroutine to actually force the MAC |
| 1859 | * controller to use the correct flow control settings. |
| 1860 | */ |
| 1861 | ret_val = e1000_force_mac_fc(hw); |
| 1862 | if (ret_val < 0) { |
| 1863 | DEBUGOUT |
| 1864 | ("Error forcing flow control settings\n"); |
| 1865 | return ret_val; |
| 1866 | } |
| 1867 | } else { |
| 1868 | DEBUGOUT |
| 1869 | ("Copper PHY and Auto Neg has not completed.\r\n"); |
| 1870 | } |
| 1871 | } |
| 1872 | return 0; |
| 1873 | } |
| 1874 | |
| 1875 | /****************************************************************************** |
| 1876 | * Checks to see if the link status of the hardware has changed. |
| 1877 | * |
| 1878 | * hw - Struct containing variables accessed by shared code |
| 1879 | * |
| 1880 | * Called by any function that needs to check the link status of the adapter. |
| 1881 | *****************************************************************************/ |
| 1882 | static int |
| 1883 | e1000_check_for_link(struct eth_device *nic) |
| 1884 | { |
| 1885 | struct e1000_hw *hw = nic->priv; |
| 1886 | uint32_t rxcw; |
| 1887 | uint32_t ctrl; |
| 1888 | uint32_t status; |
| 1889 | uint32_t rctl; |
| 1890 | uint32_t signal; |
| 1891 | int32_t ret_val; |
| 1892 | uint16_t phy_data; |
| 1893 | uint16_t lp_capability; |
| 1894 | |
| 1895 | DEBUGFUNC(); |
| 1896 | |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 1897 | /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be |
| 1898 | * set when the optics detect a signal. On older adapters, it will be |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1899 | * cleared when there is a signal |
| 1900 | */ |
| 1901 | ctrl = E1000_READ_REG(hw, CTRL); |
| 1902 | if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS)) |
| 1903 | signal = E1000_CTRL_SWDPIN1; |
| 1904 | else |
| 1905 | signal = 0; |
| 1906 | |
| 1907 | status = E1000_READ_REG(hw, STATUS); |
| 1908 | rxcw = E1000_READ_REG(hw, RXCW); |
| 1909 | DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw); |
| 1910 | |
| 1911 | /* If we have a copper PHY then we only want to go out to the PHY |
| 1912 | * registers to see if Auto-Neg has completed and/or if our link |
| 1913 | * status has changed. The get_link_status flag will be set if we |
| 1914 | * receive a Link Status Change interrupt or we have Rx Sequence |
| 1915 | * Errors. |
| 1916 | */ |
| 1917 | if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { |
| 1918 | /* First we want to see if the MII Status Register reports |
| 1919 | * link. If so, then we want to get the current speed/duplex |
| 1920 | * of the PHY. |
| 1921 | * Read the register twice since the link bit is sticky. |
| 1922 | */ |
| 1923 | if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { |
| 1924 | DEBUGOUT("PHY Read Error\n"); |
| 1925 | return -E1000_ERR_PHY; |
| 1926 | } |
| 1927 | if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { |
| 1928 | DEBUGOUT("PHY Read Error\n"); |
| 1929 | return -E1000_ERR_PHY; |
| 1930 | } |
| 1931 | |
| 1932 | if (phy_data & MII_SR_LINK_STATUS) { |
| 1933 | hw->get_link_status = FALSE; |
| 1934 | } else { |
| 1935 | /* No link detected */ |
| 1936 | return -E1000_ERR_NOLINK; |
| 1937 | } |
| 1938 | |
| 1939 | /* We have a M88E1000 PHY and Auto-Neg is enabled. If we |
| 1940 | * have Si on board that is 82544 or newer, Auto |
| 1941 | * Speed Detection takes care of MAC speed/duplex |
| 1942 | * configuration. So we only need to configure Collision |
| 1943 | * Distance in the MAC. Otherwise, we need to force |
| 1944 | * speed/duplex on the MAC to the current PHY speed/duplex |
| 1945 | * settings. |
| 1946 | */ |
| 1947 | if (hw->mac_type >= e1000_82544) |
| 1948 | e1000_config_collision_dist(hw); |
| 1949 | else { |
| 1950 | ret_val = e1000_config_mac_to_phy(hw); |
| 1951 | if (ret_val < 0) { |
| 1952 | DEBUGOUT |
| 1953 | ("Error configuring MAC to PHY settings\n"); |
| 1954 | return ret_val; |
| 1955 | } |
| 1956 | } |
| 1957 | |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 1958 | /* Configure Flow Control now that Auto-Neg has completed. First, we |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1959 | * need to restore the desired flow control settings because we may |
| 1960 | * have had to re-autoneg with a different link partner. |
| 1961 | */ |
| 1962 | ret_val = e1000_config_fc_after_link_up(hw); |
| 1963 | if (ret_val < 0) { |
| 1964 | DEBUGOUT("Error configuring flow control\n"); |
| 1965 | return ret_val; |
| 1966 | } |
| 1967 | |
| 1968 | /* At this point we know that we are on copper and we have |
| 1969 | * auto-negotiated link. These are conditions for checking the link |
| 1970 | * parter capability register. We use the link partner capability to |
| 1971 | * determine if TBI Compatibility needs to be turned on or off. If |
| 1972 | * the link partner advertises any speed in addition to Gigabit, then |
| 1973 | * we assume that they are GMII-based, and TBI compatibility is not |
| 1974 | * needed. If no other speeds are advertised, we assume the link |
| 1975 | * partner is TBI-based, and we turn on TBI Compatibility. |
| 1976 | */ |
| 1977 | if (hw->tbi_compatibility_en) { |
| 1978 | if (e1000_read_phy_reg |
| 1979 | (hw, PHY_LP_ABILITY, &lp_capability) < 0) { |
| 1980 | DEBUGOUT("PHY Read Error\n"); |
| 1981 | return -E1000_ERR_PHY; |
| 1982 | } |
| 1983 | if (lp_capability & (NWAY_LPAR_10T_HD_CAPS | |
| 1984 | NWAY_LPAR_10T_FD_CAPS | |
| 1985 | NWAY_LPAR_100TX_HD_CAPS | |
| 1986 | NWAY_LPAR_100TX_FD_CAPS | |
| 1987 | NWAY_LPAR_100T4_CAPS)) { |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 1988 | /* If our link partner advertises anything in addition to |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 1989 | * gigabit, we do not need to enable TBI compatibility. |
| 1990 | */ |
| 1991 | if (hw->tbi_compatibility_on) { |
| 1992 | /* If we previously were in the mode, turn it off. */ |
| 1993 | rctl = E1000_READ_REG(hw, RCTL); |
| 1994 | rctl &= ~E1000_RCTL_SBP; |
| 1995 | E1000_WRITE_REG(hw, RCTL, rctl); |
| 1996 | hw->tbi_compatibility_on = FALSE; |
| 1997 | } |
| 1998 | } else { |
| 1999 | /* If TBI compatibility is was previously off, turn it on. For |
| 2000 | * compatibility with a TBI link partner, we will store bad |
| 2001 | * packets. Some frames have an additional byte on the end and |
| 2002 | * will look like CRC errors to to the hardware. |
| 2003 | */ |
| 2004 | if (!hw->tbi_compatibility_on) { |
| 2005 | hw->tbi_compatibility_on = TRUE; |
| 2006 | rctl = E1000_READ_REG(hw, RCTL); |
| 2007 | rctl |= E1000_RCTL_SBP; |
| 2008 | E1000_WRITE_REG(hw, RCTL, rctl); |
| 2009 | } |
| 2010 | } |
| 2011 | } |
| 2012 | } |
| 2013 | /* If we don't have link (auto-negotiation failed or link partner cannot |
| 2014 | * auto-negotiate), the cable is plugged in (we have signal), and our |
| 2015 | * link partner is not trying to auto-negotiate with us (we are receiving |
| 2016 | * idles or data), we need to force link up. We also need to give |
| 2017 | * auto-negotiation time to complete, in case the cable was just plugged |
| 2018 | * in. The autoneg_failed flag does this. |
| 2019 | */ |
| 2020 | else if ((hw->media_type == e1000_media_type_fiber) && |
| 2021 | (!(status & E1000_STATUS_LU)) && |
| 2022 | ((ctrl & E1000_CTRL_SWDPIN1) == signal) && |
| 2023 | (!(rxcw & E1000_RXCW_C))) { |
| 2024 | if (hw->autoneg_failed == 0) { |
| 2025 | hw->autoneg_failed = 1; |
| 2026 | return 0; |
| 2027 | } |
| 2028 | DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n"); |
| 2029 | |
| 2030 | /* Disable auto-negotiation in the TXCW register */ |
| 2031 | E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE)); |
| 2032 | |
| 2033 | /* Force link-up and also force full-duplex. */ |
| 2034 | ctrl = E1000_READ_REG(hw, CTRL); |
| 2035 | ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); |
| 2036 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 2037 | |
| 2038 | /* Configure Flow Control after forcing link up. */ |
| 2039 | ret_val = e1000_config_fc_after_link_up(hw); |
| 2040 | if (ret_val < 0) { |
| 2041 | DEBUGOUT("Error configuring flow control\n"); |
| 2042 | return ret_val; |
| 2043 | } |
| 2044 | } |
| 2045 | /* If we are forcing link and we are receiving /C/ ordered sets, re-enable |
| 2046 | * auto-negotiation in the TXCW register and disable forced link in the |
| 2047 | * Device Control register in an attempt to auto-negotiate with our link |
| 2048 | * partner. |
| 2049 | */ |
| 2050 | else if ((hw->media_type == e1000_media_type_fiber) && |
| 2051 | (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { |
| 2052 | DEBUGOUT |
| 2053 | ("RXing /C/, enable AutoNeg and stop forcing link.\r\n"); |
| 2054 | E1000_WRITE_REG(hw, TXCW, hw->txcw); |
| 2055 | E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU)); |
| 2056 | } |
| 2057 | return 0; |
| 2058 | } |
| 2059 | |
| 2060 | /****************************************************************************** |
| 2061 | * Detects the current speed and duplex settings of the hardware. |
| 2062 | * |
| 2063 | * hw - Struct containing variables accessed by shared code |
| 2064 | * speed - Speed of the connection |
| 2065 | * duplex - Duplex setting of the connection |
| 2066 | *****************************************************************************/ |
| 2067 | static void |
| 2068 | e1000_get_speed_and_duplex(struct e1000_hw *hw, |
| 2069 | uint16_t * speed, uint16_t * duplex) |
| 2070 | { |
| 2071 | uint32_t status; |
| 2072 | |
| 2073 | DEBUGFUNC(); |
| 2074 | |
| 2075 | if (hw->mac_type >= e1000_82543) { |
| 2076 | status = E1000_READ_REG(hw, STATUS); |
| 2077 | if (status & E1000_STATUS_SPEED_1000) { |
| 2078 | *speed = SPEED_1000; |
| 2079 | DEBUGOUT("1000 Mbs, "); |
| 2080 | } else if (status & E1000_STATUS_SPEED_100) { |
| 2081 | *speed = SPEED_100; |
| 2082 | DEBUGOUT("100 Mbs, "); |
| 2083 | } else { |
| 2084 | *speed = SPEED_10; |
| 2085 | DEBUGOUT("10 Mbs, "); |
| 2086 | } |
| 2087 | |
| 2088 | if (status & E1000_STATUS_FD) { |
| 2089 | *duplex = FULL_DUPLEX; |
| 2090 | DEBUGOUT("Full Duplex\r\n"); |
| 2091 | } else { |
| 2092 | *duplex = HALF_DUPLEX; |
| 2093 | DEBUGOUT(" Half Duplex\r\n"); |
| 2094 | } |
| 2095 | } else { |
| 2096 | DEBUGOUT("1000 Mbs, Full Duplex\r\n"); |
| 2097 | *speed = SPEED_1000; |
| 2098 | *duplex = FULL_DUPLEX; |
| 2099 | } |
| 2100 | } |
| 2101 | |
| 2102 | /****************************************************************************** |
| 2103 | * Blocks until autoneg completes or times out (~4.5 seconds) |
| 2104 | * |
| 2105 | * hw - Struct containing variables accessed by shared code |
| 2106 | ******************************************************************************/ |
| 2107 | static int |
| 2108 | e1000_wait_autoneg(struct e1000_hw *hw) |
| 2109 | { |
| 2110 | uint16_t i; |
| 2111 | uint16_t phy_data; |
| 2112 | |
| 2113 | DEBUGFUNC(); |
| 2114 | DEBUGOUT("Waiting for Auto-Neg to complete.\n"); |
| 2115 | |
| 2116 | /* We will wait for autoneg to complete or 4.5 seconds to expire. */ |
| 2117 | for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { |
| 2118 | /* Read the MII Status Register and wait for Auto-Neg |
| 2119 | * Complete bit to be set. |
| 2120 | */ |
| 2121 | if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { |
| 2122 | DEBUGOUT("PHY Read Error\n"); |
| 2123 | return -E1000_ERR_PHY; |
| 2124 | } |
| 2125 | if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { |
| 2126 | DEBUGOUT("PHY Read Error\n"); |
| 2127 | return -E1000_ERR_PHY; |
| 2128 | } |
| 2129 | if (phy_data & MII_SR_AUTONEG_COMPLETE) { |
| 2130 | DEBUGOUT("Auto-Neg complete.\n"); |
| 2131 | return 0; |
| 2132 | } |
| 2133 | mdelay(100); |
| 2134 | } |
| 2135 | DEBUGOUT("Auto-Neg timedout.\n"); |
| 2136 | return -E1000_ERR_TIMEOUT; |
| 2137 | } |
| 2138 | |
| 2139 | /****************************************************************************** |
| 2140 | * Raises the Management Data Clock |
| 2141 | * |
| 2142 | * hw - Struct containing variables accessed by shared code |
| 2143 | * ctrl - Device control register's current value |
| 2144 | ******************************************************************************/ |
| 2145 | static void |
| 2146 | e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl) |
| 2147 | { |
| 2148 | /* Raise the clock input to the Management Data Clock (by setting the MDC |
| 2149 | * bit), and then delay 2 microseconds. |
| 2150 | */ |
| 2151 | E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC)); |
| 2152 | E1000_WRITE_FLUSH(hw); |
| 2153 | udelay(2); |
| 2154 | } |
| 2155 | |
| 2156 | /****************************************************************************** |
| 2157 | * Lowers the Management Data Clock |
| 2158 | * |
| 2159 | * hw - Struct containing variables accessed by shared code |
| 2160 | * ctrl - Device control register's current value |
| 2161 | ******************************************************************************/ |
| 2162 | static void |
| 2163 | e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl) |
| 2164 | { |
| 2165 | /* Lower the clock input to the Management Data Clock (by clearing the MDC |
| 2166 | * bit), and then delay 2 microseconds. |
| 2167 | */ |
| 2168 | E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC)); |
| 2169 | E1000_WRITE_FLUSH(hw); |
| 2170 | udelay(2); |
| 2171 | } |
| 2172 | |
| 2173 | /****************************************************************************** |
| 2174 | * Shifts data bits out to the PHY |
| 2175 | * |
| 2176 | * hw - Struct containing variables accessed by shared code |
| 2177 | * data - Data to send out to the PHY |
| 2178 | * count - Number of bits to shift out |
| 2179 | * |
| 2180 | * Bits are shifted out in MSB to LSB order. |
| 2181 | ******************************************************************************/ |
| 2182 | static void |
| 2183 | e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count) |
| 2184 | { |
| 2185 | uint32_t ctrl; |
| 2186 | uint32_t mask; |
| 2187 | |
| 2188 | /* We need to shift "count" number of bits out to the PHY. So, the value |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 2189 | * in the "data" parameter will be shifted out to the PHY one bit at a |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2190 | * time. In order to do this, "data" must be broken down into bits. |
| 2191 | */ |
| 2192 | mask = 0x01; |
| 2193 | mask <<= (count - 1); |
| 2194 | |
| 2195 | ctrl = E1000_READ_REG(hw, CTRL); |
| 2196 | |
| 2197 | /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ |
| 2198 | ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); |
| 2199 | |
| 2200 | while (mask) { |
| 2201 | /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and |
| 2202 | * then raising and lowering the Management Data Clock. A "0" is |
| 2203 | * shifted out to the PHY by setting the MDIO bit to "0" and then |
| 2204 | * raising and lowering the clock. |
| 2205 | */ |
| 2206 | if (data & mask) |
| 2207 | ctrl |= E1000_CTRL_MDIO; |
| 2208 | else |
| 2209 | ctrl &= ~E1000_CTRL_MDIO; |
| 2210 | |
| 2211 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 2212 | E1000_WRITE_FLUSH(hw); |
| 2213 | |
| 2214 | udelay(2); |
| 2215 | |
| 2216 | e1000_raise_mdi_clk(hw, &ctrl); |
| 2217 | e1000_lower_mdi_clk(hw, &ctrl); |
| 2218 | |
| 2219 | mask = mask >> 1; |
| 2220 | } |
| 2221 | } |
| 2222 | |
| 2223 | /****************************************************************************** |
| 2224 | * Shifts data bits in from the PHY |
| 2225 | * |
| 2226 | * hw - Struct containing variables accessed by shared code |
| 2227 | * |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 2228 | * Bits are shifted in in MSB to LSB order. |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2229 | ******************************************************************************/ |
| 2230 | static uint16_t |
| 2231 | e1000_shift_in_mdi_bits(struct e1000_hw *hw) |
| 2232 | { |
| 2233 | uint32_t ctrl; |
| 2234 | uint16_t data = 0; |
| 2235 | uint8_t i; |
| 2236 | |
| 2237 | /* In order to read a register from the PHY, we need to shift in a total |
| 2238 | * of 18 bits from the PHY. The first two bit (turnaround) times are used |
| 2239 | * to avoid contention on the MDIO pin when a read operation is performed. |
| 2240 | * These two bits are ignored by us and thrown away. Bits are "shifted in" |
| 2241 | * by raising the input to the Management Data Clock (setting the MDC bit), |
| 2242 | * and then reading the value of the MDIO bit. |
| 2243 | */ |
| 2244 | ctrl = E1000_READ_REG(hw, CTRL); |
| 2245 | |
| 2246 | /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ |
| 2247 | ctrl &= ~E1000_CTRL_MDIO_DIR; |
| 2248 | ctrl &= ~E1000_CTRL_MDIO; |
| 2249 | |
| 2250 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 2251 | E1000_WRITE_FLUSH(hw); |
| 2252 | |
| 2253 | /* Raise and Lower the clock before reading in the data. This accounts for |
| 2254 | * the turnaround bits. The first clock occurred when we clocked out the |
| 2255 | * last bit of the Register Address. |
| 2256 | */ |
| 2257 | e1000_raise_mdi_clk(hw, &ctrl); |
| 2258 | e1000_lower_mdi_clk(hw, &ctrl); |
| 2259 | |
| 2260 | for (data = 0, i = 0; i < 16; i++) { |
| 2261 | data = data << 1; |
| 2262 | e1000_raise_mdi_clk(hw, &ctrl); |
| 2263 | ctrl = E1000_READ_REG(hw, CTRL); |
| 2264 | /* Check to see if we shifted in a "1". */ |
| 2265 | if (ctrl & E1000_CTRL_MDIO) |
| 2266 | data |= 1; |
| 2267 | e1000_lower_mdi_clk(hw, &ctrl); |
| 2268 | } |
| 2269 | |
| 2270 | e1000_raise_mdi_clk(hw, &ctrl); |
| 2271 | e1000_lower_mdi_clk(hw, &ctrl); |
| 2272 | |
| 2273 | return data; |
| 2274 | } |
| 2275 | |
| 2276 | /***************************************************************************** |
| 2277 | * Reads the value from a PHY register |
| 2278 | * |
| 2279 | * hw - Struct containing variables accessed by shared code |
| 2280 | * reg_addr - address of the PHY register to read |
| 2281 | ******************************************************************************/ |
| 2282 | static int |
| 2283 | e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data) |
| 2284 | { |
| 2285 | uint32_t i; |
| 2286 | uint32_t mdic = 0; |
| 2287 | const uint32_t phy_addr = 1; |
| 2288 | |
| 2289 | if (reg_addr > MAX_PHY_REG_ADDRESS) { |
| 2290 | DEBUGOUT("PHY Address %d is out of range\n", reg_addr); |
| 2291 | return -E1000_ERR_PARAM; |
| 2292 | } |
| 2293 | |
| 2294 | if (hw->mac_type > e1000_82543) { |
| 2295 | /* Set up Op-code, Phy Address, and register address in the MDI |
| 2296 | * Control register. The MAC will take care of interfacing with the |
| 2297 | * PHY to retrieve the desired data. |
| 2298 | */ |
| 2299 | mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | |
| 2300 | (phy_addr << E1000_MDIC_PHY_SHIFT) | |
| 2301 | (E1000_MDIC_OP_READ)); |
| 2302 | |
| 2303 | E1000_WRITE_REG(hw, MDIC, mdic); |
| 2304 | |
| 2305 | /* Poll the ready bit to see if the MDI read completed */ |
| 2306 | for (i = 0; i < 64; i++) { |
| 2307 | udelay(10); |
| 2308 | mdic = E1000_READ_REG(hw, MDIC); |
| 2309 | if (mdic & E1000_MDIC_READY) |
| 2310 | break; |
| 2311 | } |
| 2312 | if (!(mdic & E1000_MDIC_READY)) { |
| 2313 | DEBUGOUT("MDI Read did not complete\n"); |
| 2314 | return -E1000_ERR_PHY; |
| 2315 | } |
| 2316 | if (mdic & E1000_MDIC_ERROR) { |
| 2317 | DEBUGOUT("MDI Error\n"); |
| 2318 | return -E1000_ERR_PHY; |
| 2319 | } |
| 2320 | *phy_data = (uint16_t) mdic; |
| 2321 | } else { |
| 2322 | /* We must first send a preamble through the MDIO pin to signal the |
| 2323 | * beginning of an MII instruction. This is done by sending 32 |
| 2324 | * consecutive "1" bits. |
| 2325 | */ |
| 2326 | e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); |
| 2327 | |
| 2328 | /* Now combine the next few fields that are required for a read |
| 2329 | * operation. We use this method instead of calling the |
| 2330 | * e1000_shift_out_mdi_bits routine five different times. The format of |
| 2331 | * a MII read instruction consists of a shift out of 14 bits and is |
| 2332 | * defined as follows: |
| 2333 | * <Preamble><SOF><Op Code><Phy Addr><Reg Addr> |
| 2334 | * followed by a shift in of 18 bits. This first two bits shifted in |
| 2335 | * are TurnAround bits used to avoid contention on the MDIO pin when a |
| 2336 | * READ operation is performed. These two bits are thrown away |
| 2337 | * followed by a shift in of 16 bits which contains the desired data. |
| 2338 | */ |
| 2339 | mdic = ((reg_addr) | (phy_addr << 5) | |
| 2340 | (PHY_OP_READ << 10) | (PHY_SOF << 12)); |
| 2341 | |
| 2342 | e1000_shift_out_mdi_bits(hw, mdic, 14); |
| 2343 | |
| 2344 | /* Now that we've shifted out the read command to the MII, we need to |
| 2345 | * "shift in" the 16-bit value (18 total bits) of the requested PHY |
| 2346 | * register address. |
| 2347 | */ |
| 2348 | *phy_data = e1000_shift_in_mdi_bits(hw); |
| 2349 | } |
| 2350 | return 0; |
| 2351 | } |
| 2352 | |
| 2353 | /****************************************************************************** |
| 2354 | * Writes a value to a PHY register |
| 2355 | * |
| 2356 | * hw - Struct containing variables accessed by shared code |
| 2357 | * reg_addr - address of the PHY register to write |
| 2358 | * data - data to write to the PHY |
| 2359 | ******************************************************************************/ |
| 2360 | static int |
| 2361 | e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data) |
| 2362 | { |
| 2363 | uint32_t i; |
| 2364 | uint32_t mdic = 0; |
| 2365 | const uint32_t phy_addr = 1; |
| 2366 | |
| 2367 | if (reg_addr > MAX_PHY_REG_ADDRESS) { |
| 2368 | DEBUGOUT("PHY Address %d is out of range\n", reg_addr); |
| 2369 | return -E1000_ERR_PARAM; |
| 2370 | } |
| 2371 | |
| 2372 | if (hw->mac_type > e1000_82543) { |
| 2373 | /* Set up Op-code, Phy Address, register address, and data intended |
| 2374 | * for the PHY register in the MDI Control register. The MAC will take |
| 2375 | * care of interfacing with the PHY to send the desired data. |
| 2376 | */ |
| 2377 | mdic = (((uint32_t) phy_data) | |
| 2378 | (reg_addr << E1000_MDIC_REG_SHIFT) | |
| 2379 | (phy_addr << E1000_MDIC_PHY_SHIFT) | |
| 2380 | (E1000_MDIC_OP_WRITE)); |
| 2381 | |
| 2382 | E1000_WRITE_REG(hw, MDIC, mdic); |
| 2383 | |
| 2384 | /* Poll the ready bit to see if the MDI read completed */ |
| 2385 | for (i = 0; i < 64; i++) { |
| 2386 | udelay(10); |
| 2387 | mdic = E1000_READ_REG(hw, MDIC); |
| 2388 | if (mdic & E1000_MDIC_READY) |
| 2389 | break; |
| 2390 | } |
| 2391 | if (!(mdic & E1000_MDIC_READY)) { |
| 2392 | DEBUGOUT("MDI Write did not complete\n"); |
| 2393 | return -E1000_ERR_PHY; |
| 2394 | } |
| 2395 | } else { |
| 2396 | /* We'll need to use the SW defined pins to shift the write command |
| 2397 | * out to the PHY. We first send a preamble to the PHY to signal the |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 2398 | * beginning of the MII instruction. This is done by sending 32 |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2399 | * consecutive "1" bits. |
| 2400 | */ |
| 2401 | e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); |
| 2402 | |
wdenk | 8bde7f7 | 2003-06-27 21:31:46 +0000 | [diff] [blame] | 2403 | /* Now combine the remaining required fields that will indicate a |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2404 | * write operation. We use this method instead of calling the |
| 2405 | * e1000_shift_out_mdi_bits routine for each field in the command. The |
| 2406 | * format of a MII write instruction is as follows: |
| 2407 | * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. |
| 2408 | */ |
| 2409 | mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | |
| 2410 | (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); |
| 2411 | mdic <<= 16; |
| 2412 | mdic |= (uint32_t) phy_data; |
| 2413 | |
| 2414 | e1000_shift_out_mdi_bits(hw, mdic, 32); |
| 2415 | } |
| 2416 | return 0; |
| 2417 | } |
| 2418 | |
| 2419 | /****************************************************************************** |
| 2420 | * Returns the PHY to the power-on reset state |
| 2421 | * |
| 2422 | * hw - Struct containing variables accessed by shared code |
| 2423 | ******************************************************************************/ |
| 2424 | static void |
| 2425 | e1000_phy_hw_reset(struct e1000_hw *hw) |
| 2426 | { |
| 2427 | uint32_t ctrl; |
| 2428 | uint32_t ctrl_ext; |
| 2429 | |
| 2430 | DEBUGFUNC(); |
| 2431 | |
| 2432 | DEBUGOUT("Resetting Phy...\n"); |
| 2433 | |
| 2434 | if (hw->mac_type > e1000_82543) { |
| 2435 | /* Read the device control register and assert the E1000_CTRL_PHY_RST |
| 2436 | * bit. Then, take it out of reset. |
| 2437 | */ |
| 2438 | ctrl = E1000_READ_REG(hw, CTRL); |
| 2439 | E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST); |
| 2440 | E1000_WRITE_FLUSH(hw); |
| 2441 | mdelay(10); |
| 2442 | E1000_WRITE_REG(hw, CTRL, ctrl); |
| 2443 | E1000_WRITE_FLUSH(hw); |
| 2444 | } else { |
| 2445 | /* Read the Extended Device Control Register, assert the PHY_RESET_DIR |
| 2446 | * bit to put the PHY into reset. Then, take it out of reset. |
| 2447 | */ |
| 2448 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); |
| 2449 | ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; |
| 2450 | ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; |
| 2451 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| 2452 | E1000_WRITE_FLUSH(hw); |
| 2453 | mdelay(10); |
| 2454 | ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; |
| 2455 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| 2456 | E1000_WRITE_FLUSH(hw); |
| 2457 | } |
| 2458 | udelay(150); |
| 2459 | } |
| 2460 | |
| 2461 | /****************************************************************************** |
| 2462 | * Resets the PHY |
| 2463 | * |
| 2464 | * hw - Struct containing variables accessed by shared code |
| 2465 | * |
| 2466 | * Sets bit 15 of the MII Control regiser |
| 2467 | ******************************************************************************/ |
| 2468 | static int |
| 2469 | e1000_phy_reset(struct e1000_hw *hw) |
| 2470 | { |
| 2471 | uint16_t phy_data; |
| 2472 | |
| 2473 | DEBUGFUNC(); |
| 2474 | |
| 2475 | if (e1000_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) { |
| 2476 | DEBUGOUT("PHY Read Error\n"); |
| 2477 | return -E1000_ERR_PHY; |
| 2478 | } |
| 2479 | phy_data |= MII_CR_RESET; |
| 2480 | if (e1000_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) { |
| 2481 | DEBUGOUT("PHY Write Error\n"); |
| 2482 | return -E1000_ERR_PHY; |
| 2483 | } |
| 2484 | udelay(1); |
| 2485 | return 0; |
| 2486 | } |
| 2487 | |
| 2488 | /****************************************************************************** |
| 2489 | * Probes the expected PHY address for known PHY IDs |
| 2490 | * |
| 2491 | * hw - Struct containing variables accessed by shared code |
| 2492 | ******************************************************************************/ |
| 2493 | static int |
| 2494 | e1000_detect_gig_phy(struct e1000_hw *hw) |
| 2495 | { |
| 2496 | uint16_t phy_id_high, phy_id_low; |
| 2497 | int match = FALSE; |
| 2498 | |
| 2499 | DEBUGFUNC(); |
| 2500 | |
| 2501 | /* Read the PHY ID Registers to identify which PHY is onboard. */ |
| 2502 | if (e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high) < 0) { |
| 2503 | DEBUGOUT("PHY Read Error\n"); |
| 2504 | return -E1000_ERR_PHY; |
| 2505 | } |
| 2506 | hw->phy_id = (uint32_t) (phy_id_high << 16); |
| 2507 | udelay(2); |
| 2508 | if (e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low) < 0) { |
| 2509 | DEBUGOUT("PHY Read Error\n"); |
| 2510 | return -E1000_ERR_PHY; |
| 2511 | } |
| 2512 | hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK); |
| 2513 | |
| 2514 | switch (hw->mac_type) { |
| 2515 | case e1000_82543: |
| 2516 | if (hw->phy_id == M88E1000_E_PHY_ID) |
| 2517 | match = TRUE; |
| 2518 | break; |
| 2519 | case e1000_82544: |
| 2520 | if (hw->phy_id == M88E1000_I_PHY_ID) |
| 2521 | match = TRUE; |
| 2522 | break; |
| 2523 | case e1000_82540: |
| 2524 | case e1000_82545: |
| 2525 | case e1000_82546: |
| 2526 | if (hw->phy_id == M88E1011_I_PHY_ID) |
| 2527 | match = TRUE; |
| 2528 | break; |
| 2529 | default: |
| 2530 | DEBUGOUT("Invalid MAC type %d\n", hw->mac_type); |
| 2531 | return -E1000_ERR_CONFIG; |
| 2532 | } |
| 2533 | if (match) { |
| 2534 | DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id); |
| 2535 | return 0; |
| 2536 | } |
| 2537 | DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id); |
| 2538 | return -E1000_ERR_PHY; |
| 2539 | } |
| 2540 | |
| 2541 | /** |
| 2542 | * e1000_sw_init - Initialize general software structures (struct e1000_adapter) |
| 2543 | * |
| 2544 | * e1000_sw_init initializes the Adapter private data structure. |
| 2545 | * Fields are initialized based on PCI device information and |
| 2546 | * OS network device settings (MTU size). |
| 2547 | **/ |
| 2548 | |
| 2549 | static int |
| 2550 | e1000_sw_init(struct eth_device *nic, int cardnum) |
| 2551 | { |
| 2552 | struct e1000_hw *hw = (typeof(hw)) nic->priv; |
| 2553 | int result; |
| 2554 | |
| 2555 | /* PCI config space info */ |
| 2556 | pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id); |
| 2557 | pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id); |
| 2558 | pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID, |
| 2559 | &hw->subsystem_vendor_id); |
| 2560 | pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id); |
| 2561 | |
| 2562 | pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id); |
| 2563 | pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word); |
| 2564 | |
| 2565 | /* identify the MAC */ |
| 2566 | result = e1000_set_mac_type(hw); |
| 2567 | if (result) { |
| 2568 | E1000_ERR("Unknown MAC Type\n"); |
| 2569 | return result; |
| 2570 | } |
| 2571 | |
| 2572 | /* lan a vs. lan b settings */ |
| 2573 | if (hw->mac_type == e1000_82546) |
| 2574 | /*this also works w/ multiple 82546 cards */ |
| 2575 | /*but not if they're intermingled /w other e1000s */ |
| 2576 | hw->lan_loc = (cardnum % 2) ? e1000_lan_b : e1000_lan_a; |
| 2577 | else |
| 2578 | hw->lan_loc = e1000_lan_a; |
| 2579 | |
| 2580 | /* flow control settings */ |
| 2581 | hw->fc_high_water = E1000_FC_HIGH_THRESH; |
| 2582 | hw->fc_low_water = E1000_FC_LOW_THRESH; |
| 2583 | hw->fc_pause_time = E1000_FC_PAUSE_TIME; |
| 2584 | hw->fc_send_xon = 1; |
| 2585 | |
| 2586 | /* Media type - copper or fiber */ |
| 2587 | |
| 2588 | if (hw->mac_type >= e1000_82543) { |
| 2589 | uint32_t status = E1000_READ_REG(hw, STATUS); |
| 2590 | |
| 2591 | if (status & E1000_STATUS_TBIMODE) { |
| 2592 | DEBUGOUT("fiber interface\n"); |
| 2593 | hw->media_type = e1000_media_type_fiber; |
| 2594 | } else { |
| 2595 | DEBUGOUT("copper interface\n"); |
| 2596 | hw->media_type = e1000_media_type_copper; |
| 2597 | } |
| 2598 | } else { |
| 2599 | hw->media_type = e1000_media_type_fiber; |
| 2600 | } |
| 2601 | |
| 2602 | if (hw->mac_type < e1000_82543) |
| 2603 | hw->report_tx_early = 0; |
| 2604 | else |
| 2605 | hw->report_tx_early = 1; |
| 2606 | |
| 2607 | hw->tbi_compatibility_en = TRUE; |
| 2608 | #if 0 |
| 2609 | hw->wait_autoneg_complete = FALSE; |
| 2610 | hw->adaptive_ifs = TRUE; |
| 2611 | |
| 2612 | /* Copper options */ |
| 2613 | if (hw->media_type == e1000_media_type_copper) { |
| 2614 | hw->mdix = AUTO_ALL_MODES; |
| 2615 | hw->disable_polarity_correction = FALSE; |
| 2616 | } |
| 2617 | #endif |
| 2618 | return E1000_SUCCESS; |
| 2619 | } |
| 2620 | |
| 2621 | void |
| 2622 | fill_rx(struct e1000_hw *hw) |
| 2623 | { |
| 2624 | struct e1000_rx_desc *rd; |
| 2625 | |
| 2626 | rx_last = rx_tail; |
| 2627 | rd = rx_base + rx_tail; |
| 2628 | rx_tail = (rx_tail + 1) % 8; |
| 2629 | memset(rd, 0, 16); |
| 2630 | rd->buffer_addr = cpu_to_le64((u32) & packet); |
| 2631 | E1000_WRITE_REG(hw, RDT, rx_tail); |
| 2632 | } |
| 2633 | |
| 2634 | /** |
| 2635 | * e1000_configure_tx - Configure 8254x Transmit Unit after Reset |
| 2636 | * @adapter: board private structure |
| 2637 | * |
| 2638 | * Configure the Tx unit of the MAC after a reset. |
| 2639 | **/ |
| 2640 | |
| 2641 | static void |
| 2642 | e1000_configure_tx(struct e1000_hw *hw) |
| 2643 | { |
| 2644 | unsigned long ptr; |
| 2645 | unsigned long tctl; |
| 2646 | unsigned long tipg; |
| 2647 | |
| 2648 | ptr = (u32) tx_pool; |
| 2649 | if (ptr & 0xf) |
| 2650 | ptr = (ptr + 0x10) & (~0xf); |
| 2651 | |
| 2652 | tx_base = (typeof(tx_base)) ptr; |
| 2653 | |
| 2654 | E1000_WRITE_REG(hw, TDBAL, (u32) tx_base); |
| 2655 | E1000_WRITE_REG(hw, TDBAH, 0); |
| 2656 | |
| 2657 | E1000_WRITE_REG(hw, TDLEN, 128); |
| 2658 | |
| 2659 | /* Setup the HW Tx Head and Tail descriptor pointers */ |
| 2660 | E1000_WRITE_REG(hw, TDH, 0); |
| 2661 | E1000_WRITE_REG(hw, TDT, 0); |
| 2662 | tx_tail = 0; |
| 2663 | |
| 2664 | /* Set the default values for the Tx Inter Packet Gap timer */ |
| 2665 | switch (hw->mac_type) { |
| 2666 | case e1000_82542_rev2_0: |
| 2667 | case e1000_82542_rev2_1: |
| 2668 | tipg = DEFAULT_82542_TIPG_IPGT; |
| 2669 | tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; |
| 2670 | tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; |
| 2671 | break; |
| 2672 | default: |
| 2673 | if (hw->media_type == e1000_media_type_fiber) |
| 2674 | tipg = DEFAULT_82543_TIPG_IPGT_FIBER; |
| 2675 | else |
| 2676 | tipg = DEFAULT_82543_TIPG_IPGT_COPPER; |
| 2677 | tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; |
| 2678 | tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; |
| 2679 | } |
| 2680 | E1000_WRITE_REG(hw, TIPG, tipg); |
| 2681 | #if 0 |
| 2682 | /* Set the Tx Interrupt Delay register */ |
| 2683 | E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay); |
| 2684 | if (hw->mac_type >= e1000_82540) |
| 2685 | E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay); |
| 2686 | #endif |
| 2687 | /* Program the Transmit Control Register */ |
| 2688 | tctl = E1000_READ_REG(hw, TCTL); |
| 2689 | tctl &= ~E1000_TCTL_CT; |
| 2690 | tctl |= E1000_TCTL_EN | E1000_TCTL_PSP | |
| 2691 | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); |
| 2692 | E1000_WRITE_REG(hw, TCTL, tctl); |
| 2693 | |
| 2694 | e1000_config_collision_dist(hw); |
| 2695 | #if 0 |
| 2696 | /* Setup Transmit Descriptor Settings for this adapter */ |
| 2697 | adapter->txd_cmd = E1000_TXD_CMD_IFCS | E1000_TXD_CMD_IDE; |
| 2698 | |
| 2699 | if (adapter->hw.report_tx_early == 1) |
| 2700 | adapter->txd_cmd |= E1000_TXD_CMD_RS; |
| 2701 | else |
| 2702 | adapter->txd_cmd |= E1000_TXD_CMD_RPS; |
| 2703 | #endif |
| 2704 | } |
| 2705 | |
| 2706 | /** |
| 2707 | * e1000_setup_rctl - configure the receive control register |
| 2708 | * @adapter: Board private structure |
| 2709 | **/ |
| 2710 | static void |
| 2711 | e1000_setup_rctl(struct e1000_hw *hw) |
| 2712 | { |
| 2713 | uint32_t rctl; |
| 2714 | |
| 2715 | rctl = E1000_READ_REG(hw, RCTL); |
| 2716 | |
| 2717 | rctl &= ~(3 << E1000_RCTL_MO_SHIFT); |
| 2718 | |
| 2719 | rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF; /* | |
| 2720 | (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */ |
| 2721 | |
| 2722 | if (hw->tbi_compatibility_on == 1) |
| 2723 | rctl |= E1000_RCTL_SBP; |
| 2724 | else |
| 2725 | rctl &= ~E1000_RCTL_SBP; |
| 2726 | |
| 2727 | rctl &= ~(E1000_RCTL_SZ_4096); |
| 2728 | #if 0 |
| 2729 | switch (adapter->rx_buffer_len) { |
| 2730 | case E1000_RXBUFFER_2048: |
| 2731 | default: |
| 2732 | #endif |
| 2733 | rctl |= E1000_RCTL_SZ_2048; |
| 2734 | rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE); |
| 2735 | #if 0 |
| 2736 | break; |
| 2737 | case E1000_RXBUFFER_4096: |
| 2738 | rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX | E1000_RCTL_LPE; |
| 2739 | break; |
| 2740 | case E1000_RXBUFFER_8192: |
| 2741 | rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX | E1000_RCTL_LPE; |
| 2742 | break; |
| 2743 | case E1000_RXBUFFER_16384: |
| 2744 | rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX | E1000_RCTL_LPE; |
| 2745 | break; |
| 2746 | } |
| 2747 | #endif |
| 2748 | E1000_WRITE_REG(hw, RCTL, rctl); |
| 2749 | } |
| 2750 | |
| 2751 | /** |
| 2752 | * e1000_configure_rx - Configure 8254x Receive Unit after Reset |
| 2753 | * @adapter: board private structure |
| 2754 | * |
| 2755 | * Configure the Rx unit of the MAC after a reset. |
| 2756 | **/ |
| 2757 | static void |
| 2758 | e1000_configure_rx(struct e1000_hw *hw) |
| 2759 | { |
| 2760 | unsigned long ptr; |
| 2761 | unsigned long rctl; |
| 2762 | #if 0 |
| 2763 | unsigned long rxcsum; |
| 2764 | #endif |
| 2765 | rx_tail = 0; |
| 2766 | /* make sure receives are disabled while setting up the descriptors */ |
| 2767 | rctl = E1000_READ_REG(hw, RCTL); |
| 2768 | E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN); |
| 2769 | #if 0 |
| 2770 | /* set the Receive Delay Timer Register */ |
| 2771 | |
| 2772 | E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay); |
| 2773 | #endif |
| 2774 | if (hw->mac_type >= e1000_82540) { |
| 2775 | #if 0 |
| 2776 | E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay); |
| 2777 | #endif |
| 2778 | /* Set the interrupt throttling rate. Value is calculated |
| 2779 | * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */ |
| 2780 | #define MAX_INTS_PER_SEC 8000 |
| 2781 | #define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256) |
| 2782 | E1000_WRITE_REG(hw, ITR, DEFAULT_ITR); |
| 2783 | } |
| 2784 | |
| 2785 | /* Setup the Base and Length of the Rx Descriptor Ring */ |
| 2786 | ptr = (u32) rx_pool; |
| 2787 | if (ptr & 0xf) |
| 2788 | ptr = (ptr + 0x10) & (~0xf); |
| 2789 | rx_base = (typeof(rx_base)) ptr; |
| 2790 | E1000_WRITE_REG(hw, RDBAL, (u32) rx_base); |
| 2791 | E1000_WRITE_REG(hw, RDBAH, 0); |
| 2792 | |
| 2793 | E1000_WRITE_REG(hw, RDLEN, 128); |
| 2794 | |
| 2795 | /* Setup the HW Rx Head and Tail Descriptor Pointers */ |
| 2796 | E1000_WRITE_REG(hw, RDH, 0); |
| 2797 | E1000_WRITE_REG(hw, RDT, 0); |
| 2798 | #if 0 |
| 2799 | /* Enable 82543 Receive Checksum Offload for TCP and UDP */ |
| 2800 | if ((adapter->hw.mac_type >= e1000_82543) && (adapter->rx_csum == TRUE)) { |
| 2801 | rxcsum = E1000_READ_REG(hw, RXCSUM); |
| 2802 | rxcsum |= E1000_RXCSUM_TUOFL; |
| 2803 | E1000_WRITE_REG(hw, RXCSUM, rxcsum); |
| 2804 | } |
| 2805 | #endif |
| 2806 | /* Enable Receives */ |
| 2807 | |
| 2808 | E1000_WRITE_REG(hw, RCTL, rctl); |
| 2809 | fill_rx(hw); |
| 2810 | } |
| 2811 | |
| 2812 | /************************************************************************** |
| 2813 | POLL - Wait for a frame |
| 2814 | ***************************************************************************/ |
| 2815 | static int |
| 2816 | e1000_poll(struct eth_device *nic) |
| 2817 | { |
| 2818 | struct e1000_hw *hw = nic->priv; |
| 2819 | struct e1000_rx_desc *rd; |
| 2820 | /* return true if there's an ethernet packet ready to read */ |
| 2821 | rd = rx_base + rx_last; |
| 2822 | if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD) |
| 2823 | return 0; |
| 2824 | /*DEBUGOUT("recv: packet len=%d \n", rd->length); */ |
Wolfgang Denk | 77ddac9 | 2005-10-13 16:45:02 +0200 | [diff] [blame] | 2825 | NetReceive((uchar *)packet, le32_to_cpu(rd->length)); |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2826 | fill_rx(hw); |
| 2827 | return 1; |
| 2828 | } |
| 2829 | |
| 2830 | /************************************************************************** |
| 2831 | TRANSMIT - Transmit a frame |
| 2832 | ***************************************************************************/ |
| 2833 | static int |
| 2834 | e1000_transmit(struct eth_device *nic, volatile void *packet, int length) |
| 2835 | { |
| 2836 | struct e1000_hw *hw = nic->priv; |
| 2837 | struct e1000_tx_desc *txp; |
| 2838 | int i = 0; |
| 2839 | |
| 2840 | txp = tx_base + tx_tail; |
| 2841 | tx_tail = (tx_tail + 1) % 8; |
| 2842 | |
| 2843 | txp->buffer_addr = cpu_to_le64(virt_to_bus(packet)); |
| 2844 | txp->lower.data = cpu_to_le32(E1000_TXD_CMD_RPS | E1000_TXD_CMD_EOP | |
| 2845 | E1000_TXD_CMD_IFCS | length); |
| 2846 | txp->upper.data = 0; |
| 2847 | E1000_WRITE_REG(hw, TDT, tx_tail); |
| 2848 | |
| 2849 | while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) { |
| 2850 | if (i++ > TOUT_LOOP) { |
| 2851 | DEBUGOUT("e1000: tx timeout\n"); |
| 2852 | return 0; |
| 2853 | } |
| 2854 | udelay(10); /* give the nic a chance to write to the register */ |
| 2855 | } |
| 2856 | return 1; |
| 2857 | } |
| 2858 | |
| 2859 | /*reset function*/ |
| 2860 | static inline int |
| 2861 | e1000_reset(struct eth_device *nic) |
| 2862 | { |
| 2863 | struct e1000_hw *hw = nic->priv; |
| 2864 | |
| 2865 | e1000_reset_hw(hw); |
| 2866 | if (hw->mac_type >= e1000_82544) { |
| 2867 | E1000_WRITE_REG(hw, WUC, 0); |
| 2868 | } |
| 2869 | return e1000_init_hw(nic); |
| 2870 | } |
| 2871 | |
| 2872 | /************************************************************************** |
| 2873 | DISABLE - Turn off ethernet interface |
| 2874 | ***************************************************************************/ |
| 2875 | static void |
| 2876 | e1000_disable(struct eth_device *nic) |
| 2877 | { |
| 2878 | struct e1000_hw *hw = nic->priv; |
| 2879 | |
| 2880 | /* Turn off the ethernet interface */ |
| 2881 | E1000_WRITE_REG(hw, RCTL, 0); |
| 2882 | E1000_WRITE_REG(hw, TCTL, 0); |
| 2883 | |
| 2884 | /* Clear the transmit ring */ |
| 2885 | E1000_WRITE_REG(hw, TDH, 0); |
| 2886 | E1000_WRITE_REG(hw, TDT, 0); |
| 2887 | |
| 2888 | /* Clear the receive ring */ |
| 2889 | E1000_WRITE_REG(hw, RDH, 0); |
| 2890 | E1000_WRITE_REG(hw, RDT, 0); |
| 2891 | |
| 2892 | /* put the card in its initial state */ |
| 2893 | #if 0 |
| 2894 | E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST); |
| 2895 | #endif |
| 2896 | mdelay(10); |
| 2897 | |
| 2898 | } |
| 2899 | |
| 2900 | /************************************************************************** |
| 2901 | INIT - set up ethernet interface(s) |
| 2902 | ***************************************************************************/ |
| 2903 | static int |
| 2904 | e1000_init(struct eth_device *nic, bd_t * bis) |
| 2905 | { |
| 2906 | struct e1000_hw *hw = nic->priv; |
| 2907 | int ret_val = 0; |
| 2908 | |
| 2909 | ret_val = e1000_reset(nic); |
| 2910 | if (ret_val < 0) { |
| 2911 | if ((ret_val == -E1000_ERR_NOLINK) || |
| 2912 | (ret_val == -E1000_ERR_TIMEOUT)) { |
| 2913 | E1000_ERR("Valid Link not detected\n"); |
| 2914 | } else { |
| 2915 | E1000_ERR("Hardware Initialization Failed\n"); |
| 2916 | } |
| 2917 | return 0; |
| 2918 | } |
| 2919 | e1000_configure_tx(hw); |
| 2920 | e1000_setup_rctl(hw); |
| 2921 | e1000_configure_rx(hw); |
| 2922 | return 1; |
| 2923 | } |
| 2924 | |
| 2925 | /************************************************************************** |
| 2926 | PROBE - Look for an adapter, this routine's visible to the outside |
| 2927 | You should omit the last argument struct pci_device * for a non-PCI NIC |
| 2928 | ***************************************************************************/ |
| 2929 | int |
| 2930 | e1000_initialize(bd_t * bis) |
| 2931 | { |
| 2932 | pci_dev_t devno; |
| 2933 | int card_number = 0; |
| 2934 | struct eth_device *nic = NULL; |
| 2935 | struct e1000_hw *hw = NULL; |
| 2936 | u32 iobase; |
| 2937 | int idx = 0; |
| 2938 | u32 PciCommandWord; |
| 2939 | |
| 2940 | while (1) { /* Find PCI device(s) */ |
| 2941 | if ((devno = pci_find_devices(supported, idx++)) < 0) { |
| 2942 | break; |
| 2943 | } |
| 2944 | |
| 2945 | pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &iobase); |
| 2946 | iobase &= ~0xf; /* Mask the bits that say "this is an io addr" */ |
| 2947 | DEBUGOUT("e1000#%d: iobase 0x%08x\n", card_number, iobase); |
| 2948 | |
| 2949 | pci_write_config_dword(devno, PCI_COMMAND, |
| 2950 | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); |
| 2951 | /* Check if I/O accesses and Bus Mastering are enabled. */ |
| 2952 | pci_read_config_dword(devno, PCI_COMMAND, &PciCommandWord); |
| 2953 | if (!(PciCommandWord & PCI_COMMAND_MEMORY)) { |
| 2954 | printf("Error: Can not enable MEM access.\n"); |
| 2955 | continue; |
| 2956 | } else if (!(PciCommandWord & PCI_COMMAND_MASTER)) { |
| 2957 | printf("Error: Can not enable Bus Mastering.\n"); |
| 2958 | continue; |
| 2959 | } |
| 2960 | |
| 2961 | nic = (struct eth_device *) malloc(sizeof (*nic)); |
| 2962 | hw = (struct e1000_hw *) malloc(sizeof (*hw)); |
| 2963 | hw->pdev = devno; |
| 2964 | nic->priv = hw; |
| 2965 | nic->iobase = bus_to_phys(devno, iobase); |
| 2966 | |
| 2967 | sprintf(nic->name, "e1000#%d", card_number); |
| 2968 | |
| 2969 | /* Are these variables needed? */ |
| 2970 | #if 0 |
| 2971 | hw->fc = e1000_fc_none; |
| 2972 | hw->original_fc = e1000_fc_none; |
| 2973 | #else |
| 2974 | hw->fc = e1000_fc_default; |
| 2975 | hw->original_fc = e1000_fc_default; |
| 2976 | #endif |
| 2977 | hw->autoneg_failed = 0; |
| 2978 | hw->get_link_status = TRUE; |
| 2979 | hw->hw_addr = (typeof(hw->hw_addr)) iobase; |
| 2980 | hw->mac_type = e1000_undefined; |
| 2981 | |
| 2982 | /* MAC and Phy settings */ |
| 2983 | if (e1000_sw_init(nic, card_number) < 0) { |
| 2984 | free(hw); |
| 2985 | free(nic); |
| 2986 | return 0; |
| 2987 | } |
Wolfgang Denk | 7521af1 | 2005-10-09 01:04:33 +0200 | [diff] [blame] | 2988 | #ifndef CONFIG_AP1000 |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2989 | if (e1000_validate_eeprom_checksum(nic) < 0) { |
| 2990 | printf("The EEPROM Checksum Is Not Valid\n"); |
| 2991 | free(hw); |
| 2992 | free(nic); |
| 2993 | return 0; |
| 2994 | } |
Wolfgang Denk | 7521af1 | 2005-10-09 01:04:33 +0200 | [diff] [blame] | 2995 | #endif |
wdenk | 682011f | 2003-06-03 23:54:09 +0000 | [diff] [blame] | 2996 | e1000_read_mac_addr(nic); |
| 2997 | |
| 2998 | E1000_WRITE_REG(hw, PBA, E1000_DEFAULT_PBA); |
| 2999 | |
| 3000 | printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n", |
| 3001 | nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2], |
| 3002 | nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]); |
| 3003 | |
| 3004 | nic->init = e1000_init; |
| 3005 | nic->recv = e1000_poll; |
| 3006 | nic->send = e1000_transmit; |
| 3007 | nic->halt = e1000_disable; |
| 3008 | |
| 3009 | eth_register(nic); |
| 3010 | |
| 3011 | card_number++; |
| 3012 | } |
| 3013 | return 1; |
| 3014 | } |
| 3015 | |
| 3016 | #endif |